COMP 455 Models of Languages and Computation Spring 2011 A Copying Turing Machine

The following Turing machine will copy a binary string:

 $M = (K, \Sigma, \delta, s, \{h\})$ where $K = \{s, q, r_0, r_1, s_0, s_1, t, u, v, h\}, \Sigma = \{\triangleright, \sqcup, 0, 1, 0', 1'\},$ and δ is defined as follows:

 $q \quad a \quad \delta(q,a)$

s	\Box	(q, \rightarrow)	Move right one square
q	$\overline{0}$	$(r_0, 0')$	Mark the symbol being copied
$\frac{q}{q}$	1	$(r_0, 0')$ $(r_1, 1')$	Mark the symbol being copied
-		(= / /	
r_i		(r_i, \rightarrow)	Move to right looking for blank
r_i	0', 1'	(r_i, \rightarrow)	Move to right looking for blank
r_i	\Box	(s_i, \rightarrow)	Found the blank, switch to s_i
s_i	0,1	(s_i, \rightarrow)	Move right looking for another blank
s_0	\Box	(t,0)	Write character being copied
s_1	\Box	(t,1)	Write character being copied
t	0, 1	(t, \leftarrow)	Move back left looking for a blank
t	\Box	(u, \leftarrow)	Found blank, switch to u
u	0,1	(u, \leftarrow)	Move back looking for mark
u	0'	(s,0)	Found mark, unmark character
u	1'	(s, 1)	Found mark, unmark character
s	0	(q, \rightarrow)	Move right, copy again
s	1	(q, \rightarrow)	Move right, copy again
q	\Box	(v, \leftarrow)	Found a blank, done copying
v	0, 1	(v, \leftarrow)	Done copying, scan left for blank
v	\Box	(h,\sqcup)	Done copying, halt

(Some of the transitions are omitted. There may also be mistakes!) Here is the beginning of a sample computation:

 $\begin{array}{l} (s, \triangleright \underline{\sqcup} 01 \sqcup) \vdash (q, \triangleright \sqcup \underline{0}1 \sqcup) \vdash (r_0, \triangleright \sqcup \underline{0'}1 \sqcup) \vdash (r_0, \triangleright \sqcup 0' \underline{1} \sqcup) \vdash (r_0, \triangleright \sqcup 0'1 \underline{\sqcup}) \vdash \\ (s_0, \triangleright \sqcup 0'1 \sqcup \underline{\sqcup}) \vdash (t, \triangleright \sqcup 0'1 \sqcup \underline{0}) \vdash (t, \triangleright \sqcup 0'1 \underline{\sqcup}0) \vdash (u, \triangleright \sqcup 0' \underline{1} \sqcup 0) \vdash (u, \triangleright \sqcup \underline{0'}1 \sqcup 0) \\ \vdash (s, \triangleright \sqcup \underline{0}1 \sqcup 0) \vdash (q, \triangleright \sqcup 0 \underline{1} \sqcup 0) \end{array}$