
COMP 455
Models of Languages and Computation

Spring 2011
A Turing Machine-Like Language

We present a high-level language for describing Turing machines. Pro-
grams in this language can be translated fairly easily into Turing machines.
This language consists of the following kinds of statements:

1. Boolean conditions of the form “ts = a” where “ts” denotes the tape
symbol scanned and “a” is an element of the tape alphabet.

2. Boolean combinations of Boolean conditions using the connectives “and,”
“or,” and “not.”

3. Executable statements of the following forms, all of which can have
labels:

• The statement “L,” signifying moving to the left, and “R,” signi-
fying moving to the right.

• “If” and “while” statements using Boolean conditions.

• Statements of the form “write(a)” where “a” is a tape symbol.

• Statements of the form “goto S” where “S” is a statement label.

• “Halt(s)” statements, where “s” is a halting state of a Turing
machine.

We can abbreviate “ts = a or ts = b or ts = c” by “ts in {a,b,c},” and
we can also use abbreviations like “ts not in {a,b,c}.” Statements can be
grouped using { and } as in C.

An example program for searching to the right for a blank and then
writing a “b” is:

{while not(ts=⊔) R}; write(b);

Such programs can be compiled by standard techniques into programs
involving only the statements “L,” “R,”, “write(a),” “halt(q),” “goto S,”
and “if(ts=a)goto S.” By considering each address as a state, these compiled
programs can easily be translated into Turing machines.


