
1Shared Memory Multiprocessors (1)COMP 790-033 - Prins

COMP 790-033 - Parallel Computing

Lecture 3
Aug 31, 2022

SMM (1)
Shared Memory Multiprocessors

2Shared Memory Multiprocessors (1)COMP 633 - Prins

Topics

• Memory systems
– organization
– caches and the memory hierarchy
– influence of the memory hierarchy on algorithms

• Shared memory systems
– Taxonomy of actual shared memory systems

• UMA, NUMA, cc-NUMA

• OpenMP shared memory parallel programming

3Shared Memory Multiprocessors (1)COMP 633 - Prins

Recall PRAM shared memory system

• PRAM model
– assumes access latency is constant, regardless of the number of

processors or the size of memory
– simultaneous reads permitted under CR model and simultaneous

writes permitted under CW model

• Physically impossible to realize
– processors and memory occupy physical

space
• speed of light limitations

– CR / CW must be reduced to ER / EW
• requires Ω(lg p) time in general case

p

shared memory

1 2 • • •
processors

()()31mpL +Ω=

4Shared Memory Multiprocessors (1)COMP 633 - Prins

Anatomy of a processor ↔ memory system
• Performance parameters of Random Access Memory (RAM)

– latency L
• elapsed time from presentation of memory address to arrival of data

– address transit time
– memory access time tmem

– data transit time

– bandwidth W
• number of values (e.g. 64 bit words) delivered to processor per unit time

– simple implementation W ~ 1/L

Processor Memory

5Shared Memory Multiprocessors (1)COMP 633 - Prins

Processor vs. memory performance

• The memory “wall”
– Processors compute faster than memory delivers data

• increasing imbalance 𝑡𝑡arith ≪ 𝑡𝑡mem
• ≪

6Shared Memory Multiprocessors (1)COMP 633 - Prins

Improving memory system performance

– Decrease latency L to memory
• speed of light is a limiting factor

– bring memory closer to processor

– Decrease memory access time by using 2D memory layout
• access time ∝ s½ (VLSI)

– Use different memory technologies
• DRAM (Dynamic RAM) 1 transistor

per stored bit
– High density, low power, low cost,

but long access time
• SRAM (Static RAM) 6 transistors

per stored bit
– Short access time, but low density,

high power, and high cost.

7Shared Memory Multiprocessors (1)COMP 633 - Prins

Improving memory system performance (1)
• Decrease latency using cache memory

– low latency access to frequently used values, high latency for the remaining
values

– Example
• 90% of references are to cache with latency L1

• 10% of references are to memory with latency L2

• average latency is 0.9L1 + 0.1L2

Processor MemoryCache

8Shared Memory Multiprocessors (1)COMP 633 - Prins

Improving memory system performance (2)
• Increase bandwidth W

– multiport (parallel access) memory
• multiple reads, multiple exclusive writes per memory cycle

– High cost, very limited scalability

– “blocked” memory
• memory supplies block of size b containing requested word

– supports spatial locality in cache access

Processor MemoryCache

Processor Register file

b

9Shared Memory Multiprocessors (1)COMP 633 - Prins

• Increase bandwidth W (contd)
– pipeline memory requests

• requires independent memory references

– interleave memory
• problem: memory access is limited by tmem

• use m separate memories (or memory banks)
• W ~ m / L if references distribute over memory banks

Improving memory system performance (2)

10Shared Memory Multiprocessors (1)COMP 633 - Prins

Latency hiding
• Amortize latency using a pipelined interleaved memory system

– k independent references in Ω(L + k ⋅ tproc) time
• O(L/k) amortized (expected) latency per reference

• Where do we get independent references?
– out-of-order execution of independent load/store operations

• found in most modern performance-oriented processors
• partial latency hiding: k ~ 2 - 10 references outstanding

– vector load/store operations
• small vector units (AVX512)

– vector length 2-8 words (Intel Xeon)
– partial latency hiding

• high-performance vector units (NEC SX-9, SX-Aurora)
– vector length k = L / tproc (128 - 256 words)
– crossbar network to highly interleaved memory (~ 16,000 banks)
– full latency hiding: amortized memory access at processor speed

– multithreaded operation
• independent execution threads with individual hardware contexts

– partial latency hiding: 2-way hyperthreading (Intel)
– full latency hiding: 128-way threading with high-performance memory (Cray MTA)

11Shared Memory Multiprocessors (1)COMP 633 - Prins

Implementing the PRAM
• How close can we come to O(1) latency PRAM memory in practice?

– requires processor to memory
network

• latency L = sum of
– twice network latency
– memory cycle time
– serialization time for CR, CW

• L increases with m, p
– L too large with current technology

– examples
• NYU Ultracomputer (1987), IBM RP3 (1991), SBPRAM (1999)

– logarithmic depth combining network eliminates memory contention time for
CR, CW

» Ω(lg p) latency in network is prohibitive

M1 M2 M3 Mm-1 Mm• • •

P2 PpP1 • • •

Network

12Shared Memory Multiprocessors (1)COMP 633 - Prins

Implementing PRAM – a compromise
• Using latency hiding with a high-performance memory system

– implements p⋅k processor EREW PRAM slowed down by a factor of k
• use m ≥ p (tmem / tproc) memory banks to match memory reference rate of p

processors
• total latency 2L for k = L / tproc independent random references at each processor
• O(tproc) amortized latency per reference at each processor

– unit latency degrades in the presence of concurrent reads/writes

– Bottom line: doable but very expensive and only limited scaling in p

M1 M2 M3 Mm-1 Mm• • •

P2 PpP1 • • •

Network

13

Memory systems summary

• Memory performance
– Latency is limited by physics
– Bandwidth is limited by cost

• Cache memory: low latency access to some values
– caching frequently used values

• rewards temporal locality of reference
– caching consecutive values

• rewards spatial locality of reference
– decrease average latency

• 90 fast references, 10 slow references: effective latency = 0.9L1 + 0.1L2

• Parallel memories
– 100 independent references ≈ 100 fast references
– relatively expensive
– requires parallel processing

Shared Memory Multiprocessors (1)COMP 633 - Prins

14Shared Memory Multiprocessors (1)COMP 633 - Prins

Simple uniprocessor memory hierarchy

• Each component is characterized by
– capacity
– block size
– (associativity)

• Traffic between components is characterized by
– access latency
– transfer rate (bandwidth)

• Example:
– IBM RS6000/320H (ca. 1991)
Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Main memory 60 0.1
Cache 2 1
Registers 0 3

Cache

Main
Memory

Disk

ALU

Regs

15Shared Memory Multiprocessors (1)COMP 633 - Prins

Cache operation

• ABC cache parameters
– associativity
– block size
– capacity

• CCC performance model
– cache misses can be

• compulsory
• capacity
• conflict block size

capacity

as
so

ci
at

iv
ity

Cache

16

Cache operation: read

Shared Memory Multiprocessors (1)COMP 633 - Prins

<1> <26> <512>
Valid Tag Data

= MUX

Tag Index blk
<26> <8> <6> address

data

:

associativity = 256-way
block size = 64 bytes (512b)

40-bit address

1,2,4,8 bytes

17

Cache basics

• Five basic cache optimizations:
– Larger block size

• Reduces compulsory misses
• Increases capacity and conflict misses, increases miss penalty

– Larger total cache capacity to reduce miss rate
• Increases latency, increases power consumption

– Higher associativity
• Reduces conflict misses
• Increases latency, increases power consumption

– Larger number of cache levels
• Reduces average memory access time

– Avoiding address translation in cache indexing
• reduces latency

Shared Memory Multiprocessors (1)COMP 633 - Prins

18Shared Memory Multiprocessors (1)COMP 633 - Prins

The changing memory hierarchy

• IBM RS6000 320H - 25 MHz (1991)

• Intel Xeon 61xx [per core @3GHz] (2019)

Cache

Main
Memory

Disk

ALU

Regs

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Main memory 60 0.1
Cache 2 1
Registers 1 3

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
HDD 18,000,000 0.00007
SSD 300,000 0.02
Main memory 250 0.2
L3 Cache 48 0.5
L2 Cache 12 1
L1 Cache 4 2
Registers 1 6

19Shared Memory Multiprocessors (1)COMP 633 - Prins

Computational Intensity: a key metric limiting performance

• Computational intensity of a problem
I = (total # of arithmetic operations required) in flops

(size of input + size of result) in 64-bit words

• BLAS - Basic Linear Algebra Subroutines
– Asymptotic performance limited by computational intensity

• A,B,C ∈ ℜn×n x,y ∈ ℜn a ∈ ℜ

name defn flops refs I
scale y = ax n 2n 0.5
triad y = ax + y 2n 3n 0.67
dot product x•y 2n 2n 1

Matrix-vector y = y + Ax 2n2+n n2+3n ~ 2
rank-1 update A = A + xyT 2n2 2n2+2n ~ 1

Matrix product C = C + AB 2n3 4n2 n/2

BLAS 1

BLAS 2

BLAS 3

20Shared Memory Multiprocessors (1)COMP 633 - Prins

Effect of the memory hierarchy on execution time
• CNxN = ANxN • BNxN naïve implementation

• Machine
– simple L1 cache

• block size = 16 words
• capacity = 512 blocks
• fully associative

– main memory
• 4K pages

• Layout of A,B,C in memory
– Fortran: column-major order

• RAM model suggests O(N3) run time
– actual time follows O(N5) growth!

Performance of naive N×N matrix multiply on an IBM RS6000/320 uniprocessor. Time in clock cycles per multiply-add
(note log10 scales). Source: Alpern et al., “The Uniform Memory Hierarchy Model of Computation", Algorithmica, 1994

do i = 1,N
do j = 1,N

do k = 1,N
C(i,j) = C(i,j) + A(i,k)*B(k,j)

21Shared Memory Multiprocessors (1)COMP 633 - Prins

Shared memory taxonomy
• Uniform Memory Access (UMA)

– Processors and memory separated by network
– All memory references cross network
– Only practical for machines with full latency hiding

• Parallel vector processors, multi-threaded processors
• Expensive, rarely available in practice

M1 M2 Mm• • •

P2 PpP1 • • •

Network

22Shared Memory Multiprocessors (1)COMP 633 - Prins

Shared memory taxonomy
• Non-Uniform Memory Access (NUMA)

– Memory is partitioned across processors
– References are local or non-local

• Local references
– low latency

• Non-local references
– high latency

• non-local : local latency
– large

– Examples
• BBN TC2000 (1989)

– Poor performance unless extreme care is taken in data placement

M1 P1 • • •
M2 P2 Mp Pp

Network

23Shared Memory Multiprocessors (1)COMP 633 - Prins

Combining (N)UMA with cache memories
• Processor-local caches

– Cache all memory references
– Must reflect changes in value due to other processors in system
– Cache-misses

• Usual: compulsory, capacity, and conflict misses
• New: coherence misses

• Cache-coherent UMA examples
– Conventional PC-based SMP systems

• Network is a shared bus
• Limited scaling (p ≤ 4)
• mostly extinct

– Server-class machines
• Dual or Quad socket (single card)
• Intel Xeon or AMD EPYC (20 ≤ p ≤ 128)
• prevalent

• Cache-coherent NUMA examples
– scales to larger processor count

• SGI UltraViolet (p ~ 1024)
• rare

• • •M1 C1

P1

M2 C2

P2

Mp Cp

Pp

24Shared Memory Multiprocessors (1)COMP 633 - Prins

Incorporating shared memory in the hierarchy
• Non-local shared memory

– can be viewed as additional level in processor-memory hierarchy

• Shared-memory parallel programming
– extension of memory hierarchy techniques
– goal:

• concurrent transfer through parallel levels

Storage Latency Transfer Rate
component (cycles) (words [8B] / cycle)
Disk 1,000,000 0.001
Non-local memory 180 - 500 0.1 - 0.01
Local memory 60 0.1
Cache 2 1
Registers 0 3

Local
Memory

Non-local
Memory

Cache Cache

Local
Memory

26

Modern shared-memory server: Intel Xeon series

Shared Memory Multiprocessors (1)COMP 633 - Prins

27

AMD Infinity

• Speed of light inconveniently
slow!
– miniaturize size of

memory and processors

• Single card server
– 7 nm process technology
– 64 – 256 cores total,
– 4 TB memory

Shared Memory Multiprocessors (1)COMP 633 - Prins

28Shared Memory Multiprocessing (2)COMP 633 - Prins

Shared-memory programming models
• Work-Time programming model

sequential programming language + forall

– PRAM execution
• synchronous
• scheduling implicit (via Brent’s theorem)

– W-T cost model (work and steps)

• Loop-level parallel programming model
sequential programming language + directives to mark for loop as “forall”

– shared-memory multiprocessor execution
• asynchronous execution of loop iterations by multiple threads in a single address

space
– must avoid dependence on synchronous execution model

• scheduling of work across threads is controlled via directives
– implemented by the compiler and run-time systems

– cost model depends on underlying shared memory architecture
• can be difficult to quantify
• but some general principles apply

29Shared Memory Multiprocessing (2)COMP 633 - Prins

OpenMP parallel programming model

• OpenMP shared-memory parallel programming model
– loop-level parallel programming

• Characterizing performance
– performance measurement of a simple program
– how to monitor and present program performance
– general barriers to performance in parallel computation

30

Example shared-memory machine

Shared Memory Multiprocessors (1)COMP 633 - Prins

Phaedra
• 10 compute cores per socket, total 20 cores

• Single shared physical address space
64 GB memory per socket, 128 GB total shared memory

• Cache-coherence protocol for performance

31Shared Memory Multiprocessing (2)COMP 633 - Prins

OpenMP
• OpenMP

– parallelization directives for mainstream performance-oriented sequential
programming languages

• C/C++ , Fortran (88, 90/95)
– directives are written as comments in the program text

• ignored by non-OpenMP compilers
• honored by OpenMP-compliant compilers in “OpenMP” mode

– directives specify
• parallel execution

– create multiple threads, generally each thread runs on a separate core in a CC-NUMA
machine

• partitioning of variables
– a variable is either shared between threads OR each thread maintains a private copy

• work scheduling in loops
– partitioning of loop iterations across threads

• C/C++ binding of OpenMP
– form of directives

• #pragma omp

32Shared Memory Multiprocessing (2)COMP 633 - Prins

OpenMP parallel execution of loops

…

printf(“Start.\n”);

for (i = 1; i < N-1; i++) {
b[i] = (a[i-1] + a[i] + a[i+1]) / 3;

}

printf(“Done.\n”);
…

• Can different iterations of this loop be executed simultaneously?
• for different values of i, the body of the loop can be executed simultaneously

• Suppose we have n iterations and p threads ?
• we have to partition the iteration space across the threads

33Shared Memory Multiprocessing (2)COMP 633 - Prins

OpenMP directives to control partitioning

…
printf(“Start.\n”);

#pragma omp parallel for shared(a,b) private(i)
for (i = 1; i < N-1; i++) {

b[i] = (a[i-1] + a[i] + a[i+1]) / 3;
}

printf(“Done.\n”);
…

• The parallel directive indicates the next statement should be executed by all
threads

• The for directive indicates the work in the loop body should be partitioned across
threads

• The shared directive indicates that arrays a and b are shared by all threads.
• The private directive indicates i has a separate instance in each thread.
• The last two directives would be inferred by the OpenMP compiler

34Shared Memory Multiprocessing (2)COMP 633 - Prins

OpenMP components

• Directives
– specify parallel vs sequential regions
– specify shared vs private variables in parallel regions
– specify work sharing: distribution of loop iterations over threads
– specify synchronization and serialization of threads

• Run-time library
– obtain parallel processing resources
– control dynamic aspects of work sharing

• Environment variables
– external to program
– specification of resources available for a particular execution

• enables a single compiled program to run using differing numbers of
processors

35Shared Memory Multiprocessing (2)COMP 633 - Prins

C/OpenMP concepts: parallel region

Fork-join model
– master thread forks a team of threads on entry to

block
• variables in scope within the block are

– shared among all threads
» if declared outside of the parallel region
» if explicitly declared shared in the directive

– private to (replicated in) each thread
» if declared within the parallel region
» if explicitly declared private in the directive
» if variable is a loop index variable in a loop

within the region
– the team of threads has dynamic lifetime to end of

block
• statements are executed by all threads

– the end of block is a barrier synchronization that
joins all threads

• only master thread proceeds thereafter

#pragma omp parallel shared(…) private(…)

<single entry, single exit block>

<single entry,
single exit block>

master
thread

36Shared Memory Multiprocessing (2)COMP 633 - Prins

C/OpenMP concepts: work sharing

• Work sharing
– only has meaning inside a parallel region

– the iteration space is distributed among the threads
• several different scheduling strategies available

– the loop construct must follow some restrictions
• <var> has a signed integer type
• <lb>, <ub>, <incr-expr> must be loop invariant
• <op>, <incr-expr> restricted to simple relational and arithmetic operations

– implicit barrier at completion of loop

#pragma omp for schedule(…)

for (<var> = <lb>; <var> <op> <ub>; <incr-expr>)
<loop body>

37Shared Memory Multiprocessing (2)COMP 633 - Prins

Complete C program (V1)
#include <stdio.h>
#include <omp.h>
#define N 50000000
#define NITER 100

double a[N],b[N];
main ()
{
double t1,t2,td;
int i, t, max_threads, niter;

max_threads = omp_get_max_threads();
printf("Initializing: N = %d, max # threads = %d\n", N, max_threads);

/*
* initialize arrays
*/
for (i = 0; i < N; i++){
a[i] = 0.0;
b[i] = 0.0;

}
a[0] = b[0] = 1.0;

38Shared Memory Multiprocessing (2)COMP 633 - Prins

Program, contd. (V1)

/*
* time iterations
*/
t1 = omp_get_wtime();
for (t = 0; t < NITER; t = t + 2){

#pragma omp parallel for private(i)
for (i = 1; i < N-1; i++)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

#pragma omp parallel for private(i)
for (i = 1; i < N-1; i++)

a[i] = (b[i-1] + b[i] + b[i+1]) / 3.0;
}

t2 = omp_get_wtime();
td = t2 – t1;
printf("Time per element = %6.1f ns\n", td * 1E9 / (NITER * N));

}

39Shared Memory Multiprocessing (2)COMP 633 - Prins

Program, contd. (V2 – enlarging scope of parallel region)

/*
* time iterations
*/
t1 = omp_get_wtime();

#pragma omp parallel private(i,t)
for (t = 0; t < NITER; t = t + 2){

#pragma omp for
for (i = 1; i < N-1; i++)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

#pragma omp for
for (i = 1; i < N-1; i++)

a[i] = (b[i-1] + b[i] + b[i+1]) / 3.0;
}

t2 = omp_get_wtime();
td = t2 – t1;
printf("Time per element = %6.1f ns\n", td * 1E9 / (NITER * N));

}

40Shared Memory Multiprocessing (2)COMP 633 - Prins

Complete program (V3 – page and cache affinity)
#include <stdio.h>
#include <omp.h>
#define N 50000000
#define NITER 100

double a[N],b[N];

main ()
{

double t1,t2,td;
int i, t, max_threads, niter;

max_threads = omp_get_max_threads();
printf("Initializing: N = %d, max # threads = %d\n", N, max_threads);

#pragma omp parallel private(i,t)
{ // start parallel region

/*
* initialize arrays
*/

#pragma omp for
for (i = 1; i < N; i++){

a[i] = 0.0;
b[i] = 0.0;

}

#pragma omp master
a[0] = b[0] = 1.0;

41Shared Memory Multiprocessing (2)COMP 633 - Prins

Program, contd. (V3 – page and cache affinity)

/*
* time iterations
*/
#pragma omp master
t1 = omp_getwtime();

for (t = 0; t < NITER; t = t + 2){

#pragma omp for
for (i = 1; i < N-1; i++)

b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

#pragma omp for
for (i = 1; i < N-1; i++)

a[i] = (b[i-1] + b[i] + b[i+1]) / 3.0;
}

} // end parallel region

t2 = omp_get_wtime();
td = t2 – t1;
printf("Time per element = %6.1f ns\n", td * 1E9 / (NITER * N));

}

42

0

10

20

30

40

50

60

1,000 10,000 100,000 1,000,000 10,000,000

tim
e

pe
r e

lt
t/n

 (
ns

)

number of elements n

• Time to update one element in sequential execution
– b[i] = (a[i-1] + a[i] + a[i+1]) / 3.0;

– depends on where the elements are found
• registers, L1 cache, L2 cache, main memory

Shared Memory Multiprocessing (2)COMP 633 - Prins

Effect of caches

L1
L2 cache

Main memory

43Shared Memory Multiprocessing (2)COMP 633 - Prins

How to present scaling of parallel programs?
• Independent variables

– either
• number of processors p
• problem size n

• Dependent variable (choose)
– Time (secs)
– Rate (opns/sec)
– Speedup S = T1 / Tp
– Efficiency E = T1 / pTp

• Horizontal axis
– independent variable (n or p)

• Vertical axis
– Dependent variable (e.g. time per element)
– May show multiple curves (e.g different values of n)

44Shared Memory Multiprocessing (2)COMP 633 - Prins

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 2 4 6 8 10 12 14 16 18 20 22 24

tim
e

pe
r e

lt
(n

s)

number of processors

n = 10,000,000

n = 1,000,000

Time
• Shortest time is our true goal

– But hard to judge improvements because values get very small at large p

45

Parallel performance

0.0

500.0

1000.0

1500.0

2000.0

2500.0

0 2 4 6 8 10 12 14 16 18 20 22 24

number of processors

M
FL

O
P

/ s
ec

on
d

n = 10,000,000
n = 1,000,000

Shared Memory Multiprocessing (2)COMP 633 - Prins

Execution rate (MFLOP / second)
• Shows work per time

– easier to judge scaling
– highest detail at large n, p
– how to measure MFLOPS?

46Shared Memory Multiprocessing (2)COMP 633 - Prins

Speedup

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24

sp
ee

du
p

number of processors

Speedup

p

n = 1,000,000

n = 10,000,000

• Speedup of run time relative to single processor (t1 / tp)
– How to define t1?

• run time of parallel algorithm at p = 1?
• run time of best serial algorithm?

– Superlinear speedup ?

47Shared Memory Multiprocessing (2)COMP 633 - Prins

OpenMP: scheduling loop iterations
• Scheduling a loop with n iterations using p threads

– The unit of scheduling is a chunk of k iterations
– Ti means iteration(s) executed by thread i

• schedule(static,k)
– Chunks mapped to threads in

at entry to loop
– default k = n/p

• schedule(dynamic,k)
– chunks handed out consecutively

to ready threads
– default k = 1

• schedule(guided,k)
– size d chunk handed to

first available thread
– d decreases exponentially

from n/p down to k:
di+1 = (1-1/p)di where d0=n/p

– default k = 1

n

n

n

48Shared Memory Multiprocessing (2)COMP 633 - Prins

Speedup by schedule type
(n = 10,000,000)

0.01

0.1

1

10

100

1 10 100
number of processors

sp
ee

du
p

p
static
guided
dynamic,32
dynamic

Varying scheduling strategy: diffusion problem

49Shared Memory Multiprocessing (2)COMP 633 - Prins

Causes of poor parallel performance
Possible suspects:

– Low computational intensity
• Performance limited by memory performance

– Poor cache behavior
• access pattern has poor locality
• access pattern is poorly matched to CC-NUMA

– Sequential overhead
• Amdahl’s law

– fraction f serial work limits speedup to 1/f

– Load imbalance
• Unequal distribution of work, or
• Unequal thread progress on equal work

– busy machine, uncooperative OS
– CC-NUMA issues

– Bad luck
• Insufficient sampling - show timing variation on plots!

50Shared Memory Multiprocessing (2)COMP 633 - Prins

Cache-related mysteries

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22 24

M
FL

O
P

/ s
ec

on
d

number of processors

Execution rate

n = 10,000,000

n = 1,000,000

51Shared Memory Multiprocessing (2)COMP 633 - Prins

Cache-related mysteries: speedup

Parallel speedup
(single parallel region)

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20 22 24
number of processors

sp
ee

du
p

p
n = 1,000,000
n = 10,000,000

52Shared Memory Multiprocessing (2)COMP 633 - Prins

OpenMP on CC-NUMA

• Performance guidelines
– shared data structures

• use cache-line spatial locality
– linear access patterns (read and write)
– structs with components grouped by access

• don’t mix reads and writes to same data on different processors
– use phased updates

• avoid false sharing
– unrelated values sharing a cache line updated by multiple threads

• make sure data structures are physically distributed across memory
– by parallel initialization

» artifact of page placement policy under e.g. Linux
– by explicit placement directives and page allocation policies

53Shared Memory Multiprocessing (2)COMP 633 - Prins

OpenMP on CC-(N)UMA

• Other guidelines
– Enlarge parallel region

• to retain processor – data affinity
• to avoid overhead of repeated entry to parallel region in an inner loop

– Use appropriate work distribution schedule
• static, else
• guided, else
• dynamic with large chunksize
• runtime-specified schedule involves relatively small overhead

– Don’t use too many processors
• OS scheduling of threads behaves erratically when machine is

oversubscribed
• be aware of dynamic thread adjustment (OMP_DYNAMIC)

54Shared Memory Multiprocessing (2)COMP 633 - Prins

Reductions and critical statements
• a reduction loop does not have independent iterations

for (i=0; i<n; i++) {

sum = sum + a[i];

}

• the loop may be parallelized by inserting a critical section

– the critical directive serializes a single statement or block
#pragma omp parallel for

for (i=0; i<n; i++) {

#pragma omp critical

sum = sum + a[i];

}

– but this is a poor strategy!

• a reduction loop can be identified using a reduction directive
#pragma omp parallel for reduction(+: sum)

for (i=0; i<n; i++) {

sum = sum + a[i];

}

55Shared Memory Multiprocessing (2)COMP 633 - Prins

Implementation of reduction directive
• A better implementation of the reduction loop

sum = 0;
#pragma omp parallel
{

int i, local_sum = 0;
#pragma omp for
for (i=0; i<n; i++) {

local_sum = local_sum + a[i];
}
#pragma omp critical
sum = sum + local_sum;

}

– reduces number of critical operations from n to p

• other reduction strategies
– serialization: master thread sequentially combines local_sum values
– tree-based reduction
– hybrid strategy
OpenMP compiler should generate code that selects optimal strategy at run

time

	COMP 790-033 - Parallel Computing��Lecture 3 �Aug 31, 2022�� SMM (1) �Shared Memory Multiprocessors
	Topics
	Recall PRAM shared memory system
	Anatomy of a processor  memory system
	Processor vs. memory performance
	Improving memory system performance
	Improving memory system performance (1)
	Improving memory system performance (2)
	Improving memory system performance (2)
	Latency hiding
	Implementing the PRAM
	Implementing PRAM – a compromise
	Memory systems summary
	Simple uniprocessor memory hierarchy
	Cache operation
	Cache operation: read
	Cache basics
	The changing memory hierarchy
	Computational Intensity: a key metric limiting performance
	Effect of the memory hierarchy on execution time
	Shared memory taxonomy
	Shared memory taxonomy
	Combining (N)UMA with cache memories
	Incorporating shared memory in the hierarchy
	Modern shared-memory server: Intel Xeon series
	AMD Infinity
	Shared-memory programming models
	OpenMP parallel programming model
	Example shared-memory machine
	OpenMP
	OpenMP parallel execution of loops
	OpenMP directives to control partitioning
	OpenMP components
	C/OpenMP concepts: parallel region
	C/OpenMP concepts: work sharing
	Complete C program (V1)
	Program, contd. (V1)
	Program, contd. (V2 – enlarging scope of parallel region)
	Complete program (V3 – page and cache affinity)
	Program, contd. (V3 – page and cache affinity)
	Effect of caches
	How to present scaling of parallel programs?
	Time
	Execution rate (MFLOP / second)
	Speedup
	OpenMP: scheduling loop iterations
	Varying scheduling strategy: diffusion problem
	Causes of poor parallel performance
	Cache-related mysteries
	Cache-related mysteries: speedup
	OpenMP on CC-NUMA
	OpenMP on CC-(N)UMA
	Reductions and critical statements
	Implementation of reduction directive

