
1 Minimizing Finite Automata
Outline of this section:

1. Define strings equivalent with respect to a language L. This is
notated as x ≈L y. This is defined by x ≈L y iff {z : xz ∈ L} =
{z : yz ∈ L}. If L is regular then ≈L has finitely many equivalence
classes, and vice versa.

2. Define strings equivalent with respect to a deterministic finite au-
tomaton M . This is written x ∼M y. Two strings are equivalent
with respect to M if they cause M to end up in the same state.

3. Use ≈L to

(a) Characterize regular languages. (L is regular iff ≈L has finitely
many equivalence classes.)

(b) Compute the smallest number of states in any deterministic
finite automaton recognizing L. (It is equal to the number of
equivalence classes of ≈L.)

4. It is possible to show a language L non-regular by showing that ≈L

has infinitely many equivalence classes.

5. Define the equivalence of two states in a deterministic finite au-
tomaton. p ≡ q in M if L(Mp) = L(Mq) where Mx is M with x as
the start state.

6. Compute which states of an automaton M are equivalent; then
collapse equivalent states and delete unreachable states to minimize
M .

Here is an example of a non-minimal finite automaton:

1

q

r1

r2

s

a

b

a,b

a,b

a,b

Here is an equivalent minimal automaton:

q s
a,b

r a,b
a,b

1.1 Equivalence with Respect to L

x ≈L y iff {z : xz ∈ L} = {z : yz ∈ L}

Note that L need not be regular for this definition. The equivalence
relation ≈L can also be defined this way:

If there is a z such that xz ∈ L and yz ̸∈ L then x ̸≈L y
If there is a z such that xz ̸∈ L and yz ∈ L then x ̸≈L y
Otherwise x ≈L y.

1.1.1 Example

Let L be {ab, ac, bb, bc}.

x {z : xz ∈ L}
a {b, c}
b {b, c}
c ϕ
ab {ϵ}
ac {ϵ}
ϵ L
abc ϕ

2

Thus a ≈L b and ab ≈L ac but a ̸≈L c and b ̸≈L c, for example. There
are four equivalence classes, corresponding to the four values of {z : xz ∈ L}
as x varies.

Let L be {w ∈ {0, 1}∗ : |w| is even}.
x {z : xz ∈ L}
0 odd length strings
1 odd length strings
00 even length strings
01 even length strings
101 odd length strings

Thus 0 ≈L 1, 00 ≈L 01, 0 ≈L 101, 0 ̸≈L 00, and 1 ̸≈L 01, for example.
There are two equivalence classes.

What is an equivalence class?
Definition 1.1 (Equivalence Class) Given a set S and an equivalence
relation R, the equivalence classes of S are

• disjoint subsets S1, S2, . . . of S

• whose union is S

• and such that if x, y ∈ Si then xRy

• but if x and y are in different subsets Si and Sj for i ̸= j then it is not
true that xRy.

For the relation ≈L, there is one equivalence class for each value of {z : xz ∈
L}.

Here is a way to think of equivalence classes:

List all the elements of the set S, say, x1, x2, x3,

• If some xi is not equivalent to any element seen so far, then xi starts
a new equivalence class.

• If some xj is equivalent to some xi seen earlier, then xj is in the
same equivalence class as xi.

• The number of equivalence classes is just the number of sets found
this way in the limit.

3

If L is regular, then one can test if x ≈L y this way:
• Let M be a minimal deterministic finite automaton recognizing L.

• Then x ≈L y iff x and y both drive M from the start state to the same
state of M .

This can be an easy way to test if x ≈L y if you can guess M .

1.2 Problems
Do these in class.

What are the equivalence classes for a∗b∗?
• Find them using the listing idea given above.

• How many equivalence classes are there?

• Make each one into a state and show how one can construct a minimal
deterministic finite automaton from them.

• Explain how to choose the start state and accepting states and how to
draw the arrows.

• The resulting automaton is minimal for this language.
How about for {anbn : n ≥ 0}? What are the equivalence classes?

1.3 A convenient definition
If M is a deterministic or nondeterministic finite state automaton, write

s
a→M t

if M , in state s, reading a symbol a ∈ Σ, can end up in state t.
• That is, δ(s, a) = t if M is deterministic, and (s, a, t) ∈ ∆ if M is

nondeterministic.
Also, write

s
w→∗

M t

if M , in state s, reading a string w ∈ Σ∗, can end up in state t.
• If M is deterministic, then t is determined by s and w.

• If M is nondeterministic, then there could be more than one such t,
one, or none, for a given s and w.

4

1.4 Equivalence with respect to M

Definition 1.2 (2.5.2)

• Two strings x, y ∈ Σ∗ are equivalent with respect to M , written x ∼M

y, if s x→∗
M t and s

y→
∗
M u implies t = u, where s is the start state of

M .

• That is, when M reads the string x starting in the start state, it ends
up in the same state as when it reads the string y starting in the start
state.

Consider again this automaton:

q

r1

r2

s

a

b

a,b

a,b

a,b

• The strings a and b are not equivalent with respect to M , because they
cause M to end up in states r1 and r2, respectively, starting at the
start state q.

• However, the strings aa and ba are equivalent with respect to M , be-
cause both strings cause M to end up in state s.

• Also, aa and aaa are equivalent with respect to M .

Theorem 1.1 (2.5.1) For any deterministic finite automaton M = (K,Σ, δ, s, F),
and any strings x, y ∈ Σ∗, if x ∼M y then x ≈L(M) y.

Proof: Suppose x ∼M y. We want to show that x ≈L(M) y, that is, for all
z, xz ∈ L(M) iff yz ∈ L(M).

• Suppose s
x→∗

M t1 and s
y→

∗
M t2, where s is the start state of M .

• Because x ∼M y, t1 = t2.

5

• Now, for some states u1 and u2, s xz→∗
M u1 and s

yz→
∗
M u2.

• However, in reading xz, M will first read x and go to t1.
• Then, starting in state t1, M will read z and go to u1.
• In reading yz, M will first read y and go to t2, which equals t1.
• Then, starting in state t2, M will read z and go to state u2.
• Because t1 = t2 and M is deterministic, u1 = u2.
• Thus xz is accepted iff u1 is an accepting state, iff u2 is an ac-

cepting state, iff yz is accepted.
• So xz ∈ L(M) iff yz ∈ L(M).
• Therefore x ≈L(M) y.

Diagram:

s

t1

t2

u1

u2

x

y

z

z

Example:

p q

r1

r2

a,b
a

b

a,b

a,bM

6

• In this example, a ∼M b because both a and b lead from the start state
to state q.

• Now, we claim that also a ≈L(M) b.

• This means that if az ∈ L(M) then bz ∈ L(M) and vice versa.

• Let’s look at some z to see why this is true.

• Consider z = a.

• Then aa ∈ L(M) because a leads from the start state to state q and
then a leads from state q to state r1, so aa leads to the state r1 which
is an accepting state of M .

• Is bz ∈ L(M) also?

• Yes, because b leads from the start state to state q and then a leads
from state q to state r1.

• Consider z = b.

• Then ab ̸∈ L(M) because a leads to state q and then b leads to state
r2 which is not an accepting state.

• Is bz ∈ L(M)?

• No because b leads to state q and then b leads to state r2 which is not
an accepting state.

• The same holds for any z so az ∈ L(M) iff bz ∈ L(M), so a ≈L(M) b.

In general,

• if z leads from state q to an accepting state of M , then az ∈ L(M) and
bz ∈ L(M).

• If z leads from state q to a non-accepting state of M , then az ̸∈ L(M)
and bz ̸∈ L(M).

• So az ∈ L(M) iff bz ∈ L(M), so a ≈L(M) b.

7

This theorem implies that:

any deterministic finite automaton M recognizing L has to have at
least as many states as the number of equivalence classes of the relation
≈L.

Why? If there were more equivalence classes than states, then there must
be some state q of M and two strings x, y in Σ∗ such that x ̸≈L y but x and
y both end up in state q, so that x ∼M y, This is impossible by the theorem.

Also,

If L is regular then ≈L has finitely many equivalence classes.

Why?

• If L is regular then there is a finite automaton M recognizing L.

• M has finitely many states.

• But the number of states of M is the same as the number of equivalence
classes of ∼M (or larger if some states are unreachable), so the number
of equivalence classes of ∼M is finite.

• This is at least as large or larger than the number of equivalence classes
of ≈L, which therefore must be finite.

If x is an element of Σ∗ then let [x] be the equivalence class of x, that is,
the set of y such that x ≈L y.

Theorem 1.2 (2.5.2, Myhill-Nerode Theorem) Let L ⊆ Σ∗ be a reg-
ular language. Then there is a minimal deterministic finite automaton M
which has a number of states equal to the number of equivalence classes of
the relation ≈L.

Proof: The states of M are the equivalence classes of ≈L. The start state of
M is [e]. The accepting states of M are the set of equivalence classes
that are subsets of L. Define δ([x], a) to be [xa] for x ∈ Σ∗ and a ∈ Σ.
The detailed proof is in the text.

8

This quote is from CACM May 2020 vol. 63 No. 5 p. 82:

The Myhill-Nerode theorem, “one of the conceptual gems of the-
oretical computer science” according to Rosenberg, offers a com-
plete characterization of the notion of state, via basic algebraic
properties defined only on input/output behvior.

Construct this automaton for L = L(a∗b∗).
So just from L itself, we can tell how many states there must be in a

minimal deterministic finite automaton for L.
Thus:

If L is regular, then the minimal deterministic finite state automaton
recognizing L has a number of states equal to the number of equivalence
classes of ≈L.

Also, this theorem gives a systematic way to construct a finite automaton
M recognizing L, given L.

• Each equivalence class of ≈L is a state of M .

• That is, each possible value for {z : xz ∈ L} is a state of M .

• The start state is the set of all strings x such that {z : xz ∈ L} = L,
that is, it is the equivalence class of the empty string..

• The accepting states are the equivalence classes that are subsets of L.

This approach can be used, for example, to construct a finite automaton
recognizing the set of w such that w has at least 2 a’s and an odd number
of b’s.

Corollary 1.1 A language is regular iff ≈L has finitely many equivalence
classes.

Proof: If L is regular then L is recognized by some deterministic automaton
M , so ≈L has finitely many equivalence classes. If ≈L has finitely many
euqivalence classes, then by the Myhill-Nerode theorem, L is regular.

9

This gives another method to show a language L is not regular:

A language L is not regular if ≈L has infinitely many equivalence
classes.

We want to minimize finite automata. However, it is possible to verify
that a deterministic finite automaton is minimal, as follows:

A deterministic finite automaton M is minimal if

• for each pair p, q of states of M ,

• there is a string w ∈ Σ∗ such that

• M accepts w starting from p,

• but M does not accept w starting from q,

• or vice versa.

• Also, all states must be reachable from the start state.

Thus we may be able to guess an automaton M and verify that it is
minimal without going through the whole minimization algorithm. Do this
on the following automaton:

q s
a,b

r a,b
a,b

1.5 Equivalent states of a finite automaton
Definition 1.3 If M = (K,Σ, δ, s, F) is a deterministic finite automaton,
then for two states p, q of M , p ≡ q if the following is true:

For all x ∈ Σ∗,

• when M starts in state p and reads x, it ends in an accepting state,

10

• if and only if,

• when M starts in state q and reads x, it ends in an accepting state.

Here is another definition of the same concept:

Definition 1.4

• Suppose M = (K,Σ, δ, s, F) is a deterministic finite automaton.

• Then for a state q ∈ K, Mq is the automaton (K,Σ, δ, q, F).

• Thus q has been made into the start state.

• Then two states p and q of M are equivalent if the automata Mp and
Mq are equivalent, that is, L(Mp) = L(Mq)

Consider again this automaton:

q

r1

r2

s

a

b

a,b

a,b

a,b

The states r1 and r2 of this automaton are equivalent. No other pair of
states of this automaton is equivalent.

To minimize a finite automaton M , we do the following:

1. Compute the equivalence relation ≡ on states of M .

2. Collapse all pairs p, q of states of M such that p ≡ q.

3. Delete all states of M that are not reachable from the start state.

11

The text gives an iterative algorithm for computing the equivalence rela-
tion M . I give a different iterative algorithm based on colorings of the states
of M .

Suppose M = (K,Σ, δ, s, F) and Σ = {a1, . . . , an}.

1. The 0-coloring of M colors all states in F one color and all states
in K − F another color.

2. Suppose the i-coloring of M is defined. The i-color co-ordinates of
state q are (cq, c1, c2, . . . , cn) where cq is the i-color of q and ck is
the i-coloring of δ(q, ak).

3. The i + 1 coloring of M is defined so that two states q, r have the
same i+1 color if and only if they have the same i-color co-ordinates.

4. The coloring terminates when there are the same number of i colors
as i+ 1 colors, for some i.

5. When the coloring terminates at coloring i, then two states p and
q satisfy p ≡ q if and only if p and q have the same i coloring.

For an example, see Handout 3 on the course web page, which minimizes
this automaton:

s

q1

r1

q2

r2

a

b

a,b

a,b
a,b

a,b

Also, do it on the following automaton:

12

a a

aa

b b

bb

p

q

r

s

2 Algorithms for Finite Automata
• Convert a nondeterministic automaton to a deterministic automaton

• Generate a regular expression from an automaton

• Minimize a finite automaton

• Test equivalence of two deterministic finite automata

• Test equivalence of two nondeterministic finite automata

• For a regular language L and a string x, test if x ∈ L

• For a regular expression E and a string x, test if x ∈ L(E)

• For a nondeterministic automaton M and a string x, test if x ∈ L(M)

• Given strings w and x, to test if x is a substring of w

• Test if two regular expressions are equivalent

Which of these are polynomial and which are exponential? What are the
time bounds? It also depends on how regular expressions are represented,
whether linearly or as directed acyclic graphs with pointers to common subex-
pressions.

13

