
COMP 790-033 - Parallel Computing

Lecture 11
Oct 26, 2022

BSP (2)
Parallel Sorting in the BSP model

Topics
1. What work remains this semester:

• programming project and presentation

2. Sorting in the BSP model

COMP 790-033 Lec 11

2COMP 790-033 Lec 11

Parallel sorting: problem definition

• Given
– N values, each of size b bits
– a total order ≤ defined on the values

• Initial distribution
– each processor holds n = N / p values

• Result
proc0 proc1 proc2 ... procp-1

V1 Vk1+1 Vk2+1 Vkp-1+1
...
Vk1

Vk2
Vk3

Vkp

– Vi ≤ Vi+1 for all 1 ≤ i < N = kp
– generally ki = n•i, i.e. evenly distributed across processors

3COMP 790-033 Lec 11

Parallel sorting: general remarks
• Typically concerned with case of N >> p

– Small N problems don’t require parallel processing
– Use algorithm cascading with efficient sequential sort of n elements

» sequential radix sort of n values has WSORT(n) = Ω(bn)
» sequential comparison-based sort has WSORT(n) = Ω(n lg n) and may be more

appropriate when b is large
– Examine scalability in N and p using BSP model

» two parallel algorithms considered
• Bitonic sort, Sample sort

• What is the lower bound BSP cost for sorting?
– Work bound

» (1/p) * optimal sequential work WSORT(N)
– Communication bound

» each value may have to move between processors from input to output
– BSP lower bound

Lg
p
N

p

NW
pNCp +⋅+≥

)(
),(

SORT
SORT

4COMP 790-033 Lec 11

Background: Sorting networks for parallel sorting
• Basic component: the comparator module

• Comparator modules can be connected to form a sorting network
– all inputs are presented in parallel

» ex: sorting network for 4 values

a

b

min(a,b)

max(a,b)

a

b

c

d

a’

b’

c’

d’

a

b

c

d

a’

b’

c’

d’

sorting network schematic representation

5COMP 790-033 Lec 11

Sorting networks
• Sorting networks are oblivious

– predetermined sequence of comparisons sorts any input sequence
– the depth of a comparator is the maximum number of preceding comparators

on any path to an input

• A sorting network specifies a parallel sorting algorithm
– in step i, evaluate all comparators at depth i in parallel

» each step permutes inputs to outputs (EREW)
» at most n comparators evaluated in each step

• let d(n) be the depth of a network of size n, then S(n) = d(n), W(n) = O(n⋅d(n))

step 1 step 2 step 3
a

b

c

d

a’

b’

c’

d’

6COMP 790-033 Lec 11

Bitonic Sequence
• Definitions

– A sequence of values w is up-down if w = uv with u increasing and v decreasing
» ex: w = 1 3 5 9 6 4 3

– A sequence of values w is bitonic if w is a circular rotation of an up-down sequence
» ex: w = 5 9 6 4 3 1 3

u v

u1 v u0

7COMP 790-033 Lec 11

Bitonic sequence theorem
• Theorem

– Suppose w is a bitonic sequence of length 2n and we define sequences
r, s of length n as follows

then

• Proof
(by picture)

n n

2n

w

s

r

()
()inii

inii

wws
wwr

+

+

=
=

,max
,min

sequencesbitonic both are (2)
 (1)

sr

srnji ji

,

:,1 ≤≤≤∀ partitions the sorting problem !

bitonic subproblems !

8COMP 790-033 Lec 11

Bitonic merge
• A bitonic sequence of length n = 2k can be sorted with a depth k sorting network

– apply bitonic sequence theorem recursively

w0 w1 w2 w3 w4 w5 w6 w7

one application of
theorem with n = 8

two applications of
theorem with n = 4

four applications of
theorem with n = 2

9COMP 790-033 Lec 11

Bitonic Sort
• Combine two length n bitonic merge sequences to form a length 2n bitonic sequence

– given two bitonic sequences s, r of length n let
w = (bitonic merge r) ++ (reverse (bitonic merge s))

– w is a bitonic sequence of length 2n

• Bitonic sort of n = 2k values
– view input as n/2 bitonic sequences of length 2
– combine bitonic sequences k-1 times to create a length n bitonic sequence
– apply final bitonic merge to yield sorted sequence

• ex: n = 8

r s w

n n bitonic merge r reverse
(bitonic merge s)

4 parallel merges
of size 2

2 parallel merges
of size 4

1 merge
of size 8

10COMP 790-033 Lec 11

Hypercube communication pattern

• Let p = 2k for some k ≥ 0. Processors are numbered 0 ≤ h < p. Let h(j) be the
jth bit in the boolean representation of h, where 1 ≤ j ≤ k

– ex p = 8, k = 3
h = 4 = 1 0 0

• For 0 ≤ h < p, processor nbj(h) is the neighbor of processor h in dimension j.
The bits of nbj(h) are specified as follows, for 1 ≤ r ≤ k

h(3) h(1)

0 1 0 0 1 1

0 0 0 0 0 1

1 1 0 1 1 1

1 0 0 1 0 1

dim 1

dim 3dim 2

𝑛𝑛𝑏𝑏𝑗𝑗 ℎ
(r) = � ℎ(𝑟𝑟)

1 − ℎ 𝑟𝑟
if 𝑟𝑟 ≠ 𝑗𝑗
if 𝑟𝑟 = 𝑗𝑗

11COMP 790-033 Lec 11

Bitonic sort of A[0:p-1] using p processors
• Assumptions

– p = 2k and A[h] is stored in variable a on processor h
– CE(x,y) = (min(x,y), max(x,y))

• SPMD program for processor h

for i := 1 to k do
for j := i downto 1 do

b := value of a at nbj(h)
a,b := CE(a,b)
if (h(j) ≠ h(i+1)) then a,b := b,a

end do
end do

• BSP cost

2 supersteps

()

() ()

()LgpO

kkLgOLgO

LgOpC

ki ij

ki ij

++=

+
⋅+⋅+=⋅+⋅+=

⋅+⋅+=

∑ ∑

∑ ∑

= =

= =

1)(lg

2
)1(21)1(121)1(

21)1()(

2
,1 ,1

,1 ,1

12COMP 790-033 Lec 11

Extending bitonic sort to N > p
• Simulate larger parallel machine

– Let 𝑁𝑁 = 𝑛𝑛𝑛𝑛 where 𝑛𝑛 = 2𝑞𝑞 and 𝑝𝑝 = 2𝑘𝑘 so 𝑁𝑁 = 2 𝑘𝑘+𝑞𝑞

for i:= 1 to k+q do

for j := i downto 1 do

CE on dimension j

• BSP cost of CE on dimension j
– lower dimensions in memory, higher dimensions across processors

• BSP cost for algorithm





>+⋅+
≤

=
qjLgnnO
qjnO

nTj if
 if

,)(
),(

)(









+⋅⋅Θ+⋅Θ=









+⋅+








⋅





 +

=

=

∑ ∑

∑ ∑

+

+= +=

+

= =

Lg
p
Np

p
NN

Lg
p
N

p
NONN

pNTpNC

qk

qi

i

qj

qk

i

i

j
j

2)(lg)(lg

2
2

)lg1)((lg

)/(),(

22

1 1

1 1

13COMP 790-033 Lec 11

Improving work-efficiency
• What can be done?

– first q iterations of outer loop create sorted sequences in processor memories
» replace with efficient localsort (O(n) radix sort is assumed here for simplicity)

– for each value i > q in outer loop, last q iterations of inner loop perform a
bitonic merge in processor memories

» replace with efficient O(n) sequential algorithm for bitonic merge (sbmerge)

• Updated program
localsort(n)

for i:= q+1 to k+q do

for j := i downto q+1 do

CE on dimension j

sbmerge(n)

• BSP cost









+⋅⋅Θ+⋅Θ=

















+








+⋅+








⋅

+
+








Θ=

Lg
p
Np

p
Np

p
NOLg

p
N

p
NOpp

p
NpNC

)(lg)(lg

2
2
lg1)(lg),(

22

14COMP 790-033 Lec 11

Improving communication efficiency
• What can be done?

– combine communication for up to lg p successive CE operations

• Updated program
localsort(n)

for i:= q+1 to k+q do

transpose(n)

(i-q) successive CE(n) on local data

transpose(n)

sbmerge(n)

• BSP cost









+⋅⋅Θ+⋅Θ=

















Θ+








Θ⋅++








+⋅+








Θ=

Lg
p
Np

p
Np

p
N

p
NpLg

p
Np

p
NpNC

)(lg)(lg

)lg1(2)(lg),(

2

15COMP 790-033 Lec 11

BSP predicted and measured times for bitonic sort

16COMP 790-033 Lec 11

BSP breakdown of time in optimized bitonic sort

17COMP 790-033 Lec 11

Probabilistic parallel sorting algorithms
• Definitions

– An unordered collection H with N disjoint values is partitioned by splitters
S = S1 < ... < Sp-1 into p disjoint subsets H1 … Hp such that

– The skew W(S) of a partition S is the ratio of the maximum partition size to the
optimal partition size (N/p)

{ }) and , (define and | 01 +∞=−∞=<≤∈= − piii SSShSHhhH









=

≤≤ pN
H

SW i
pi /

max)(
1

18COMP 790-033 Lec 11

Determining good splitters through sampling
• Determining a set of splitters through sampling

– sample k⋅p elements at random from H
» k ≥ 1 is the oversampling ratio

– sort this sample into order b1 < b2 < … <bk⋅p and choose Si = bk⋅i

• Probabilistic bounds on W(S) of a sampled set of splitters S
– given some maximum skew W and a failure probability 0 < r < 1

– if we oversample sufficiently in choosing a set of splitters, the chance of a
large skew can be made arbitrarily small

()
()

)3.1,1 (provided
/11

)/ln(2 when)(Pr 2 >>
−

≥≤> Wp
WW

rpkrWSW

19COMP 790-033 Lec 11

Oversampling ratio k as a function of p

0

50

100

150

200

250

300

4 16 64 256 1024 4096 16384

W < 2, r = 10

W < 1.5, r = 10

W < 2, r = 10

W < 1.5, r = 10

Number of Processors (P)

 -6

-3

-3

-6

S

S

S

S

• Example

– for p = 100 processors, we need to sample k = 4 ln (p/r) = 74 values per
processor to bound the skew W(S) < 2 with failure probability r = 10-6

20COMP 790-033 Lec 11

Parallel samplesort
• Algorithm

1. sample k values at random in each processor to limit skew W w.h.p.
O(k)

2. sort kp sampled keys, extract p-1 splitters, and broadcast to all processors
a) by sending all samples to one processor and performing a local sort

O(kp) + (k+2)p ⋅ g + 2 ⋅ L
a) by performing a bitonic sort with k values per processor

O(k lg2 p) + k(1+2 lg p) ⋅ g + (1+lg p) ⋅ L
3. compute destination processor for each value by binary search in splitter set

O(N/p lg p)
4. permute values

WN/p ⋅ g + L
5. perform local sort of values in each processor

O(Ts(WN/p))

• BSP cost () ()

()()LgppkO

Lpg
p
NW

p
NpWWpNC

+⋅+

⋅+⋅







+








+Θ=

lglg

lglg),,(SAMPLE

21COMP 790-033 Lec 11

Samplesort: predicted and measured times

22COMP 790-033 Lec 11

Samplesort: breakdown of execution time

23COMP 790-033 Lec 11

Parallel sorting: performance summary
• 32 bit values

– for small N/p (not shown), bitonic sort is superior

24COMP 790-033 Lec 11

Samplesort issues
• Implementing the permutation

– What is the destination address of a given value? Two strategies:
» Send-to-queue operation

• don’t care, maintain queue at destination

» Compute unique destination for each value
• planning cost: O(p) + 2pg + 2L

– In what order should the values be sent?
» Global rearrangement defines a permutation, but piecewise implementation may

yield poor performance

25COMP 790-033 Lec 11

Samplesort issues
• How to handle duplicate keys

– make each key unique
» (key, original index)

• increases comparison cost and network traffic

– random choice of possible destinations
» suppose p = 5 and splitters are

10, 20, 20, 30
where should we send key 20?

• What about restoring load balance?
– Worst-case communication cost?

26COMP 790-033 Lec 11

Two-phase sample sort
• Objectives

– scramble input data to create a random permutation
– highly supersample input to minimize skew

processors

bu
ck

et
s

processors

so
rte

d
se

ct
io

ns
» Randomly distribute keys into p buckets
» Transpose buckets and processors

• expected bucket size N/p2

» Local sort
» Proc 1 selects and broadcasts splitters

• oversampling ratio k = N/p2

» Partition local keys into sorted
sections according to splitters

• expected bucket size N/p2

» Transpose sorted sections and
processors

» Local p-way merge

27COMP 790-033 Lec 11

Two-phase samplesort
1. Randomly distribute local keys into p

local buckets

2. Transpose buckets and processors

3. Local sort

4. Processor 1 selects (p-1) splitters

5. Broadcast splitters

6. Local partitioning of values into p
sorted sections

7. Transpose sorted sections and
processors

8. Local p-way merge of sorted sections

() ()
() LgppO

LgNOpNC

p
N

p
N

p
N

⋅+⋅++

+⋅+=

32)lg(

2lg),(2ph

	COMP 790-033 - Parallel Computing��Lecture 11 �Oct 26, 2022�� BSP (2) �Parallel Sorting in the BSP model
	Parallel sorting: problem definition
	Parallel sorting: general remarks
	Background: Sorting networks for parallel sorting
	Sorting networks
	Bitonic Sequence
	Bitonic sequence theorem
	Bitonic merge
	Bitonic Sort
	Hypercube communication pattern
	Bitonic sort of A[0:p-1] using p processors
	Extending bitonic sort to N > p
	Improving work-efficiency
	Improving communication efficiency
	BSP predicted and measured times for bitonic sort
	BSP breakdown of time in optimized bitonic sort
	Probabilistic parallel sorting algorithms
	Determining good splitters through sampling
	Oversampling ratio k as a function of p
	Parallel samplesort
	Samplesort: predicted and measured times
	Samplesort: breakdown of execution time
	Parallel sorting: performance summary
	Samplesort issues
	Samplesort issues
	Two-phase sample sort
	Two-phase samplesort

