1 General Grammars

Definition 1.1 (General Grammar) A (general) grammar is a quadruple (V, Σ, R, S) where

V is an alphabet	
$\Sigma \subseteq V$ is the set of ten	rminal <i>symbols</i>
$V-\Sigma$ is the set of no	nterminals
$S \in V - \Sigma$ is the start sym	nbol
R is the set of rule	les, a subset of

 $V^*(V-\Sigma)V^* \times$

left-hand side	right-hand side
at least one	may have anything
nonterminal	

 V^*

Note that context-free grammars are also (general) grammars. As for derivations, $w_1uw_2 \Rightarrow_G w_1vw_2$ for $w_1, w_2 \in V^*$ if $(u, v) \in R$. Then \Rightarrow_G^* is defined as a sequence of zero or more \Rightarrow_G . Also, $w \in \Sigma^*$ is generated by Giff $S \Rightarrow^* w$ and $L(G) = \{w \in \Sigma^* : w \text{ is generated by } G\}$. A derivation in Gis a sequence

$$w_o \Rightarrow_G w_1 \Rightarrow_G w_2 \Rightarrow_G \ldots \Rightarrow_G w_n.$$

General grammars can be seen as having *context-dependence* which means that a replacement can only be applied in a specified context. A production of the form

$$uAv \rightarrow uwv$$

can be seen as applying the replacement $A \to w$ only when u is to the left and v is to the right. Any general grammar can be simulated using only productions of this form, it turns out. This helps to motivate the term "context-free."

General grammars are more powerful than context-free grammars. Here is a grammar whose language is $\{a^n b^n c^n : n \ge 0\}$, which we know is not context-free:

ł nar: g

$$S \Rightarrow ABCS \Rightarrow ABCABCS \Rightarrow ABCABCT_{c}$$
$$\Rightarrow ABACBCT_{c} \Rightarrow AABCBCT_{c} \Rightarrow AABCBCT_{c} \Rightarrow AABBCCT_{c}$$
$$\Rightarrow AABBCT_{c}c \Rightarrow AABBT_{b}cc \Rightarrow AABT_{b}bcc$$
$$\Rightarrow AAT_{a}bbcc \Rightarrow AT_{a}abbcc \Rightarrow T_{a}aabbcc \Rightarrow aabbcc$$

. _

Theorem 1.1 A language is generated by a grammar iff it is recursively enumerable.

This shows that grammars are equivalent in power to Turing machines, in some sense. The proof simulates a grammar by a Turing machine and a Turing machine by a grammar. It is straightforward, if cumbersome, to design a Turing machine to simulate a grammar. It also fairly easy to simulate a Turing machine by a grammar.