1 Turing Machines

1.1 Introduction

Turing machines provide an answer to the question, What is a computer? It turns out that anything that is equivalent in power to a Turing machine is a general purpose computer.

Turing machines are a general model of computation.

- They are more powerful than push-down automata.
- For example, there is a Turing machine that recognizes the language $\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$.

Turing machines have

- a finite control,
- a one-way infinite tape, and
- a read-write head that can move in two directions on the tape.

This slight increase in power over push-down automata has dramatic consequences.

No more powerful model of computer is known that is also feasible to construct.

- This makes Turing machines very interesting because one can use them to prove problems unsolvable.
- Basically, if a problem can't be solved on a Turing machine, it can't be solved on any reasonable computer.

There are various models of Turing machines that differ in various details.

- The model in the text can either write a symbol or move the read-write head at each step.
- The tape is also one-way infinite to the right.

Other Turing machine models that are common have a two-way infinite tape and permit the machine to write and move on the same step.

In our model,

- the left end of the tape is marked with a special symbol \triangleright that cannot be erased.
- The purpose of this symbol is to prevent the read-write head from falling off the end of the tape.

Conventions used in this course:

- The symbol \leftarrow means move left; the symbol \rightarrow means move to the right.
- The input to the Turing machine is written to the right of the \triangleright marker on the tape, at the left end of the tape.
- Beyond this, at the start, there are infinitely many blanks on the tape. Blanks are indicated by \sqcup. There may be a blank between the left-end marker and the input.
- It is not specified where the read-write head starts in general, but frequently it is specified to be next to the left-end marker at the start.

So the tape looks something like this:

| \triangleright | \sqcup | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | \sqcup |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\ldots

1.2 Formal Definition

Formally, a Turing machine is a quintuple

$$
(K, \Sigma, \delta, s, H)
$$

where
$K \quad$ is a finite set of states
$\Sigma \quad$ is an alphabet containing \sqcup and \triangleright but not \leftarrow or \rightarrow
$s \in K \quad$ is an initial state
$H \subseteq K \quad$ is a set of halting states
$\delta \quad$ is a transition function from
$(K-H) \quad \times \quad \Sigma \quad$ to $K \quad \times \quad(\Sigma \quad \cup\{\leftarrow, \rightarrow\})$

non-halting	scanned	new	symbol	direction
state	symbol	state	written	moved

such that for all $q \in K-H$, if $\delta(q, \triangleright)=(p, b)$ then $b=\rightarrow$ (must move right when a \triangleright is scanned) for all $q \in K-H$ and $a \in \Sigma$, if $\delta(q, a)=(p, b)$ then $b \neq \triangleright$ (can't write a \triangleright)

1.3 Example Turing machines

$$
M=(K, \Sigma, \delta, s,\{h\}), K=\left\{q_{0}, q_{1}, h\right\}, \Sigma=\{a, \sqcup, \triangleright\}, s=q_{0} .
$$

		σ	$\delta(q, \sigma)$		
	q_{0}	a	$\left(q_{1}, \sqcup\right)$	see a,	write \sqcup
	q_{0}	\sqcup	(h, \sqcup)	see \sqcup,	halt
δ	q_{0}		$\left(q_{0}, \rightarrow\right)$	see \triangleright,	move right
	q_{1}	a	$\left(q_{0}, a\right)$	see a,	switch to q_{0}
	q_{1}		$\left(q_{0}, \rightarrow\right)$	read \sqcup,	move right
	q_{1}	-	$\left(q_{1}, \rightarrow\right)$	read \triangleright,	move right

Here's an example computation:

This computation can also be written this way:

$$
\begin{gathered}
\left(q_{0}, \triangleright \underline{a} a a a \sqcup \sqcup\right), \\
\left(q_{1}, \triangleright \sqcup a a a \sqcup \sqcup\right), \\
\left(q_{0}, \triangleright \sqcup \underline{a} a a \sqcup \sqcup\right), \\
\left(q_{1}, \triangleright \sqcup \sqcup a a \sqcup \sqcup\right), \\
\left(q_{0}, \triangleright \sqcup \sqcup \underline{a} a \sqcup \sqcup\right)
\end{gathered}
$$

It is also possible to write it without even mentioning the state, like this:

$$
\begin{aligned}
& \triangleright \underline{a} a a a \sqcup \sqcup, \\
& \triangleright \sqcup \text { பaa } \sqcup \sqcup, \\
& \triangleright \sqcup \underline{\text { a }} a a \sqcup \sqcup, \\
& \triangleright \sqcup \sqcup \text { ப } a a \sqcup \sqcup, \\
& \triangleright \sqcup \underline{a} a \sqcup \sqcup
\end{aligned}
$$

1.4 Configurations and Computations

A configuration of a Turing machine $M=(K, \Sigma, \delta, s, H)$ is a member of

K	$\times \quad \triangleright \Sigma^{*}$	\times	$\left(\Sigma^{*}(\Sigma-\{\sqcup\}) \cup\{\epsilon\}\right)$
	tape contents to		rest of tape, not ending
state		left of read head,	with blank; all blanks
	and scanned square		indicated by ϵ

Configurations can be written as indicated above, with underlining to indicate the location of the read-write head.

- If C_{1} and C_{2} are configurations, then $C_{1} \vdash_{M} C_{2}$ means that C_{2} can be obtained from C_{1} by one move of the Turing machine M.
- \vdash_{M}^{*} is the transitive closure of \vdash_{M}, indicating zero or more moves of the Turing machine M.
- A computation by M is a sequence $C_{0}, C_{1}, C_{2}, \ldots, C_{n}$ of configurations such that $C_{0} \vdash_{M} C_{1} \vdash_{M} C_{2} \ldots$. It is said to be of length n. One writes $C_{0} \vdash_{M}^{n} C_{n}$.
- A halting configuration or halted configuration is a configuration whose state is in H.

1.5 Complex example Turing machines

It is convenient to introduce a programming language to describe complex Turing machines. For details about this, see Handout 8. Handout 7 gives details of a Turing machine to copy a string from one place on the tape to another.

We can also give the idea of a Turing machine to recognize $\left\{a^{n} b^{n} c^{n}: n \geq\right.$ $0\}$ by showing a computation as follows:

$$
\begin{aligned}
& \triangleright \sqcup \text { _aaabbbccc } \vdash \\
& \triangleright \sqcup \underline{a} a a b b b c c c \vdash \\
& \triangleright \sqcup \underline{\text { daabbbbccc }} \vdash \\
& \triangleright \sqcup \text { da } a b b b c c c \vdash \\
& \triangleright \sqcup \text { daabbbbccc } \vdash \\
& \triangleright \sqcup \text { daabbbbccc } \vdash \\
& \triangleright \sqcup \text { daadbbccc } \vdash \\
& \triangleright \sqcup \text { daadbbbccc } \vdash \\
& \triangleright \sqcup \text { daadbbeccc } \vdash \\
& \triangleright \sqcup \text { daadbbcccc } \vdash \\
& \triangleright \sqcup d a a d b b \underline{d} c c \vdash \\
& \text {... } \\
& \triangleright \sqcup d d a d d b d \underline{d} c \vdash \\
& \triangleright \sqcup d d d d d d d d \underline{d}
\end{aligned}
$$

Finally the Turing machine checks that all a, b, and c run out at the same time.

