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Topics

• Memory systems
– organization
– caches and the memory hierarchy
– influence of the memory hierarchy on algorithms 

• Shared memory systems
– Taxonomy of actual shared memory systems

• UMA, NUMA, cc-NUMA

• OpenMP shared memory parallel programming
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Recall PRAM shared memory system

• PRAM model
– assumes access latency is constant, regardless of the number of 

processors or the size of memory
– simultaneous reads permitted under CR model and simultaneous 

writes permitted under CW model

• Physically impossible to realize
– processors and memory occupy physical 

space
• speed of light limitations

– CR / CW must be reduced to ER / EW
• requires Ω(lg p) time in general case

p

shared memory

1 2 • • •
processors

( )( )31mpL +Ω=
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Anatomy of a processor ↔ memory system
• Performance parameters of Random Access Memory (RAM)

– latency L
• elapsed time from presentation of memory address to arrival of data

– address transit  time
– memory access time tmem

– data transit time

– bandwidth W
• number of values (e.g. 64 bit words) delivered to processor per unit time

– simple implementation W ~ 1/L

Processor Memory
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Processor vs. memory performance

• The memory “wall”
– Processors compute faster than memory delivers data

• increasing imbalance  𝑡𝑡arith ≪ 𝑡𝑡mem
• ≪
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Improving memory system performance

– Decrease latency L to memory
• speed of light is a limiting factor

– bring memory closer to processor

– Decrease memory access time by using 2D memory layout
• access time ∝ s½ (VLSI)

– Use different memory technologies
• DRAM (Dynamic RAM) 1 transistor 

per stored bit
– High density, low power, low cost,

but long access time
• SRAM (Static RAM) 6 transistors

per stored bit
– Short access time, but low density,

high power, and high cost.
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Improving memory system performance (1)
• Decrease latency using cache memory

– low latency access to frequently used values, high latency for the remaining  
values

– Example 
• 90% of references are to cache with latency L1

• 10% of references are to memory with latency L2

• average latency is 0.9L1 + 0.1L2

Processor MemoryCache
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Improving memory system performance (2)
• Increase bandwidth W

– multiport (parallel access) memory
• multiple reads, multiple exclusive writes per memory cycle

– High cost, very limited scalability

– “blocked” memory
• memory supplies block of size b containing requested word

– supports spatial locality in cache access

Processor MemoryCache

Processor Register file

b
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• Increase bandwidth W (contd)
– pipeline memory requests

• requires independent memory references

– interleave memory 
• problem:  memory access is limited by tmem

• use m separate memories (or memory banks)
• W ~  m / L if references distribute over memory banks

Improving memory system performance (2)
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Latency hiding
• Amortize latency using a pipelined interleaved memory system

– k independent references in Ω(L + k ⋅ tproc ) time 
• O(L/k) amortized (expected) latency per reference

• Where do we get independent references?
– out-of-order execution of independent load/store operations

• found in most modern performance-oriented processors
• partial latency hiding:  k ~  2 - 10 references outstanding

– vector load/store operations
• small vector units (AVX512) 

– vector length 2-8 words (Intel Xeon)
– partial latency hiding 

• high-performance vector units (NEC SX-9, SX-Aurora)
– vector length k = L / tproc (128 - 256 words)
– crossbar network to highly interleaved memory (~ 16,000 banks) 
– full latency hiding:  amortized memory access at processor speed

– multithreaded operation
• independent execution threads with individual hardware contexts

– partial latency hiding:  2-way hyperthreading (Intel)
– full latency hiding: 128-way threading with high-performance memory (Cray MTA)
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Implementing the PRAM
• How close can we come to O(1) latency PRAM memory in practice?

– requires processor to memory 
network

• latency L = sum of
– twice network latency
– memory cycle time
– serialization time for CR, CW

• L increases with m, p
– L too large with current technology

– examples 
• NYU Ultracomputer (1987), IBM RP3 (1991), SBPRAM (1999)

– logarithmic depth combining network eliminates memory contention time for 
CR, CW

» Ω(lg p) latency in network is prohibitive

M1 M2 M3 Mm-1 Mm• • •

P2 PpP1 • • •

Network
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Implementing PRAM – a compromise
• Using latency hiding with a high-performance memory system

– implements p⋅k processor EREW PRAM slowed down by a factor of k
• use m ≥ p (tmem / tproc ) memory banks to match memory reference rate of p 

processors
• total latency 2L for k = L / tproc independent random references at each processor
• O(tproc) amortized latency per reference at each processor

– unit latency degrades in the presence of concurrent reads/writes

– Bottom line:  doable but very expensive and only limited scaling in p

M1 M2 M3 Mm-1 Mm• • •

P2 PpP1 • • •

Network
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Memory systems summary

• Memory performance
– Latency is limited by physics
– Bandwidth is limited by cost

• Cache memory:  low latency access to some values
– caching frequently used values

• rewards temporal locality of reference
– caching consecutive values

• rewards spatial locality of reference
– decrease average latency

• 90 fast references, 10 slow references:  effective latency = 0.9L1 + 0.1L2

• Parallel memories
– 100 independent references ≈ 100 fast references
– relatively expensive
– requires parallel processing

Shared Memory Multiprocessors  (1)COMP 633  - Prins



14Shared Memory Multiprocessors  (1)COMP 633  - Prins

Simple uniprocessor memory hierarchy

• Each component is characterized by
– capacity
– block size
– (associativity)

• Traffic between components is characterized by
– access latency
– transfer rate (bandwidth)

• Example:  
– IBM RS6000/320H (ca. 1991)
Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Main memory 60 0.1
Cache 2 1
Registers 0 3

Cache

Main 
Memory

Disk

ALU

Regs
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Cache operation

• ABC cache parameters
– associativity
– block size 
– capacity

• CCC performance model
– cache misses can be

• compulsory
• capacity
• conflict block size

capacity

as
so

ci
at

iv
ity

Cache
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Cache operation:  read
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<1>        <26>             <512>
Valid        Tag Data

= MUX

Tag Index blk
<26> <8>         <6> address

data

:

associativity = 256-way
block size = 64 bytes (512b)

40-bit address

1,2,4,8 bytes
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Cache basics

• Five basic cache optimizations:
– Larger block size

• Reduces compulsory misses
• Increases capacity and conflict misses, increases miss penalty

– Larger total cache capacity to reduce miss rate
• Increases latency, increases power consumption

– Higher associativity
• Reduces conflict misses
• Increases latency, increases power consumption

– Larger number of cache levels
• Reduces average memory access time

– Avoiding address translation in cache indexing
• reduces latency

Shared Memory Multiprocessors  (1)COMP 633  - Prins
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The changing memory hierarchy

• IBM RS6000 320H - 25 MHz (1991)

• Intel Xeon 61xx [per core @3GHz] (2019)  

Cache

Main 
Memory

Disk

ALU

Regs

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Main memory 60 0.1
Cache 2 1
Registers 1 3

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
HDD 18,000,000 0.00007
SSD 300,000 0.02
Main memory 250 0.2 
L3 Cache 48 0.5
L2 Cache 12 1
L1 Cache 4 2
Registers 1 6
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Computational Intensity: a key metric limiting performance

• Computational intensity of a problem
I =     (total # of arithmetic operations required)  in flops

(size of input + size of result)             in 64-bit words

• BLAS - Basic Linear Algebra Subroutines
– Asymptotic performance limited by computational intensity

• A,B,C ∈ ℜn×n x,y ∈ ℜn a ∈ ℜ

name defn flops refs I
scale y = ax n 2n 0.5
triad y = ax + y 2n 3n 0.67
dot product x•y 2n 2n 1

Matrix-vector y = y + Ax 2n2+n n2+3n ~ 2
rank-1 update A = A + xyT 2n2 2n2+2n ~ 1

Matrix product C = C + AB 2n3 4n2 n/2

BLAS 1

BLAS 2

BLAS 3
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Effect of the memory hierarchy on execution time
• CNxN = ANxN • BNxN naïve implementation

• Machine
– simple L1 cache

• block size = 16 words
• capacity = 512 blocks
• fully associative

– main memory
• 4K pages

• Layout of A,B,C in memory
– Fortran:  column-major order

• RAM model suggests O(N3) run time
– actual time follows O(N5) growth!

Performance of naive N×N matrix multiply on an IBM RS6000/320 uniprocessor.  Time in clock cycles per multiply-add 
(note log10 scales).  Source: Alpern et al., “The Uniform Memory Hierarchy Model of Computation", Algorithmica, 1994

do i = 1,N
do j = 1,N

do k = 1,N
C(i,j) = C(i,j) + A(i,k)*B(k,j)
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Shared memory taxonomy
• Uniform Memory Access (UMA)

– Processors and memory separated by network
– All memory references cross network
– Only practical for machines with full latency hiding

• Parallel vector processors, multi-threaded processors
• Expensive, rarely available in practice

M1 M2 Mm• • •

P2 PpP1 • • •

Network
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Shared memory taxonomy
• Non-Uniform Memory Access (NUMA)

– Memory is partitioned across processors
– References are local or non-local

• Local references
– low latency

• Non-local references
– high latency

• non-local : local latency 
– large

– Examples
• BBN TC2000 (1989)

– Poor performance unless extreme care is taken in data placement

M1 P1 • • •
M2 P2 Mp Pp

Network
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Combining (N)UMA with cache memories
• Processor-local caches

– Cache all memory references
– Must reflect changes in value due to other processors in system
– Cache-misses 

• Usual:  compulsory, capacity, and conflict misses
• New:  coherence misses

• Cache-coherent UMA examples
– Conventional PC-based SMP systems

• Network is a shared bus
• Limited scaling (p ≤ 4)
• mostly extinct 

– Server-class machines
• Dual or Quad socket (single card)
• Intel Xeon or AMD EPYC (20 ≤ p ≤ 128)
• prevalent

• Cache-coherent NUMA examples
– scales to larger processor count

• SGI UltraViolet (p ~ 1024)
• rare

• • •M1 C1

P1

M2 C2

P2

Mp Cp

Pp
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Incorporating shared memory in the hierarchy
• Non-local shared memory

– can be viewed as additional level in processor-memory hierarchy

• Shared-memory parallel programming
– extension of memory hierarchy techniques
– goal:

• concurrent transfer through parallel levels

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Non-local memory 180 - 500 0.1 - 0.01
Local memory 60 0.1
Cache 2 1
Registers 0 3

Local 
Memory

Non-local
Memory

Cache Cache

Local 
Memory
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Modern shared-memory server:  Intel Xeon series

Shared Memory Multiprocessors  (1)COMP 633  - Prins
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AMD Infinity

• Speed of light inconveniently 
slow!
– miniaturize size of 

memory and processors

• Single card server
– 7 nm process technology
– 64 – 256 cores total, 
– 4 TB memory

Shared Memory Multiprocessors  (1)COMP 633  - Prins
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Shared-memory programming models
• Work-Time programming model 

sequential programming language + forall

– PRAM execution
• synchronous
• scheduling implicit (via Brent’s theorem)

– W-T cost model (work and steps)

• Loop-level parallel programming model
sequential programming language + directives to mark for loop as “forall”

– shared-memory multiprocessor execution 
• asynchronous execution of loop iterations by multiple threads in a single address 

space
– must avoid dependence on synchronous execution model

• scheduling of work across threads is controlled via directives 
– implemented by the compiler and run-time systems

– cost model depends on underlying shared memory architecture
• can be difficult to quantify
• but some general principles apply 
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OpenMP parallel programming model

• OpenMP shared-memory parallel programming model 
– loop-level parallel programming

• Characterizing performance
– performance measurement of a simple program
– how to monitor and present program performance
– general barriers to performance in parallel computation
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Example shared-memory machine

Shared Memory Multiprocessors  (1)COMP 633  - Prins

Phaedra
• 10 compute cores per socket, total 20 cores

• Single shared physical address space 
64 GB memory per socket, 128 GB total shared memory

• Cache-coherence protocol for performance
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OpenMP
• OpenMP

– parallelization directives for mainstream performance-oriented sequential 
programming languages

• C/C++ , Fortran (88, 90/95)
– directives are written as comments in the program text

• ignored by non-OpenMP compilers
• honored by OpenMP-compliant compilers in “OpenMP” mode

– directives specify
• parallel execution

– create multiple threads, generally each thread runs on a separate core in a CC-NUMA 
machine

• partitioning of variables
– a variable is either shared between threads OR each thread maintains a private copy

• work scheduling in loops
– partitioning of loop iterations across threads

• C/C++ binding of OpenMP
– form of directives

• #pragma omp . . . .
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OpenMP parallel execution of loops

…

printf(“Start.\n”);

for (i = 1; i < N-1; i++) {
b[i] = (a[i-1] + a[i] + a[i+1]) / 3;

}

printf(“Done.\n”);
…

• Can different iterations of this loop be executed simultaneously?
• for different values of i, the body of the loop can be executed simultaneously

• Suppose we have n iterations and p threads ?
• we have to partition the iteration space across the threads
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OpenMP directives to control partitioning

…
printf(“Start.\n”);

#pragma omp parallel for shared(a,b) private(i)
for (i = 1; i < N-1; i++) {

b[i] = (a[i-1] + a[i] + a[i+1]) / 3;
}

printf(“Done.\n”);
…

• The parallel directive indicates the next statement should be executed by all 
threads

• The for directive indicates the work in the loop body should be partitioned across 
threads

• The shared directive indicates that arrays a and b are shared by all threads.
• The private directive indicates i has a separate instance in each thread.  
• The last two directives would be inferred by the OpenMP compiler
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OpenMP components

• Directives
– specify parallel vs sequential regions
– specify shared vs private variables in parallel regions
– specify work sharing:  distribution of loop iterations over threads
– specify synchronization and serialization of threads

• Run-time library
– obtain parallel processing resources
– control dynamic aspects of work sharing

• Environment variables
– external to program 
– specification of resources available for a particular execution

• enables a single compiled program to run using differing numbers of 
processors
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C/OpenMP concepts:  parallel region

Fork-join model
– master thread forks a team of threads on entry to 

block
• variables in scope within the block are

– shared among all threads
» if declared outside of the parallel region
» if explicitly declared shared in the directive

– private to (replicated in) each thread
» if declared within the parallel region
» if explicitly declared private in the directive
» if variable is a loop index variable in a loop 

within the region
– the team of threads has dynamic lifetime to end of 

block
• statements are executed by all threads

– the end of block is a barrier synchronization that 
joins all threads

• only master thread proceeds thereafter

#pragma omp parallel shared(…) private(…)

<single entry, single exit block>

<single entry, 
single exit block>

master 
thread
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C/OpenMP concepts:  work sharing

• Work sharing 
– only has meaning inside a parallel region

– the iteration space is distributed among the threads
• several different scheduling strategies available

– the loop construct must follow some restrictions
• <var> has a signed integer type
• <lb>, <ub>, <incr-expr> must be loop invariant
• <op>, <incr-expr> restricted to simple relational and arithmetic operations

– implicit barrier at completion of loop

#pragma omp for schedule(…)

for (<var> = <lb>; <var>  <op>  <ub>; <incr-expr>)
<loop body>
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Complete C program  (V1)
#include <stdio.h>
#include <omp.h>
#define N 50000000
#define NITER 100

double a[N],b[N];
main ()
{
double t1,t2,td;
int i, t, max_threads, niter;

max_threads = omp_get_max_threads();
printf("Initializing:  N = %d, max # threads = %d\n", N, max_threads);

/*
* initialize arrays
*/
for (i = 0; i < N; i++){
a[i] = 0.0;
b[i] = 0.0;

}
a[0] = b[0] = 1.0;
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Program, contd.  (V1)

/*
* time iterations
*/
t1 = omp_get_wtime();
for (t = 0; t < NITER; t = t + 2){

#pragma omp parallel for private(i)
for (i = 1; i < N-1; i++)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

#pragma omp parallel for private(i)
for (i = 1; i < N-1; i++)

a[i] = (b[i-1] + b[i] + b[i+1]) / 3.0;
}

t2 = omp_get_wtime();
td = t2 – t1;
printf("Time per element = %6.1f ns\n", td * 1E9 / (NITER * N));

}
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Program, contd. (V2 – enlarging scope of parallel region)

/* 
* time iterations
*/
t1 = omp_get_wtime();

#pragma omp parallel private(i,t)
for (t = 0; t < NITER; t = t + 2){

#pragma omp for
for (i = 1; i < N-1; i++)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

#pragma omp for
for (i = 1; i < N-1; i++)

a[i] = (b[i-1] + b[i] + b[i+1]) / 3.0;
}

t2 = omp_get_wtime();
td = t2 – t1;
printf("Time per element = %6.1f ns\n", td * 1E9 / (NITER * N));

}
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Complete program  (V3 – page and cache affinity)
#include <stdio.h>
#include <omp.h>
#define N 50000000
#define NITER 100

double a[N],b[N];

main ()
{

double t1,t2,td;
int i, t, max_threads, niter;

max_threads = omp_get_max_threads();
printf("Initializing:  N = %d, max # threads = %d\n", N, max_threads);

#pragma omp parallel private(i,t)
{ // start parallel region 

/*
* initialize arrays
*/

#pragma omp for
for (i = 1; i < N; i++){

a[i] = 0.0;
b[i] = 0.0;

}

#pragma omp master
a[0] = b[0] = 1.0;
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Program, contd.   (V3 – page and cache affinity)

/* 
* time iterations
*/
#pragma omp master
t1 = omp_getwtime();

for (t = 0; t < NITER; t = t + 2){

#pragma omp for
for (i = 1; i < N-1; i++)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

#pragma omp for
for (i = 1; i < N-1; i++)

a[i] = (b[i-1] + b[i] + b[i+1]) / 3.0;
}

}  // end parallel region

t2 = omp_get_wtime();
td = t2 – t1;
printf("Time per element = %6.1f ns\n", td * 1E9 / (NITER * N));

}
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• Time to update one element  in sequential execution
– b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

– depends on where the elements are found
• registers, L1 cache, L2 cache, main memory

Shared Memory Multiprocessing (2)COMP 633  - Prins

Effect of caches

L1
L2 cache

Main memory
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How to present scaling of parallel programs?
• Independent variables

– either
• number of processors p
• problem size n

• Dependent variable (choose)
– Time (secs)
– Rate (opns/sec)
– Speedup  S = T1 / Tp
– Efficiency  E = T1 / pTp

• Horizontal axis 
– independent variable (n or p)

• Vertical axis
– Dependent variable (e.g. time per element)
– May show multiple curves (e.g different values of n)
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• Shortest time is our true goal

– But hard to judge improvements because values get very small at large p
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Parallel performance
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Execution rate (MFLOP / second)
• Shows work per time

– easier to judge scaling 
– highest detail at large n, p
– how to measure MFLOPS? 
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Speedup
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• Speedup of run time relative to single processor (t1 / tp)
– How to define t1?

• run time of parallel algorithm at p = 1?
• run time of best serial algorithm?

– Superlinear speedup ?
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OpenMP:  scheduling loop iterations
• Scheduling a loop with n iterations using p threads

– The unit of scheduling is a chunk of k iterations
– Ti means iteration(s) executed by thread i

• schedule(static,k)
– Chunks mapped to threads in 

at entry to loop
– default k = n/p

• schedule(dynamic,k)
– chunks handed out consecutively

to ready threads
– default k = 1

• schedule(guided,k)
– size d chunk handed to

first available thread
– d decreases exponentially 

from n/p down to k:
di+1 = (1-1/p)di where d0=n/p

– default k = 1

n

n

n
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Speedup by schedule type
(n = 10,000,000)
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Varying scheduling strategy:  diffusion problem
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Causes of poor parallel performance
Possible suspects:

– Low computational intensity
• Performance limited by memory performance

– Poor cache behavior
• access pattern has poor locality
• access pattern is poorly matched to CC-NUMA

– Sequential overhead
• Amdahl’s law

– fraction f serial work limits speedup to 1/f

– Load imbalance
• Unequal distribution of work, or
• Unequal thread progress on equal work

– busy machine, uncooperative OS
– CC-NUMA issues

– Bad luck
• Insufficient sampling - show timing variation on plots!
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Cache-related mysteries
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Cache-related mysteries:  speedup

Parallel speedup
(single parallel region)
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OpenMP on CC-NUMA 

• Performance guidelines
– shared data structures

• use cache-line spatial locality
– linear access patterns (read and write)
– structs with components grouped by access

• don’t mix reads and writes to same data on different processors
– use phased updates

• avoid false sharing
– unrelated values sharing a cache line updated by multiple threads

• make sure data structures are physically distributed across memory
– by parallel initialization

» artifact of page placement policy under e.g. Linux
– by explicit placement directives and page allocation policies
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OpenMP on CC-(N)UMA

• Other guidelines
– Enlarge parallel region 

• to retain processor – data affinity
• to avoid overhead of repeated entry to parallel region in an inner loop

– Use appropriate work distribution schedule
• static, else
• guided, else
• dynamic with large chunksize
• runtime-specified schedule involves relatively small overhead

– Don’t use too many processors
• OS scheduling of threads behaves erratically when machine is 

oversubscribed
• be aware of dynamic thread adjustment (OMP_DYNAMIC)
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Reductions and critical statements
• a reduction loop does not have independent iterations

for (i=0; i<n; i++) {

sum = sum + a[i];

}

• the loop may be parallelized by inserting a critical section

– the critical directive serializes a single statement or block
#pragma omp parallel for

for (i=0; i<n; i++) {

#pragma omp critical

sum = sum + a[i];

}

– but this is a poor strategy!

• a reduction loop can be identified using a reduction directive
#pragma omp parallel for reduction(+: sum)

for (i=0; i<n; i++) {

sum = sum + a[i];

}
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Implementation of reduction directive
• A better implementation of the reduction loop

sum = 0;
#pragma omp parallel
{

int i, local_sum = 0;
#pragma omp for
for (i=0; i<n; i++) { 

local_sum = local_sum + a[i];
}
#pragma omp critical
sum = sum + local_sum;

}

– reduces number of critical operations from n to p

• other reduction strategies
– serialization:  master thread sequentially combines local_sum values
– tree-based reduction
– hybrid strategy
OpenMP compiler should generate code that selects optimal strategy at run 

time
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