COMP 455
Models of Languages and Computation
Spring 2011
A Turing Machine-Like Language

We present a high-level language for describing Turing machines. Pro-
grams in this language can be translated fairly easily into Turing machines.
This language consists of the following kinds of statements:

1. Boolean conditions of the form “ts = a” where “ts” denotes the tape
symbol scanned and “a” is an element of the tape alphabet.

2. Boolean combinations of Boolean conditions using the connectives “and,”

(13 7

or,” and “not.”

3. Executable statements of the following forms, all of which can have
labels:

e The statement “L,” signifying moving to the left, and “R,” signi-
fying moving to the right.

e “If” and “while” statements using Boolean conditions.
e Statements of the form “write(a)” where “a” is a tape symbol.

e Statements of the form “goto S” where “S” is a statement label.

(1))

e “Halt(s)” statements, where “s” is a halting state of a Turing
machine.

We can abbreviate “ts = a or ts = b or ts = ¢” by “ts in {a,b,c},” and
we can also use abbreviations like “ts not in {a,b,c}.” Statements can be
grouped using { and } as in C.

An example program for searching to the right for a blank and then
writing a “b” is:

{while not(ts=U) R}; write(b);

Such programs can be compiled by standard techniques into programs
involving only the statements “L,” “R,”, “write(a),” “halt(q),” “goto S,”
and “if(ts=a)goto S.” By considering each address as a state, these compiled
programs can easily be translated into Turing machines.



