
1 Parse Trees

Parse trees are a representation of derivations that is much more compact.
Several derivations may correspond to the same parse tree. For example, in
the balanced parenthesis grammar, the following parse tree:

s

s

s s

s

(())

e e

corresponds to the derivation

S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ (S)() ⇒ ()()

as well as this one:

S ⇒ SS ⇒ (S)S ⇒ (S)(S) ⇒ ()(S) ⇒ ()()

and some others as well.

• In a parse tree, the points are called nodes. Each node has a label on
it.

• The topmost node is called the root. The bottom nodes are called
leaves.

• In a parse tree for a grammar G, the leaves must be labelled with
terminal symbols from G, or with ǫ. The root is often labeled with the
start symbol of G, but not always.

• If a node N labeled with A has children N1, N2, . . . , Nk from left to
right, labeled with A1, A2, . . . , Ak, respectively, then A → A1A2, . . . Ak

must be a production in the grammar G.

• The yield of a parse tree is the concatenation of the labels of the leaves,
from left to right. The yield of the tree above is ()().

1

1.1 Leftmost and Rightmost Derivations

• In a leftmost derivation, at each step the leftmost nonterminal is re-
placed. In a rightmost derivation, at each step the rightmost nonter-
minal is replaced.

• Such replacements are indicated by
L
⇒ and

R
⇒, respectively.

• Their transitive closures are
L
⇒

∗

and
R
⇒

∗

, respectively.

In the balanced parenthesis grammar, this is a leftmost derivation:

S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()()

This is a rightmost derivation:

S ⇒ SS ⇒ S(S) ⇒ S() ⇒ (S)() ⇒ ()()

It is possible to obtain a derivation from a parse tree and vice versa. Here
is an example of obtaining a derivation from a parse tree, going from left to
right:

s

s

s s

s

(())

e e

=> s s

(())s s

=> (s)

e

e e

=> s

(s)

ee

s

(s)

() (s)

e

()=> () ()=>

• In this case, we obtained a leftmost derivation, but we could also have
obtained a rightmost derivation in a similar way.

• Using the same diagram, going from right to left, starting with only an
arbitrary derivation, we can obtain a parse tree:

2

s

s

s s

s

(())

e e

=> s s

(())s s

=> (s)

e

e e

=> s

(s)

ee

s

(s)

() (s)

e

()=> () ()=>

Thus from a parse tree, we can obtain a leftmost or a rightmost derivation,
and from an arbitrary derivation, we can obtain a parse tree. This gives us
theorem 3.2.1 in the text:

Theorem 1.1 (3.2.1) Let G = (V,Σ, R, S) be a context-free grammar, A ∈
V − Σ, and w ∈ Σ∗. Then the following are equivalent (TFAE):

1. A ⇒∗ w

2. There is a parse tree with root labeled A and yield w

3. There is a leftmost derivation A
L
⇒

∗

w

4. There is a rightmost derivation A
R
⇒

∗

w

Proof:

• We showed above how from a derivation one can construct a parse
tree. This shows (1) implies (2).

• Also, we showed above how from a parse tree one can construct
a leftmost or a rightmost derivation. This shows that (2) implies
(3) and (2) implies (4).

• Finally, leftmost and rightmost derivations are derivations, which
shows that (3) implies (1) and (4) implies (1).

• Thus all four conditions are equivalent.

3

1.2 Ambiguity

Some sentences in English are ambiguous:

Fighting tigers can be dangerous.
Time flies like an arrow.

Humor is also often based on ambiguity. Example jokes:

How do you stop an elephant from charging?
Why did the student eat his homework?

What ended in 1896?

There is also a technical concept of ambiguity for context-free grammars.

A context-free grammar G = (V,Σ, R, S) is ambiguous if there is some
string w ∈ Σ∗ such that there are two distinct parse trees T1 and T2 having
S at the root and having yield w.

Equivalently, w has two or more leftmost derivations, or two or more
rightmost derivations.

Note that languages are not ambiguous; grammars are. Also, it has to be
the same string w with two different (leftmost or rightmost) derivations for
a grammar to be ambiguouos.

Here is an example of an ambiguous grammar:

E → E + E E → a

E → E ∗ E E → b

E → (E) E → c

In this grammar, the string a + b ∗ c can be parsed in two different ways,
corresponding to doing the addition before or after the multiplication. This is
very bad for a compiler, because the compiler uses the parse tree to generate
code, meaning that this string could have two very different semantics.

Here are two parse trees for the string a+ b ∗ c in this grammar:

4

E

E E

E Ea

b c

+

*

E

E

c

a

E

E E

b

+

*

Ambiguity actually happened with the original Algol 60 syntax, which
was ambiguous for this string:

if x then if y then z else w;

How is this string ambiguous? Which values of x, y, or z lead to the ambi-
guity?

There is a notion of inherent ambiguity for context-free languages; a
context-free language L is inherently ambiguous if every context-free gram-
mar G for L is ambiguous. As an example, the language

{anbncmdm : n ≥ 1, m ≥ 1} ∪ {anbmcmdn : n ≥ 1, m ≥ 1}

is inherently ambiguous. In any context-free grammar for L, some strings of
the form anbncndn will have two distinct parse trees.

Unfortunately, the problem of whether a context-free grammar is am-
biguous, is undecidable. However, there are some patterns in a context-free
grammar that frequently indicate ambiguity:

5

S → SS

S → a

S → A

A → AA

A → a

S → AA

A → S

A → a

S → SbS

S → a

S → AbA

A → S

A → a

The following is not ambiguous:

S → aS

S → bS

S → ǫ

In general, a production A → AA causes ambiguity if it is reachable from
the start symbol and some terminal string is derivable from A.

6

