COMP 790-033 - Parallel Computing

Lecture 11
Oct 26, 2022

BSP (2)
Parallel Sorting in the BSP model

Topics
1.

2.

COMP 790-033 Lec 11

What work remains this semester:
e programming project and presentation

Sorting in the BSP model

Parallel sorting: problem definition

e Given
— N values, each of size b hits
— a total order < defined on the values

» Initial distribution
— each processor holdsn =N / p values

 Result
proc, proc, proc, e pt‘OCp_l
Vl Vk1+1 Vk2+1 Vkp_l+1
Vi, Vi, Vi, Vi,

= Vi<V, forall 1 <i<N =k,
— generally k; = nei, i.e. evenly distributed across processors

COMP 790-033 Lec 11

N

Parallel sorting: general remarks

 Typically concerned with case of N >>p
— Small N problems don’t require parallel processing
— Use algorithm cascading with efficient sequential sort of n elements

» sequential radix sort of n values has WSORT(n) = Q)(bn)

» sequential comparison-based sort has WSORT(n) = Q(n Ig n) and may be more
appropriate when b is large

— Examine scalability in N and p using BSP model

» two parallel algorithms considered
 Bitonic sort, Sample sort

« What is the lower bound BSP cost for sorting?

— Work bound
» (1/p) * optimal sequential work WSORT(N)
— Communication bound
» each value may have to move between processors from input to output

— BSP lower bound SORT
W (N)
Cp2RT(N, p)> +%-9+L

COMP 790-033 Lec 11 @

w

Background: Sorting networks for parallel sorting

e« Basic component: the comparator module

a— — min(a,b)

b — — max(a,b)

« Comparator modules can be connected to form a sorting network

— all inputs are presented in parallel
» exX: sorting network for 4 values

a— a’ a I

b >< b’ b
c — — C’ C

sorting network schematic representation

COMP 790-033 Lec 11

Sorting networks

e Sorting networks are oblivious
— predetermined sequence of comparisons sorts any input sequence

— the depth of a comparator is the maximum number of preceding comparators
on any path to an input

A sorting network specifies a parallel sorting algorithm

— in step i, evaluate all comparators at depth i in parallel
» each step permutes inputs to outputs (EREW)

» at most n comparators evaluated in each step
* let d(n) be the depth of a network of size n, then S(n) = d(n), W(n) = O(n-d(n))

stepl step?2 step 3

T 1
A N

COMP 790-033 Lec 11

Bitonic Sequence

» Definitions
— A sequence of values w is up-down if w = uv with u increasing and v decreasing
» ex: w=1359643

— A sequence of values w is bitonic if w is a circular rotation of an up-down sequence
» ex: w=5964313

COMP 790-033 Lec 11

Bitonic sequence theorem

e Theorem

— Suppose w is a bitonic sequence of length 2n and we define sequences
r, s of length n as follows

f; = min(w;, W)
5; = max (W, Wy,)

then
(1) VI<i,j<n: [<Sj « partitions the sorting problem !
(2) r,s areboth bitonic sequences +— bitonic subproblems !
2n
* Proof
(by picture)

COMP 790-033 Lec 11

Bitonic merge

A bitonic sequence of length n = 2k can be sorted with a depth k sorting network
— apply bitonic sequence theorem recursively

s ! theorem withn = 8

... two applications of

A theorem withn =4

four applications of
theorem with n = 2

COMP 790-033 Lec 11

Bitonic Sort

Combine two length n bitonic merge sequences to form alength 2n bitonic sequence
— given two bitonic sequences s, r of length n let
w = (bitonic merge r) ++ (reverse (bitonic merge s))
— W is a bitonic sequence of length 2n

r S /W\
n n bitonic merge r reverse

(bitonic merge s)
e Bitonic sort of n = 2k values

— view input as n/2 bitonic sequences of length 2

— combine bitonic sequences k-1 times to create a length n bitonic sequence
— apply final bitonic merge to yield sorted sequence

. exin= 1 merge

/\/\/\/\ /\/\ /\ of size 8
4 parallel merges 2 parallel merges /
of size 2 of size 4

COMP 790-033 Lec 11

Hypercube communication pattern

e Letp=2kforsome k>0. Processors are numbered 0<h<p. Leth0be the
j" bit in the boolean representation of h, where 1 <j <k
—~ ex 0=8 k=3 h® h®
h =4 = 1 00

« For 0 <h <p, processor nb;(h) is the neighbor of processor h in dimension j.
The bits of nb;(h) are specified as follows, for 1 <r <k

() (r) if r+#7j 110 111
h@mnr:{ h J

1—p™ ifr=j / /
OlO—LOll
100 101
dim2[idim3 / ‘/
000

001

dim 1

COMP 790-033 Lec 11

Bitonic sort of A[O:p-1] using p processors

o Assumptions
— p = 2¥ and A[h] is stored in variable a on processor h
— CE(xy) = (min(x,y), max(x,y))

« SPMD program for processor h

for 1 := 1 to k do
for J = 1 downto 1 do
b = value of a at nb;(h)
a,b = CE(a,b)
if (h@ = hG*D) then a,b := b,a
end do
end do

2 supersteps

« BSPcost C(p)= Y Y(O@)+1-g+2-L)
i=1k j=Li

=(0®+1-g+2:L)Y X1 = (O@®)+1-g+2-L)
i1k joLi

=0(lg° p)(1+g+L)

K(k +1)

COMP 790-033 Lec 11

Extending bitonic sortto N >p

 Simulate larger parallel machine
— LetN =np where n=2%9and p=2kso N =2+
for i:= 1 to k+q do
for j := i1 downto 1 do
CE on dimension j

« BSP cost of CE on dimension |
— lower dimensions in memory, higher dimensions across processors

O(n), if j<
T, (=1 ~ 1=
O(n)+n-g+L, if j>q

K+q i

« BSP cost for algorithm C(N,p)=> > T;(N/p)
i—1 j=1
kK+q i
:((IgN)(1+IgN)j.O(E)+Z 5 ﬁ.g+2|_]
2 P/ i=q+1j=q+1\ P

=0(lg? N)-%+®(Igz p)-[%-g +2L

COMP 790-033 Lec 11

Improving work-efficiency

« What can be done?
— first g iterations of outer loop create sorted sequences in processor memaories
» replace with efficient localsort (O(n) radix sort is assumed here for simplicity)
— for each value i > g in outer loop, last q iterations of inner loop perform a

bitonic merge in processor memories
» replace with efficient O(n) sequential algorithm for bitonic merge (sbmerge)

 Updated program
localsort(n)
for i:= g+1 to k+q do
for j := 1 downto g+1 do
CE on dimension j
sbmerge(n)

. BSP cost C(N,p):@[ﬂng p)(1+lgP,(g(ﬁ}ﬁ.gul_}o(ﬁj)
. 2 p) P P

- 0(Ig? p)%w(lgz p)-(%g n Lj

COMP 790-033 Lec 11

Improving communication efficiency

« What can be done?
— combine communication for up to Ig p successive CE operations

 Updated program
localsort(n)
for i:= g+1 to k+q do
transpose(n)
(1-q) successive CE(n) on local data
transpose(n)
sbmerge(n)

« BSP cost

C(N,p)= @(Nj +(lg p)(Z[E- g+ Lj +(Q+Ilgp)- @)(Ej + ®(ED
p P P P

- 0(lg?) +©(lg p)-(ﬁ~g+Lj
P P

COMP 790-033 Lec 11

BSP predicted and measured times for bitonic sort

Predicted
80 1
70 HH““-«
SD 1 H"‘a—._________'__'___'___———_‘_ T
pSleEEn oot
T o S e - i -
& R
3 (L . — A -
30 ¢ SR e e e
20 ¢
10 1
4] . ;
=+ o w [b3 o
@ w o = b3 o
[42] [uw = - o
o (27 ul — o =
= ERTE e R

N/P

1048576

us/key

32768 |

Measured

65536
131072 +

262144 |

524288 +

1048576

Figure 1.4 Predicted and measured execution time per key of bitonic sort on the CM-5.
Times are shown to sort between 16K and 1M keys per processor on 32, 64, 128, 256 and 512

Processors,

COMP 790-033 Lec 11

T

BSP breakdown of time in optimized bitonic sort

Predicted Measured
80 T T 1
| [
B Remap B-C
= Remap C-B
z by
= = B Mergesort
4 o
=5 = =
L Swap .
[
M Locaisort
10 1
0 ‘ '
=+ 53] L&) 0o = 18] w0 - @ 0w [a"] =t o wr
@ o e F <+ @ =~] @© o ~ < @ [
o [uwi L= — o [Ty] o F= T3] [} - ol T3]
Li=] o w b I 0 b 3 @ [ia] o Ly = 0 o o
- o 90 o s} ol =+ — o] L] (4] s} (At} -+
™ 2] T3] (=} — (Y] [Ts] =]
N/P N/P

Figure 1.5 Predicted and measured execution times per key on 512 processors for the
phases of bitonic sort. The time for the single gather is included in the time for the remap
from a blocked to a cyclic layout; likewise, the time for the scatter is included in the time for
the remap from a cyclic to a blocked layout.

COMP 790-033 Lec 11 ﬁ

16

Probabilistic parallel sorting algorithms

e Definitions

— An unordered collection H with N disjoint values is partitioned by splitters
S =S5, <..<S,;Into p disjoint subsets H, ... H, such that

Hi={hlheHandS; ;<h<S;} (defineSy=—-o, and S, =+x)

— The skew W(S) of a partition S is the ratio of the maximum partition size to the
optimal partition size (N/p)

COMP 790-033 Lec 11

Determining good splitters through sampling

 Determining a set of splitters through sampling

— sample k-p elements at random from H
» k>1isthe oversampling ratio

— sort this sample into order b; <b, < ... <b, , and choose S; = by;

* Probabilistic bounds on W(S) of a sampled set of splitters S
— given some maximum skew W and a failure probability 0 <r<1

2In(p/r)

Pr(W(S)>W)<r when k>
W(s)>w) (1-1/W)W

(provided p>1, W >1.3)

— if we oversample sufficiently in choosing a set of splitters, the chance of a
large skew can be made arbitrarily small

COMP 790-033 Lec 11

Oversampling ratio k as a function of p

« Example

— for p = 100 processors, we need to sample k =4 In (p/r) = 74 values per
processor to bound the skew W(S) < 2 with failure probability r = 10

300 -
250 1
200 1
<15 r=10°
150 + Ve <1o =
100 .
0—/“—_‘W3—<—3, r= 106
-——r— n
¢ — .3
0t e e We<2,r=10
O I T T 1
4 16 64 256 1024 4096 16384

Number of Processors (P)

COMP 790-033 Lec 11

Parallel samplesort

 Algorithm
1. sample k values at random in each processor to limit skew W w.h.p.
O(k)
2. sort kp sampled keys, extract p-1 splitters, and broadcast to all processors
a) by sending all samples to one processor and performing a local sort
O(kp) + (k+2)p-g+2-L
a) by performing a bitonic sort with k values per processor
O(klg?p) +k(1+21gp)-g+ (1+lgp) - L
3. compute destination processor for each value by binary search in splitter set
O(N/p Ig p)
4. permute values
WN/p-g+L
5. perform local sort of values in each processor
O(Ts(WN/p))

p
+ O(klgp)lgp-g+L)

COMP 790-033 Lec 11 @ 20
iy

- BSPcost C¥WE(N,p,W)=0(W +Ig p)(%} + W[Ej-g + (lgp)-L

Samplesort: predicted and measured times

Predicted

30 5

25 _\

BOY al . oeodooEomo o
= P oo phe et = E
@ 2 N e
[oyt TRttt b
L]
=

10 1

5 -

i) —!

=5 o 0w (4] =5 =5 [1s]

m o L] = = w0 =

€0 = uwl (=] — o T3]

Lia) (47} uwi -~ o b o

— [a5] L] v } o (3] =
- o T3 [
MN/P

Figure 1.12

COMP 790-033 Lec 11

Estimated and measured execution time of parallel sample sort on the CM-5,

us/key

16384 +

Measured
S
e e e
e - e e
Feee e s
@ w o - o w
0 o r- L o [
[w o — n | L
ol uw — ol = o
™ w0 m w0 o -
= o Ty (=]
=
N/P

@

21

Samplesort: breakdown of execution time

B Dist
: — <~ Split-m
e o 7o) o < w o -
o @0 o [o+ ——— Digt-
SV E B 5 2= ok Bletn
o ol L ™ (o] =t a8 — —
: o w a5] w0 [t =
- od uy]
o
N/P

Figure 1.13 [Estimated and measured execution times of various phase of parallel sample
sort on 512 processors.

COMP 790-033 Lec 11

22

Parallel sorting: performance summary

e 32 bit values
— for small N/p (not shown), bitonic sort is superior

140.00 T

— ®— Bitonic 1024

—— Bitonic 32

— v Golumn:32

= & Hadie 1024

—=—— Radix 32 |
0.00 ; I : = —®—— Sample 1024
=i o w o = o o
5 &L B BECEoiEg AR o
S od ie = 5 - - Sample 32
— [as] (] np] w (a| =t
- o 7o) o

N/P

Figure 1.14 Estimated execution time of four parallel sorting algorithms under LogP with
the performance characteristics of the CM-5.

I I
COMP 790-033 Lec 11 @ 23

Samplesort issues

 Implementing the permutation
— What is the destination address of a given value? Two strategies:

» Send-to-queue operation
« don’t care, maintain queue at destination

» Compute unique destination for each value
» planning cost: O(p) + 2pg + 2L

— In what order should the values be sent?

» Global rearrangement defines a permutation, but piecewise implementation may
yield poor performance

— —
— —
— —
— R

COMP 790-033 Lec 11

Samplesort issues

« How to handle duplicate keys

— make each key unique
» (key, original index)
* increases comparison cost and network traffic

— random choice of possible destinations

» suppose p =5 and splitters are
10, 20, 20, 30
where should we send key 207

 What about restoring load balance?
— Worst-case communication cost?

COMP 790-033 Lec 11

Two-phase sample sort

* Objectives
— scramble input data to create a random permutation
— highly supersample input to minimize skew

«—— processors — «— processors —
k2 5 &
@]
2 » 0
» Randomly distribute keys into p buckets » Partition local keys into sorted
» Transpose buckets and processors sections according to splitters
« expected bucket size N/p? * expected bucket size N/p?
» Local sort » Transpose sorted sections and
processors

» Proc 1 selects and broadcasts splitters

« oversampling ratio k = N/p2 » Local p-way merge

COMP 790-033 Lec 11

Two-phase samplesort

1. Randomly distribute local keys into p
local buckets Distribution of Execution Time

By Step - 64 Node SP-2-\WN

2. Transpose buckets and processors 100%
3. Local sort Il B
80% - -
4. Processor 1 selects (p-1) splitters I .
5. Broadcast splitters EU%': B
6. Local partitioning of values into p 40% || .
sorted sections 1 —
: 20% —
7. Transpose sorted sections and a
processors oy, A
. 1M 4M 16M 64N
8. Local p-way merge of sorted sections Doubles [U]

1 Nz [W47 s |

C*"(N,p)=0(MIgN J+2(N) g +L
+O(p|g(%))+2p-g+3-L

COMP 790-033 Lec 11

	COMP 790-033 - Parallel Computing��Lecture 11 �Oct 26, 2022�� BSP (2) �Parallel Sorting in the BSP model
	Parallel sorting: problem definition
	Parallel sorting: general remarks
	Background: Sorting networks for parallel sorting
	Sorting networks
	Bitonic Sequence
	Bitonic sequence theorem
	Bitonic merge
	Bitonic Sort
	Hypercube communication pattern
	Bitonic sort of A[0:p-1] using p processors
	Extending bitonic sort to N > p
	Improving work-efficiency
	Improving communication efficiency
	BSP predicted and measured times for bitonic sort
	BSP breakdown of time in optimized bitonic sort
	Probabilistic parallel sorting algorithms
	Determining good splitters through sampling
	Oversampling ratio k as a function of p
	Parallel samplesort
	Samplesort: predicted and measured times
	Samplesort: breakdown of execution time
	Parallel sorting: performance summary
	Samplesort issues
	Samplesort issues
	Two-phase sample sort
	Two-phase samplesort

