1 Parse Trees

Parse trees are a representation of derivations that is much more compact. Several derivations may correspond to the same parse tree. For example, in the balanced parenthesis grammar, the following parse tree:

corresponds to the derivation

$$S \Rightarrow SS \Rightarrow S(S) \Rightarrow (S)(S) \Rightarrow (S)() \Rightarrow ()()$$

as well as this one:

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow ()(S) \Rightarrow ()()$$

and some others as well.

- In a parse tree, the points are called *nodes*. Each node has a *label* on it.
- The topmost node is called the *root*. The bottom nodes are called *leaves*.
- In a parse tree for a grammar G, the leaves must be labelled with terminal symbols from G, or with ϵ . The root is often labeled with the start symbol of G, but not always.
- If a node N labeled with A has children N_1, N_2, \ldots, N_k from left to right, labeled with A_1, A_2, \ldots, A_k , respectively, then $A \to A_1 A_2, \ldots, A_k$ must be a production in the grammar G.
- The *yield* of a parse tree is the concatenation of the labels of the leaves, from left to right. The yield of the tree above is ()().

1.1 Leftmost and Rightmost Derivations

- In a leftmost derivation, at each step the leftmost nonterminal is replaced. In a rightmost derivation, at each step the rightmost nonterminal is replaced.
- Such replacements are indicated by $\stackrel{L}{\Rightarrow}$ and $\stackrel{R}{\Rightarrow}$, respectively.
- Their transitive closures are $\stackrel{L}{\Rightarrow}^*$ and $\stackrel{R}{\Rightarrow}^*$, respectively.

In the balanced parenthesis grammar, this is a leftmost derivation:

$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow ()S \Rightarrow ()(S) \Rightarrow ()()$$

This is a rightmost derivation:

$$S \Rightarrow SS \Rightarrow S(S) \Rightarrow S() \Rightarrow (S)() \Rightarrow ()()$$

It is possible to obtain a derivation from a parse tree and vice versa. Here is an example of obtaining a derivation from a parse tree, going from left to right:

- In this case, we obtained a leftmost derivation, but we could also have obtained a rightmost derivation in a similar way.
- Using the same diagram, going from right to left, starting with only an arbitrary derivation, we can obtain a parse tree:

Thus from a parse tree, we can obtain a leftmost or a rightmost derivation, and from an arbitrary derivation, we can obtain a parse tree. This gives us theorem 3.2.1 in the text:

Theorem 1.1 (3.2.1) Let $G = (V, \Sigma, R, S)$ be a context-free grammar, $A \in V - \Sigma$, and $w \in \Sigma^*$. Then the following are equivalent (TFAE):

- 1. $A \Rightarrow^* w$
- 2. There is a parse tree with root labeled A and yield w
- 3. There is a leftmost derivation $A \stackrel{L}{\Rightarrow}^* w$
- 4. There is a rightmost derivation $A \stackrel{R}{\Rightarrow}^* w$

Proof:

- We showed above how from a derivation one can construct a parse tree. This shows (1) implies (2).
- Also, we showed above how from a parse tree one can construct a leftmost or a rightmost derivation. This shows that (2) implies (3) and (2) implies (4).
- Finally, leftmost and rightmost derivations are derivations, which shows that (3) implies (1) and (4) implies (1).
- Thus all four conditions are equivalent.

1.2 Ambiguity

Some sentences in English are ambiguous:

Fighting tigers can be dangerous. Time flies like an arrow.

Humor is also often based on ambiguity. Example jokes:

How do you stop an elephant from charging? Why did the student eat his homework? What ended in 1896?

There is also a technical concept of ambiguity for context-free grammars.

A context-free grammar $G = (V, \Sigma, R, S)$ is *ambiguous* if there is some string $w \in \Sigma^*$ such that there are two distinct parse trees T_1 and T_2 having S at the root and having yield w.

Equivalently, w has two or more leftmost derivations, or two or more rightmost derivations.

Note that languages are not ambiguous; grammars are. Also, it has to be the *same* string w with two *different* (leftmost or rightmost) derivations for a grammar to be ambiguouos.

Here is an example of an ambiguous grammar:

$$E \to E + E \quad E \to a$$

$$E \to E * E \quad E \to b$$

$$E \to (E) \quad E \to c$$

In this grammar, the string a + b * c can be parsed in two different ways, corresponding to doing the addition before or after the multiplication. This is very bad for a compiler, because the compiler uses the parse tree to generate code, meaning that this string could have two very different semantics.

Here are two parse trees for the string a + b * c in this grammar:

Ambiguity actually happened with the original Algol 60 syntax, which was ambiguous for this string:

if x then if y then z else w;

How is this string ambiguous? Which values of x, y, or z lead to the ambiguity?

There is a notion of *inherent ambiguity* for context-free languages; a context-free language L is inherently ambiguous if every context-free grammar G for L is ambiguous. As an example, the language

$$\{a^{n}b^{n}c^{m}d^{m}: n \ge 1, m \ge 1\} \cup \{a^{n}b^{m}c^{m}d^{n}: n \ge 1, m \ge 1\}$$

is inherently ambiguous. In any context-free grammar for L, some strings of the form $a^n b^n c^n d^n$ will have two distinct parse trees.

Unfortunately, the problem of whether a context-free grammar is ambiguous, is undecidable. However, there are some patterns in a context-free grammar that frequently indicate ambiguity:

$$S \rightarrow SS$$

$$S \rightarrow a$$

$$S \rightarrow A$$

$$A \rightarrow AA$$

$$A \rightarrow a$$

$$S \rightarrow AA$$

$$A \rightarrow S$$

$$A \rightarrow a$$

$$S \rightarrow SbS$$

$$S \rightarrow a$$

$$S \rightarrow AbA$$

$$A \rightarrow S$$

$$A \rightarrow a$$

The following is not ambiguous:

$$\begin{array}{l} S \rightarrow aS \\ S \rightarrow bS \\ S \rightarrow \epsilon \end{array}$$

In general, a production $A \to AA$ causes ambiguity if it is reachable from the start symbol and some terminal string is derivable from A.