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Interconnection Networks
and
MPI. Message Passing Interface

« Skim through
— Message Passing Interface
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Topics

 Short overview of basic issues in message passing

« MPI. A message-passing interface for distributed-memory parallel
programming

e Collective communication operations
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Topics

e Interconnection networks for parallel processors
— components
— characteristics
— network models

e Analysis of networks
— diameter
— bisection bandwidth
— degree

« MPI message-passing interface
— portable distributed-memory parallel programming
— collective communication operations
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Kinds of networks

e Wide-area networks (WAN)
— Internet

e Local-area networks (LAN)
— ethernet, wireless 802.11x

o System-level networks
— processor to processor
— (processor to memory)

These networks differ in scalability, assumptions, cost
— Primary focus in this course is system-level networks
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Components of a network

o clusters
— each processor has a dedicated network interface

e switches
— Kk inputs, m outputs, m > k
» simplest: k=m=2

e links e

_ characteristic bandwidth =~ ————— ==

(# parallel bits per link) « (signaling rate)
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Four characteristics of networks

Network topology

— physical interconnection structure of network
» analogy: Roadmap showing interstates

Routing algorithm

— rules that specify which routes a message may follow
» analogy: To go from Durham to DC, take 1-85N to I-95N to 1-495

Switching Strategy

— determines how a message traverses a route

» analogy: Presidential convoy reserves entire route in advance, while a group of
travelers in separate cars make individual switching decisions

Flow control

— determines when a message makes progress

» analogy: Traffic signals and rules: two cars cannot occupy the same location at the
same time

I —
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Network topology

« Connected undirected graph G = (N, C)
— N = set of nodes
— C = set of channels (bidirectional links)

* Indirect network (switching fabric)
— employs switching nodes without an attached processor or memory
— switching nodes do not generate traffic
— typical case in modern networks

* Direct network
— every node can be a producer and/or consumer of messages
— no pure switching nodes
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Indirect networks

e Processor to memory interconnect in shared-memory machines

« Connect p processors to p memory banks
— Example: bus

» O(p) switches
» simultaneous references always serialize

— Example: crossbar
» O(p?) switches
» simultaneous references in disjoint banks serviced in parallel

— Example: multistage network

» O(p Ig p) switches and links
* O(lg p) stages of ®(p) switches each

» simultaneous reference of disjoint memories may be serialized
* due to contention within the network
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Multistage Butterfly indirect network (p = 8)

Switches M

=8
o

stage 1 stage 2 stage 3
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Routing in butterfly networks

 based on destination address
— destination address d, ; ..... d,
— In stage I, switch setting is determined by d, ;
» switch to top or bottom

— e o (e m—l Ol——
~
~
~
] 1 ] ~—
Switch to top Switch to bottom

dis--- Ay == do
0 I 1




Multistage Omega network (p = 8)

e Isomorphic to butterfly network
— same “perfect shuffle” connection pattern between successive stages

P Switches M
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Network Topology: Graph-theoretic measures

Diameter: Maximum length of shortest path between any pair of nodes

max ( min _|u — V|J
u,veN\u—-veC

— I.e. distance between maximally separated nodes - related to latency

e Bisection width: Minimum number of edges crossing approximately equal
bipartition of nodes

— related to bandwidth with full applied load
— a scalable network has bisection width Q(p)

 Degree: number of edges (links) per node (switch)
— related to cost and switch complexity
— fixed degree is simpler and more scalable

o Cost: number of wires
— length of wires and wiring regularity is also an issue
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Linear array

* [C]=p-1
O . Diameter = p-1
C) » Degree<?2
C) « Bisection width =1
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Ring

* |ICl=p
 Diameter = p/2

C) « Degree =2

C)  Bisection width =2
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Binary Tree

* [Cl=p-1

« Diameter=21gp

e Degree<3

 Bisection width =1

COMP 790-033 - Prins MPI




d-dimensional mesh

O—O—O—=0
O—O—0O0—CO
O—O—0O0—CO
O—O0—0O——=0
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° p — kd
— Cartesian product of d linear arrays
with k = p¥dnodes each

|IC| < 2dp
— short wires when d < 3

Diameter = dpl/d

d < Degree <2d

Bisection width = p(-1/d)

VP xp
— 2-Dmesh, d= 2
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k-ary d-cubes

° p = kd
— Cartesian product of d rings with
k = pYdnodes each

e |C| =2dp = 2dk¢

(O

ON
40
oi¥e

Diameter = dptd/ 2

(1)

 Degree =2d

\S
()
\/
()
\/

e Bisection width =2 p(-1/d) = 2kd-1

—— O

QS
{
Q

— Ring: p-ary 1-cube
_ 2-D Torus: 4/ p—ary 2-—cube
— 3-D Torus: ¥P—ary 3-cube

— Hypercube: 2-ary (Ig p)-cube
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(Boolean) Hypercube
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ICl=plgp

Diameter =Ig p

Degree =1Ig p

Bisection width = O(p)




Butterfly (Indirect)
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* |[Cl=plgp

Diameter =Ilg p

Degree =2

“Bisection” width (congestion)

— There are some bad permutations
@(pl/Z)

— Overwhelming majority have
bisection of ®(p)




Fat-tree (Indirect)

* |ICl=plgp
Diameter =21g p

Degree = varying (2" i€0.lgp)
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Crossbar
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Complete graph on p nodes

IC| = p(p-1)/2

Diameter = 1

Degree = p-1

Bisection width = p?/4




Networks in current parallel computers

« Modern interconnects are indirect
— Hardware routing between source and destination

 Indirect networks

— Cluster of commodity nodes

» Fat-tree (assembled using 36 port non-blocking switches)
— IBM Summit (ORNL)

» Fat-tree Infiniband [4,608 nodes] (24,000 GPU, 202,752 cores)
— Fujitsu Fugaku

» 6D torus [160,000 nodes k-ary d-cube, ? k~7 d=6] (3M+ cores)

 Processor — memory interconnects (p procs, m memaories)
— Tera MTA
» 3D torus (p = 256, m = 4,096)
— NEC SX-9
» crossbar (p = 16 procs * 16 channels/proc = 256, m = 8,192)

I —
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Routing and flow control

 System-level networks

— Tradeoffs are very different than WAN (TCP)
» use flow control instead of dropping packets
» mostly static routing instead of dynamic routing

— Routing algorithm
» prescribes a unique path from source to destination

» e.g. dimension ordered routing on hypercube and lower dimensional d-cubes
» some networks dynamically “misroute” if a needed link is unavailable

» routing can be store-and-forward or cut-through

— Flow control
» contention for output links in a switch can block progress

» generally low-latency per-link flow control is used
» delay in access to a link rapidly propagates back to sender
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Communication cost model

« Message size m bits
« Number of hops (links) to travel h

 Channel width W and link cycle time t,

— Per-bit transfer time t,, = t./W
» assuming m is sufficiently large

e Startup time t,
— overhead to insert message into network

 Node latency or per-hop time t,,

— time taken by message header cross channel and be interpreted at
destination

I I
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Store-and-forward routing

« flow-control mechanism at message or packet level
 packet s are transferred one link at a time
« large buffers, high latency

e cost

=t + (t, +mt,)h
time

location
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Cut-through routing

e flow control is per-link and payload transmission is pipelined
» message spread out across multiple links in the network
« small buffers, low latency

e CoOst
ter = t, + ht, + mt,,

location

I
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Basic Interprocess Communication

« Basic building block

— message passing: send and receive operations between in different address

spaces

process P1

send m to P2

process P2
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receive X from P1

How will this really be performed?
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Synchronous Message Passing

« Communication upon synchronization
— Hoare’s Communicating Sequential Processes (1978)

« BLOCKING send and receive operations

— unbuffered communication
— several steps in protocol

» synchronization, data movement, completion

— delays participating processes

process P1
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Asynchronous Message Passing

» Buffered communication

— send/receive via OS-maintained buffers
» e.g. pipes or TCP connections
» may increase concurrency (e.g. producer/consumer)
» may increase transit time

— send operation
» send operation completes when message is completely copied to buffer
» generally non-blocking but will block if buffer is full

— receive operation — two flavors
» BLOCKING
* receive operation completes when message has been delivered

» NON-BLOCKING
* receive operation provides location for message
 notified when receive complete (via flag or interrupt)

I —————————————————————— —
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Asynchronous Message Passing

process Pl

(OS)
Buffering

send m to P2

(0S)
Buffering

process P2

—|' receive x from P1
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Deadlock in message passing

« Can concurrent execution of P1 and P2 lead to deadlock?
— assuming synchronous message passing?
— assuming asynchronous message passing?

process P1

send ml to P2

receive y from P2
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send m2 to P1

receive X from P1




Non-determinism in Message Passing

* |In what order should the receive operations be performed?

Two producers
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process P1

send ml to P3

process P2

send m2 to P3

MPI

One consumer

process P3

receive x from ?

receive y from ?

Here we want
receive x from any process
receive y from any process




Safe communication

« MPI has four pairwise message passing modes

— Synchronous
» unbuffered, but all send-receive pairs must synchronize

— Buffered (asynchronous)
» Programmer supplies (sufficient) buffer space

— Ready
» Receiver guaranteed to be ready to receive at the time of the send

— “Standard”
» OS Buffered for small messages, synchronous for large messages

 Most programs rely on a certain amount of buffering in communication
— SPMD programming models: send, then receive
— Nondeterminacy: receive from left, receive from right

 Most programs use standard model
— Dangerous, as buffer size is system-dependent

I —————————————————————— —
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Destination naming

How are messages addressed to their receiver?

— Static process to processor mapping
» Fixed set of processes at compile time
» mapper statically assigns processes to processors at run time.
» Ex: Communicating Sequential Processes (CSP)

— Semi-dynamic process to processor mapping (SPMD)
» Unknown set of processes at compile time
» Fixed set of processes at run time
» fixed mapping over execution lifetime
» Ex: MPl communicators

— Dynamic process to processor mapping
» Unknown set of processes at compile time
» Processes may be created or moved dynamically at run time
» Communication requires lookup
» MPI-2
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Data Representation

In general, prefer to send an abstract data type (ADT) rather than single
elements

— ADTs represent abstractions suited to application

— higher performance can be obtained for large messages
» e.g. aggregate data types

How are components of an ADT combined together?

— data marshalling
» packing components into a send buffer

How is a message represented as a sequence of bits?

— encoding must be suitable for source and destination
» XDR (eXternal Data Representation)

How is a message disassembled into an ADT?

— data unmarshalling
» extracting components from a receive buffer
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Message Selection

 Receiving process may need to receive message from multiple potential
senders

— How to specify/distinguish message to be received?
» sender selection (socket, MPI, CSP)
» message data type selection (MPI, CSP)
» condition selection (CSP)
» message “tag” (MPI)

— specification of message to be received can decrease nondeterminacy
» Non-deterministic reception order requires care with blocking sends/receives

I —————————————————————— —
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Message Passing Interface (MPI)

 Alibrary of communication operations for distributed-memory parallel programming
— history
» TCP/IP, ...., PVM (1990), MPI (1994), MPI-2 (1997), MPI-3 (2012), Open MPI v5 (2021)

— programming model
» SPMD - single program with library calls

— MPI functionality
» send/receive, synchronization, collective communication
» MPI specifies 129 procedures
» widely implemented and generally efficient
» MPI-2 adds one-sided communication, dynamic processes, parallel I/O and more
* One-sided communication: remote direct memory access — good for BSP.
» Over 15 years from full specification to correct and (generally) efficient implementations
» MPI-3
» Tweaks and shared memory segments between MPI processes

— portability
» MPI is the most portable parallel programming paradigm — it runs on
» shared and distributed memory machines
* homogeneous and heterogeneous systems
* variety of interconnection networks

» BUT functional portability = performance portability !
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MPI Example (C + MPI)

#include <mpi.h>
main(int argc, char **argv) {
int nproc, myid;

MPI Init (&argc, &argv);
MPI _Comm size (MPI_COMM WORLD, &nproc);
MPI Comm_ rank (MPI_COMM WORLD, &myid);

printf("'"Hello World! Here i1s process %d of %d.\n",
myid, nproc);

MP1 _Finalize ();

At UNC, the dogwood cluster implements MPI
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MPI return codes

#include <mpi.h>

#include <stdio.h>

#include <err.h>

main(int argc, char **argv) {
int nproc, myid, ierr;

ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm _size (MPI_COMM_WORLD, &nproc);
iIf (ierr '= MPI_SUCCESS) err(4, "Error %d in MPI_Comm_size\n",

ierr = MPI_Comm_rank (MP1_COMM_WORLD, &myid);
iIf (ierr '= MPI_SUCCESS) err(4, "Error %d in MPI_Comm_rank\n",

ierr = MPI_Finalize();
iIf (ierr = MPI_SUCCESS) err(4, "Error %d in mpi_finalize\n",

iIf (ierr = MPI_SUCCESS) err(4, "Error %d in MPI_Init\n", ierr);

1err);

1err);

printf(""Hello World! Here i1s process %d of %d.\n', myid, nproc);

1err);
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Point-to-point communication

« Specification of message to receive

» communicator — identifies logical set of processors
e intracommunicator vs. intercommunicator

» sending process rank (= proc id)
» tag

— details of received message via status parameter
» wildcard specifications may result in non-deterministic programs

 Type Specification
— must provide types of transmitted values

» predefined types & user-defined types
» implicit conversions in heterogeneous* systems

* Protocol specification

— send

» blocking / non-blocking / repeated / ...
» standard / buffered / synchronous / “ready”
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Simple message exchange

* no deadlock

e two sequential transfers

#define MYTAG 123
#define WORLD MEA_COMM AMORLD

Process 0O:

MPI1_Send(A, 100, MPI1_DOUBLE,
MP1_Recv(B, 100, MPI1_DOUBLE,

Process 1:

MP1_Recv(B, 100, MPI1_DOUBLE,
MPI1_Send(A, 100, MPI1_DOUBLE,
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Addr of data to send

e

Number of elements

Element type

Destination rank

MYTAG, WORLD);
MYTAG, WORLD);

MYTAG, WORLD);
MYTAG, WORLD);




Non-blocking message exchange

 no deadlock

« possibility of concurrent transfer

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

MPI_ Request request;
MPI_ Status status;

Process 0O:

MPI Irecv(B, 100, MPI _DOUBLE, 1, MYTAG, WORLD, &request);
MP1_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD);
MP1 Walt(&request &status);

Process 1:

MPI Irecv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD, &request);
MP1_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD);
MP1 Walt(&request &status);
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Overlapping communication and computation

Process 0 and 1:

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

MPI1_Request requests[2];
MPI_Status statuses[2];

// p i1s process 1d of the partner iIn a pairwise exchange

MPI1_Irecv(B, 100, MPI_DOUBLE, p, O, WORLD, &request[1]):
MP1_Isend(A, 100, MP1_DOUBLE, p, O, WORLD, &request[0]):

.... do some useful work here ....

MP1_Waitall(2, requests, statuses);

* no deadlock
e concurrent transfer

e communication and computation may be overlapped on some machines
— requires hardware communication support
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Communicators

« MPI_COMM_WORLD is a communicator
— group of processes numbered O ... p-1
— set of logical communication channels between them

« Message sent with one communicator cannot be received in another
communicator

— all communication is intra-communicator
— enables development of safe libraries
— restricting communication to subgroups is useful

« Creating new communicators
— duplication
— splitting

e |ntercommunicators
— orchestrate communication between two different communicators
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Collective Communication

e Operations involve all processes in an (intra)communicator

— encapsulate important communication patterns (cf. BSP)
» broadcast
» total exchange (transpose)
» reduction + scan
» barrier

— operations do not necessarily imply a barrier synchronization

» however, all processes must issue the same collective communication operations
in the same order

 Type specification
— predefined or user-defined types
— predefined or user-defined associative operation for reduction & scan

» Distinguished process
— for broadcast or reduction operations

I —————————————————————— —
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Collective communication operations

o classified by
— source of values

» one/all processor(s) source target
— target of result Ex: l /

» one/all processors(s) one-to-all broadcast (1)
— operation

» broadcast / I

operation size of value

» exchange
» accumulate (reduce)

— size of values
» lorn

e duality of communication operations
— communication patterns are related
— broadcast & reduction are duals
— exchange is its own dual

I —
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Broadcast: single source, single value

Processors —»

Processors —»

=0 Aof [Ao] Aol [Ao
MPI_Bcast(.1.) ™" Memory

one-to-all broadcast (1) A,

Processors —»

Processors —»

45 Aof 1Bo] |So] [BPo
MP1_Reduce(..1.) "7 Memory

all-to-one sum (1) R,

COMP 790-033 - Prins MPI




Broadcast: single source, multiple values

— Processors —» —— Processors —»
one-to-all broadcast (n) al Ao] Aof [Ao] [Ao
Memory Al Memory Al Al Al Al

MP1_Bcast(..n..)
A, Axl [A2] |A2] A2
v AS v A3 AS A3 A3
—— Processors —» —— Processors —»
R A B C D
all-to-one sum (n) : ® ol L—ol L=o] L0
Memory Rl Memory Al Bl Cl Dl

MPI1 Reduce(..n..
v R3 v A3 83 C3 D3

R=A®B ®C ®D
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Broadcast: multiple source, single value

—— Processors —» —— Processors —»

all-to-all broadcast (1) ~ [e.] 2] [0 mimi i
B B B B

MP I_AI Igather(n) Memory Memory |20 0 0 0

—— Processors —» —— Processors —>
all-to-all sum (1) Ro| |R1] [Rz] |Rs o> Aol 1Bof [Sof [Do
Memory Memory Al Bl Cl I:)1

MP1_Reduce scatter(.n..)

v v

R=A®B ®C ®D
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Exchange: single source or single target

 One-to-all exchange (n)
MP1_Scatter( .. )

e All-to-one exchange (1)
MP1_Gather( .. )

Processors —

Processors —

Ao scatter Pof [A] [22] |As
E>
Memory Ay Memory
AZ l
gather
v A3 v
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Exchange: multiple source, multiple values

« all-to-all exchange (n)
MP1_Alltoall(.)

— BSP “total exchange” or transpose

Processors — Processors —

E>
Memory Al Bl Cl Dl alltoall Memory BO Bl BZ BS
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Reductions: multiple source, multiple values

—— Processors —»

—— Processors —»

Ro
o] 1Bof [Sof [Do R=A®B ®C &D,
Memory R1
Memory Al Bl Cl Dl
R,
Az] |B2] |C2] |D2 ®|
v R3
v Azl |Bs] |Cs] |Ds
® all-to-one sum (n)
@M \ MP1_Reduce(..n..)
—— Processors —» —— Processors —>
Rol |R:] |R2] IR; Rol IR0l IR0l IRo
Memory Memory R1 Rl Rl Rl

all-to-all sum (1)
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MPI. All-pairs N-body problem

 Problem
- n bodies
» each body position occupies d words
— for each body i

» accumulate total force f,
» each pairwise interaction requires ¢c; FLOPS

» update velocities and positions
e each body update requires c, FLOPS

— half-pairs optimization: f,; = —f,

 MPI solution strategies
— ring communication pattern
» all-pairs
» half-pairs
— collective communication
» all-pairs
» half-pairs
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Running your projects

e Shared memory

— use phaedra.cs.unc.edu
» p = 20 primary cores, 20 secondary cores

e Distributed memory
— use dogwood.unc.edu (requires a cluster account)

e GPUs
— use departmental GPUs
— use SNP nodes on longleaf.unc.edu
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