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Parallel computing

• What is it?
– multiple processors cooperating to solve a single problem
– hopefully faster than using a single processor!

• Why is it needed?
– greater compute performance
– shorter time to solution

01-Intro
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Where is performance needed?
• sometimes performance is required in time-critical tasks

• timely and accurate weather forecast
• obstacle detection for self driving cars

• sometimes performance gives a competitive advantage
• from Walmart to Wall Street

– data mining of trends 
– delivery logistics 
– real-time analytics (high frequency trading)

• engineering, manufacturing, and pharmaceuticals
– vehicle crash simulations, material properties prediction, drug design

• sometimes performance is the only way to answer a question
• scientific progress using mathematical modeling and numerical 

simulation
– human genome assembly
– computational science and the timely Nobel prize
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Why can’t we just build a faster single processor ?

• Moore’s “Law”
– processor performance per $ doubles every two years !
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Transistor miniaturization and performance
• Dennard scaling

– transistor switching power ∝ transistor size
– shrinking transistor size

• decreases switching power
• decreases switching time (higher clock frequency)
• increases number of transistors per unit area

– so for the same power and space budget we get
• faster arithmetic operations
• pipelined arithmetic
• more and larger caches

increased performance

• Limits to Dennard Scaling
– as transistor size approaches

quantum mechanical limits
• increasing leakage current
• exponential power increase!
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Parallelism is now the principal source of performance

• Processor evolution after 2004 (Intel)
– multiple cores per socket
– lower per-core performance
– similar power per chip

• per-core “turbo” mode
– vector units and larger caches
– multiple and higher performance

off-chip memory interfaces

• Moore’s “law”
– performance per socket is still increasing but no longer exponentially
– power/cooling per socket is the limiting factor

• Factors limiting parallel computing
– overall system power
– inconveniently slow speed of signal propagation! 
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processor performance characteristics
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Parallel computing at various scales
• Modern processor core

– pipelined, superscalar, multiword ALUs
– L1 and L2 caches

• Socket 
– multiple cores (4 – 64)
– L3 cache

• Accelerators
– Nvidia V100 GPU (2560 arithmetic units)

• Node
– up to 4 sockets
– up to 8 accelerators
– fast local interconnect 

• Cluster
– tens to thousands of nodes
– high speed interconnection network

core

socket

accelerator

node

cluster

super-
computer

Giga  109

Tera  1012

Peta  1015

Exa 1018

64-bit floating point ops
per second (FLOPS) 
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Top supercomputers (2022)
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Sunway TaihuLight
National Research Center for 
Parallel Computer Engineering
and Technology in  Wuxi, CN

Rank Name Rmax
𝐱𝐱𝟏𝟏𝟏𝟏^𝟏𝟏𝟏𝟏

Rpeak
𝐱𝐱𝟏𝟏𝟏𝟏^𝟏𝟏𝟏𝟏

Location Manufa
cturer

Cores Year

1 Frontier 1.1 .1.7 Oak Ridge 
Natl Lab

HPE
CRAY

8,730,112 2022

2 Fugaku 0.4 0.6 RIKEN, 
Japan

Fujitsu 7,630,848 2020
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What are the parallel computing challenges?

• Parallel computing involves many aspect of computer science 
– new algorithms must be designed
– new algorithm analysis techniques must be used
– new programming models and languages must be learned
– memory operation and performance must be understood
– communication costs and network behavior must be considered
– different operating systems, services, and I/O
– different debugging and performance monitoring
– novel and continuously changing hardware
– …
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Summary: Why study parallel computing?

• It is useful and it is used

• It involves new algorithms and analytic techniques

• Future computing will increasingly be predicated on the use of 
parallelism

• To understand what is feasible and what is not



1101-IntroCOMP 633 - Prins – FA20201

How else is parallelism used?

• Parallelism may improve reliability
– high availability
– high assurance

• Parallelism may be inherent in the problem
– (G)UIs 
– distributed systems 

• >80 processors in a modern luxury car

• Parallelism is a simple load scaling approach
– server farms

… but these are not the focus of this course!
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Parallel Computing vs. Distributed Computing

• Parallel Computing (COMP 633)
– Multiple processors cooperating to solve a single problem
– Key concepts

• Design and analysis of scalable parallel algorithms 
• Programming models
• Systems architecture and hardware characteristics
• Performance analysis, prediction, and measurement

• Distributed Systems (COMP 734)
– Providing reliable services to multiple users via a system consisting of 

multiple processors and a network
– Key concepts

• Services & protocols
• Reliability 
• Security
• Scalability
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Parallel Computing vs. Concurrent Algorithms

• Parallel Computing (COMP 633)
– Multiple processors cooperating to solve a single problem
– Key concepts

• Design and analysis of scalable parallel algorithms 
• Programming models
• Systems architecture and hardware characteristics
• Performance analysis, prediction, and measurement

• Distributed and Concurrent Algorithms (COMP 735)
– Specification of fundamental algorithms and proofs of their 

correctness and performance properties
• Mutual exclusion
• Readers and writers

– Key concepts
• Lower and upper bounds, impossibility proofs
• Formal methods 
• Wait-free and lock-free methods
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Course Introduction

• Organization and content of this course
– prerequisites
– source materials
– course grading
– what will be studied

• Introductory examples
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Organization of the course
• Course web page

– Syllabus 
• Prerequisites
• Learning Objectives
• Honor Code
• Topics

– Source materials
– Computer usage

• Reading assignment for next time
– Parallel Random Access Machine (PRAM) model and algorithms

• sections 1, 2, 3.1 (pp 1-8)

• Sign up for Piazza 
– using link on web page
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What will we study?
• Course is organized around different models of parallel computation

– shared memory models [main focus]
• PRAM
• Loop-level parallelism, threads, tasks (OpenMP, Cilk)
• Accelerators (Cuda)

– distributed memory models [secondary focus]
• bulk-synchronous processing (BSP, UPC), message passing (MPI)

– data-intensive models [cursory treatment]
• MapReduce/Hadoop, spark

• For each model we examine
– algorithm design techniques
– cost model and performance prediction
– how to express programs
– hardware and software support
– performance analysis 
– advantages and limitations of the model including realism, applicability and 

tractability
by studying some examples in detail
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Let’s try it right now!

• Vector summation
– given vector V[1..n] compute

e.g. for n = 8
s = V1 + V2 + ... + V7 + V8

• sequential algorithm
– n-1 additions: optimal

• e.g. sum from left to right
– sequential running time

• T(n) = O(n)

s = Vi
i=1

n
∑



1801-IntroCOMP 633 - Prins – FA20201

Example 1:  DAG model of parallel computation

• A program P = (V, E) is a tree where
leaf vertices in V ~ values
interior vertices in V ~ operations
edges E ~ evaluation dependences

+
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+

+

+

+

+

V1 V2

V3

V4

V5

V6

V7

V8prog 1

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2

V1 +  V2   +  V3  +   V4    +   V5    +   V6 +   V7 +  V8
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Execution of a DAG “program”
• definition

– an operation is ready if all of its children are leaves

• parallel execution step
– simultaneously evaluate all ready operations and replace each with its value

• program execution
– perform parallel execution steps until no operations remain
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Complexity metrics for DAG model

• Work complexity of a DAG program
– total number of operations performed

=   # interior vertices in DAG

• Step complexity of a DAG program
– number of execution steps

=   length of longest path in DAG

work steps

Prog 1

Prog 2
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Asymptotic complexity metrics for DAG model

• Asymptotic complexity
– problem size n
– W(n) asymptotic work complexity
– S(n) asymptotic step complexity
– T*(n) optimal asymptotic sequential time complexity

• Definition
– A DAG program is work efficient if  W(n) = O( T*(n) )

W(n) S(n)
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Asymptotic complexity metrics for DAG model

• Asymptotic complexity
– problem size n
– W(n) asymptotic work complexity
– S(n) asymptotic step complexity
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• Definition
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Execution of DAG programs with fixed resources

• At most p operations evaluated simultaneously in a DAG program H
– models execution using p “processors”

• Definition
– Tp(n) is the time to execute H using p processors

• n - problem size
• p - maximum number of nodes that may be evaluated concurrently in 

each timestep
– T1(n) =  W(n)
– T∞(n) =  S(n)

But what is T2(8) for prog 2?

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2
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Evaluation order

• Determining evaluation order to minimize Tp(n) is NP-hard!

• Simple non-optimal greedy evaluation order
– at each step

• p or fewer operations ready ⇒ evaluate all ready nodes
• more than p operations ready ⇒ evaluate any p ready nodes

• Running time using greedy strategy can be bounded

V1 V2 V3 V4 V5 V6 V7 V8

+ + + +

+ +

+prog 2𝑊𝑊(𝑛𝑛)
𝑝𝑝 ≤ 𝑇𝑇𝑝𝑝 𝑛𝑛 ≤

𝑊𝑊 𝑛𝑛
𝑝𝑝 + 𝑆𝑆(𝑛𝑛)
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“fast” parallel programs give good speedup

• Definition
– a fast parallel program has step complexity S(n) that is 

asymptotically smaller than work complexity W(n)

• For a fixed number of processors p, a fast parallel program gives better 
speedup as problem size n is increased

– asymptotically optimal speedup on large problems!
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But can’t speedup indefinitely

• You can’t speed up a parallel algorithm indefinitely using more 
processors
– for a fixed problem size n, step complexity limits speedup

• prog 1 cannot be sped up at all using more processors!
– W(n) = Θ(n)
– S(n) = Θ(n)

• prog 2 requires Ω(lg n) steps regardless of the number of processors
– W(n) = Θ(n)
– S(n) = Θ(lg n)
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Consequences:  work efficiency is paramount

• A parallel program H that is not work efficient loses asymptotically!
– for any given p, there exists a problem size n0 such that

• an efficient sequential program using one processor on problems of size 
n > n0 is faster than the parallel program H using p processors!

– it doesn’t help if H is fast
– worst results on large problems!
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Example 2:  Message-passing model

• p processors connected in a ring
– each processor

• runs the same program
• has a unique processor id 0 ≤ 𝑖𝑖 < 𝑝𝑝
• can send a value to its left neighbor

• summation of V[0..p-1] using p processors
– assume 𝑉𝑉𝑖𝑖 is in 𝑠𝑠 on processor 𝑖𝑖 at start
– program terminates with 𝑠𝑠 = ∑𝑗𝑗∈0..𝑝𝑝−1 𝑉𝑉𝑗𝑗 on processor 0

0 1 2 3
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s = V0 V1 V2 V3

h = 1,    s = V0 +V1 V2 +V3

h = 2,    s = V0 +V1 +V2 +V3

Example:  p = 4

for h := 1 to (lg p)
x := s
for j := 1 to 2h-1 do

send value of x to left and receive new value for x from right
s := s + x

Summation program

0 1 2 3
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Analysis of summation program

• Let
– ta time to perform addition
– tc time to perform communication
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• Is this good performance?

for h := 1 to (lg p)
x := s
for j := 1 to 2h-1 do

send value of x to left and receive new value for x from right
s := s + x
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What’s wrong?

• poor network?
– network diameter is large thus values have to travel far
– so communication time is huge compared to addition time
– a smaller diameter network might do better

• bad communication strategy?
– “cut-through” routing would be superior

• poor utilization of the processors?
– only a few processors are performing useful additions!

• problem size too small?
– this is the real problem!
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Summation of n values with p processors

• Each processor holds n/p values

V0 V2 V4 V6

V1 V3 V5 V7

Example:  
n = 8
p = 4

s := sum of n/p values in this processor
for h := 1 to (lg p)

x := s
for j := 1 to 2h-1 do

send value of x to left and receive new value for x from right
s := s + x

0 1 2 3
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Summation of n values using p processors

• Analysis

• excellent performance can be achieved 
– for arbitrary p, ta, tc
– asymptotically optimal speedup with sufficiently large n

• overheads and inefficiencies can be amortized!
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