1 Context-Free Grammars

Context-free languages are useful for studying computer languages as well as human languages.

- Context-free languages are recognized by push-down automata (PDA) in the same way that regular languages are recognized by finite automata.
- A push-down automaton has an infinite amount of memory but it is only accessed in a last-in first-out (LIFO) manner, that is, like a stack.
- Thus push-down automata are more powerful than finite automata; for example, $\{a^n b^n : n \ge 0\}$ is a context-free language.
- But push-down automata are less powerful than Turing machines, which we'll study later.
- Turing machines have an infinite amount of memory that can be accessed in an arbitrary manner.

1.1 Example: Subset of English

We'll start with an example of a context-free grammar and a context-free language and then proceed to the general formalism.

Suppose we consider a restricted subset of English with the following parts of speech:

• Then we can write $S \to UP$, for example, to indicate that a sentence can be a subject followed by a predicate followed by a period.

• This is called a *rule* and a collection of rules is called a *grammar*.

So here is a simple grammar for a very small subset of English:

- $S \rightarrow UP$. $N \rightarrow \text{boy}_{-}$ $N \to \text{girl}_{-}$ $U \to AN$ $N \rightarrow \text{ball}_{-}$ $U \rightarrow he_{-}$ $P \to VO$ $N \rightarrow \mathrm{rock}_{-}$ $U \to \text{she}_{-}$ $O \rightarrow AN$ $N \rightarrow \text{pumpkin}_{-}$ $U \to \mathrm{it}_{-}$ $A \rightarrow a_{-}$ $V \to hit_{-}$ $O \rightarrow him_{-}$ $V \rightarrow \text{threw}_{-}$ $O \to her_{-}$ $A \rightarrow \text{the}_{-}$ $V \rightarrow \text{ate}_{-}$ $O \rightarrow it_{-}$
- The upper case letters are called *nonterminals* and correspond to parts of speech in an English grammar.
- The lower case letters are called *terminals* and are what actually appears in sentences.
- Sentences can be derived by starting from the *start symbol*, here S, and continuing to do replacements using these rules until all the nonterminals are eliminated.

Here is an example derivation, with \Rightarrow being used to indicate a replacement using a rule:

 $S \Rightarrow UP. \Rightarrow ANP. \Rightarrow \text{the}_NP. \Rightarrow \text{the}_boy_P. \Rightarrow \text{the}_boy_VO.$ $\Rightarrow \text{the}_boy_\text{hit}_O \Rightarrow \text{the}_boy_\text{hit}_AN. \Rightarrow \text{the}_boy_\text{hit}_a_N. \Rightarrow \text{the}_boy_\text{hit}_a_ball_.$

Other sentences can also be derived such as

a_boy_threw_the_rock_. the_ball_hit_it_. a_pumpkin_ate_the_ball_. a_ball_threw_a_pumpkin_.

and so on.

- Clearly this is not a complete model of English grammar!
- For that, it is necessary to add some information about semantics, or the meaning of words.
- However, it seems that the human mind naturally forms grammars that are similar to context-free grammars, which helps to show the importance of context-free grammars.

1.2 General Formalism

In general a context-free grammar G is a 4-tuple (V, Σ, R, S) where V is a set of variables, Σ is an alphabet of terminal symbols, R is a set of rules, and S is a start symbol.

The elements of $V - \Sigma$ are called *nonterminals* and are analogous to parts of speech.

Here is an example grammar:

 $G = (V, \Sigma, R, S)$ where $V = \{S, a, b\}, \Sigma = \{a, b\}$, and R has the rules $S \to aSb$ and $S \to \epsilon$.

- Nonterminals are usually represented by capital letters and terminals by lower case letters.
- Therefore one can give a context-free grammar just by giving the rules and the start symbol, without giving a 4-tuple.

So the preceding grammar could be represented this way:

$$\begin{array}{c} S \to aSb \\ S \to \epsilon \end{array}$$

Here is a *derivation* in this grammar:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb.$$

Such a derivation has to eliminate the nonterminals. We can also write this derivation as

$$S \Rightarrow^* aabb.$$

Given a context-free grammar G, the language generated by G, L(G), is the set of strings of terminals that can be derived from the start symbol of G.

A language L is *context free* if it is L(G) for some context-free grammar G.

For this grammar, $L(G) = \{a^n b^n : n \ge 0\}$. Thus $\{a^n b^n : n \ge 0\}$ is a context-free language. This shows that not all context-free languages are regular languages.

Formally, a *context-free grammar* G is a quadruple (V, Σ, R, S) where

- V is an alphabet
- Σ (the set of *terminals*) is a subset of V
- R (the set of *rules*) is a finite subset of $(V \Sigma) \times V^*$
- S (the start symbol) is an element of $V \Sigma$

Members of $V - \Sigma$ are called *nonterminals*. Rules (A, u) are written as $A \rightarrow_G u$ for $A \in V - \Sigma$ and $u \in V^*$.

- We write $u \Rightarrow_G v$ if there are strings $x, y \in V^*$ and $A \in V \Sigma$ such that u = xAy, v = xwy, and $A \rightarrow_G w$. That is, $u \Rightarrow v$ means v can be obtained from u by using a rule $A \rightarrow_G w$ and replacing an occurrence of A in u by w to obtain v.
- \Rightarrow_G^* is the reflexive transitive closure of \Rightarrow_G . So $u \Rightarrow_G^* v$ means that v can be obtained from u by some number of replacements using rules of G, possibly no replacements, possibly one or more replacements.
- L(G), the language generated by G, is $\{w \in \Sigma^* : S \Rightarrow_G^* w\}$. If L = L(G) for some context-free grammar G then L is said to be a context-free language.

A sequence

$$w_o \Rightarrow_G w_1 \Rightarrow_G w_2 \Rightarrow_G \ldots \Rightarrow_G w_n$$

is called a *derivation* in G of w_n from w_0 . Also, n is the *length* of the derivation.

1.3 Example: Arithmetic Expressions

Here is another example of a context-free grammar. For this one, we just give the rules:

$$E \to E + T \quad F \to (E)$$

$$E \to T \qquad F \to a$$

$$T \to T * F \qquad F \to b$$

$$T \to F \qquad F \to c$$

Also, E is the start symbol. E represents "expression," T represents "term," and F represents "factor." In this grammar, we can derive strings such as (a * b + c) * (a + b):

$$E \Rightarrow$$

$$T \Rightarrow$$

$$T * F \Rightarrow$$

$$T * (E) \Rightarrow$$

$$T * (E + T) \Rightarrow$$

$$F * (E + T) \Rightarrow$$

$$(E) * (E + T) \Rightarrow$$

$$(E + T) * (E + T) \Rightarrow$$

$$(T + T) * (E + T) \Rightarrow$$

$$(T + T) * (E + T) \Rightarrow$$

$$(T * F + T) * (E + T) \Rightarrow$$

$$(F * F + T) * (E + T) \Rightarrow$$

$$(a * b + T) * (E + T) \Rightarrow$$

$$(a * b + T) * (E + T) \Rightarrow$$

$$(a * b + c) * (E + T) \Rightarrow$$

$$(a * b + c) * (F + T) \Rightarrow$$

$$(a * b + c) * (F + T) \Rightarrow$$

$$(a * b + c) * (a + T) \Rightarrow$$

$$(a * b + c) * (a + T) \Rightarrow$$

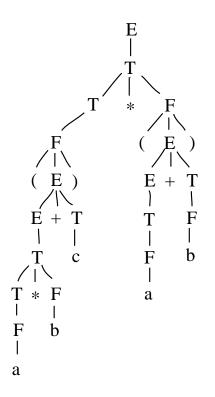
$$(a * b + c) * (a + F) \Rightarrow$$

$$(a * b + c) * (a + F) \Rightarrow$$

$$(a * b + c) * (a + F) \Rightarrow$$

- This is a grammar for a limited subset of arithmetic expressions.
- Such grammars are used in programming languages.
- It is designed so that multiplication will have precedence over addition so that for example in the expression a * b + c, the multiplication is done before the addition.

The above derivation is very lengthy. In order to avoid so much repeated writing, such derivations are often represented as *parse trees*, as follows:



Context-free grammars describe programming languages better than natural human languages, but even programming languages are not fully described by context-free grammars. Still, many parsers for programming languages are based on the theory of context-free languages.

1.4 Example: Balanced Parenthesis Expressions

Here is another context-free grammar:

$$S \to \epsilon$$
$$S \to SS$$
$$S \to (S)$$

Also, S is the start symbol. In this grammar one can derive the *balanced* paretheses expressions, which are strings like ()(()) and ()() in which parentheses are nested. This language is not regular; can you show it?

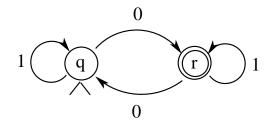
We now show that all regular languages are context-free.

1.5 Regular languages are context-free

- Suppose $M = (K, \Sigma, \delta, s, F)$ is a deterministic finite state automaton.
- Let G(M) be the context-free grammar (V, Σ, R, S) where $V = K \cup \Sigma$, S = s, and R has the rules $R = \{q \to ap : \delta(q, a) = p\} \cup \{q \to \epsilon : q \in F\}$.
- Clearly L(G(M)) is a context-free language.

But it can be shown that L(G(M)) = L(M), which shows that L(M) is context-free. Because any regular language can be expressed as L(M) for some dfa M, this shows that all regular languages are context-free.

Example: Let M be the following automaton:



For this automaton $M,\,G(M)=(\{q,r,0,1\},\{0,1\},R,q)$ where R has the rules

$$q \to 0r, q \to 1q, r \to 0q, r \to 1r, r \to \epsilon.$$

The string 0100 is accepted by M, with the following computation:

$$q \xrightarrow{0} r \xrightarrow{1} r \xrightarrow{0} q \xrightarrow{0} r.$$

This corresponds to the following derivation in G:

$$q \rightarrow 0r \rightarrow 01r \rightarrow 010q \rightarrow 0100r \rightarrow 0100.$$

- In the same way, arbitrary derivations of a string w in G(M) correspond to accepting computations of the string w in M.
- Thus $w \in L(G(M))$ iff $w \in L(M)$, so L(G(M)) = L(M), showing that L(M) is context-free.
- This same construction can be done for an arbitrary finite state automaton M, showing that all regular languages are context-free.
- We know that there is at least one context-free language that is not a regular language, so the regular languages are a *proper subset* of the context-free languages.

1.6 Problems

Do problem 3.1.3, page 120. Also give a context-free grammar for $\{a^n b^m : n \neq m\}$.

Do problem 3.19(b), page 122.

Generate a context-free grammar for $\{a^i b^j c b^j a^i : i, j \ge 0\}$.

Give a context-free grammar for $\{a^i b^j c b^k a^l : k \ge j \ge 0, l \ge i \ge 0\}$.

It is useful to know how to generate a context-free grammar for a language because this is often done for programming languages.

1.7 Computer Languages

Look at the links on the course web page about the relationship of Algol 60 and other computer languages to context-free languages.

1.8 Conjecture

This quotation was in an email received March 30, 2015 advertising a new book, "Context-Free Languages and Primitive Words."

A word is said to be primitive if it cannot be represented as any power of another word. It is a well-known conjecture that the set of all primitive words Q over a non-trivial alphabet is not context-free: this conjecture is still open.