
1 Context-Free Grammars

Context-free languages are useful for studying computer languages as well
as human languages.

• Context-free languages are recognized by push-down automata (PDA)
in the same way that regular languages are recognized by finite au-
tomata.

• A push-down automaton has an infinite amount of memory but it is
only accessed in a last-in first-out (LIFO) manner, that is, like a stack.

• Thus push-down automata are more powerful than finite automata; for
example, {anbn : n ≥ 0} is a context-free language.

• But push-down automata are less powerful than Turing machines, which
we’ll study later.

• Turing machines have an infinite amount of memory that can be ac-
cessed in an arbitrary manner.

1.1 Example: Subset of English

We’ll start with an example of a context-free grammar and a context-free
language and then proceed to the general formalism.

Suppose we consider a restricted subset of English with the following
parts of speech:

S sentence
U subject
P predicate
V verb
O object
A article
N noun

• Then we can write S → UP., for example, to indicate that a sentence
can be a subject followed by a predicate followed by a period.
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• This is called a rule and a collection of rules is called a grammar.

So here is a simple grammar for a very small subset of English:

S → UP. N → boy N → girl
U → AN N → ball U → he
P → V O N → rock U → she
O → AN N → pumpkin U → it
A → a V → hit O → him
A → the V → threw O → her

V → ate O → it

• The upper case letters are called nonterminals and correspond to parts
of speech in an English grammar.

• The lower case letters are called terminals and are what actually ap-
pears in sentences.

• Sentences can be derived by starting from the start symbol, here S, and
continuing to do replacements using these rules until all the nontermi-
nals are eliminated.

Here is an example derivation, with ⇒ being used to indicate a replace-
ment using a rule:

S ⇒ UP. ⇒ ANP. ⇒ the NP . ⇒ the boy P . ⇒ the boy V O.
⇒ the boy hit O ⇒ the boy hit AN . ⇒ the boy hit a N . ⇒
the boy hit a ball .

Other sentences can also be derived such as

a boy threw the rock .
the ball hit it .

a pumpkin ate the ball .
a ball threw a pumpkin .

and so on.
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• Clearly this is not a complete model of English grammar!

• For that, it is necessary to add some information about semantics, or
the meaning of words.

• However, it seems that the human mind naturally forms grammars
that are similar to context-free grammars, which helps to show the
importance of context-free grammars.

1.2 General Formalism

In general a context-free grammar G is a 4-tuple (V,Σ, R, S) where V
is a set of variables, Σ is an alphabet of terminal symbols, R is a set of
rules, and S is a start symbol.

The elements of V − Σ are called nonterminals and are analogous to parts
of speech.

Here is an example grammar:
G = (V,Σ, R, S) where V = {S, a, b}, Σ = {a, b}, and R has the rules

S → aSb and S → ϵ.

• Nonterminals are usually represented by capital letters and terminals
by lower case letters.

• Therefore one can give a context-free grammar just by giving the rules
and the start symbol, without giving a 4-tuple.

So the preceding grammar could be represented this way:

S → aSb
S → ϵ

Here is a derivation in this grammar:

S ⇒ aSb ⇒ aaSbb ⇒ aabb.

Such a derivation has to eliminate the nonterminals. We can also write
this derivation as
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S ⇒∗ aabb.

Given a context-free grammar G, the language generated by G, L(G), is
the set of strings of terminals that can be derived from the start symbol of
G.

A language L is context free if it is L(G) for some context-free grammar
G.

For this grammar, L(G) = {anbn : n ≥ 0}. Thus {anbn : n ≥ 0} is
a context-free language. This shows that not all context-free languages are
regular languages.

Formally, a context-free grammar G is a quadruple (V,Σ, R, S) where

V is an alphabet
Σ (the set of terminals) is a subset of V
R (the set of rules) is a finite subset of (V − Σ)× V ∗

S (the start symbol) is an element of V − Σ

Members of V − Σ are called nonterminals. Rules (A, u) are written as
A →G u for A ∈ V − Σ and u ∈ V ∗.

• We write u ⇒G v if there are strings x, y ∈ V ∗ and A ∈ V − Σ such
that u = xAy, v = xwy, and A →G w. That is, u ⇒ v means v can be
obtained from u by using a rule A →G w and replacing an occurrence
of A in u by w to obtain v.

• ⇒∗
G is the reflexive transitive closure of ⇒G. So u ⇒∗

G v means that v
can be obtained from u by some number of replacements using rules of
G, possibly no replacements, possibly one or more replacements.

• L(G), the language generated by G, is {w ∈ Σ∗ : S ⇒∗
G w}. If L = L(G)

for some context-free grammar G then L is said to be a context-free
language.

A sequence
wo ⇒G w1 ⇒G w2 ⇒G . . . ⇒G wn

is called a derivation in G of wn from w0. Also, n is the length of the
derivation.
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1.3 Example: Arithmetic Expressions

Here is another example of a context-free grammar. For this one, we just
give the rules:

E → E + T F → (E)
E → T F → a
T → T ∗ F F → b
T → F F → c

Also, E is the start symbol. E represents “expression,” T represents “term,”
and F represents “factor.” In this grammar, we can derive strings such as
(a ∗ b+ c) ∗ (a+ b):

E ⇒

T ⇒
T ∗ F ⇒
T ∗ (E) ⇒

T ∗ (E + T ) ⇒
F ∗ (E + T ) ⇒
(E) ∗ (E + T ) ⇒

(E + T ) ∗ (E + T ) ⇒
(T + T ) ∗ (E + T ) ⇒

(T ∗ F + T ) ∗ (E + T ) ⇒
(F ∗ F + T ) ∗ (E + T ) ⇒
(a ∗ F + T ) ∗ (E + T ) ⇒
(a ∗ b+ T ) ∗ (E + T ) ⇒
(a ∗ b+ F ) ∗ (E + T ) ⇒
(a ∗ b+ c) ∗ (E + T ) ⇒
(a ∗ b+ c) ∗ (T + T ) ⇒
(a ∗ b+ c) ∗ (F + T ) ⇒
(a ∗ b+ c) ∗ (a+ T ) ⇒
(a ∗ b+ c) ∗ (a+ F ) ⇒
(a ∗ b+ c) ∗ (a+ b)
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• This is a grammar for a limited subset of arithmetic expressions.

• Such grammars are used in programming languages.

• It is designed so that multiplication will have precedence over addition
so that for example in the expression a ∗ b + c, the multiplication is
done before the addition.

The above derivation is very lengthy. In order to avoid so much repeated
writing, such derivations are often represented as parse trees, as follows:

E

T

T * F

F ( E )

( E ) E + T

E + T T

T

T * F

F

F

F

a

b

a

bc

Context-free grammars describe programming languages better than nat-
ural human languages, but even programming languages are not fully de-
scribed by context-free grammars. Still, many parsers for programming lan-
guages are based on the theory of context-free languages.

1.4 Example: Balanced Parenthesis Expressions

Here is another context-free grammar:
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S → ϵ
S → SS
S → (S)

Also, S is the start symbol. In this grammar one can derive the balanced
paretheses expressions, which are strings like ()(()) and ()() in which paren-
theses are nested. This language is not regular; can you show it?

We now show that all regular languages are context-free.

1.5 Regular languages are context-free

• Suppose M = (K,Σ, δ, s, F ) is a deterministic finite state automaton.

• Let G(M) be the context-free grammar (V,Σ, R, S) where V = K ∪Σ,
S = s, and R has the rules R = {q → ap : δ(q, a) = p} ∪ {q → ϵ : q ∈
F}.

• Clearly L(G(M)) is a context-free language.

But it can be shown that L(G(M)) = L(M), which shows that L(M) is
context-free. Because any regular language can be expressed as L(M) for
some dfa M , this shows that all regular languages are context-free.

Example: Let M be the following automaton:

q r

0

0

1 1

For this automaton M , G(M) = ({q, r, 0, 1}, {0, 1}, R, q) where R has the
rules

q → 0r, q → 1q, r → 0q, r → 1r, r → ϵ.

The string 0100 is accepted by M , with the following computation:

q
0→ r

1→ r
0→ q

0→ r.

This corresponds to the following derivation in G:

q → 0r → 01r → 010q → 0100r → 0100.
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• In the same way, arbitrary derivations of a string w in G(M) correspond
to accepting computations of the string w in M .

• Thus w ∈ L(G(M)) iff w ∈ L(M), so L(G(M)) = L(M), showing that
L(M) is context-free.

• This same construction can be done for an arbitrary finite state au-
tomaton M , showing that all regular languages are context-free.

• We know that there is at least one context-free language that is not a
regular language, so the regular languages are a proper subset of the
context-free languages.

1.6 Problems

Do problem 3.1.3, page 120. Also give a context-free grammar for {anbm :
n ̸= m}.

Do problem 3.19(b), page 122.
Generate a context-free grammar for {aibjcbjai : i, j ≥ 0}.
Give a context-free grammar for {aibjcbkal : k ≥ j ≥ 0, l ≥ i ≥ 0}.
It is useful to know how to generate a context-free grammar for a language

because this is often done for programming languages.

1.7 Computer Languages

Look at the links on the course web page about the relationship of Algol 60
and other computer languages to context-free languages.

1.8 Conjecture

This quotation was in an email received March 30, 2015 advertising a new
book, “Context-Free Languages and Primitive Words.”

A word is said to be primitive if it cannot be represented as any
power of another word. It is a well-known conjecture that the
set of all primitive words Q over a non-trivial alphabet is not
context-free: this conjecture is still open.
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