# **1** Turing Machines

### 1.1 Introduction

Turing machines provide an answer to the question, What is a computer? It turns out that anything that is equivalent in power to a Turing machine is a general purpose computer.

Turing machines are a general model of computation.

- They are more powerful than push-down automata.
- For example, there is a Turing machine that recognizes the language  $\{a^n b^n c^n : n \ge 0\}.$

Turing machines have

- a finite control,
- a one-way infinite tape, and
- a *read-write head* that can move in two directions on the tape.

This slight increase in power over push-down automata has dramatic consequences.

No more powerful model of computer is known that is also feasible to construct.

- This makes Turing machines very interesting because one can use them to prove problems *unsolvable*.
- Basically, if a problem can't be solved on a Turing machine, it can't be solved on any reasonable computer.

There are various models of Turing machines that differ in various details.

- The model in the text can *either* write a symbol *or* move the read-write head at each step.
- The tape is also one-way infinite to the right.

Other Turing machine models that are common have a two-way infinite tape and permit the machine to write and move on the same step.

In our model,

- the left end of the tape is marked with a special symbol ▷ that cannot be erased.
- The purpose of this symbol is to prevent the read-write head from falling off the end of the tape.

Conventions used in this course:

- The symbol  $\leftarrow$  means move left; the symbol  $\rightarrow$  means move to the right.
- The input to the Turing machine is written to the right of the ▷ marker on the tape, at the left end of the tape.
- Beyond this, at the start, there are infinitely many blanks on the tape. Blanks are indicated by ⊥. There may be a blank between the left-end marker and the input.
- It is not specified where the read-write head starts in general, but frequently it is specified to be next to the left-end marker at the start.

So the tape looks something like this:



### **1.2** Formal Definition

Formally, a Turing machine is a quintuple

$$(K, \Sigma, \delta, s, H)$$

where

- K is a finite set of states
- $\Sigma$  is an alphabet containing  $\sqcup$  and  $\succ$  but not  $\leftarrow$  or  $\rightarrow$
- $s \in K$  is an initial state

δ

 $H \subseteq K$  is a set of halting states

is a transition function from

| (K - H)     | × | $\Sigma$                | to | K     | × | $(\Sigma$ | U | $\{\leftarrow,\rightarrow\})$ |
|-------------|---|-------------------------|----|-------|---|-----------|---|-------------------------------|
| non-halting |   | scanned                 |    | new   |   | symbol    |   | direction                     |
| state       |   | $\operatorname{symbol}$ |    | state |   | written   |   | moved                         |

such that for all  $q \in K - H$ , if  $\delta(q, \rhd) = (p, b)$  then  $b \Longrightarrow$ (must move right when a  $\triangleright$  is scanned) for all  $q \in K - H$  and  $a \in \Sigma$ , if  $\delta(q, a) = (p, b)$  then  $b \neq \triangleright$ (can't write a  $\triangleright$ )

## 1.3 Example Turing machines

 $M = (K, \Sigma, \delta, s, \{h\}), K = \{q_0, q_1, h\}, \Sigma = \{a, \sqcup, \rhd\}, s = q_0.$ 

|            | q     | $\sigma$         | $\delta(q,\sigma)$   |                         |                 |
|------------|-------|------------------|----------------------|-------------------------|-----------------|
|            | $q_0$ | a                | $(q_1,\sqcup)$       | see $a$ ,               | write $\sqcup$  |
|            | $q_0$ | $\Box$           | $(h,\sqcup)$         | see $\sqcup$ ,          | halt            |
| $\delta$ : | $q_0$ | $\triangleright$ | $(q_0, \rightarrow)$ | see $\triangleright$ ,  | move right      |
|            | $q_1$ | a                | $(q_0, a)$           | see $a$ ,               | switch to $q_0$ |
|            | $q_1$ | $\Box$           | $(q_0, \rightarrow)$ | read $\sqcup$ ,         | move right      |
|            | $q_1$ | $\triangleright$ | $(q_1, \rightarrow)$ | read $\triangleright$ , | move right      |

Here's an example computation:

This computation can also be written this way:

 $(q_0, \triangleright \underline{a}aaa \sqcup \sqcup),$  $(q_1, \triangleright \underline{\sqcup}aaa \sqcup \sqcup),$  $(q_0, \triangleright \sqcup \underline{a}aa \sqcup \sqcup),$  $(q_1, \triangleright \sqcup \underline{\sqcup}aa \sqcup \sqcup),$  $(q_0, \triangleright \sqcup \sqcup \underline{a}a \sqcup \sqcup),$  $(q_0, \triangleright \sqcup \sqcup \underline{a}a \sqcup \sqcup),$ 

It is also possible to write it without even mentioning the state, like this:

 $\triangleright \underline{a}aaa \sqcup \sqcup, \\ \triangleright \underline{\sqcup}aaa \sqcup \sqcup, \\ \triangleright \sqcup \underline{a}aa \sqcup \sqcup, \\ \triangleright \sqcup \underline{a}aa \sqcup \sqcup, \\ \triangleright \sqcup \underline{\sqcup}aa \sqcup \sqcup, \\ \triangleright \sqcup \sqcup \underline{a}a \sqcup \sqcup$ 

## 1.4 Configurations and Computations

A configuration of a Turing machine  $M = (K, \Sigma, \delta, s, H)$  is a member of

| K     | × | $\triangleright \Sigma^*$                                    | × | $(\Sigma^*(\Sigma-\{\sqcup\})\cup\{\epsilon\})$                         |
|-------|---|--------------------------------------------------------------|---|-------------------------------------------------------------------------|
| state |   | tape contents to<br>left of read head,<br>and scanned square |   | rest of tape, not ending with blank; all blanks indicated by $\epsilon$ |

Configurations can be written as indicated above, with underlining to indicate the location of the read-write head.

- If  $C_1$  and  $C_2$  are configurations, then  $C_1 \vdash_M C_2$  means that  $C_2$  can be obtained from  $C_1$  by one move of the Turing machine M.
- $\vdash_M^*$  is the transitive closure of  $\vdash_M$ , indicating zero or more moves of the Turing machine M.

- A computation by M is a sequence  $C_0, C_1, C_2, \ldots, C_n$  of configurations such that  $C_0 \vdash_M C_1 \vdash_M C_2 \ldots$  It is said to be of *length* n. One writes  $C_0 \vdash_M^n C_n$ .
- A halting configuration or halted configuration is a configuration whose state is in *H*.

## 1.5 Complex example Turing machines

It is convenient to introduce a programming language to describe complex Turing machines. For details about this, see Handout 8. Handout 7 gives details of a Turing machine to copy a string from one place on the tape to another.

We can also give the idea of a Turing machine to recognize  $\{a^n b^n c^n : n \ge 0\}$  by showing a computation as follows:

Finally the Turing machine checks that all a, b, and c run out at the same time.