694

Chapter 8 Multiprocessors

8-5 ‘ Synchronization

Synchronization mechanisms are typically built with user-level software routines
that rely on hardware-supplied synchronization instructions. For. smaller. ma-~
chines or low-contention situations, the key hardware capability is an uninter-
ruptible instruction or instruction sequence capable of atomically retrieving and
changing a value. Software synchronization mechanisms are then c;onstructed us-
ing this capability. For example, we will see how very efficient spin locks can be
built using a simple hardware synchronization instruction and the cohere.nce
mechanism. In larger-scale machines or high-contention situations, synchromze.l-
tion can become a performance bottleneck, because contention introduc§s addi-
tional delays and because latency is potentially greater in such a machine. We
will see how contention can arise in implementing some common user-level
synchronization operations and examine more powerful hardware-supported syn-
chronization primitives that can reduce contention as well as latency.

We begin by examining the basic hardware primitives, then construct several
well-known synchronization routines with the primitives, and then turn to perfor-
mance problems in larger machines and solutions for those problems.

Basic Hardware Primitives

The key ability we require to implement synchronization in a multiprqcessor isa
set of hardware primitives with the ability to atomically read a\:ld modify amem-
ory location. Without such a capability, the cost of building basic synch{omzatxon
primitives will be too high and will increase as the processor count increases.
There are a number of alternative formulations of the basic hardware primitives,
all of which provide the ability to atomically read and modify a locat'ion, together
with some way to tell if the read and write were performed atorrflcally.'”[‘hese
hardware primitives are the basic building blocks that are u§ed to build a wide va-
riety of user-level synchronization operations, including things such as locks and
barriers. In general, architects do not expect users 1o employ the basic hardware
primitives, but instead expect that the primitives will be used by system program-
mers to build a synchronization library, a process that is often complex and trlclfy. :
Let's start with one such hardware primitive and show how it can be used to build
some basic synchronization operations.))]
One typical operation for building synchronization operat{ons is the atomic
exchange, which interchanges a value in a register for a value in memory. To see
how to use this to build a basic synchronization operation, assume that we want
to build a simple lock where the value 0 is used to indicate that the. lock is free
and a 1 is used to indicate that the lock is unavailable. A processor tries to set the
lock by doing an exchange of 1, which is in a register, with the memory ad.dres.s
corresponding to the lock. The value returned from the exchange instruction is 1 if

8.5 Synchronization 695

some other processor had already claimed access and 0 otherwise, In the latter
case, the value is also changed to be 1, preventing any competing exchange from
also retrieving a 0.

For example, consider two processors that each try to do the exchange simul-
taneously: This race is broken since exactly one of the processors will perform
the exchange first, returning 0, and the second processor will return 1 when it
does the exchange. The key to using the exchange (or swap) primitive to imple-
ment synchronization is that the operation is atomic: the exchange is indivisible
and two simultaneous exchanges will be ordered by the write serialization mech-
anisms. It is impossible for two processors trying to set the synchronization vari-
able in this manner to both think they have simultaneously set the variable.

There are a number of other atomic primitives that can be used to implement
synchronization. They all have the key property that they read and update a mem-
ory value in such a manner that we can tell whether or not the two operations exe-
cuted atomically. One operation present in many older machines is fest-and-set,
which tests a value and sets it if the value passes the test. For example, we could
define an operation that tested for 0 and set the value to 1, which can be used in a
fashion similar to how we used atomic exchange. Another atomic synchroniza-
tion primitive is fetch-and-increment: it returns the value of a memory location
and atomically increments it. By using the value 0 to indicate that the synchroni-
zation variable is unclaimed, we can use fetch-and-increment, just as we used ex-
change. There are other uses of operations like fetch-and-increment, which we
will see shortly.

A slightly different approach to providing this atomic read-and-update opera-
tion has been used in some recent machines. Implementing a single atomic mem-
ory operation introduces some challenges, since it requires both a memory read
and a write in a single, uninterruptible instruction. This complicates the imple-
mentation of coherence, since the hardware cannot allow any other operations be-
tween the read and the write, and yet must not deadlock.

An alternative is to have a pair of instructions where the second instruction re-
turns a value from which it can be deduced whether the pair of instructions was
executed as if the instructions were atomic. The pair of instructions appears
atomic if it appears as if all other operations executed by any processor appear
before or after the pair. Thus when an instruction pair appears atomic, no other
processor can change the value between the instruction pair.

The pair of instructions includes a special load called a load linked or load
locked and a special store called a store conditional. These instructions are used
in sequence: If the contents of the memory location specified by the load linked
are changed before the store conditional to the same address occurs, then the
store conditional fails. If the processor does a context switch between the two in-
structions, then the store conditional also fails. The store conditional is defined to
return a value indicating whether or not the store was successful. Since the load
linked returns the initial value and the store conditional returns 1 if it succeeds

696

Chapter 8 Multiprocessors

and 0 otherwise, the following sequence implements an atomic exchange on the
memory location specified by the contents of R1:

try: mov R3,R4 ;mov exchange value
11 R2,0(R1) ;load linked
sc R3,0(R1) ;store conditional
beqgz R3,try ;branch store fails
nov R4,R2 ;put load value in R4

At the end of this sequence the contents of R4 and the memory location specified
by R1 have been atomically exchanged. Any time a processor intervenes and
modifies the value in memory between the 11 and sc instructions, the sc returng
0in R3, causing the code sequence to try again.

An advantage of the load linked/store conditional mechanism is that it can be
used to build other synchronization primitives. For example, here is an atomic
fetch-and-increment:

try: 11 R2,0(R1) iload linked
addi R2,R2,#1 ;increment
sc R2,0(R1) ;store conditional
begz R2,try ;branch store fails

These instructions are typically implemented by keeping track of the address
specified in the 11 instruction in a register, often called the link register. If an in-,
terrupt occurs, or if the cache block matching thie address in the link register is in-
validated (for example, by another sc), the link register is cleared. The sc
instruction simply checks that its address matches that in the link register; if so,
the sc succeeds; otherwise, it fails. Since the store conditional will fail after ei-
ther another attempted store to the load linked address or any exception, care
must be taken in choosing what instructions are inserted between the two instruc-
tions. In particular, only register-register instructions can safely be permitted;
otherwise, it is possible to create deadlock situations where the processor can
never complete the sc. In addition, the number of instructions between the load
linked and the store conditional should be small to minimize the probability that
either an unrelated event or a competing processor causes the store conditional to
fail frequently.

impliementing Locks Using Coherence

Once we have an atomic operation, we can use the coherence mechanisms of a
multiprocessor to implement spin locks: locks that a processor continnously tries
to acquire, spinning around a loop. Spin locks are used when we expect the lock
to be held for a very short amount of time and when we want the process of lock-
ing to be low latency when the lock is available. Because spin locks tie up the

8.5 Synchronization 697

processor, waiting in a loop for the lock to become free, they are inappropriate in
some circumstances. '

The simplest implementation, which we would use if there were no cache co-
herence, would keep the lock variables in memory. A processor could continually
try to acquire the lock using an atomic operation, say exchange, and test whether
the exchange returned the lock as free. To release the lock, the processor simply
stores the vatue 0 to the lock. Here is the code sequence to lock a spin lock whose
address is in R1 using an atomic exchange:

1i R2, #1
lockit: exch R2,0(R1) ;jatomic exchange
bnez R2,lockit ;already locked?

If our machine supports cache coherence, we can cache the locks using the co-
herence mechanism to maintain the lock value coherently. This has two advan-
tages. First, it allows an implementation where the process of “spinning” (trying
to test and acquire the lock in a tight loop) could be done on a local cached copy
rather than requiring a global memory access on each attempt to acquire the lock.
The second advantage comes from the observation that there is often locality in
lock accesses: that is, the processor that used the lock last will use it again in the
near future. In such cases, the lock value may reside in the cache of that proces-
sor, greatly reducing the time to acquire the lock.

To obtain the first advantage—being able to spin on a local cached copy rather
than generating a memory request for each attempt to acquire the lock—requires
a change in our simple spin procedure. Each attempt to exchange in the loop di-
rectly above requires a write operation. If multiple processors are attempting to
get the lock, each will generate the write. Most of these writes will lead to write
misses, since each processor is trying to obtain the lock variable in an exclusive
state.

Thus we should modify our spin-lock procedure so that it spins by doing reads
on a local copy of the lock until it successfully sees that the lock is available.
Then it attempts to acquire the lock by doing a swap operation. A processor first
reads the lock variable to test its state, A processor keeps reading and testing until
the value of the read indicates that the lock is unlocked. The processor then races
against all other processes that were similarly “spin waiting” to see who can lock
the variable first. All processes use a swap instruction that reads the old value and
stores a 1 into the lock variable. The single winner will see the 0, and the losers
will see a 1 that was placed there by the winner. (The losers will continue to set
the variable to the locked value, but that doesn’t matter.) The winning processor
executes the code after the lock and, when finished, stores a 0 into the lock vari-
able to release the lock, which starts the race all over again. Here is the code to
perform this spin lock (remember that 0 is unlocked and 1 is locked):

8.5 Synchronization 699

698 Chapter 8 Multiprocessors
lockit: 1w R2,0(RL) ;load of lock
bnez R2,lockit ;not available-spin
1i R2, #1 ;load locked value
exch R2,0(R1) ; swap
bnez R2, lockit ;branch if lock wasn’t 0
Let's examine how this “spin-lock” scheme uses the cache-coherence mecha-
nisms. Figure 8.32 shows the processor and bus or directory operations for multi-
ple processes irying to lock a variable using an atomic swap. Once the processor
with the lock stores a 0 into the lock, all other caches are invalidated and must
fetch the new value to update their copy of the lock. One such cache gets the.00py
of the unlocked value (0) first and performs the swap. When the cache miss of
other processors is satisfied, they find that the variable is already locked, so they
must return to testing and spinning.
Coherence .
Step Processor PO Processor P1 Processor P2 state of lock Bus/directory activity
1 Has lock Spins, testing if Spins, testing if Shared None
lock=0 lock=0
2 Set lock to 0 (Invalidate (Invalidate Exclusive ' Wr%te invalidate of lock
received) received) variable from PO
3 Cache miss Cache miss Shared Bus/directory services P2
cache miss; write back from
PO
4 (Waits while bus/ Lock=0 Shared Cache miss for P2 satisfied
directory busy) _
5 Lock=0 Executes swap, Shared Cache miss for P1 satisfied
gets cache miss
6 Executes swap, Completes swap: Exclusive Bus/directory services P2
gets cache miss returns 0 and sets cache miss; generates
Lock =1 invalidate
7 Swap completes Enter critical Shared Bus/directory services Pg
and returns 1 section cache miss; generates write
back
8 Spins, testing if None
lock=0

FIGURE 8.32 Cache-coherence steps and bus traffic for three processors, P0, P1, and P2. This figure assumes wn_tet;
invalidate coherence. PO starts with the lock (step 1). PO exits and unlocks the lock (step 2}' P1 and P2 race to see whlc’
reads the untocked value during the swap (steps 3-5). P2 wins and enters the critical 'sectlon (steps 6 and 7), vyhlle P1 i
attempt fails so it starts spin waiting (steps 7 and 8). In a reat system, these events will take many more than eight cloc
ticks, since acquiring the bus and replying to misses takes much longer.

EXAMPLE

ANSWER

This example shows another advantage of the load-linked/store-conditional
primitives: the read and write operation are explicitly separated. The load linked
need not cause any bus traffic. This allows the following simple code sequence,
which has the same characteristics as the optimized version using exchange (R1
has the address of the lock):

locki{:: 11

R2,0(R1) ;load linked
bnez R2,lockit ;not available~spin
1i R2,#1 ; locked value
sc R2,0(R1) ;store

begz R2,lockit ibranch if store fails
The first branch forms the spinning loop; the second branch resolves races when
two processors see the lock available simultaneously.

Although our spin lock scheme is simple and compelling, it has difficulty scal-
ing up to handle many processors because of the communication traffic generated
when the lock is released. The next section discusses these problems in more de-
tail, as well as techniques to overcome these problems in larger machines.

Synchronization Performance Chalienges

To understand why the simple spin-lock scheme of the previous section does not
scale well, imagine a large machine with all processors contending for the same
lock. The directory or bus acts as a point of serialization for all the Processors,
leading to lots of contention, as well as traffic. The following Example shows
how bad things can be.

Suppose there are 20 processors on a bus that each try to lock a variable
simultaneously. Assume that each bus transaction (read miss or write
miss) is 50 clock cycles long. You can ignore the time of the actual read
or write of a lock held in the cache, as weli as the time the lock is held
(they won't matter mucht). Determine the number of bus transactions re-
quired for all 20 processors to acquire the lock, assuming they are all spin-
ning when the lock is released at time 0. About how long will it take to
process the 20 requests? Assume that the bus is totally fair so that every
pending request is serviced before a new request and that the processors

are equally fast.

Figure 8.33 shows the sequence of events from the time of the release to
the time to the next release. Of course, the number of processors con-

tending for the lock drops by one each time the lock is acquired, which re-
duces the average cost to 1525 cycles. Thus for 20 lock-unlock pairs it will

Chapter 8 Multiprocessors

take over 30,000 cycles for the processors to pass through the I‘ock. Fur-
thermore, the average processor will spend half this time idle, simply try-
ing to get the lock. The number of bus transactions involved is over 400!

8.5 Synchronization 701

Event Duration
Read miss by all waiting processors to fetch lock (20 x 50) 1000
‘Write miss by releasing processor and invalidates 50
Read miss by all waiting processors (20 x 50) 1000

Write miss by all waiting processors, one successful lock (50),and 1000
invatidation of all lock copies (19 X 50)

Total time for one processor to acquire and release lack 3050 clocks

FIGURE 8.33 The time to acquire and release a single lock when 20 proces-
sors contend for the lock, assuming each bus transaction takgs 50 clock cy-
cles. Because of fair bus arbitration, the releasing processor must wait for alf other 19
processors to try to get the lock in vain!

The difficulty in this Example arises from contention for the lock and serial-

ization of lock access, as well as the latency of the bus access. The fairness prop-

erty of the bus actually makes things worse, since it delays the. processor that
claims the lock from releasing it; unfortunately, for any bus arbitration sche_me
some worsi-case scenario does exist. The root of the problem is the cqntentlon
and the fact that the lock access is serialized. The key advantages of spin locks,
namely that they have low overhead in terms of bus or network cycles and offg
good performance when locks are reused by the same processor, are both lost in

this example. We will consider alternative implementations in the next section,

but before we do that, let’s consider the use of spin locks to implement another
common high-level synchronization primitive.

Barrier Synchronization

One additional common synchronization operation in programs with parallel .

loops is a barrier. A bartier forces all processes to wait un‘Fil a1‘1 the processes
reach the barrier and then releases all of the processes. A typical implementation
of a barrier can be done with two spin locks: one used to protect a counter that
tallies the processes arriving at the barrier and one used to hf)ld the processes un-
til the last process arrives at the barrier. To implement a barrier we usually use 'the
ability to spin on a variable until it satisfies a test.; we use the n_otatlon
spin(condition) to indicate this. Figure 8.34 is a typical 1mp.1ementat10n, as%
suming that lock and unlock provide basic spin locks and total is the number o

processes that must reach the barrier.

lock (counterlock);/* ensure update atomic */
if (count==0) release=0;/*first=>reset release */
count = count +1;/* count arrivals */
unlock(counterlock);/* release lock */
if (count==total) { /* all arrived */

count=0; /* reset counter ¥/

release=1; /* release processes */
}

else { /* more to come */

spin (release=1);/* wait for arrivals */

}

FIGURE 8.34 Code for a simple barrier. The lock counterlock protects the counter
so that it can be atomically incremented. The variable count keeps the tally of how many
processes have reached the barrier. The variable release is used fo hold the processes
until the last one reaches the barrier.The operation spin (release=1) causesa process
to wait until all processes reach the barrier.

In practice, another complication makes barrier implementation slightly more
complex. Frequently a barrier is used within a loop, so that processes released
from the barrier would do some work and then reach the barrier again. Assume
that one of the processes never actually leaves the barrier (it stays at the spin op-
eration), which could happen if the OS scheduled another process, for example.
Now it is possible that one process races ahead and gets to the barrier again be-
fore the last process has left. The fast process traps that last slow process in the
barrier by resetting the flag release. Now all the processes will wait infinitely at
the next instance of this barrier, because one process is trapped at the last in-
stance, and the number of processes can never reach the value of total. The im-
portant observation is that the programmer did nothing wrong. Instead, the
implementer of the barrier made some assumptions about forward progress that
cannot be assumed. One obvious solution to this is to count the processes as they
exit the barrier (just as we did on entry) and not to allow any process to reenter
and reinitialize the barrier until all processes have left the prior instance of this
barrier. This would significantly increase the latency of the barrier and the con-
tention, which as we will see shortly are already large. An alternative solution is a
sense-reversing barrier, which makes use of a private per-process variable,
local_sense, which is initialized to 1 for each process. Figure 8.35 shows the
code for the sense-reversing barrier. This version of a barrier is safely usable;
however, as the next Example shows, its performance can still be quite poor.

702

Chapter 8 Multiprocessors

EXAMPLE

ANSWER

local _sense = ! local_sense; /*toggle local_sense*/
lock {counterlock);/* ensure update atomic */
count++; /* count arrivals */
unlock {counterlock);/* unlock */
if (count==total) { /* all arrived */
count=0;/* reset counter */
release=local_sense;/* release processes */
}
else { /* more to come */ . . X
spin (release:local_sense);/*walt for signal*/
}

FIGURE 8.35 Code for a sense-reversing barrier. The key to m:_ki:g thtte blant":a; ;i‘iltsferlg:

i ¢ i the flag release, which controls

is the use of an alternating pattern of values for S i i h !
i instance of this bartier while some other pro

the barrier. If a process races ahead to the nextins ¢ ¢

cesses are still in the barrier, the fast process cannot trap the other processes, since it does

not reset the value of release as it did in Figure 8.34.

Suppose there are 20 processors on a bus that eac.h try to execute a bar-
rier simultaneously. Assume that each bus transaction is ?0 clock cycles,
as before. You can ignore the time of the actual read or Yvntzle of alock .held
in the cache as the time to execute other nonsynchronization operat!ons
in the barrier implementation. Determine the number of bus transactions
required for all 20 processors to reach the barrier', be releasgd from the
barrier, and exit the barrier. Assume that the bus is totally fair, so that
every pending request is serviced before a new rgquest and that the prctJ—
cessors are equally fast. Don’t worry about counting the processors ou
of the barrier. How long will the entire process take?

The following tabie shows the sequence of events for one processor to
traverse the barrier, assuming that the first process to grab the bus does

not have the lock.

8.5 Synchronization 703

Event

Durationin clocks Duration in clocks

for one processor for 20 processors

Time for each processor to grab lock, increment, release lock

1525 30,500

50 50

Time to execute release

Time for each processor to get the release flag

50 1000

Total

1625 31,550

Qur barrier operation takes a little longer than the 20-processor lock-
unlock sequence we considered earlier. The total number of bus trans-
actions is about 440. B

As we can see from these Examples, synchronization performance can be a
real bottleneck when there is substantial contention among multiple processes.
When there is little contention and synchronization operations are infrequent, we
are primarily concerned about the latency of a synchronization primitive—that is,
how long it takes an individual process to complete a synchronization operation.
Our basic spin-tock operation can do this in two bus cycles: one to initially read
the lock and one to write it. We could improve this to a single bus cycle by a vari-
ety of methods. For example, we could simply spin on the swap operation. If the
lock were almost always free, this could be better, but if the lock were not free, it
would lead to lots of bus traffic, since each attempt to lock the variable would
lead to a bus cycle. In practice, the latency of our spin lock is not quite as bad as
we have seen in this Example, since the write miss for a data item present in the
cache is treated as an upgrade and will be cheaper than a true read miss.

The more serious problem in these Examples is the serialization of each pro-
cess’ attempt to complete the synchronization. This serialization is a problem
when there is contention, because it greatly increases the time to complete the
synchronization operation. For example, if the time to complete all 20 lock and
unlock operations depended only on the latency in the uncontended case, then it
would take 2000 rather than 40,000 cycles to complete the synchronization oper-
ations. The use of a bus interconnect exacerbates this problem, but serialization
could be just as serious in a directory-based machine, where the latency would be
large. The next section presents some solutions that are useful when either the
contention is high or the processor count is large.

Synchronization Mechanisms for Larger-Scale Machines

What we would like are synchronization mechanisms that have low latency in
uncontended cases and that minimize serialization in the case where contention is
significant. We begin by showing how software implementations can improve the
performance of locks and barriers when contention is high; we then explore two
basic hardware primitives that reduce serialization while keeping latency low.

Software implementations

The major difficulty with our spin-lock implementation is the delay due to con-
tention when many processes are spinning on the lock. One solution is to artifi-
cially delay processes when they fail to acquire the lock. This is done by delaying
attempts to reacquire the lock whenever the store-conditional operation fails. The
best performance is obtained by increasing the delay exponentially whenever the

704,

Chapter 8 Multiprocessors

attempt to acquire the lock fails. Figure 8.36 shows how a spin lock with expo-
nential back-off is implemented. Exponential back-off is a common technique for
reducing contention in shared resources, including access to shared networks and
buses (see section 7.7). This implementation still attempts to preserve low latency
when contention is small by not delaying the initial spin loop. The result is that'i

many processes are waiting, the back-off does not affect the processes on their -
first attempt to acquire the lock. We could also delay that process, but the result
would be poorer performance when the lock was in use by only two processes.
and the first one happened to find it locked.

1i R3,1 sR3 = initial delay
lockit: 11 R2,0(R1) ;load linked
bnez R2,lockit ;not available-spin
addi R2,R2,1 ;get locked value
sc R2,0(R1) ;store conditional
bnez R2,gotit ;branch if store succeeds
sll R3,R3,1 sincrease delay by 2
pause R3 ;delays by value in R3
3 lockit
goit: use data protected by lock

FIGURE 8.36 A spin lock with exponential back-oft. When the store conditional fails, the
process delays itself by the value in R3. The detay can be implemented by decrementing R3
until it reaches 0. The exact timing of the delay is machine dependent, aithough it should start
with a value that is approximately the time to perform the critical section and release the lock:
The statement pause R3 should cause a delay of R3 of these time units. The value in R3
is increased by a factor of 2 every time the store conditional fails, which causes the process.
to wait twice as long before trying to acquire the lock again.

Another technique for implementing locks is to use queuing locks. We show
how this works in the next section using a hardware implementation, but software
implementations using arrays can achieve most of the same benefits (see Exercise
8.24). Before we look at hardware primitives, let’s look at a better mechanism for
barriers.

Our barrier implementation suffers from contention both during the gather
stage, when we must atomically update the count, and at the release stage, when
all the processes must read the release flag. The former is more serious because it
requires exclusive access to the synchronization variable and thus creates much |
more serialization; in comparison, the latter generates only read contention. We
can reduce the contention by using a combining tree, a structure where multiple
requests are locally combined in tree fashion. The same combining tree can be

used to implement the release process, reducing the contention there; we leave
the last step for the Exercises.)

8.5 Synchronization 705

Our. combining tree barrier uses a predetermined n-ary tree structure. We use
the variable k to stand for the fan-in; in practice k = 4 seems to work weil ‘When
the k-th process arrives at a node in the tree, we signal the next level in tl‘le tree
When a process arrives at the root, we release all waiting processes. As in our ear-'
lier example, we use a sense-reversing technique. The following tree-based barrier
uses a tree to combine the processes and a single signal to release the barrier:

struct node{ /* a node in the combining tree */
%nt counterlock; */ lock for this node */
int count; */ counter for this node */
int: parent; */ parent in the tree = 0..P-1 except for root
= —1%/
Y
struct node tree [0..P-1]; */ the tree of nodes */
%nt local_sense; */ private per processor */
int release; */ global release flag */

*/ function to implement barrier */
barrier (int mynode) {
lock {tree[mynode].counterlock); */ protect count */
count++; */ increment count */
unlock (tree[mynode].counterlock); */ unlock */
if {tree[mynode].count::) { */ all arrived at mynode */
if (tree[mynode].parent >=0 {
barrier (tree[mynode] .parent) ;

} else{
release = local_sense;
}
tree[mynode] .count = 0; */ reset for the next time */
} else{
spin (release=local_sense); /* wait */

Yi
};
*
/ code executed by a processor to join barrier */
local sense = | local_sense;
barrier (mynode);

The tree is assumed to be prebuilt statically using the nodes in the array tree
Each node in the tree combines k processes and provides a separate counter anci
lock, so that at most k processes contend at each node. When the kth process
reaches a node in the tree it goes up to the parent, decrementing the count at the
parent: When the count in the parent node reaches k, the release flag is set. The
coupt in each node is reset by the last process to arrive. Sense-reversing is us'ed to
avoid races as in the simple barrier. Exercises 8.22 and 8.23 ask you to analyze

706

Chapter 8 Multiprocessors

EXAMPLE How many bus transaction and how long does it take to have 20 proces-

the time for the combining barsier versus the noncombining version. Some MPPs
(e.g., the T3D and CM-5) have also included hardware support for barriers, but
whether such facilities will be included in future machines is unclear.

Hardware Primitives

In this section we look at two hardware synchronization primitives. The first
primitive deals with locks, while the second is useful for barriers and a number of
other user-level operations that require counting or supplying distinct indices. In
both cases we can create a hardware primitive where latency is essentially identi-
cal to our earlier version, but with much less serialization, leading to better scal-
ing when there is contention.)

The major problem with our original lock implementation is that it introduces
a Jarge amount of unneeded contention. For example, when the lock is released
all processors generate both a read and a write miss, although at most one proces-
sor can successfully get the lock in the unlocked state. This happens on each of
the 20 lock/unlock sequences. We can improve this situation by explicitly hand-
ing the lock from one waiting processor to the next. Rather than simply allowing
all processors to compete every time the lock is released, we keep a list of the
waiting processors and hand the lock to one explicitly, when its turn comes. This
sort of mechanism has been called a queuing lock. Queuing locks can be imple-
mented either in hardware, which we describe here, or in software using an array
to keep track of the waiting processes. The basic concepts are the same in either
case. Our hardware implementation assumes a directory-based machine where
the individual processor caches are addressable. In a bus-based machine, a soft-
ware implementation would be more appropriate and would have each processor
using a different address for the lock, permitting the explicit transfer of the lock
from one process to another.

How does a queuing lock work? On the first miss to the lock variable, the miss
is sent to a synchronization controller, which may be integrated with the memory
controller (in a bus-based system) or with the directory controller. If the lock is
free, it is simply returned to the processor. If the lock is unavailable, the control-
ler creates a record of the node’s request (such as a bit in a vector) and sends the
processor back a locked value for the variable, which the processor then spins on.
When the lock is freed, the controller selects a processor to go ahead from the list
of waiting processors. It can then either update the lock variable in the selected
processor’s cache or invalidate the copy, causing the processor to miss and fetch
an available copy of the lock.

sors lock and unlock the variable using a queuing lock that updates the
lock on a miss? Make the other assumptions about the system the same
as before.

8.5 Synchronization 707

ANSWER

EXAMPLE

ANSWER

Eaf:h processor misses once on the lock initially and once to free the lock,
so it takes only 40 bus cycles. The first 20 initial misses take 1000 cycles,
followed by a 50-cycle delay for each of the 20 releases. This is a total of

2050 cycles—significantly better than the case with conventional coher-

ence-based spin locks. L]

] .Thert.e are a couple of key insights in implementing such a queuing lock capa-
bility. First, we need to be able to distinguish the initial access to the lock, so we
can perform the queuing operation, and also the lock release, so we can provide
the lock to another processor. The queue of waiting processes can be implemented
by a.variety of mechanisms. In a directory-based machine, this queue is akin to the
sha.n{lg set, and similar hardware can be used to implement the directory and
queuing lock operations. One complication is that the hardware must be prepared
to reclaim such locks, since the process that requested the lock may have been
context-switched and may not even be scheduled again on the same Pprocessor.

) Queuing locks can be used to improve the performance of our barrier opera-
tion (see Exercise 8.15). Alternatively, we can introduce a primitive that reduces
thle amount of time needed to increment the barrier count, thus reducing the seri-
alization at this bottleneck, which should yield comparable performance to using
queuing locks. One primitive that has been introduced for this and for building
other synchronization operations is fetch-and-increment, which atomically fetch-
es a variable and increments its value. The returned value can be either the incre-
mented value or the fetched value. Using fetch-and-increment we can

dran}atically improve our barrier implementation, compared to the simple code-
sensing barrier.

Write the code for the barrier using fetch-and-increment. Making the
same assumptions as in our earlier example and also assuming that a
fetch-and-increment operation takes 50 clock cycles, determine the time

for 20 processors to traverse the barrier. How many bus cycles are
required?

Figure 8.37 shows the code for the barrier. This implementation requires
20 fetch-and-increment operations and 20 cache misses for the release
operation. This is a total time of 2000 cycles and 40 bus/interconnect op-
erations versus an earlier implementation that took over 15 times longer
and 10 times more bus operations to complete the barrier. Of course,
fetch-and-increment can also be-used in implementing the combining tree

barrier, reducing the serialization at each node in the tree. ®

708

Chapter 8 Multiprocessors

local_sense = ! local_sense; /*toggle local_sense*/
‘fetch_and_increment (count);/* atomic update*/
if (count==total) { /* all arrived */
count=0;/* reset counter */
release=local_sense;/* release processes */
}
else { /* more to come */
spin (release=local_sense);/*wait for signal*/

}

FIGURE 8.37 Code for a sense-reversing barrier using fetch-and-increment to
do the counting.

As we have seen, synchronization problems can become quite acute in larger-
scale machines. When the challenges posed by synchronization are combined
with the challenges posed by long memory latency and potential load imbalance
in computations, we can see why getting efficient usage of large-scale parallel
machines is very challenging. In section 8.10 we will examine the costs of syn-
chronization on an existing bus-based multiprocessor for some real applications.

8-6 I Models of Memory Consistency

Cache coherence ensures that multiple processors see a consistent view of memo-
ry. It does not answer the question of how consistent the view of memory must
be. By this we mean, When must a processor see a value that has been updated by
another processor?

Since processors communicate through shared variables (both those for data
values and those used for synchronization), the question boils down to this: In
what order must a processor observe the data writes of another processor?

Since the only way to “observe the writes of another processor” is through
reads, the question becomes, What properties must be enforced among reads and
writes to different locations by different processors? .

Although the question, how consistent?, seems simple, it is remarkably com-
plicated, as we can see in the following example. Here are two code segments
from processes P1 and P2, shown side by side:

Pl: A =0; P2: B = 0;
A= 1; B = 1;
Ll: if (B == 0) ... L2: if (A == 0)

8.6 Models of Memory Consistency 709

Assume that the processes are running on different processors, and that locations
A and B are originally cached by both processors with the initial value of 0. If
writes always take immediate effect and are immediately seen by other proces-
sors, it will be impossible for both if statements (labeled 1.1 and L2) to evaluate
their conditions as true, since reaching the if statement means that either A or B
must have been assigned the value 1. But suppose the write invalidate is delayed,
and the processor is allowed to continue during this delay; then it is possible that
both P1 and P2 have not seen the invalidations for B and A (respectively) before
they attempt to read the values. The question is, Should this behavior be allowed,
and if so, under what conditions?

The most straightforward model for memory consistency is called sequential
consistency. Sequential consistency requires that the result of any execution be
the same as if the accesses executed by each processor were kept in order and the
accesses among different processors were interleaved. This eliminates the possi-
bility of some nonobvious execution in the previous example, because the assign-
ments ‘must be completed before the if statements are initiated. Figure 8.38
illustrates why sequential consistency prohibits an execution where both if state-
ments evaluate to true.

FIGURE 8.38 In sequential consistency, both if statements cannot evaluate to true,
since the memory accesses within one process must be kept in program order and the
reads of A and B must be interleaved so that one of them completes before the other.
To see that this is true, consider the program order shown with black arrows. For both if state-
ments to evaluate to true, the order shown by the two gray arrows must hold, since the reads
must appear as if they happen before the writes. For both of these orders to hold and program
order 1o hold, there must be a cycle in the order. The presence of the cycle means that it is
impossible to write the accesses down in interleaved order. This means that the execution is
not sequentially consistent. You can easily write down alf possible orders to help convince
yourself.

The simplest way to implement sequential consistency is to require a proces-
sor to delay the completion of any memory access until all the invalidations
caused by that access are completed. Of course, it is equally simple to delay the

710

Chapter 8 - Multiprocessors

EXAMPLE

ANSWER

next memory access until the previous one is completed. Remember that memory
consistency involves operations among different variables: the two accesses that
must be ordered are actually to different memory locations. In our example, we
must delay the read of A or B (a==0 or B==0) until the previous write has com-
pleted (B=1 or A=1). Under sequential consistency, we cannot, for example, sim-
ply place the write in a write buffer and continue with the read. Although
sequential consistency presents a simple programming paradigm, it reduces po-
tential performance, especially in a machine with a large number of processors,
or long interconnect delays, as we can see in the following Example.

Suppose we have a processor where a write miss takes 40 cycles to es-
tablish ownership, 10 cycles to issue each invalidate after ownership is
established, and 50 cycles for an invalidate to complete and be acknowl-
edged. Assuming that four processors share a cache block, how long
does a write miss stall the processor if the processor is sequentially con-
sistent? Assume that the invalidates must be explicitly acknowledged be-
fore the directory controller knows they are completed. Suppose we could
continue executing after obtaining ownership for the write miss without
waiting for the invalidates; how long would the write take?

When we wait for invalidates, each write takes the sum of the ownership
time plus the time to complete the invalidates. Since the invalidates can
overlap, we need only worry about the last one, which starts 10 + 10 + 10
+ 10 = 40 cycles after ownership is established. Hence the total time is
40 + 40 + 50 = 130 cycles. In comparision, the ownership time is only 40
cycles. With appropriate write-buffer implementations It is even possible
to continue before ownership is established. "

To provide better performance, designers have developed less restrictive
memory consistency models that allow for faster hardware. Such models do af-
fect how the programmer sees the machine, so before we discuss these less re-
strictive models, let’s look at what the programmer expects.

The Programmer’s View

Although the sequential consistency model has a performance disadvantage,
from the viewpoint of the programmer it has the advantage of simplicity. The
challenge is to develop a programming model that is simple to explain and yet al- .-
lows a high performance implementation. One such programming model that al-
lows us to have a more efficient implementation is to assume that programs are
synchronized. A program is synchronized if all access to shared data is ordered by

8.6 Models of Memory Consistency T4

EXAMPLE

ANSWER

synchronization operations. A data reference is ordered by a synchronization op-
eration if, in every possible execution, a write of a variable by one processor and
an access (either a read or a write) of that variable by another processor are sepa-
rated by a pair of synchronization operations, one executed after the write by the
writing processor and one executed before the access by the second processor.
Cases where variables may be updated without ordering by synchronization are
called data races, because the execution outcome depends on the relative speed
of the processors, and like races in hardware design, the outcome is unpredict-
able. This leads to another name for synchronized programs: data-race-free.

As a simple example, consider a variable being read and updated by two dif-
ferent processors. Each processor surrounds the read and update with a lock and
an unlock, both to ensure mutual exclusion for the update and to ensure that the
read is consistent. Clearly, every write is now separated from a read by the other
processor by a pair of synchronization operations: one unlock (after the write)
and one lock (before the read). Of course, if two processors are writing a variable
with no intervening reads, then the writes must also be separated by synchroniza-
tion operations. .

We call the synchronization operation corresponding to the unlock a release,
because it releases a potentially blocked processor, and the synchronization oper-
ation corresponding to a lock an acquire, because it acquires the right to read the
variable. We use the terms acquire and release because they apply to a wide set of
synchronization structures, not just locks and unlocks. The next Example shows
where the acquires and releases are in several synchronization primitives taken
from the previous section.

Show which operations are acquires and releases in the lock implemen-
tation on page 699 and the barrier implementation in Figure 8.34 on
page 701.

Here is the lock code with the acquire operation shown in bold:

lockit: 11 R2,0(R1)
bnez R2,lockit ;not available-spin
addi R2,R2,1 ;get locked value
sc R2,0(R1) ;store
begz R2,lockit ;branch if store fails

;load linked

The release operation for this lock is simply a store operation.

Here is the code for the barrier operation with the acquires shown in
bold and the releases in italics (there are two acquires and two releases
in the barrier):

712

Chapter 8 Multiprocessors

lock (counterlock);/* ensure update atomic */
if (count==0) release=0;/*first=>reset release */
count++;/* count arrivals */
unlock (counterlock);/* release lock */
if (count==total) { /* all arrived */
count=0;/* reset counter */
release=1l;/* release processes */

}

else{ /* more to come */

spin (release=l);/* walt for arrivals */

We can now define when a program is synchronized using acquires and r&?leas-
es. A program is synchronized if every execution sequence containing a write by
a processor and a subsequent access of the same data by another processor con-
tains the following sequence of events:

write (x)

release (s)

acquire (s)

access (x)
Tt is easy to see that if all such execution sequences look like this, the program is
synchronized in the sense that accesses to shared data are always ordered by syn-
chronization and that data races are impossible.))

It is a broadly accepted observation that most programs are synchrom;cd. This

observation is true primarily because if the accesses were unsynchronized, the
behavior of the program would be quite difficult to determine because the speed
of execution would determine which processor won a data race and tl:lllS affect
the results of the program. Even with sequential consistency, reasoning abf)ut
such programs is very difficult. Programmers could attempt to guarantee ordering
by constructing their own synchronization mechanisms, but this is .extremely
tricky, can lead to buggy programs, and may not be supported .archltectura.lly,
meaning that they may not work in future generations of the machine. Instead, al-

most all programmers will choose to use synchronization libraries that are correct
and optimized for the machine and the type of synchronization. A standard

8.6 ‘Models of Memory Consistency 713

synchronization library can classify the operations used for synchronization in
the library as releases or acquires, or sometimes as both, as, for example, in the
case of a barrier.

The major use of unsynchronized accesses is in programs that want to avoid
synchronization cost and are willing to accept an inconsistent view of memory.
For example, in a stochastic program we may be willing to have a read return an
old value of a data item, because the program will still converge on the correct
answer. In such cases we still require the system to behave in a coherent fashion,
but we do not need to rely on a well-defined consistency model.

Beyond the synchronization operations, we also need to define the ordering of
memory operations. There are two types of restrictions on memory orders: write
Jences and read fences. Fences are fixed points in a computation that ensure that
no read or write is moved across the fence. For example, a write fence executed
by processor P ensures that

= all writes by P that occur before P executed the write fence operation have com-
pleted, and

w 1o writes that occur after the fence in P are initiated before the fence.

In sequential consistency, all reads are read fences and all writes are write
fences. This limits the ability of the hardware to optimize accesses, since order
must be strictly maintained.

From a performance viewpoint, the processor would like to execute reads as
early as possible and complete writes as late as possible. Fences act as bound-
aries, forcing the processor to order reads and writes with respect to the fence.
Although a write fence is a two-way blockade, it is most often used to ensure that
writes have completed, since the processor wants to delay write completion. Thus
the typical effect of a write fence is to cause the program execution to stall until
all outstanding writes have completed, including the delivery of any associated
invalidations.

A read fence is also a two-way blockade, marking the earliest or latest point
that a read may be executed. Most often a read fence is used to mark the earliest
point that a read may be executed.

A memory fence is an operation that acts as both a read and a write fence.
Memory fences enforce ordering among the accesses of different processes.
Within a single process we require that program order always be preserved, so
reads and writes of the same location cannot be interchanged.

The weaker consistency models discussed in the next section provide the po-
tential for hiding read and write latency by defining fewer read and write fences.
In particular, synchronization accesses act as the fences rather than ordinary
accesses.

714

Chapter 8 Multiprocessors

Relaxed Models for Memory Consistency

Since most programs are synchronized and since a sequential consistency mode]
imposes major inefficiencies, we would like to define a more relaxed model that

allows higher performance implementations and still preserves a simple pro-

gramming model for synchronized programs. In fact, there are a number of re-
laxed models that all maintain the property that the execution semantics of a
synchronized program is the same under the model as it would be under a se-
quential consistency model. The relaxed models vary in how tightly they con-
strain the set of possible execution sequences, and thus in how many constraints
they impose on the implementation. :

To understand the variations among the relaxed models and the possible impli-
cations for an implementation, it is simplest if we define the models in terms of
what orderings among reads and writes performed by a single processor are pre-
served by each model. There are four such orderings:

1. R — R: aread followed by a read.

2. R->W:aread followed by a write, which is always preserved if the operations
are to the same address, since this is an antidependence.

3. W — W: a write followed by a write, which is always preserved if they are to
the same address, since this is an output dependence.

4. W - R: a write followed by a read, which is always preserved if they are to
the same address, since this is a true dependence.

If there is a dependence between the read and the write, then uniprocessor pro-
gram semantics demand that the operations be ordered. If there is no dependence,
the memory consistency model determines what orders must be preserved. A se-
quential consistency model requires that all four orderings be preserved and is
thus equivalent to assuming a single centralized memory module that serializes
all processor operations, or to assuming that all reads and writes are memory bar-
riers.

When an order is relaxed, it simply means that we allow an operation executed
later by the processor to complete first. For example, relaxing the ordering W—R
means that we allow a read that is later than a write to complete before the write
has completed. Remember that a write does not complete until all its invalida-
tions complete, so letting the read occur after the write miss has been handled but
before the invalidations are done does not preserve the ordering.

A consistency model does not, in reality, restrict the ordering of events. In-
stead, it says what possible orderings can be observed, For example, in sequential
consistency, the system must appear to preserve the four orderings just described,
although in practice it can allow reordering. This subtlety allows implementa-
tions to use tricks that reorder events without allowing the reordering to be

8.6 Models of Memory Consistency 715

observed. Under sequential consistency an implementation can, for example, al-
low a processor, P, to initiate another write before an earlier write is completed,
as long as P does not allow the value of the later write to be seen before the earli-
er write has completed. For simplicity, we discuss what orderings must be pre-
served, with the understanding that the implementation has the flexibility to
preserve fewer orderings if only the preserved orderings are visible.

The consistency model must also define the orderings imposed between syn-
chronization variable accesses, which act as fences, and all other accesses. When
amachine implements sequential consistency, all reads and writes, including syn-
chronization accesses, are fences and are thus kept in order. For weaker models,
we need to specify the ordering restrictions imposed by synchronization accesses,
as well as the ordering restrictions involving ordinary variables. The simplest or-
dering restriction is that every synchronization access is a memory fence. If we
let S stand for a synchronization variable access, we could also write this with the
ordering notation just shown as S—W, SR, W—S, and R—S. Remember that a
synchronization access is also an R or a W and its ordering is affected by other
synchronization accesses, which means there is an implied ordering S—8S.

The first model we examine relaxes the ordering between a write and a read
(to a different address), eliminating the order W—R; this model was first used in
the IBM 370 architecture. Such models allow the buffering of writes with bypass-
ing by reads, which occurs whenever the processor allows a read to proceed be-
fore it guarantees that an earlier write by that processor has been seen by all the
other processors. This model allows a machine to hide some of the latency of a
write operation. Furthermore, by relaxing only this one ordering, many applica-
tions, even those that are unsynchronized, operate correctly, although a synchro-
nization operation is necessary to ensure that a write completes before a read is
done. If a synchronization operation is executed before the read (i.e. a pattern
W...5...R), then the orderings W—S and S—R ensure that the write completes be-
fore the read. Processor consistency and total store ordering (TSO) have been
used as names for this model, and many machines have implicitly selected this
model. This model is equivalent to making the writes be write fences. We sum-
marize all the models, showing the orderings imposed, in Figure 8.39 and show
an example in Figure 8.40.

If we also allow nonconflicting writes to potentially complete out of order, by
relaxing the W —W ordering, we arrive at 2 model that has been called partial
store ordering (PSO). From an implementation viewpoint, it allows pipelining or
overlapping of write operations, rather than forcing one operation to complete
before another. A write operation need only cause a stall when a synchronization
operation, which causes a write fence, is encountered.

The third major class of relaxed models eliminates the R — R and R - Wor-
derings, in addition to the other two orders. This model, which is called weak or-
dering, does not preserve ordering among references, except for the following:

716

Chapter 8 Multiprocessors

= A read or write is completed before any synchronization operation executed in
program order by the processor after the read or write.

= A synchronization operation is always completed before any reads or writes
that occur in program order after the operation.

As Figure 8.39 shows, the only orderings imposed in weak order are those cre-
ated by synchronization operations. Although we have eliminated the R ~ R and
R — W orderings, the processor can only take advantage of this if it has
nonblocking reads. Otherwise the processor implicitly implements these two or-
ders, since no further instructions can be executed until the R is completed. Even
with nonblocking reads, the processor may be limited in the advantage it obtains
from relaxing the read orderings, since the primary advantage occurs when the R
causes a cache miss and the processor is unlikely to be able to keep busy for the
tens to hundreds of cycles that handling the cache miss may take. In general, the
major advantage of all weaker consistency models comes in hiding write laten-
cies rather than read latencies.

A more relaxed model can be obtained by extending weak ordering. This
model, called release consistency, distinguishes between synchronization opera-
tions that are used to acquire access to a shared variable (denoted S) and those
that release an object to allow another processor to acquire access (denoted Sr)-
Release consistency is based on the observation that in synchronized programs an
acquire operation must precede a use of shared data, and a release operation must
follow any updates to shared data and also precede the time of the next acquire,
This allows us to slightly relax the ordering by observing that a read or write that
precedes an acquire need not complete before the acquire, and also that a read or
write that follows a release need not wait for the release. Thus the orderings that
are preserved involve only S, and S, as shown in Figure 8.39; as the example in
Figure 8.40 shows, this model imposes the fewest orders of the five models.

To compare release consistency to weak ordering, consider what orderings
would be needed for weak ordering, if we decompose each S in the orderings to
S, and Sg. This would lead to eight orderings involving synchronization accesses
and ordinary accesses plus four orderings involving only synchronization accesses:
With such a description, we can see that four of the orderings required under
weak ordering are not imposed under release consistency: W — S A R Sy,
Sg >R, and Sy —» W.

Release consistency provides one of the least restrictive models that is easily
checkable, and ensures that synchronized programs will see a sequentially con-
sistent execution. While most synchronization operations are either an acquire or
a release (an acquire normally reads a synchronization variable and atomically
updates it, while a release usually just writes it), some operations, such as a barri-
er, act as both an acquire and a release and cause the ordering to be equivalent to
weak ordering.

8.6 Models of Memory Consistency 717

Model Used in Ordinary orderings Synchronization orderings

Sequential consistency Most machinesas R —R,R —W, W—R, $-W,S-5R,R-8, WoS, S—8
an optional mode ~ W_W

Total store order or IBMS/370, DEC R-HR,RHSW, W—W S-W, S—R, R—S, WS, §5S
processor consistency VAX, SPARC

Partial store order SPARC R —>R,R »W S-W, 85R, RS, WS, S—§
Weak ordering PowerPC S—W, S-R, R—8, W8, S—§
Release consistency Alpha, MIPS S,—oW, S,-R, RS, W—>S;,

SA—84, 84S, Sg—S A, Sp—Sx

FIGURE 8.39 The orderings imposed by various consistency models are shown for both ordinary accesses and
synchronization accesses. The models grow from most restrictive (sequential consistency) to least restrictive {release
consistency), allowing increased flexibility in the implementation. The weaker models rely on fences created by synchroni-
zation operations, as opposed to an implicit fence at every memory operation. S, and Sy, stand for acquire and release op-
erations, respectively, and are needed to define release consistency. If we used the notation SA and SR for each s
consistently, each ordering with one S would become two orderings (e.g., S—W becomes S,~>W, Sp—W), and each
5—8 would become the four orderings shown in the last line of the bottom-right table entry.

Sequential TSO (total store PSO (partial Weak ordering Release
consistency order) or store order) consistency
processor
consistency
/: A = A = A = A = A
Bi A L Bi\ B
acwir;(s); acquire (S); acquire (S); acquire (S);
C = C = C = C
\= D =D = D = \D
release (8); release')s); release (S); release (S)l;
E/: E/: E/:'/ E 2 E =
F = F = F o= F o= F =
Lo

FIGURE 8.40 These examples of the five consistency models discussed in this section show the reduction in the
number of orders imposed as the models become more relaxed. Only the minimum orders are shown with arrows. Or-
ders implied by transitivity, such as the write of C before the release of S in the sequential consistency model, are not shown.

718

Chapter 8 Multiprocessors

It is also possible to consider even weaker orderings. For example, in release

consistency we do not associate memory locations with particular synchroniza-

tion variables. If we required that the same synchronization variable, V, always
be acquired before accessing a particular memory location, M, for example, we
could relax the ordering of access to M and acquires and releases of all other syn-
chronization variables other than V. The orderings discussed so far are relatively
straightforward to implement. Weaker orderings, such as the previous example,
are harder to implement, and it is unclear whether the advantages of weaker or-
derings would justify their implementation.

implementation of Relaxed Models

Relaxed models of consistency can usually be implemented with little additional
hardware. Most of the complexity lies in implementing memory or interconnect
systems that can take advantage of a relaxed model. For example, if the memory
or interconnect does not allow multiple outstanding accesses from a processor,
then the benefits of the more ambitious relaxed models will be small. Fortunately,
most of the benefit can be obtained by having a small number of outstanding
writes and one outstanding read.

In this section we describe straightforward implementations of processor con-
sistency and release consistency. Our directory protocols already satisfy the con-
straints of sequential consistency, since the processor stalls until an operation is
complete and the directory first invalidates all sharers before responding to a
write miss.

Processor consistency (or TSO) is typically implemented by allowing read
misses to bypass pending writes. A write buffer that can support a check to deter-
mine whether any pending write in the buffer is to the same address as a read
miss, together with a memory and interconnection system that can support two
outstanding references per node, is sufficient to implement this scheme. Qualita-
tively, the advantage of processor consistency over sequential consistency is that
it allows the latency of write misses to be hidden.

Release consistency allows additional write latency to be hidden, and if the
processor supports nonblocking reads, allows the read latency to be hidden also.
To allow write latency to be hidden as much as possible, the processor must allow
multiple outstanding writes and allow read misses to bypass outstanding writes.
To maximize performance, writes should complete and clear the write buffer as
early as possible, which allows any dependent reads to go forward. Supporting
early completion of writes requires allowing a write to complete as soon as data
are available and before all pending invalidations are completed (since our con-
sistency model allows this). To implement this scheme, either the directory or the
original requester can keep track of the invalidation count for each outstanding
write. After each invalidation is acknowledged, the pending invalidation count

8.6 Models of Memory Consistency 719

for that write is decreased. We must ensure that all pending invalidates to all out-
standing writes complete before we allow a release to complete, so we simply
check the pending invalidation counts on any outstanding write when a release is
executed. The release is held up until all such invalidations for all outstanding
writes complete. In practice, we limit the number of outstanding writes, so that it
is easy to track the writes and pending invalidates.

To hide read latency we must have a machine that has nonblocking reads;
otherwise, when the processor blocks, little progress will be made. If reads are
nonblocking we can simply allow them to execute, knowing that the data depen-
dences will preserve correct execution. It is unlikely, however, that the addition
of nonblocking reads to a relaxed consistency model will substantially enhance
performance. The limited gain occurs because the read miss times in a multipro-
cessor are likely to be large and the processor can provide only limited ability to
hide this latency. For example, if the reads are nonblocking but the processor exe-
cutes in order, then the processor will almost certainly block for the read after a
few cycles. If the processor supports nonblocking reads and out-of-order execu-
tion, it will block as soon as any of its buffers, such as the reorder buffer or reser-
vation stations, are full. (See Chapter 4 for a discussion of full buffer stalls in
dynamically scheduled machines.) This is likely to happen in at most tens of cy-
cles, while a miss may cost a hundred cycles. Thus, although the gain may be
limited, there is a positive synergy between nonblocking loads and relaxed con-
sistency models.

Performance of Relaxed Models

The performance potential of a more relaxed consistency model depends on both
the capabilities of the machine and the particular application. To examine the per-
formance of a memory consistency model, we must first define a hardware envi-
ronment. The hardware configurations we consider have the following properties:

w The pipeline issues one instruction per clock cycle and is either statically or dy-
namically scheduled. All functional unit latencies are one cycle.

u Cache misses take 50 clock cycles.
= The CPU includes a write buffer of depth 16.
= The caches are 64 KB and have 16-byte lines.
To give a flavor of the tradeoffs and performance potential with different hard-

ware capabilities, we consider four hardware models:

1. SSBR (statically scheduled with blocking reads)——The processor is statically
scheduled and reads that miss in the cache immediately block.

720

Chapter 8 Multiprocessors

2. SS (statically scheduled)—The processor is statically scheduled but reads do
not cause the processor to block until the result is used.

3. DS16 (dynamically scheduled with a 16-entry reorder buffer)—The processor
is dynamically scheduled and has a reorder buffer that allows up to 16 out-
standing instructions of any type, including 16 memory. access instructions.

4. DS64 (dynamically scheduled with a 64-entry reorder buffer)—The processor

is dynamically scheduled and has a reorder buffer that allows up to 64 out-
standing instructions of any type. This reorder buffer is potentially large
enough to hide the total cache miss latency of 50 cycles.

Figure 8.41 shows the relative performance for two of the parallel program
benchmarks, LU and Ocean, for these four hardware models and for two different
consistency models: total store order (TSO) and release consistency. The perfor-
mance is shown relative to the performance under a straightforward implementa-
tion of sequential consistency. Relaxed models offer a much larger performance
gain on Ocean than on LU. This is simply because Ocean has a much higher miss
rate and has a significant fraction of write misses. In interpreting the data in Fig-
ure 8.41, remember that the caches are fairly small. ‘Most designers would in-
crease the cache size before including nonblocking reads or even beginning to
think about dynamic scheduling. This would dramatically reduce the miss rate
and the possible advantage from the relaxed model at least for these applications.

Final Remarks on Consistency Models

At the present time, most machines being built support some sort of weak consis-
tency model, varying from processor consistency to release consistency, and al-
most all also support sequential consistency as an option. Since synchronization
is highly machine specific and error prone, the expectation is that most program-
mers will use standard synchronization libraries and will write synchronized pro-
grams, making the choice of a weak consistency model invisible to the
programmer and yielding higher performance. Yet to be developed are ideas of
how to deal with nondeterministic programs that do not rely on getting the latest
values. One possibility is that programmers will not need to rely at all on the tim-
ing of updates to variables in such programs; the other possibility is that ma-
chine-specific models of update behavior will be needed and used. As remote
access latencies continue to increase relative to processor performance, and as
features that increase the potential advantage of relaxed models, such as non-
blocking caches, are included in more processors, the importance of choosing a
consistency model that delivers both a convenient programming model and high
performance will increase.

