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ABSTRACT
Smartphone-based contact tracing is currently considered an es-
sential tool towards easing lockdowns, curfews, and shelter-in-
place orders issued in response to the 2020/21 novel coronavirus
(SARS-CoV-2) crisis. While the focus on developing smart-phone-
based contact tracing applications has been on privacy concerns,
an important question that has not received sufficient attention is:
How reliable is such smartphone-based electronic contact tracing?
Here, we examine in detail the technical prerequisites required for
effective smartphone-based contact tracing. The underlying mech-
anism that any tracing app relies on is called neighbor discovery
(ND), which involves smartphones transmitting and scanning for
Bluetooth signals to record their mutual presence. However, smart-
phones were not designed for reliable contact tracing. In this paper,
we quantitatively evaluate how reliably smartphones can do contact
tracing. We show that irrespective of how well a contact tracing
app is designed, because of the limitations stemming from how
ND mechanisms are implemented on currently-available phones,
they cannot achieve gapless tracing. We also discuss the design of a
wearable solution, which could lead to a more reliable tracing.

1 INTRODUCTION
Background: The global surges of the novel coronavirus SARS-
CoV-2 in 2020 and 2021 have led to a partial, and at some places
even a complete lockdown across the world. Since every infected
person can potentially cause multiple secondary infections, the
solution adopted is to limit social contacts by enforcing social dis-
tancing and stay-at-home regimes. A promising solution being
considered to enable the gradual easing or prevention of future
lockdowns is wireless contact tracing using smartphones. If all rel-
evant previous contacts of a person tested positive for the virus are
quickly and reliably identified and isolated, then any further spread
of the infection will be reduced. Indeed, studies have shown that
smartphone-based contact tracing can help to control the spread of
infectious diseases [25].

When modeling the spread of infections in a pandemic, every
infected person is considered to infect 𝑅 others, where 𝑅 is referred
to as the effective reproduction rate. Recent studies, e.g., [6], suggest
that the value of 𝑅 can be reduced using electronic contact tracing.
The extent of this reduction depends on two factors. The first is
the fraction of the population that uses a smartphone-based con-
tact tracing application or app, i.e., its adoption rate. The second
factor is determined by the probability with which a smartphone is
able to reliably detect a contact, which again depends on multiple

factors, which we discuss below. While the current discussion has
focused on the adoption rates, most work on modelling the effect of
electronic contact tracing has implicitly assumed that whenever a
smartphone is used, it reliably registers all or at least a certain frac-
tion of relevant contacts. The validity of this reliability assumption
has however not been sufficiently studied so far, and is the focus of
this paper.
Reliability of Contact Tracing: There are multiple factors that
influence the reliability of contact tracing. First, as mentioned above,
a sufficiently high fraction of the population needs to install the app.
Second, there is a minimum duration for which two devices need to
be within range of each other for being able to detect their mutual
presence. This paper addresses this aspect in detail by quantifying
such durations and by studying secondary aspects, such as the cor-
responding battery runtime. Third, when multiple smartphones are
within the range of reception, their emitted signals interfere with
each other, thereby potentially preventing their mutual detection.
We also study the impact of collisions on the discovery procedure.
Fourth, after two devices have discovered each other, they estimate
their distance to evaluate the transmission risk. The accuracy of this
estimation also contributes to the reliability, which is also discussed
in this paper.
Neighbor Discovery – The Contact Tracing Basis: Because lo-
calization systems, such as the global positioning system (GPS), are
inaccurate inside buildings, devices in vicinity are detected using
short-range wireless signals. The mechanism that lies at the heart
of a smartphone detecting the existence of another smartphone
in its vicinity is called neighbor discovery (ND). It is based on the
phones emitting and scanning for Bluetooth signals, and a success-
ful reception by another phone and vice-versa will lead to their
mutual discovery. Both the specific ND protocol and the manner in
which it is parameterized determine the discovery latency, i.e., how
quickly two smartphones will be able to “discover” each other when
they come in close contact, and also their energy consumption and
hence battery runtime. Other properties, such as the reliability of
operation when a large number of phones are in range of reception,
are also determined by this. However, smartphones constrain the
degrees of freedom when realizing a protocol for ND, such that
these aspects cannot be optimized by an app.
Limitations of Smartphones:Hence, when a smartphone is used
for contact tracing, a relevant question is: whenever two or more
people come in contact with each other, what is the probability of
their respective smartphones being able to record such a contact?
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If the duration of the contact is very brief (e.g., a couple of seconds),
would such contacts still be detected? Will smartphones be able to
detect the type and proximity of the contact? For example, were the
two subjects within 5meters of each other or at less than 0.1 meters?
The answers to these questions in the context of smartphone-based
contact tracing are not clear. Nevertheless, contact tracing apps are
now being seen as the holy grail for this problem. However, what a
tracing app might or might not be able to do will be fundamentally
limited by the underlying hardware and protocol configurations of
ND mechanisms supported by the smartphone.

Besides the success probability of the ND procedure itself, the
estimation of the distance between two subjects is susceptible to
errors. This estimation is based on sensing the attenuation of the
wireless signal, which in free space correlates with the distance
between two devices. However, signals can be reflected in the envi-
ronment or attenuated by the human body. Hence, contacts that are
not relevant could be misclassified as relevant, (viz., result in false
positives), and actually relevant contacts might not be registered.
However, too many false positives would lead to testing and/or
isolating a large number of uninfected people. Hence, a sufficient
“safety margin” needs to be built into the distance estimation pro-
cedure, which in turn will lead to a higher rate of unregistered
relevant contacts.
Contributions of this Paper: In this paper, we attempt to address
the above questions. We systematically evaluate the suitability of
ND configurations in commercially-available smartphones for the
purpose of electronic contact tracing. Our study exposes the fun-
damental limits that any smartphone will have, no matter which
contact tracing app is used. We finally argue that for “gapless” con-
tact tracing, smartphones are not suitable. Though the performance
of the ND procedure on smartphones could improve if Google and
Apple would grant unrestricted access to the phone’s Bluetooth
capabilities, distance estimation will nevertheless remain unreliable.
Driven by this insight that detection reliability is a critical variable,
we discuss a wearable solution for contact tracing, such as an elec-
tronic bracelet, which can overcome the limitations of smartphones.
Summary and Organization: In summary, our main contribu-
tions are as follows. (a) We debunk the currently held notion that
smartphones can reliably conduct contact tracing and the only ob-
stacle is their adoption. (b) Towards this, we lay the foundations
for quantifying the reliability and accuracy of contact tracing when
using currently-available smartphones. (c) We briefly discuss a ded-
icated wearable for contact tracing, which could resolve some of
the limitations of smartphones.

The rest of this paper is organized as follows. In the next sec-
tion, we briefly describe the theoretical foundations of energy-
and latency-optimal solutions for contact tracing. In Section 3, the
performance of contact tracing using currently-available iOS and
Android smartphones is evaluated. In Section 4, we propose a wear-
able device for contact tracing before concluding in Section 5.

2 NEIGHBOR DISCOVERY
The goal of this section is to illustrate the design space of the ND
procedure, which underlies electronic contract tracing. It involves
multiple trade-offs, e.g., latency versus energy consumption versus
resilience in crowded situations. Any smartphone application for

contact tracing will build on a restricted version of this procedure,
which we study in Section 3.

Let us first consider two wireless devices that are unaware of
their mutual presence, but would like to “discover” each other as
soon as they are in close proximity. One of them acts as a sender and
the other as a receiver. The sender continually broadcasts beacons,
while the receiver continually listens to the channel for certain time
intervals. All transmissions and receptions are scheduled following
a certain, repetitive pattern. The receiver has discovered the sender,
once a beacon is sent within a reception window of the receiver.

The main reason behind both transmission and listening being
continual and not continuous is energy. When not sending or receiv-
ing, the wireless radios go to a sleep or power-down mode in order
to save energy. From the perspective of ND, the energy consump-
tion of each device is determined by the fraction of time spent on
transmission or reception, i.e., by the duty-cycle for transmission 𝛽

and for reception 𝛾 . For a ND protocol to be efficient, the goal is to
identify a transmission and reception pattern that, for a given sum
𝛽 + 𝛾 , minimizes the time until a beacon is guaranteed to overlap
with a reception window in the worst case. Several publications
have been concerned with optimizing this trade-off between latency
and energy, e.g., [4, 10]. In the context of contact tracing, the ND
procedure should guarantee discovery within a short period of time.
In other words, it should be able to register contacts even when
two people come in close proximity for relatively short intervals of
time, e.g., when shopping at a grocery store, or jogging in a park.
We next discuss the latency within which a smartphone should
guarantee the discovery of a remote device.

Required Latency for Contact Tracing: There is no established
consensus on the minimum duration of a contact that results in
significant transmission risk. For example, the American Center for
Disease Control and Prevention (CDC) considers close contacts of
a cumulative duration of at least 15min within 24 h as relevant for
transmitting SARS-CoV2. However, data from several studies show
that there is a transmission risk also for brief contacts. Results
obtained using manual contact tracing [3] indicate 5 out of 199
transmissions with a contact duration below 15min. Moreover,
there are reports [15] claiming that a fleeting contact of only a few
seconds has lead to an infection with the contagious Delta variant.
Hence, there is no clear threshold below which a contact is not
relevant for transmission.

Since the transmission risk increases with the accumulated con-
tact duration, i.e., the sum of the durations of multiple brief contacts,
a system for contact tracing should ideally be able to record every
encounter between two subjects and then estimate the risk based
on the recorded data. Otherwise, multiple brief contacts, which can
accumulate to a significant duration, risk getting unnoticed. When
two subjects pass each other with zero distance at the closest point,
with a velocity of e.g., 4 km/h, and if the range for tracing rele-
vant contacts would be 2m, they would stay within transmission
range for 1.8 s. Hence, as a rule of thumb, contact tracing systems
need to guarantee worst-case latencies of around 2 s for reliably
detecting all contacts. While larger latencies in the range of up to
tens of seconds might still be sufficient in many practical scenarios,
minute-range latencies are not sufficient for gapless tracing.
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Latency-Energy Trade-off: However, being able to do so should
not quickly drain the battery of the device. What is the lowest
discovery latency 𝐿 that any receiver with a duty-cycle of 𝛾 and any
sender with a duty-cycle of 𝛽 can achieve was determined in [11]
and is as follows.

𝐿 =

⌈
1
𝛾

⌉
· 𝜔
𝛽
+ 𝜔, (1)

where𝜔 is the transmission duration of a beacon. For example, if we
require that only contacts that last for at least 2 seconds are relevant
for disease transmission and need to be registered, then 𝐿 = 2 s.
The minimal data to be exchanged by two contact tracing devices
in range is a device identifier. To be able to provide at least one
unique ID for each device, 4 bytes or more are required. In addition,
a preamble of at least 1 byte needs to be added for technical reasons
on most radios. Hence, we assume that a 5 byte-packet needs to be
transmitted for contact tracing on a Bluetooth Low Energy (BLE)-
like physical layer, leading to a transmission duration of 𝜔 = 40 µs.
In order to realize 𝐿 = 2 s with a beacon length of 𝜔 = 40 µs , both
devices need to be active for 𝛽 = 𝛾 ≈ 0.45 % of their time.

Using which transmission and reception patterns can this perfor-
mance be achieved? The only known patterns that achieve optimal
discovery latencies are based on periodic intervals [10]. Here, one
device periodically broadcasts beacons with a period 𝑇𝑎 , whereas
the other device switches on its receiver for a window of 𝑑𝑠 time-
units after every 𝑇𝑠 time-units. This scheme – with some minor
modifications that we describe below – is used by the BLE protocol
implemented inside smartphones.

Recall that for one sender and one receiver, the optimal discovery
latency for a given energy-budget is known (cf. Equation 1), and
this latency is guaranteed in 100 % of all discovery attempts. But
the moment both devices act as both senders and receivers, the
probability of discovery within the same time interval 𝐿 now drops.
Why is this so is explained next.

First, when each device both receives and transmits, it is unavoid-
able that the scheduled points in time of a reception window and a
beacon transmission of the same device overlap in time (cf. [11] for
details). Since a device cannot receive and transmit at the same time,
some transmission or reception windows need to be re-scheduled,
which leads to a certain fraction of discoveries failing. Nevertheless,
existing protocols can achieve latencies close to 𝐿 from Equation 1
in more than 99.9 % of all attempts for a pair of devices discovering
each other using practical duty-cycles. However, when multiple de-
vices are in range and transmit beacons, some transmissions might
overlap in time and hence fail to be received. This is described next.

2.1 ND in Crowded Scenarios
There are multiple situations that are of potential relevance for virus
transmission, in which a larger number of people are in vicinity of
each other. For example, consider a crowed public bus or ski gondola.
As a worst-case scenario, the maximum density of crowds without
squashing and tilting the human body has been estimated to be
6 persons/m2 [20]. If we assume that the radio only detects devices
within a 2m range, the worst-case number of people/phones in a
collision domain is 75.

For a given number of devices, the probability of collisions is
determined by the transmission duration of each beacon 𝜔 and

the rate of beacons transmissions of each device, which result in a
certain duty-cycle for transmission 𝛽 . With 𝜔 = 40 µs, when using
known approaches for realizing 𝐿 = 2 s, e.g., [10], about 50 % of all
discovery attempts will fail due to colliding beacons (cf. [11]). This
implies that a significant number of contacts will not be registered.
However, if some increase in the worst-case latency 𝐿 is tolerated,
the following two techniques, which are used in smartphones, can
be exploited for making ND protocols more robust against colli-
sions.
Reducing the Channel Utilization: The probability of collisions
is given by the fraction of time each device utilizes the channel, i.e.,
𝛽 . Hence, if fewer beacons are sent, then the collision probability de-
creases. As a drawback, since beacons are then sent less frequently,
the worst-case latency 𝐿 will increase, or the duty-cycle for recep-
tion𝛾 needs to be increased for compensating for the reduced 𝛽 (see
Equation 1). Reducing 𝛽 and in turn increasing 𝛾 for reaching the
same 𝐿 will, however, increase the overall energy consumption. For
example, when choosing a reduced channel-utilization of 𝛽 ′ = 1/4 ·𝛽
and an increased duty-cycle for reception of 𝛾 ′ = 4 · 𝛾 , the collision
probability for the protocol described above when simultaneously
discovering 75 devices can be reduced from 50 % to about 15 %with-
out increasing 𝐿. On a radio on which transmission consumes the
same current as reception, the lowest worst-case latency for a given
energy budget 𝜂 = 𝛽 + 𝛾 is achieved for 𝛽 = 𝛾 = 1/2(𝛽 + 𝛾) [11].
Reducing the channel utilization to 𝛽 ′ while increasing 𝛾 to 𝛾 ′ will
hence lead to an increased sum 𝜂 ′ = 𝛽 ′ + 𝛾 ′ = 17/8 · 𝜂 and therefore
to an increased energy consumption, while leading to the same 𝐿.
As we will show in Section 3, smartphones use a very low channel
utilization 𝛽 << (𝛽+𝛾 )/2, thereby achieving low collision rates at
the expense of an increased energy consumption.
Decorrelation: A technique used by the BLE protocol is decorrela-
tion. It reduces the chance of multiple subsequent colliding beacons.
Instead of sending beacons with periodic intervals, two consecu-
tive beacons are separated from each other by a fixed amount of
time plus a certain random component. For nevertheless guaran-
teeing the same worst-case latency 𝐿, the reception duty-cycle 𝛾
needs to be increased. Consider, for example, a configuration where
𝑇𝑎 = 𝑑𝑠 − 𝜔 , which has been shown to be a configuration that
achieves the smallest possible worst-case latency [11]. Here, a bea-
con will coincide with every reception window, since the distance
between two consecutive beacons does not exceed the reception
window length. If now 𝑇𝑎 is additionally increased by a random
component 𝜌 ∈ [0, 𝑏], then 𝑑𝑠 also needs to be extended by 𝑏 time-
units to ensure that a beacon will still fall within every scan window.
Otherwise, another beacon has to overlap with a later scan window
for realizing discovery, thereby increasing 𝐿. However, if one pair of
beacons from two different devices collides, a later pair of beacons
only collides with a probability below unity. If now multiple bea-
cons coincide with one or more scan windows of a remote device,
there is an increased chance that one of them will not collide and
hence, the probability of a successful discovery increases.

In summary, there are multiple degrees of freedom for optimizing
the ND procedure, and identifying the optimal trade-off between
discovery latency, energy consumption and success probability
is crucial for efficient and reliable contact tracing. Unfortunately,
on a smartphone, these degrees of freedom are not exposed to a
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Mode Ta,0 ds Ts
ADVERTISE_MODE_LOW_LATENCY 100 - -
ADVERTISE_MODE_BALANCED 250 - -
ADVERTISE_MODE_LOW_POWER 1000 - -
SCAN_MODE_LOW_POWER - 512 5120
SCAN_MODE_BALANCED - 1024 4096
SCAN_MODE_LOW_LATENCY - 4096 4096
GAEN (mean) 279 3587 259694

Table 1: Parameter settings supported byAndroid andGAEN
in [ms].

contact tracing app and several protocol parameters are already
predetermined. In light of this, we examine the performance that is
achievable using smartphones in the next section.

3 DISCOVERY ON SMARTPHONES
On a smartphone, the degrees of freedom described in the previous
section are restricted both by the BLE protocol, which is used to
realize ND, as well as the Android or iOS operating system. We
first describe these restrictions and then study the performance
achieved under them. Our goals are i) assessing the tracing per-
formance on existing smartphones, and ii) identifying the most
suitable parameterizations.

3.1 Restrictions on Smartphones
3.1.1 Bluetooth Low Energy. In BLE, so-called advertising events,
within which beacons are sent, are scheduled with a period of
𝑇𝑎 [16]. Reception windows of length 𝑑𝑠 are repeated with a period
of𝑇𝑠 . Here,𝑇𝑎 is composed of a static part𝑇𝑎,0 plus a random delay
of 𝜌 ∈ [0, 10ms]. Furthermore, each advertising event consists of
a sequence of three beacons. Each of them is sent on a dedicated
wireless channel, and these three channels are the same for all de-
vices and advertising events. The receiver toggles between the three
different channels after each instance of 𝑇𝑠 . The values of 𝑇𝑎,0, 𝑇𝑠
and 𝑑𝑠 can be chosen freely within a large, quasi-continuous range.
The 3-channel procedure increases the duty-cycle for transmission
𝛽 by a factor of 3 (since 3 beacons are sent every𝑇𝑎 time-units), and
this increased duty-cycle leads to essentially the same discovery
latency as the original one for typical parameterizations used on
smartphones. In BLE, the minimal beacon length is 16 bytes, be-
cause of multiple overheads. This further increases 𝛽 by a factor of
around 3 compared to the protocol we described in the previous
section.

In summary, compared to an energy-optimal protocol, BLE intro-
duces an overhead of a factor of approximately 6 to the active time
spent for transmission. An additional overhead to 𝛾 is caused by
the random delay 𝜌 , since 𝑑𝑠 needs to be increased for guaranteeing
the same worst-case latency. On the other hand, some of these
overheads improve the reliability of the discovery procedure. In
particular, cyclic redundancy check (CRC) allows detecting beacon
collisions and the random delay decorrelates the collision probabil-
ities of multiple subsequent beacons from each other. Due to fixed
energy overheads that do not depend on the number of transmitted
bytes, the overhead in terms of energy is lower than in terms of
transmission/reception time.

3.1.2 Android and iOS. While BLE allows essentially any config-
uration for the tuple (𝑇𝑎,0,𝑇𝑠 , 𝑑𝑠 ), Android constrains the design

𝑇𝑎,0
152.5ms 211.25ms 318.75ms
417.5ms 546.25ms 760ms
852.5ms 1022.5ms 1285.0ms

Table 2: Advertising intervals supported by IOS.

Figure 1: Sequence of beacons (red arrows) with Ta ≤ ds
falling into an instance of Ts.

space to 3 different settings that determine (𝑇𝑠 , 𝑑𝑠 ) and another 3
that determine 𝑇𝑎,0. In addition, there is a dedicated parameteriza-
tion for the contact tracing service offered by Google and Apple,
called the Google Apple Exposure Notification Service (GAEN) [7].
Furthermore, Android provides a batch mode, where multiple dis-
covered devices are reported jointly with a certain delay. This mode
offers for 3 additional configurations of (𝑇𝑠 , 𝑑𝑠 ). But these are not
considered in this article due to lack of documentation on them.

On a smartphone, fixed values for these parameters are not
always feasible, because the hardware might be forced to vary them
during runtime. First, the Bluetooth system-on-a-chip (SoC) might
need to carry out advertising and scanning in parallel to other tasks,
e.g., streaming audio to a wireless headphone. As a result, the points
in time when both tasks need to be served might overlap. Since
the device can carry out only one task at a time, some scheduling
is needed to resolve this conflict, which might require adapting
the values of 𝑇𝑎,𝑇𝑠 and 𝑑𝑠 online. In other words, the effective
values of 𝑇𝑎,𝑇𝑠 and 𝑑𝑠 that are used could be different from the
ones that were chosen by a contact tracing application. In addition,
many smartphones, e.g., the Samsung Galaxy S1, share the radio
and/or the antenna for realizing IEEE 802.11 (WiFi) and Bluetooth
communication [22]. However, it is not possible to e.g., transmit
a WiFi frame and a BLE beacon at the same time. Indeed, SoCs
that combine BLE and WiFi use arbitration mechanisms for this
purpose [21]. To the best of our knowledge, the exact methods used
for resolving such conflicts depends on the particular SoC used and
hence potentially vary between different smartphone models. In
general, there are two possibilities for resolving them. First, the
parameters𝑇𝑎,0,𝑇𝑠 and 𝑑𝑠 could be chosen such that no advertising
packet or scan window overlaps with any other task. Second, if
this is not possible, an advertising packet could be skipped, sent
earlier/later, or the parameters 𝑇𝑎,0, 𝑇𝑠 and 𝑑𝑠 might be altered
repeatedly on a short-term basis.

The values of𝑇𝑎,𝑇𝑠 and 𝑑𝑠 used in Android smartphones are not
specified in the official documentation – the reason for this might
lie in the potential need for short-term changes described above.
However, Android is an open source software, and information that
is not provided in its specification documents can be looked up
directly from its source code. The Android source code contains
different values of (𝑇𝑎,0,𝑇𝑠 , 𝑑𝑠 ), which are summarized in Table 1.
A pair of values for 𝑇𝑠 and 𝑑𝑠 can be selected by an application
by choosing one of the SCAN_MODE settings, whereas the value
of 𝑇𝑎,0 can be selected by using one of the ADVERTISE_MODE
settings.
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Since iOS is a closed source software, we cannot obtain its pa-
rameter values from the source code. However, Apple recommends
certain values of 𝑇𝑎,0 for gadgets communicating with iOS devices
in [2], which are given in Table 2. We assume that iOS devices
themselves will also use them. No data is available on 𝑇𝑠 and 𝑑𝑠 .

Especially on iOS devices, restrictions on using BLE in the back-
ground prevent applications from using the original BLE API with
the parameter values described above. For example, an early version
of the NHS corona app in the UK was reported to work reliably only
when the screen is unlocked and the app is visible [23]. To overcome
this, the majority of recent apps use GAEN. Here, the operating sys-
tem carries out the actual contact tracing, while reporting digests
to the tracing apps. GAEN uses its own set of parameter values.
The advertising interval is specified to lie within 200 to 270ms and
the scan interval to be at most 5minutes, whereas no information
on the scan window is given [7]. Hence, the exact values that are
actually used are not fully specified. Further, directly measuring
these values is complicated by Google/Apple’s policy that grants
GAEN access only to applications that are government authorized.
However, experimental studies on GAEN have nevertheless been
carried out [13, 14]. We have estimated the parameter values given
in Table 1 from publicly available logs1 of received packets. Here,
we have assumed that multiple reported receptions in close tempo-
ral proximity belong to the same scan window, which allowed us to
infer 𝑇𝑎 , 𝑇𝑠 and 𝑑𝑠 based on 119,550 reported receptions. We have
excluded scan windows with few (i.e., less than 5) receptions. For
every pair of handsets contained in the dataset (except the Huawei
P Smart, which showed inconsistent results), we have computed
the median value of 𝑇𝑎 , 𝑇𝑠 and 𝑑𝑠 . The values given in Table 1 are
the mean values of those medians. The parameter values can vary
significantly over time. It is worth mentioning that when some
other app running on the phone activates BLE scanning in a cer-
tain mode, GAEN will re-use the selected parameter values and
therefore deviate from the values given in Table 1.

3.2 Performance Evaluation
In this section, we evaluate how BLE ND performs on smartphones.
Towards this, we assume 1) a packet length of 16 byte and 2) the
values from Table 1 for Android and the values of𝑇𝑎,0 from Table 2
for iOS.

3.2.1 Discovery Latency. We now study the discovery latency for
two devices. Most of the 𝑇𝑎,0-values for Android and iOS fulfill
𝑇𝑎 < 𝑑𝑠 . This is illustrated in Figure 1. Once two devices are within
their reception range, the first advertising beacon of one device
falls within an arbitrary instance of a scan interval. Since 𝑇𝑎 < 𝑑𝑠 ,
the latency measured from the first beacon to the successfully
received one is limited by roughly 𝑇𝑠 − 𝑑𝑠 time units. Because both
devices might have been brought into range by up to 𝑇𝑎,0 + 10ms
before the first beacon was sent, the worst-case latency is bounded
by approximately 𝐿 = 𝑇𝑠 − 𝑑𝑠 + 𝑇𝑎,0 + 10ms (cf. Figure 1). As an
example, for the SCAN_MODE_LOW_POWER setting and a value
of 𝑇𝑎,0 = 100ms, the worst-case latency is approximately 4,718ms.

On the other hand, for some other settings, such as ADVERTISE_
MODE_LOW_POWER in combination with SCAN_MODE_LOW_
POWER, 𝑇𝑎 > 𝑑𝑠 . Here, the first scan window might be missed in
1available via https://github.com/sftcd/gaen-pairwise-1m

Scan Mode nRF52832 BLE112
LOW_POWER 0.52 − 0.57 % 2.13 − 2.35 %
BALANCED 1.30 − 1.35 % 5.30 − 5.52 %
LOW_LATENCY 5.20 − 5.25 % 21.14 − 21.36 %
GAEN 0.09 % 0.38 %

Table 3: Reduction of the battery runtime by continuous con-
tact tracing using different Android scan modes.

some cases, and only a later scan window can lead to a successful
discovery. Figure 2a depicts the simulated discovery latencies mea-
sured from the time the first beacon is sent, after which two devices
come within range. This is with the SCAN_MODE_LOW_POWER
setting. Similarly, Figure 2b depicts the discovery latencies for the
SCAN_MODE_BALENCED setting. For every value of 𝑇𝑎,0 sup-
ported by BLE in the depicted range, we have carried out 1,000
simulations. For each of them, we have computed the maximum
and mean latency. The solid darker red vertical lines correspond to
the values of𝑇𝑎,0 supported by the native BLE interface on Android,
and the dashed lines in light red are those supported by iOS.

Let us first consider the SCAN_MODE_LOW_POWER setting.
As can be seen, for values with 𝑇𝑎 < 𝑑𝑠 , the maximum latency is
approximately 5 s. However, for 𝑇𝑎 > 𝑑𝑠 , some parameterizations
lead to high maximum and mean latencies. For example, for 𝑇𝑎,0 =
1,022.5ms, which is supported by Android, the maximum resulting
latency is 172.5 s. For the purpose of contact tracing, such a latency
could be unacceptable, since a close contact of less than 3minutes
could already be highly relevant for a virus transmission. Recall
from our previous discussion that because of issues such as resource
sharing, smartphones might also deviate from the given parameter
values, and hence there are no guarantees that these maximum
latencies are never exceeded by any smartphone model.

For the SCAN_MODE_BALANCED setting, the overall situation
looks similar (cf. Figure 2b), but a larger fraction of the values of
𝑇𝑎,0 lead to latencies below 5 s.

Different smartphone manufacturers might have altered these
values in their adopted versions of Android, or might do this in the
future. Therefore, compatibility among all different smartphone
models – for the purpose of estimating a worst-case discovery la-
tency – is also not guaranteed. Given of all this, we have to consider
a smartphone as a device that maintains a certain maximum dis-
covery latency in most cases, while no absolute guarantees can be
given for the worst case.

For GAEN, the worst-case latency lies around 5min. This is
because it schedules one scan window that is significantly larger
than the distance between two consecutive advertising packets
every at most 5min in the worst case. We found that 𝑇𝑎 , 𝑇𝑠 and 𝑑𝑠
vary significantly over time and also found instances where𝑇𝑎 > 𝑑𝑠
in the dataset. Hence, a latency of more than 5min might also be
possible in rare cases. However, we could not verify from the dataset
whether two consecutive packets were indeed scheduled such that
their time difference exceed the shortest measured instance of 𝑑𝑠 .
Other effects might also be possible – such as packets colliding with
those of other devices, or devices being intermittently out of range,
leading to failed receptions. The latency bound of 5min also limits
the granularity of the contact duration estimation to up to 5min,
which could lead to missing multiple brief contacts.
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(a) SCAN_MODE_LOW_POWER (b) SCAN_MODE_BALANCED

Figure 2: Simulation ofmaximumandmean discovery latencies in Android for different values of Ta,0. The vertical lines depict
values of Ta,0 used by Android (solid lines) and iOS (dashed lines).

3.2.2 Energy Consumption. We now study how the settings from
Table 1 impact the energy consumption in the case of Android
phones. We have computed the mean current draw 𝐼𝐵𝐿𝐸 of a BLE
radio that scans and advertises according to the different settings.
The energy needed for the phone’s CPU to wake up and gather the
data from the radio is not included.

Different smartphones use different radioswith different firmware
and, accordingly, have different energy consumption. We computed
the energy consumption for two SoCs with published energy data.
But we did not see any smartphone using these chips. Smartphones
typically use dual-mode chips that support WiFi and Bluetooth, for
which detailed energy information is not widely available. There-
fore, we study two different, well-chosen Bluetooth radios, and
assume that the energy consumption of the SoCs used on smart-
phones lie in between. First, we consider a Bluegiga BLE112 module,
which was among the first BLE radios available. In addition, we
consider the more recent Nordic nRF52832 SoC.

Estimation for the BLE112 device was been carried out using
the energy model proposed in [12]. For the nRF52832 SoC, we have
used the energy model provided by the device manufacturer for
advertising [19], which we have combined with values from the
device’s datasheet [18].

We have put 𝐼𝐵𝐿𝐸 in relation to the mean current draw of the
smartphone. For this purpose, we have assumed that the smart-
phone is equipped with a 3000mAh battery. We further assumed
that this capacity is drained within 24 h when contact tracing is
not carried out, which leads to an average current consumption
of 𝐼𝑃 = 3000mAh/24 h of the smartphone. We can now form the quo-
tient 𝐼𝐵𝐿𝐸/𝐼𝑃 , which gives us the percentage of time within which
continuous contact tracing will drain the battery earlier.

Table 3 shows the results of this computation. The range of
values shown for each scan setting comprises all different adver-
tising intervals 𝑇𝑎,0 supported by Android, iOS and GAEN. For the
BLE112 radio, the SCAN_MODE_LOW_LATENCY setting reduces
the battery lifetime by about 20 %, which will be noticeable in prac-
tice. The SCAN_MODE_BALANCED setting reduces the battery
lifetime by about 5 %, and the SCAN_MODE_LOW_POWER by
about 3 %. GAEN drains the battery by less than 0.4 % earlier, which
can not be noticed by an user. For the nRF51822 radio, the energy
consumption is approximately 75 % lower in all modes of operation.

Figure 3: Probabiltiy of discovery in a crowd of 100 subjects
for SCAN_MODE_LOW_POWER.

It should be mentioned that compared to a ND solution with
optimal energy efficiency (cf. [11]), the parameterizations supported
by Android, iOS and GAEN require significantly more energy for
providing the same worst-case latency. However, the overall energy
demand of the Bluetooth radio is small compared to the capacity of
batteries in most currently available smartphones.

3.2.3 Collision Behavior. If two or more devices transmit a beacon
at the same time, these beacons will overlap and hence collide.
With high probability, these beacons will then not be received
successfully, even when they coincide with a scan window. This
might increase the discovery latency, or even prevent discovery
in some cases. The choice of 𝑇𝑎,0 impacts the collision rate, since
it affects the fraction of time 𝛽 during which the channel is busy.
To quantify this, we have simulated 10,000 discovery procedures
for each parameterization. To cover the absolute worst case, here
we assumed that up to 100 devices can interfere with each other.
We have considered a discovery procedure as successful, if at least
one non-colliding beacon coincided with a scan window within
10 s. This simulation can be regarded as a worst-case estimation. In
particular, our simulation considers every pair of simultaneously
sent packets by different devices as a collision that leads to a loss of
both packets. In practical setups, one of these two packets might still
be received successfully, e.g., because the signal of the interfering
packet has a lower power than the successful one. The purpose of
this study is therefore to show that the resulting performance is
sufficient for practical needs, even under pessimistic assumptions.
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For the SCAN_MODE_LOW_LATENCY and SCAN_MODE_
BALANCED settings, assuming that every smartphone uses the
same settings, the resulting success probability is 100 % for all val-
ues of𝑇𝑎,0 supported by Android and iOS, barring one exception for
SCAN_MODE_BALANCED with 𝑇𝑎,0 = 1.285 s, where the success
probability is reduced to 96.4 %. Figure 3 depicts the probabilities
for the SCAN_MODE_LOW_POWER setting. As can be seen, the
success probabilities vary between 99.4 % and 39.1 %. For values
of 𝑇𝑎,0 > 512ms, the low success probability is caused both by
colliding beacons and by the theoretical worst-case latency (i.e., the
latency when no collision occur) exceeding 10 s. For GAEN, when
assuming the interval lengths given by Table 1, the probability
that at least one beacon is received in every scan window is also
essentially 100 %. The reasons for the high success probability for
most parameterizations are a) the relatively low channel utiliza-
tion 𝛽 = 𝜔/𝑇𝑎 of each radio, and b) the large scan window 𝑑𝑠 in
combination with the random delay. Since multiple beacons are
sent within every scan window, the probability that one of them is
received without colliding with a beacon from a different device is
high. Since the channel is only moderately used in GAEN and the
other available settings, ubiquitous tracing devices are not expected
to disturb any other BLE applications, neither on the same device
and nor on devices in the surrounding environment.

3.3 Other Limitations
Besides the limitations concerning discovery latency, the following
additional limitations reduce the performance and reliability of
contact tracing on smartphones.

(1) For estimating the proximity between two subjects, every
received packet comes with a certain received signal strength indi-
cator (RSSI), which represents the path loss between a sender and
the receiver. Proximity estimation is based on the assumption that
every RSSI corresponds to a unique distance. However, the RSSI
is also influenced by multiple other factors, e.g., the smartphone
model, the orientation of the sending and receiving antennas, the
environment (e.g., metal parts in vicinity) and the wireless channel
used. While some of these uncertainties can be mitigated through
various techniques, the following problem will always remain.
Whenever the wireless signal has to pass through the human body,
the attenuation is much larger than in free space. For example, [1]
reports an attenuation of up to 19.2 dB between the chest and the
back of a human body. How does this impact distance estimation in
contact tracing? We placed two identical smartphones on a table at
a distance of around 10 cm. When running the ITO demonstration
app for contact tracing [9], our experiments showed that the esti-
mated distance was around 50 cm when both smartphones were
within line of sight. But when a human arm was placed between
them, the estimated distance increased to almost 5m. Hence, in
some situations, a smartphone would classify a contact as being
“far away”, while it actually being close. For example, consider two
people walking side-by side and holding their hands, but having
their smartphones in opposite pockets. Though this would repre-
sent a relevant contact, the obstructed line of sight would, with
high probability, lead to a large distance estimation and hence to a
misclassification of the contact. Indeed, experimental studies using
GAEN have shown that distance estimation is prone to errors. For

example, [13] reports that based on data obtained in an experiment
involving multiple smartphone users located in a light-rail tram,
the German tracing app would trigger no exposure notification at
all, while the Italian and Swiss apps would lead to 50 % true and
50 % false positives. These results suggest that when many metal
parts are in the surrounding environment, distance estimation using
smartphones is not reliable.

(2) For tracing all relevant contacts using a wireless solution, it
is important that as many people as possible participate. However,
for contact tracing on smartphones, an application (app) needs to be
installed, the appropriate permissions need to be granted, and the
app needs to be activated. Hence, a certain part of the population
may be physically or mentally unable to handle a smartphone, e.g.,
small children or the elderly.

3.4 Summary
Today, contact tracing apps are heavily reliant on GAEN and can
hence reliably detect only those contacts whose durations are at
least ≈ 5min long. Therefore, brief contacts, e.g., in the course of a
short haul in a crowded subway, might remain unnoticed in spite
of a potentially significant transmission risk. Energy consumption
is only of concern in the SCAN_MODE_LOW_LATENCY setting.

Overall, our performance evaluation shows that the SCAN_MODE_
BALANCED-setting guarantees low latencies of around 5 s, if ad-
vertising intervals below 1 s are used. At the same time, all such con-
figurations would provide a success probability of essentially 100 %
when multiple phones are within range. Also, the energy consump-
tion would remain at a reasonable level. Therefore, contact tracing
applications on smartphones would benefit significantly from Ap-
ple and Google providing access to the SCAN_MODE_BALANCED
setting and to at least one of the supported advertising intervals
below 1 s. Providing an optimized and dedicated parametrization
for contact tracing would further decrease the discovery latencies.
For example, a shorter scan window could be scheduled more fre-
quently, while mostly preserving energy. This could lead to worst-
case latencies of below 5 s, if the advertising interval would also be
shortened accordingly. Further, the accuracy of distance estimation
could potentially be improved by gathering a larger number of
RSSI samples. This could be achieved by allowing a tracing app to
temporarily listen continuously, once an initial contact has been
established.

Both theoretical considerations and practical experiments sug-
gest that at least in certain situations, e.g., in a tram or in a bus,
smartphone-based distance estimation cannot always distinguish
between relevant and irrelevant contacts. Overall, smartphone-
based contact tracing is a best-effort mechanism without any guar-
antees. But if a dedicated device for tracing is designed, these limi-
tations could be mitigated effectively, as described next.

4 CONTACT TRACING USINGWEARABLES
In this section, we discuss a wearable solution and outline how
it could mitigate the problems described in the previous section.
Unlike most existing solutions, e.g., [17], we propose a wearable
that uses a custom-designed wireless protocol and does not rely on
Bluetooth. Consider a wrist-worn bracelet, a necklace or a sticker.
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It would consist of low-cost hardware, e.g., a wireless radio, an ac-
celerometer and a battery. Such a wearable solution would mitigate
the main problems associated with smartphone-based solutions.
First, it could use the entire design space of ND protocols and there-
fore provide worst-case latencies of around 2 s. Second, distance
estimation also need not rely on Bluetooth. In particular, Ultra-
Wideband (UWB) in combination with Time-of-Flight could be
used for distance estimation. Ranging experiments show that such
methods achieve reasonable accuracy even when the human body
attenuates the signal [24]. Recent studies indicate that they can also
improve accuracy in contact tracing scenarios [5]. Also, the combi-
nation of Bluetooth and UWB for contact tracing is currently being
studied [8]. Further, frequency bands other than the 2.4GHz used
by Bluetooth can be used, which are significantly less susceptible
to in-body attenuation and multipath propagation. A wearable is
active whenever worn and hence does not require any handling.
Thus, faulty handling is ruled out. It could also detect certain events
of particular relevance for transmission, e.g., two subjects touching
each other. In addition, the battery lifetime of such a wearable
could be drastically increased compared to a smartphone. For exam-
ple, consider a low-cost nRF52832 radio. We can estimate its energy
consumption based on the data provided from the device manufac-
turer [19] and some additional overheads. We assume a 380mAh
battery, which is often found in smartwatches. For guaranteeing a
discovery latency of 2 s, using the parameterizations from [10], a
battery runtime of up to 235 days can be achieved, which could be
further extended by switching the device off automatically when
not being worn.

In summary, a dedicated wearable device could be designed to
optimize every aspect of the tracing procedure and therefore poten-
tially provide a significantly higher tracing reliability. Nevertheless,
there are also multiple caveats that are frequently discussed in the
context of wearables. First, wearables need to be mass-produced
and deployed, while smartphones are already prevalent. However,
wearables for other purposes are already being mass-produced,
e.g., in the form of watches, earphones or spectacles. Hence, the
necessary facilities for scaling up the production of tracing wear-
ables are already present. Contact tracing functionality can also
be integrated into wearables for different purposes (e.g., fitness
tracking), which might increase the prevalence of tracing devices.
Second, privacy concerns often prevent the deployment of tracing
apps. Here, wearables are advantageous because they are dedicated
low-content devices, which do not store any unnecessary private
data, such as pictures or personal messages. Nevertheless, users
might still mistrust a dedicated body-worn device, because it might
potentially also collect data not needed for contact tracing.

5 CONCLUDING REMARKS
We have studied the technical feasibility of using smartphones
for contact tracing. Even though their radios support the essential
features necessary for contact tracing, many contacts potentially
cannot be detected due to the high worst-case latency, which lies
around 5min for tracing solutions using GAEN. While this could
be mitigated if tracing apps could make full use of the existing BLE

APIs, contact classification using distance estimation cannot be
done with sufficient accuracy in all situations. A dedicated wearable
that does not rely on Bluetooth could overcome this limitation and
increase the effectiveness of electronic contact tracing.
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