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Abstract— This paper studies the following basic flexible
manufacturing problem: Given N machines that can perform
the same job on a production item (e.g., drilling or tapping)
but with different capabilities (e.g., energy requirements and
speeds), what is an optimal schedule for the job on these
machines? While this is a well-studied problem, the main
innovation this paper introduces is the explicit modeling of
the underlying process dynamics—i.e., the physical interaction
of the item and the machine—using differential equations. The
resulting scheduling problem is in a hybrid systems setting that
involves determining the transition times between states, where
the system evolution in each state is defined by differential
equations. To the best of our knowledge, such a cyber-physical
systems (CPS) oriented approach to machine scheduling has
not been studied before, although it lies at the core of flexible
manufacturing in Industry 4.0. We believe that this new formu-
lation might lead to a renewed interest in machine scheduling
problems, but now in a hybrid/CPS-oriented setting.

I. INTRODUCTION

Flexible manufacturing systems in Industry 4.0 require
intelligently adapting multiple machines to meet changing
requirements. How do these adaptation decisions depend
on the underlying dynamics of the machines involved? To
answer this, we study the scheduling problem shown in
Fig. 1. The question is: given a raw material that needs
to be machined into a final product, and a set of machines
or multiple modes of operation of a single machine, how
much time should the item spend in each machine or mode?
Each machine has different characteristics and capabilities
(e.g., hardness of its drill bit, maximum input power, and
consequently processing times and energy requirements). In
addition to obtaining the finished product, the goal is to
optimize associated metrics like completion time and energy
consumption. Focusing on multiple performance metrics and
automatically adapting the manufacturing process is the
hallmark of Industry 4.0.

The core problem here is that of machine scheduling,
which has been widely studied for many years ([1], [2],
[3], just to name a few), both in the manufacturing and
job scheduling communities. However, almost all previous
studies have been restricted to an inaccurately reduced setting
where the remaining execution time of the job decreases
linearly over time as it is processed. In contrast to this tradi-
tional approach, in this paper, we study a machine scheduling
problem following a cyber-physical systems approach. The
goal is to explicitly model the physical dynamics of how a
machine interacts with the material. Thus, instead of consid-
ering only processing times that decrease linearly, we model
the transformation of the material into a finished product
using a set of differential equations, to more accurately
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Fig. 1. Process dynamics change with different modes.

capture the physical dynamics of the manufacturing process.
In such a hybrid model, discrete state transitions represent
how the material shifts from one machine to another (or how
the configuration of a machine changes), and within a state,
the continuous transformation of the material by the machine
is modeled using differential equations. Using this model, we
can formulate a scheduling problem to determine the state
transition times that optimize metrics like completion time
and energy cost.

Proposed solution: We assume that we can switch
between machines only at uniformly-spaced discrete instants
of time. A node at depth k in the resulting search tree
represents a partial solution comprising machine transitions
until the k-th time step. To keep the search tractable, we
perform predictive pruning. We compare nodes (or partial
solutions) based on the state of the job, the time elapsed,
and the available machine transitions, and consider only the
sub-trees originating from the promising nodes for further
exploration. Through this procedure, we generate a set of
one or more Pareto-optimal solutions. In our experiments,
this technique can synthesize results orders of magnitude
faster than an exhaustive search (in a few milliseconds on
average) and in particular avoid the long worst case run-
times typical for exhaustive searches. At the same time, the
solutions are only up to 4% worse (less than 1% in 500 out
of 564 cases) in terms of the production objectives, i.e., job
completion time and energy consumption.

Paper organization: We first present a brief summary
of related work. Then, we formally introduce the scheduling
problem in Sec. II. We formulate a thread tapping process
in Sec. III to illustrate the problem. Next, we explain our
optimization approach in Sec. IV, and present results of an
experimental evaluation using the tapping process in Sec. V.
Finally, Sec. VI provides concluding remarks.

A. Related work

Scheduling is a well-studied topic in adaptive manufactur-
ing. Different scheduling techniques for Hybrid Flow Shop
(HFS) problems, where production happens in a fixed num-



ber of predefined stages, each consisting of multiple identical
machines, have been discussed, e.g., in [3]. In scenarios
where machines are used in different orders, the scheduling
strategy must ensure safety properties such as deadlock free-
dom [4]. Another commonly investigated issue is adapting
the schedule in the presence of machine breakdown and ac-
commodating scheduled maintenance downtime [5]. In order
to quickly evaluate the impact of various online changes to
a given schedule (e.g., due to the arrival of new high priority
orders), [6] presents a real-time simulation model for flexible
manufacturing systems. Similar scheduling problems have
also been studied in industrial process control [7], and in
the design of hardware/software control systems, e.g., in the
automotive domain [8], [9], [10].

Unfortunately, all of these techniques model the individual
processing steps as fixed-length work units, and at most
consider different setup costs when a machine has to switch
tasks types. They do not model the steps themselves as
continuous-time dynamical processes, whose behavior could
change at arbitrary points in time. A hybrid model for
flexible manufacturing systems has been described in [11].
However, the differential equations describe the flow of parts
through the factory, and not the individual manufacturing
steps themselves, as we do in this paper.

There is also a line of research that applies social- and
stochastic-based optimization techniques to manufacturing
job scheduling. For instance, the work in [12] tackles the
environmental aspects (power consumption, and tardiness)
in the job shop scheduling problem by applying a multi-
objective grey wolf optimizer. Similarly, [13] presents a
multi-objective particle swarm optimization approach for
optimizing the on-off behaviour of one computerized nu-
merical control machine. Both approaches generate a set of
Pareto-optimal solutions, offering a trade-off between energy
consumption and process time. But again, they treat the
individual jobs as fixed-length items.

Beyond flexible manufacturing, process control and in-
dustrial control (including the automotive domain), the real-
time systems community also has a long history of studying
task scheduling, including in cyber-physical systems [14].
While such literature rarely addresses flexible manufacturing
scenarios directly (even though e.g., [15] has investigated
the scheduling of CPU tasks for a flexible manufacturing
setup), the employed techniques can also be applied to the
scheduling of manufacturing jobs. However, they do not per-
mit the change in remaining execution times of jobs (or other
related metrics) to be defined by differential equations, as is
the case in our paper. Some related scheduling problems,
albeit not considering the rich dynamics that we study here,
include [16] that addresses the dynamic scheduling of tasks
under real-time constraints, and works like [17] and [18]
that target the problem of multi-mode scheduling with sim-
ilarities to switching between different production modes in
manufacturing systems. Our setup also has similarities with
hybrid/multi-mode systems studied in [19] where the goal
was safety verification, whereas we consider optimization
and a very different problem context.

II. DYNAMICS-AWARE SCHEDULING PROBLEM

Let us consider a manufacturing process where a machine
performs some operations on a production item. In this paper,
we study processes for which the dynamics can be captured
using a set of linear differential equations of the form

ẋ(t) = Ax(t) +B u. (1)

Here, the time-varying vectors x(t) and u are the states
of and the inputs to the process (comprising both the item
being machined and the machine itself) respectively, while
the matrices A and B are process constants. Note that this
model may not only describe the physical system itself, but
can also include any form of linear controller needed to
ensure stability of the system, and to guide the process to
the target state. Consequently, u may not only be a physical
system input, but might contain fixed control inputs such as
a reference point.

In flexible manufacturing, we may have several machines
that can perform the same operations but with different capa-
bilities, e.g., speed and energy usage. A process is assumed
to have n machines available denoted M1, . . . ,Mn, each
with different process dynamics of the form in Eq. (1), with
constants denoted by Ai, Bi and ui.

The manufacturing processes in this setting are controlled
by a computer, allowing us to choose the best machine at any
time to optimize production efficiency. Thus, we can model
the manufacturing process as a switched dynamical system

ẋ(t) = Aσ(t) x(t) +Bσ(t) uσ(t), (2)

where σ(t) is the machine selection function, with σ(t) = i
indicating that machine Mi is selected at time t.

The above formulation does not describe the effect that
the machine transitions themselves can have on the state.
This is sufficient if different machines only differ in the
control parameters or the effects are negligible. However,
if the switch involves e.g. the change of a tool or handing
over the object to a completely different machine, this effect
must be modeled too. In this work, we model a switch at
time ts as an atomic operation, represented by a function
xts+ = Fji(xts−) that depends on the state just before the
switch xts− and the selected modes before and after the
switch j = σ(ts−) and i = σ(ts+) respectively.

In essence, a flexible manufacturing process thus defined
is a hybrid system. The process state evolves in continuous
time, while the process control software can cause discrete
transitions between dynamical laws by changing the operat-
ing machine.

In addition to reaching a target region Xtgt from an initial
state xini , a typical production objective is to minimize
the processing cost e, which can e.g. consist of processing
time and energy. Similarly to the state evolution, we model
the cost evolution while a particular mode is active as a
differential equation ė = Pi

(
x(t), ui

)
, and the cost for

switching from mode j to mode i at time ts as an opaque
function Eji(xts−). In many manufacturing processes, the
available machines present a trade-off between time and
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Fig. 2. Schematic of the tapping process.

energy. In such cases, the scheduling problem can be treated
as a multi-objective optimization problem, yielding several
Pareto-optimal solutions. The goal in this paper is to obtain
these solutions efficiently.

III. ILLUSTRATIVE PROBLEM: TAPPING

As a motivational example, we study the thread tapping
process shown in Fig. 2, where a milling machine equipped
with a tap cuts a thread inside a pre-drilled hole. Typically,
such a machine has different modes of operation that a
computer can select. For instance, the machine could run
at different angular speeds and torques by changing the gear
setting, yielding different process dynamics.

The tapping process can be modeled based on the dif-
ferential equations governing a direct current (DC) motor
assuming a homogeneous magnetic field [20]. We extend
these equations to account for Coulomb friction depending
on the depth of the tap. The input of the system is the voltage
applied to the armature winding.

On the electrical side, the resistance R models how the
armature limits the maximum current of the motor alongside
the back-EMF voltage Vemf , while the inductance L models
how it limits the current over time. The motor’s shaft is
connected to n gears, each having N

(1)
in , N

(2)
in , . . . , N

(n)
in

teeth. The rotation is transmitted to an output gear with Nout

teeth. Given the input gear N (i)
in , the gear ratio is computed as

G
(i)
r = N

(i)
in /Nout . For a given G

(i)
r , the DC motor dynamics

are governed by the following differential equations:

Kt ia(t) = J
dω

dt
+Kd ω(t) + Fd G

(i)
r d(t) +G(i)

r Fs (3)

va(t) = R ia(t) + L
dia
dt

+Ke ω(t). (4)

Here, Ke, Kt, Kd, Fd, and Fs denote the back-EMF,
motor torque, damping, dynamic hole friction, and static
hole friction constants, respectively. The constant J gives
the rotational inertia. At time t, the variables va(t), ω(t),
ia(t), and d(t) represent the input voltage, the angular
speed, the armature’s current, and the depth of the tap. The
term FdG

(i)
r d(t) in Eq. (3) accounts for the frictional force

that depends on the tap’s depth. The depth d is computed
based on the linear relation between a single complete spin-
dle rotation and the thread slope Ts, measured in millimeters
per revolution. For G

(i)
r , the relation can be captured using

the differential equation:

dd

dt
=

TsG
(i)
r

2π
ω(t). (5)

By letting the state vector x = [ω ia d]T and the input
vector u = [va Fs]

T , we can combine Eq. (3), (4), and (5)
to derive the following matrices A and B for Eq. (1):

Ai =


-Kd

J
Kt

J -Fd G(i)
r

J

-Ke

L -RL 0

Ts G(i)
r

2π 0 0

 Bi =


0 -G

(i)
r

J

1
L 0

0 0

 (6)

For each gear ratio G
(i)
r , we obtain different process dynam-

ics, distinguished by Ai and Bi. For n different input gears,
the process can switch between n different dynamics. At
time t, the process constants are given by Aσ(t) and Bσ(t)

where σ(t) ∈ {1, 2, . . . , n}. As explained in Sec. II, our main
research question is: What is an optimal way to switch
between these different dynamics?

A. Numerical example

Let us now consider a numerical example exemplifying
how each machine setting might offer a different trade-off
between production time and cost. Let us assume that the
motor initially has zero rotational speed, zero current through
the armature, and zero tapping depth. The target depth is
20mm. The values for the process constants are given by:

va = 9.6 L = 2.5× 10−4 R = 1 J = 0.1

Ts = 1 Kd = 0.25 Ke = 1 Kt = 1

Fd = 0.01 Fs = 0.05

(7)

Given these constants and the state-space model in Eq. (6),
it is possible to simulate the tapping process.

Let us consider two settings for the machine corresponding
to the gear ratios G

(1)
r = 15 and G

(2)
r = 30. As shown

in Fig. 3, using G
(1)
r and G

(2)
r , the time in which the

target depth can be reached is approximately 1.5 s and 1.1 s,
respectively. Thus, the process is approximately 36% slower
with the former setting than the latter, but it draws less power.
If we measure the production cost in terms of the energy
spent on the process, G(1)

r is more cost-saving compared to
G

(2)
r . This shows that there is a trade-off opportunity between

the cost and the time that needs to be explored.
Consider, for example, that this tapping process has a

production deadline of 1.3 s. This deadline can be met by
just using G

(2)
r . However, we can ask two questions here:

(i) is that the only choice? (ii) is that optimal in terms of
the energy spent? The computer could use a combination
of both modes. As the production objectives (e.g., the cost
and the speed) can conflict with each other, there might be
several Pareto-optimal solutions. Depending on the produc-
tion requirements, one such solution needs to be used for the
process.

In a tapping process, the dynamic friction increases with
depth. As the friction counterbalances the motor torque, the
spindle speed approaches zero. In Fig. 3, we can see that the



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

Target Depth

Time (s)

D
ep

th
(m

m
)a

nd
Po

w
er

(W
)

Depth with G
(1)
r Depth with G

(2)
r

Power with G
(1)
r Power with G

(2)
r

Fig. 3. Simulating the tapping process with two gear settings, i.e., G(1)
r

and G
(2)
r . Solid lines identify the depth in millimetres achieved by each

gear setting, while dashed lines identify the power drawn in watts (W).

maximum tapping depth with G
(2)
r is around 27mm. With

G
(1)
r , we can tap deeper because a higher rotational torque

can be extracted with a lower gear ratio. If the target tapping
depth is increased to 40mm, a straightforward solution is to
use G

(1)
r for the entire tapping process. However, we can

also use G
(2)
r at lower depths and then switch to G

(1)
r to

reduce the process time at the cost of more energy. This
again demonstrates that there is a scope for schedule opti-
mization in a manufacturing process based on the production
requirements.

Observe in Fig. 3 that at lower depths, the difference in
tapping speed between G

(1)
r and G

(2)
r is larger (given by the

slope of the depth curves), while the difference in power
drawn is smaller. Thus, it becomes increasingly inefficient
to use G

(2)
r as the tap’s depth increases. Using this relation,

we can constrain the schedule optimization problem so that
at any time during the tapping process, we can only switch
to a lower gear. Such a constraint can reduce the complexity
of the optimization problem significantly.

IV. PROPOSED OPTIMIZATION STRATEGY

In order to determine a Pareto-optimal set of switching
sequences, we propose to discretize the process model in
Sec. II using a fixed time step h. Machine switches are
only allowed (but not required) between steps, and the same
machine is used for the duration of a step.

A. Discretization

The input ui is a fixed property of the machine Mi, and is
thus constant during each time step. Therefore, the discrete
state change when applying machine Mi can be modeled as

x[k + 1] = Fi(x[k]), where

Fi(x) = Φix+ Γiui, Φi = eAih, and

Γi =

∫ h

0

eAisBi ds.

(8)

Further, we assume that we can write the cost function as

e[k + 1] = e[k] + Ei(x[k]), (9)

where Ei(x) is always non-negative in all dimensions, and
thus e[k] monotonically increases in all dimensions over
time. Time can either be modeled explicitly as a dimension
of e, or calculated (more efficiently) as k · h (plus the
necessary time for any switches). For the example presented
in Sec. III, the cost is time and energy, and we compute
energy as the integral over voltage times the current, which
can be expressed as

Ei(x) =

∫ h

0

uT
i NXi(t, x) dt. (10)

where X (t, x) is the state evolving according to Eq. (1)
from the state x at the beginning of a time step, and N =
[ 0 1 0
0 0 0 ]. Solving the integral leads to Eq. (11) (we omit the

intermediate steps for space reasons):

Ei(x) = uT
i Six+ uT

i Riui

with Si = NA−1
i

(
eAih − I

)
,

Ri = NA−1
i

(
A−1

i eAih −A−1
i − I h

)
Bi

(11)

If the mode switch has non-negligible effects on cost
and process state (see Sec. II), we can add these effects
in Fi(x) and Ej(x), which would then depend not only
on the current mode Mi, but also the previous mode Mj .
So Fji(x) = Fi(Fji(x)) with Fjj(x) being the identity
function and Eji(x) = Ei(Fji(x)) + Eji(x) with Ejj = 0.
Additionally, we need to model time explicitly as part of
the cost e in this case, as each transition may take different
amounts of time. However, in order to keep the notation
short, we will use the notation Fi(x) and Ei(x) in the rest
of the paper also for the generalized cases.

B. Pareto optimization

Using the above formulation, we now construct a search
tree over the possible machine selection schedules. Each tree
node ω̃ represents a potential solution, i.e. a sequence of
machine selections I that may or may not drive x into Xtgt .
I corresponds to the sequence of selected branches in the
tree leading to the current node. We represent every node ω̃a

as a tuple containing:
1) the sequence of selected branches (selected machines)

Ia = [i1, i2, . . . , ik] leading to the current node;
2) the state xa = Fik

(
Fik−1

(. . . (Fi1(xini))
)

we get after
applying the sequence of state transformations;

3) the accumulated cost of those transitions
ea =

∑k
l=1 Eil(x[l]).

A node ω̃a in this tree could be uniquely described by Ia, and
both state and cost could be recomputed from that sequence
and the initial state. However, creating and evaluating a new
node can be done much more efficiently if we cache x
and e, needing only to compute the difference from the
parent. This is especially beneficial because the algorithm
usually needs to create multiple child nodes for each ω̃,
which can share the first k − 1 computation steps for e
and x with the parent. So, given a node ω̃a = ⟨Ia, xa, ea⟩,



Algorithm 1: Search-based Pareto optimization
Input : The set of machines {M1, . . . ,Mn}
Output : The set of Pareto-optimal solutions Ω

1 Initialize the empty set of Pareto-optimal solutions (Ω);
2 Initialize list of partial solutions with initial machine (Ω̃);
3 while There are partial solutions in Ω̃ do
4 Create a new, empty list of partial solution (Ω̃new );
5 forall partial solutions ω̃ in Ω̃ do
6 for machine Mi in {M1, . . . ,Mn} do
7 Compute new partial solution ω̃new by applying

machine Mi for one time step;
8 Add the new partial solution ω̃new to the list Ω̃new ;

9 Remove partial solutions ω̃ from Ω̃new , that are dominated by
those already in the set Ω;

10 if using the heuristic then
11 Prune partial solutions from Ω̃new based on heuristic

criteria;

12 Move complete solutions from Ω̃new to Ω;
13 Replace Ω̃ with remaining partial solutions from Ω̃new

applying machine Mi for one time step generates a child
node ω̃b = ⟨[Ia, i], Fi(xa), Ei(xa) + ea⟩.

A node ω̃ in the tree represents a full solution ω if and only
if x ∈ Xtgt , and we call all other nodes partial solutions.
Our goal is to find the set of full solutions Ω whose cost
is not dominated by any other solution, meaning that for
any ωp ∈ Ω, there does not exist any other ωq whose cost
is smaller in all dimensions (e.g., time and energy). As the
cost monotonically increases with each step, a node ωn+1

that is a child of ωn will always be dominated by ωn. Thus,
any node ωn that represents a full solution is a leaf node in
the search tree. Furthermore, any node ω̃n corresponding to
a partial solution whose cost is dominated by a known full
solution can also never have a descendant that will be part
of the Pareto front, and thus warrants no further exploration.

Alg. 1 shows the procedure for finding the Pareto front
based on the principles discussed so far. Note that in this
basic algorithm, we assume that we may apply any machine
in any reachable state x ̸∈ Xtgt . In practice, possible
transitions between machines might be further restricted,
leading to more nodes becoming leaves without being a
complete solution. Alg. 1 is guaranteed to terminate if and
only if 1) any possible sequence of machines will eventually
drive the state towards Xtgt , or if 2a) at least one full solution
is found and 2b) the cost for any sequence of machines
is strictly monotonically increasing without converging to
a level that is not dominated by that solution. In particular,
condition 2a) can often be achieved by bootstrapping the
algorithm, for instance, with a naïve solution that uses only
one machine. Furthermore, condition 2b) is also reasonable
in the majority of real-world problems. Practically, however,
theoretical termination of the algorithm is less of a concern
than termination within some reasonable time limit, as—in
the worst case—the size of Ω̃ increases exponentially with
each iteration.

This concern of practical termination is tightly coupled
to the question of choosing an appropriate discretization

time h, which is a trade-off between runtime and accuracy. A
shorter h will cause deeper decision trees and, thus, exponen-
tially more nodes to evaluate (when using a naïve breadth-
first search), while a longer h results in coarser sampling of
the solution space and thus less optimal solutions. One can
think of some situations where a good h value is known a
priori, e.g., based on previous trial-and-error runs. However,
due to the exponential growth (at least for an exhaustive
search), it is still hard to estimate the actual runtime a priori.

Instead, we propose a more robust approach, where the
algorithm is first run with a long discretization time h0,
and then re-run iteratively with a shorter hr. The process is
repeated until either no significant improvements are seen,
the runtime reaches a predefined maximum, or hr reaches a
predefined minimum. By choosing hr+1 = hr/2, the runtime
overhead of the previous iterations compared to that of the
current iteration is minimized. For instance, in our test cases
(see Sec. V), their combined runtime only comprised about
10–15% of the total runtime.

C. Problem-specific extensions and heuristics

If the exact problem structure and its constraints are
known, as in our motivational example from Sec. III, the
general algorithm can be further fine-tuned to improve its
runtime. First, even if the optimal switching times are
unknown, the order of selected machines may follow a
known pattern. For example, in the tapping process, friction
increases with depth, so an optimal solution will always
switch from higher to lower gears. In other cases we might
want to switch from a more aggressive control algorithm
to a slower one when close to the target. For our example,
this means the loop in line 6 need not iterate the full set
of machines from M1 to Mn, but can start at the currently
used machine ω̃.I[end] (assuming the machines are sorted
in decreasing order of gear ratios). This constraint turns the
exponential growth of nodes in each step into a polynomial
growth, i.e., O(|Ω̃new |) = O(kn−1) instead of O(nk),
where n is the number of machines and k is the number
of steps. Intuitively, this is because with a fixed order of
machines, at most n− 1 switches can happen and thus there
are only O

((
k−1
n−1

))
possible switching sequences for k steps,

which is O(kn−1).
As a second extension, we can apply heuristics to prune

branches by comparing nodes with other partial solutions
instead of waiting for full solutions to be found. In general,
a partial solution ω̃a is dominated by ω̃b if and only if
each full solution that is a descendant of ω̃a is dominated
by at least one descendant of ω̃b. However, under practical
runtime constraints, it can be beneficial to use a non-optimal
heuristic that can be run with a smaller discretization time
(see our experimental results in Sec. V). To that end, we
prune partial solutions not only when they are dominated by
full solutions, but also when they are dominated by other
partial solutions. Our heuristic determines the dominance
between partial solutions by comparing not only the actual
costs (e.g., time and energy), but also the distance to Xtgt

and the remaining degrees of freedom. That is, in our case



study, the system can only switch from machine Mi to Mj

if i ≤ j, so if the current machine of the partial solution ω̃a

is lower than that of ω̃b, we say that ω̃a has more degrees
of freedom. Eq. 12 summarizes this heuristic used in prune
(Alg. 1):

ω̃a ⪯ ω̃b ⇐⇒ dist(xtgt , ω̃a.x) ≤ dist(xtgt , ω̃b.x)

∧ ω̃a.I[end] ≤ ω̃b.I[end]

∧ ω̃a.e ⪯ ω̃b.e

(12)

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we validate our proposed scheduling strat-
egy by applying it to the tapping process from Sec. III. We
wrote a C++ implementation of the problem-specific version
of Alg. 1 with and without the pruning heuristic (called
Heuristic and Exhaustive in this section respectively), and
compared their output and runtime for multiple variations of
the tapping process. We discuss details of our experimental
setup next, then present an analysis of the results.

Although the proposed example has one machine with
multiple modes of operation, it is formulated in the same
manner that a multiple single-mode machines example
would. As such, in the following, a mode represents a
machine in our problem formulation.

We studied the robustness and scalability of the proposed
strategy on a series of variations in the characteristics of the
tapping process. The model parameter sets were:

Fd ∈ {0.05, 0.1, 0.2, 0.5} Fs ∈ {0.01, 0.2, 0.5, 1}
Gmin

r ∈ {1, 2, 5, 10} Grange
r ∈ {2, 5, 10, 20}

n ∈ {3, 4, 5} J ∈ {0.1} Va ∈ {10, 20}
(13)

The parameters not listed were set as in Eq. (7). The
Cartesian product of these variations generated a total of
1536 parameters configurations, 972 of which resulted in a
machine’s configuration that was unable to reach the target
depth, and 564 valid configurations. We ran one experiment
for each configuration, in which the modes differed only by
gear ratios. Gear ratios were calculated by linearly interpo-
lating between Gmin

r and Gmin
r +Grange

r . Consequently, of
the 1536 experiments, there were 512 with 3, 4, and 5 modes
each. The experiments were configured with xini = 0, and
a target depth of 40mm. As described in Sec. IV-B, we
ran Heuristic and Exhaustive with exponentially decreasing
discretization time h, beginning at 51.2 s, and halving each
round until either reaching 0.2 s, or exceeding a timeout of
five seconds. All experiments were run on a Windows 10
desktop machine, using a single core of an Intel® i5-6600K
processor running at ~3.50 GHz.

A. Results analysis

As an example, Fig. 4 shows the Pareto fronts generated
by one experiment, configured with Fd = 0.1, Fs = 0.2,
Va = 20, n = 3, Gmin

r = 1, and Grange
r = 5. To aid in

presentation, only the smallest three discretization times h
are shown, i.e., 0.2, 0.4, and 0.8 seconds.

Fig. 4. Comparison between Heuristic and Exhaustive Pareto fronts for
the smallest three discretization times h, i.e., 0.8, 0.4, 0.2.

Fig. 5. Mode sequences for the Pareto optimal solutions found by the
Heuristic minimizing processing time (top) or energy (bottom). Correspond-
ing to Group S1 and Group S2 in Fig. 4 respectively.

As we can see in the figure, Heuristic and Exhaustive
found equivalent (probably identical) solutions at discretiza-
tion time 0.8 and most of the time also for 0.4. Only at
a discretization time of 0.2 does the Exhaustive algorithm
find almost consistently better solutions (crosses) in terms
of Energy than the Heuristic (dashed line). Note however,
that the differences are very small.

For reference, when disallowing mode switches during
processing, the resulting Pareto front would have a single
solution at 8.4 s and 1912 J, corresponding to the exclusive
use of mode 2.

The time and energy range covered by the Pareto-optimal
multi-mode solutions, as well as the improvement in both
dimensions compared to solutions without switching, demon-
strate the advantages that mode scheduling can bring com-
pared to treating each manufacturing job as an atomic
operation in such a setup.

Now, let us focus on two groups of solutions on these
Pareto fronts: the high-energy and low processing time
Group S1, and the low-energy and high processing time
Group S2. Specifically, let us focus on the three results that



Fig. 6. Mode sequences for the Pareto-optimal solutions found by the
Heuristic for another configuration. Again, the top shows the Pareto-optimal
solutions that minimize low processing time and the bottom the ones
minimizing energy.

the Heuristic is able to find for different values of h, i.e., 0.2,
0.4, and 0.8. Fig. 5 shows the mode switching behaviour
for S1 (top) and S2 (bottom). In case of S1, the Heuristic
decided to use only modes 1 and 2. Thanks to the lower
granularity of the simulation, with h = 0.2 the switch from
mode 1 to mode 2 occurs earlier than with h = 0.8. The
total processing time is around 7.6 s. For S2 the difference
between the switching instants is smaller, with a greater total
processing time of around 9.4 s.

In order to show that finer granularity levels not only lead
to more finely tuned switching times, but can find completely
different strategies, we also show the mode sequence for
Pareto points found for another configuration in Fig. 6.
This configuration has n = 5 modes and Fd = 0.1,
Fs = 0.01, Va = 20, Gmin

r = 2, and Grange
r = 2. The

solutions that minimize processing time (top) are again very
similar between the different discretization times. However,
the solutions that optimize for low energy (bottom) differ
widely, and in the case of h = 0.8, mode 4 is skipped all
together.

To aggregate the results of all our experiments, and to
compare the Heuristic against the Exhaustive search, we use
the binary ϵ-indicator [21], a metric that compares the Pareto
fronts from two multi-objective optimization algorithms.
Given two Pareto fronts Ω1 and Ω2, the binary ϵ-indicator is
given by

Iϵ(Ω1,Ω2) = max
ω2∈Ω2

min
ω1∈Ω1

max
i∈{1,2}

ω1(i)

ω2(i)
. (14)

Intuitively, the value Iϵ(Ω1,Ω2) is the smallest factor by
which Ω2 may be scaled so that it is completely dominated
by Ω1. Values below 1 imply that Ω1 already dominates Ω2,
whereas values over 1 indicate that at least some points in Ω2

are not dominated by Ω1.
The violin plots on the left of Fig. 7 show the values of

Iϵ(H,E) across all experiments performed, where H is the
Pareto front from Heuristic with discretization time 0.2 s,
and E is the Pareto front from the last complete iteration
of Exhaustive. The results are binned by that discretization
time. As expected, if Exhaustive reaches the same granularity

Fig. 7. ϵ-indicators comparing Heuristic with Exhaustive (left) and with
a single machine and single mode (right). Values below 1 (blue color)
imply that Heuristic dominates Exhaustive, whereas values over 1 (red
color) indicate that at least some points in Exhaustive are not dominated by
Heuristic. With h = 0.2, most of Heuristic Pareto fronts are less than 1%
worse than those of the Exhaustive. Heuristic dominates the trivial single-
machine solution.

as Heuristic, its results are at least as good as those from
Heuristic. In most cases (500 out of 564) however, the
ϵ-indicator is less than 1.01, i.e., the Pareto front from
Heuristic is at most 1% worse than that from Exhaustive.
Even in the worst case, ϵ is less than 1.04. When Exhaustive
is not able to finish, the differences shrink, and in some
cases Heuristic is even able to find better solutions. This
demonstrates the effectiveness of the Heuristic in finding
near-optimal solutions.

In order to provide a baseline, we also compared the Pareto
fronts found with the Heuristic with those that result from
selecting the mode only at the beginning, with no switches
allowed during processing. As can be seen in the violin
plot on the right of Fig. 7, Heuristic usually dominated
these trivial solutions both in terms of time and energy, and
sometimes significantly so.

B. Efficiency analysis

Fig. 8 shows the runtime of each of the algorithms
for each experiment. The elapsed time is shown on the
vertical axis in a symmetric logarithmic scale, and the
experiments are shown across the horizontal axis, sorted
by Exhaustive’s runtime. It can be seen that Heuristic
completes significantly faster than Exhaustive in all cases,
usually by one or more orders of magnitude. Indeed, the
longest run took less than 150ms, and it took less than 4 s
in total to run Heuristic for all experiments. Thus, although
Heuristic may produce solutions that are slightly worse
than the true Pareto front found by Exhaustive, the massive
improvement in runtime may make this a desirable trade-off
for flexible manufacturing.



Fig. 8. Runtime comparison between heuristic and exhaustive searches.
Heuristic is usually 1–2 orders of magnitude faster than the exhaustive
search, and most importantly never timed out.

VI. CONCLUDING REMARKS

Analysis of hybrid systems and optimized scheduling of
control tasks have been extensively studied in the context of
cyber-physical systems. Yet, in smart manufacturing, individ-
ual processing steps have—to the best of our knowledge—
only been treated as atomic work items. This is the first
work to propose a holistic way to model computer-controlled
manufacturing processes with hybrid dynamics. This enables
manufacturers to optimize and explore possible trade-offs
between different processing steps. We validated our mod-
eling approach by developing an optimization strategy and
applying it to a tapping process.

While initial results have been promising, it is important
to further evaluate the potential of this approach. Towards
that goal, we plan to apply our approach to processes with
more complex (e.g., non-linear) system dynamics and a non-
negligible cost for mode transitions, while also addressing
additional real-world concerns like material degradation or
tool aging. In this context, we will also improve our basic
optimization strategy, like discretizing with dynamic step
lengths. The problem we studied in this paper also has inter-
esting connections to electronic design automation involving
analog components [22], [23]. We plan to study how the
solutions proposed for such problems might extend to our
setup and vice versa.
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