
COMP 790-033 Parallel Computing
Fall 2022

http://www.cs.unc.edu/~prins/Classes/790-033/

2COMP 633 - Prins – FA20201

Parallel computing

• What is it?
– multiple processors cooperating to solve a single problem
– hopefully faster than using a single processor!

• Why is it needed?
– greater compute performance
– shorter time to solution

01-Intro

301-IntroCOMP 633 - Prins – FA20201

Where is performance needed?
• sometimes performance is required in time-critical tasks

• timely and accurate weather forecast
• obstacle detection for self driving cars

• sometimes performance gives a competitive advantage
• from Walmart to Wall Street

– data mining of trends
– delivery logistics
– real-time analytics (high frequency trading)

• engineering, manufacturing, and pharmaceuticals
– vehicle crash simulations, material properties prediction, drug design

• sometimes performance is the only way to answer a question
• scientific progress using mathematical modeling and numerical

simulation
– human genome assembly
– computational science and the timely Nobel prize

4

Why can’t we just build a faster single processor ?

• Moore’s “Law”
– processor performance per $ doubles every two years !

01-IntroCOMP 633 - Prins – FA20201

5

Transistor miniaturization and performance
• Dennard scaling

– transistor switching power ∝ transistor size
– shrinking transistor size

• decreases switching power
• decreases switching time (higher clock frequency)
• increases number of transistors per unit area

– so for the same power and space budget we get
• faster arithmetic operations
• pipelined arithmetic
• more and larger caches

increased performance

• Limits to Dennard Scaling
– as transistor size approaches

quantum mechanical limits
• increasing leakage current
• exponential power increase!

01-IntroCOMP 633 - Prins – FA20201

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Hot plate

Nuclear reactor

Rocket nozzle

Sun’s surface

Source: Patrick Gelsinger, Intel

6

Parallelism is now the principal source of performance

• Processor evolution after 2004 (Intel)
– multiple cores per socket
– lower per-core performance
– similar power per chip

• per-core “turbo” mode
– vector units and larger caches
– multiple and higher performance

off-chip memory interfaces

• Moore’s “law”
– performance per socket is still increasing but no longer exponentially
– power/cooling per socket is the limiting factor

• Factors limiting parallel computing
– overall system power
– inconveniently slow speed of signal propagation!

01-IntroCOMP 633 - Prins – FA20201

processor performance characteristics

701-IntroCOMP 633 - Prins – FA20201

Parallel computing at various scales
• Modern processor core

– pipelined, superscalar, multiword ALUs
– L1 and L2 caches

• Socket
– multiple cores (4 – 64)
– L3 cache

• Accelerators
– Nvidia V100 GPU (2560 arithmetic units)

• Node
– up to 4 sockets
– up to 8 accelerators
– fast local interconnect

• Cluster
– tens to thousands of nodes
– high speed interconnection network

core

socket

accelerator

node

cluster

super-
computer

Giga 109

Tera 1012

Peta 1015

Exa 1018

64-bit floating point ops
per second (FLOPS)

8

Top supercomputers (2022)

01-IntroCOMP 633 - Prins – FA20201

Sunway TaihuLight
National Research Center for
Parallel Computer Engineering
and Technology in Wuxi, CN

Rank Name Rmax
𝐱𝐱𝟏𝟏𝟏𝟏^𝟏𝟏𝟏𝟏

Rpeak
𝐱𝐱𝟏𝟏𝟏𝟏^𝟏𝟏𝟏𝟏

Location Manufa
cturer

Cores Year

1 Frontier 1.1 .1.7 Oak Ridge
Natl Lab

HPE
CRAY

8,730,112 2022

2 Fugaku 0.4 0.6 RIKEN,
Japan

Fujitsu 7,630,848 2020

9

What are the parallel computing challenges?

• Parallel computing involves many aspect of computer science
– new algorithms must be designed
– new algorithm analysis techniques must be used
– new programming models and languages must be learned
– memory operation and performance must be understood
– communication costs and network behavior must be considered
– different operating systems, services, and I/O
– different debugging and performance monitoring
– novel and continuously changing hardware
– …

01-IntroCOMP 633 - Prins – FA20201

1001-IntroCOMP 633 - Prins – FA20201

Summary: Why study parallel computing?

• It is useful and it is used

• It involves new algorithms and analytic techniques

• Future computing will increasingly be predicated on the use of
parallelism

• To understand what is feasible and what is not

1101-IntroCOMP 633 - Prins – FA20201

How else is parallelism used?

• Parallelism may improve reliability
– high availability
– high assurance

• Parallelism may be inherent in the problem
– (G)UIs
– distributed systems

• >80 processors in a modern luxury car

• Parallelism is a simple load scaling approach
– server farms

… but these are not the focus of this course!

1201-IntroCOMP 633 - Prins – FA20201

Parallel Computing vs. Distributed Computing

• Parallel Computing (COMP 633)
– Multiple processors cooperating to solve a single problem
– Key concepts

• Design and analysis of scalable parallel algorithms
• Programming models
• Systems architecture and hardware characteristics
• Performance analysis, prediction, and measurement

• Distributed Systems (COMP 734)
– Providing reliable services to multiple users via a system consisting of

multiple processors and a network
– Key concepts

• Services & protocols
• Reliability
• Security
• Scalability

1301-IntroCOMP 633 - Prins – FA20201

Parallel Computing vs. Concurrent Algorithms

• Parallel Computing (COMP 633)
– Multiple processors cooperating to solve a single problem
– Key concepts

• Design and analysis of scalable parallel algorithms
• Programming models
• Systems architecture and hardware characteristics
• Performance analysis, prediction, and measurement

• Distributed and Concurrent Algorithms (COMP 735)
– Specification of fundamental algorithms and proofs of their

correctness and performance properties
• Mutual exclusion
• Readers and writers

– Key concepts
• Lower and upper bounds, impossibility proofs
• Formal methods
• Wait-free and lock-free methods

1401-IntroCOMP 633 - Prins – FA20201

Course Introduction

• Organization and content of this course
– prerequisites
– source materials
– course grading
– what will be studied

• Introductory examples

15

Organization of the course
• Course web page

– Syllabus
• Prerequisites
• Learning Objectives
• Honor Code
• Topics

– Source materials
– Computer usage

• Reading assignment for next time
– Parallel Random Access Machine (PRAM) model and algorithms

• sections 1, 2, 3.1 (pp 1-8)

• Sign up for Piazza
– using link on web page

01-IntroCOMP 633 - Prins – FA20201

1601-IntroCOMP 633 - Prins – FA20201

What will we study?
• Course is organized around different models of parallel computation

– shared memory models [main focus]
• PRAM
• Loop-level parallelism, threads, tasks (OpenMP, Cilk)
• Accelerators (Cuda)

– distributed memory models [secondary focus]
• bulk-synchronous processing (BSP, UPC), message passing (MPI)

– data-intensive models [cursory treatment]
• MapReduce/Hadoop, spark

• For each model we examine
– algorithm design techniques
– cost model and performance prediction
– how to express programs
– hardware and software support
– performance analysis
– advantages and limitations of the model including realism, applicability and

tractability
by studying some examples in detail

1701-IntroCOMP 633 - Prins – FA20201

Let’s try it right now!

• Vector summation
– given vector V[1..n] compute

e.g. for n = 8
s = V1 + V2 + ... + V7 + V8

• sequential algorithm
– n-1 additions: optimal

• e.g. sum from left to right
– sequential running time

• T(n) = O(n)

s = Vi
i=1

n
∑

1801-IntroCOMP 633 - Prins – FA20201

Example 1: DAG model of parallel computation

• A program P = (V, E) is a tree where
leaf vertices in V ~ values
interior vertices in V ~ operations
edges E ~ evaluation dependences

+

+

+

+

+

+

+

V1 V2

V3

V4

V5

V6

V7

V8prog 1

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2

V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8

1901-IntroCOMP 633 - Prins – FA20201

Execution of a DAG “program”
• definition

– an operation is ready if all of its children are leaves

• parallel execution step
– simultaneously evaluate all ready operations and replace each with its value

• program execution
– perform parallel execution steps until no operations remain

+

+

+

+

+

+

+

V1 V2

V3

V4

V5

V6

V7

V8prog 1

++

++

++

++

++

++

++

V1 V2

V3

V4

V5

V6

V7

V8prog 1

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2

V1 V2 V3 V4 V5 V6 V7 V8

++ ++ ++ ++

++ ++

++prog 2

2001-IntroCOMP 633 - Prins – FA20201

Complexity metrics for DAG model

• Work complexity of a DAG program
– total number of operations performed

= # interior vertices in DAG

• Step complexity of a DAG program
– number of execution steps

= length of longest path in DAG

work steps

Prog 1

Prog 2

+

+

+

+

+

+

+

V1 V2

V3

V4

V5

V6

V7

V8prog 1

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2
7 7

7 3

2101-IntroCOMP 633 - Prins – FA20201

Asymptotic complexity metrics for DAG model

• Asymptotic complexity
– problem size n
– W(n) asymptotic work complexity
– S(n) asymptotic step complexity
– T*(n) optimal asymptotic sequential time complexity

• Definition
– A DAG program is work efficient if W(n) = O(T*(n))

W(n) S(n)

Prog 1

Prog 2

+

+

+

+

+

+

+

V1 V2

V3

V4

V5

V6

V7

V8prog 1

++

++

++

++

++

++

++

V1 V2

V3

V4

V5

V6

V7

V8prog 1

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2

V1 V2 V3 V4 V5 V6 V7 V8

++ ++ ++ ++

++ ++

++prog 2

O(n) O(n)

O(n) O(lg n)

2201-IntroCOMP 633 - Prins – FA20201

Asymptotic complexity metrics for DAG model

• Asymptotic complexity
– problem size n
– W(n) asymptotic work complexity
– S(n) asymptotic step complexity
– T*(n) optimal asymptotic sequential time complexity

• Definition
– A DAG program is work efficient if W(n) = O(T*(n))

W(n) S(n)

Prog 1

Prog 2

+

+

+

+

+

+

+

V1 V2

V3

V4

V5

V6

V7

V8prog 1

++

++

++

++

++

++

++

V1 V2

V3

V4

V5

V6

V7

V8prog 1

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2

V1 V2 V3 V4 V5 V6 V7 V8

++ ++ ++ ++

++ ++

++prog 2

O(n) O(n)

O(n) O(lg n)

2301-IntroCOMP 633 - Prins – FA20201

Execution of DAG programs with fixed resources

• At most p operations evaluated simultaneously in a DAG program H
– models execution using p “processors”

• Definition
– Tp(n) is the time to execute H using p processors

• n - problem size
• p - maximum number of nodes that may be evaluated concurrently in

each timestep
– T1(n) = W(n)
– T∞(n) = S(n)

But what is T2(8) for prog 2?

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2

2401-IntroCOMP 633 - Prins – FA20201

Evaluation order

• Determining evaluation order to minimize Tp(n) is NP-hard!

• Simple non-optimal greedy evaluation order
– at each step

• p or fewer operations ready ⇒ evaluate all ready nodes
• more than p operations ready ⇒ evaluate any p ready nodes

• Running time using greedy strategy can be bounded

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2𝑊𝑊(𝑛𝑛)
𝑝𝑝 ≤ 𝑇𝑇𝑝𝑝 𝑛𝑛 ≤

𝑊𝑊 𝑛𝑛
𝑝𝑝 + 𝑆𝑆(𝑛𝑛)

2501-IntroCOMP 633 - Prins – FA20201

“fast” parallel programs give good speedup

• Definition
– a fast parallel program has step complexity S(n) that is

asymptotically smaller than work complexity W(n)

• For a fixed number of processors p, a fast parallel program gives better
speedup as problem size n is increased

– asymptotically optimal speedup on large problems!









=

+







≤≤









∞→ p
nWOnT

nS
p
nWnT

p
nW

p
n

p

)()(lim

)()()()(

0
)(
)(lim))(()(==

∞→ nW
nSnWonS

n
 means

2601-IntroCOMP 633 - Prins – FA20201

But can’t speedup indefinitely

• You can’t speed up a parallel algorithm indefinitely using more
processors
– for a fixed problem size n, step complexity limits speedup

• prog 1 cannot be sped up at all using more processors!
– W(n) = Θ(n)
– S(n) = Θ(n)

• prog 2 requires Ω(lg n) steps regardless of the number of processors
– W(n) = Θ(n)
– S(n) = Θ(lg n)









+








=)()()(nS

p
nWOnTp

2701-IntroCOMP 633 - Prins – FA20201

Consequences: work efficiency is paramount

• A parallel program H that is not work efficient loses asymptotically!
– for any given p, there exists a problem size n0 such that

• an efficient sequential program using one processor on problems of size
n > n0 is faster than the parallel program H using p processors!

– it doesn’t help if H is fast
– worst results on large problems!









+








=)()()(nS

p
nWOnTp

2801-IntroCOMP 633 - Prins – FA20201

Example 2: Message-passing model

• p processors connected in a ring
– each processor

• runs the same program
• has a unique processor id 0 ≤ 𝑖𝑖 < 𝑝𝑝
• can send a value to its left neighbor

• summation of V[0..p-1] using p processors
– assume 𝑉𝑉𝑖𝑖 is in 𝑠𝑠 on processor 𝑖𝑖 at start
– program terminates with 𝑠𝑠 = ∑𝑗𝑗∈0..𝑝𝑝−1 𝑉𝑉𝑗𝑗 on processor 0

0 1 2 3

2901-IntroCOMP 633 - Prins – FA20201

s = V0 V1 V2 V3

h = 1, s = V0 +V1 V2 +V3

h = 2, s = V0 +V1 +V2 +V3

Example: p = 4

for h := 1 to (lg p)
x := s
for j := 1 to 2h-1 do

send value of x to left and receive new value for x from right
s := s + x

Summation program

0 1 2 3

3001-IntroCOMP 633 - Prins – FA20201

Analysis of summation program

• Let
– ta time to perform addition
– tc time to perform communication

() ca

p

h
c

h
ap

tptp

ttnT

⋅−+⋅=

+=∑
=

−

)1(lg

)2()(
lg

1

1

• Is this good performance?

for h := 1 to (lg p)
x := s
for j := 1 to 2h-1 do

send value of x to left and receive new value for x from right
s := s + x

3101-IntroCOMP 633 - Prins – FA20201

What’s wrong?

• poor network?
– network diameter is large thus values have to travel far
– so communication time is huge compared to addition time
– a smaller diameter network might do better

• bad communication strategy?
– “cut-through” routing would be superior

• poor utilization of the processors?
– only a few processors are performing useful additions!

• problem size too small?
– this is the real problem!

3201-IntroCOMP 633 - Prins – FA20201

Summation of n values with p processors

• Each processor holds n/p values

V0 V2 V4 V6

V1 V3 V5 V7

Example:
n = 8
p = 4

s := sum of n/p values in this processor
for h := 1 to (lg p)

x := s
for j := 1 to 2h-1 do

send value of x to left and receive new value for x from right
s := s + x

0 1 2 3

3301-IntroCOMP 633 - Prins – FA20201

Summation of n values using p processors

• Analysis

• excellent performance can be achieved
– for arbitrary p, ta, tc
– asymptotically optimal speedup with sufficiently large n

• overheads and inefficiencies can be amortized!

()

() caa

caap

tptpt
p
n

tptpt
p
nnT

⋅+⋅+⋅







≈

⋅−+⋅+⋅







−=

lg

)1(lg1)(

speedup overhead

	COMP 790-033 Parallel Computing�Fall 2022� �http://www.cs.unc.edu/~prins/Classes/790-033/�
	Parallel computing
	Where is performance needed?
	Why can’t we just build a faster single processor ?
	Transistor miniaturization and performance
	Parallelism is now the principal source of performance
	Parallel computing at various scales
	Top supercomputers (2022)
	What are the parallel computing challenges?
	Summary: Why study parallel computing?
	How else is parallelism used?
	Parallel Computing vs. Distributed Computing
	Parallel Computing vs. Concurrent Algorithms
	Course Introduction
	Organization of the course
	What will we study?
	Let’s try it right now!
	Example 1: DAG model of parallel computation
	Execution of a DAG “program”
	Complexity metrics for DAG model
	Asymptotic complexity metrics for DAG model
	Asymptotic complexity metrics for DAG model
	Execution of DAG programs with fixed resources
	Evaluation order
	“fast” parallel programs give good speedup
	But can’t speedup indefinitely
	Consequences: work efficiency is paramount
	Example 2: Message-passing model
	Summation program
	Analysis of summation program
	What’s wrong?
	Summation of n values with p processors
	Summation of n values using p processors

