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Abstract—This paper is concerned with the following question:
Given a set of control tasks that are not schedulable, i.e., their
required timing properties cannot be satisfied, what should be
changed? While the real-time systems literature proposes many
different schedulability analysis techniques, it surprisingly pro-
vides almost no guidelines on what should be changed to make
a task set schedulable, when it is not. We show that when the
tasks in question are control tasks, this timing debugging question
in the context of cyber-physical systems (CPS) may be answered
by exploiting the dynamics of the physical systems that these
control tasks are expected to influence. Towards this, we study a
very simple setup, viz., when a set of periodic tasks with implicit
deadlines is not schedulable, by how much should the periods be
changed in order to make the task set schedulable? Among the
many ways in which the periods can be modified, our proposed
strategy is to change the periods in a manner such that while the
task set becomes schedulable, the poles of the closed-loop system
experience the minimal shift. Since the poles influence the closed
loop dynamics of the system, we thereby ensure that we obtain
a system with the desired timing properties whose dynamics is
very similar to the dynamics of the original (non-schedulable)
system. We formulate this CPS timing debugging strategy as an
optimization problem and illustrate it with a concrete example.

I. INTRODUCTION

Validation of timing properties is a crucial step in the
design of many safety-critical systems. For this, the real-
time systems literature provides a wide range of schedulability
analysis techniques [1]. In the same measure, there are also
many different choices of scheduling algorithms to ensure that
the desired timing properties are satisfied. However, the third
important pillar in the design of time-critical systems, viz.,
“what to change when timing properties are not satisfied?” is
surprisingly very weak in terms of the relevant techniques and
literature that is available. The reason for this being there can
be many different changes that could satisfy timing constraints,
but their feasibility or impact on the functional properties
of the system being designed cannot be evaluated using the
abstractions typically used for timing validation. The goal
of this paper is to address this important question of “what
should be changed?” and to propose a new class of timing
debugging techniques. They rely on the observation that many
time-critical software tasks implement feedback control loops,
and therefore the changes to satisfy schedulability constraints
could be evaluated from a system-level perspective, viz., how
do those changes impact the dynamics of the feedback control
loop? Given this integrated approach of ensuring the timing
properties of software tasks by accounting for the (physical)
dynamics of the system being controlled, one can view this as
a cyber-physical systems (CPS) approach to timing debugging.

The problem we address in this paper is the most basic timing
debugging problem: Given a set of periodic tasks with implicit
deadlines, i.e., deadlines equal to periods, which periods should
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Fig. 1. The simplest timing debugging problem.

be changed in order to make the task set schedulable? See
Fig. 1. Since the earliest deadline first (EDF) scheduling policy
is known to be optimal in this setting, we consider this for
scheduling the tasks on a single processor. Our goal in this
paper is merely to initiate a discussion on this approach, and
towards this we show that even this simplest setup opens up
many different design issues. A more real-life setup could
involve multiple processors and communication buses on which
different tasks are mapped and scheduled. The timing debug-
ging question could then expand to: how should task and
message mapping and scheduling, periods of these tasks, the
granularity with which they are partitioned, and possibly even
their offsets, be changed in order to satisfy the required timing
and schedulability constraints?

Our proposed approach in this paper hinges on the fact that
the dynamics of the closed-loop system depend on the location
of the system poles [2], and by changing the task periods
these poles also shift. Therefore, a first approach could be
to change those task periods that result in the minimum shift
in the poles, which translates into an optimization problem.
However, a system has multiple poles and depending on their
location they impact the system dynamics differently. A change
in the task period might have different impact on how much
each of these poles change. Similarly, how should the notion of
dynamics be quantified? They can be quantified using metrics
like peak overshoot, settling time, or the root sum square
difference between the trajectories of how the state of the
system evolves for two different periods. How these metrics
depend on the shift in the system poles is complex and system
dependent. All of these aspects lead to the complexity of the
debugging process, which we aim to highlight in this paper. In
addition to system dynamics, the input saturation constraints
or the energy requirements associated with the controller might
also be impacted with changing timing behavior, thereby adding
another dimension to this problem. Given the exploratory nature
of this paper, we restrict our study to the case, where we do not
redesign the controllers when their timing properties change.
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The design flow assumed in this paper is the usual one—
first the control strategy, along with its associated parameters
(e.g., sampling periods and gain values) are designed. This is
followed by their implementation as software tasks, and in
this process the schedulability test fails. The goal now is to
adjust their periods in order to make them schedulable, while
minimally changing their targeted dynamics (as planned by the
control designers in the first step). Changing the task periods
together with the gain values leads to a co-design problem that
has been studied recently in different setups [3]–[5].

Contributions and related work: While different forms of
scheduling control tasks have been studied in the past [6],
[7], the problem of timing debugging of CPS, to the best of
our knowledge, has not been investigated before in spite of its
fundamental importance. Our goal is to initiate this study with
system dynamics providing the guidance for timing debugging
decisions [8]. Using a simple setup, we aim to illustrate the
different facets of this problem and lay the groundwork for
investigating for involved setups.

The problem of determining timing contracts that satisfy
control performance, followed by synthesizing a schedule to
satisfy those contracts have been studied in [9]. Similarly, [10]
dealt with time-triggered scheduling of control tasks. But these
works are orthogonal to the problem we study here, where
the controllers and their schedules are given, but they are not
feasible. Online period adaptation is considered in [11] where
historical operational data are used to predict how changes
in the task period will influence control performance. Such
a technique could also be integrated within our scheme for
timing debugging where offline simulations could be used for
performance prediction. When model checking is used for
timing validation, counterexamples generated in the case of
timing violations can serve as cues for debugging [12]. Such
techniques can be combined with the approach we propose
here. Many schedulability tests—such as the utilization bound
test considered here—do not return any counterexamples, and
in such cases, our approach might be the only guidance avail-
able for property refinement to meet schedulability constraints.

Organization: In the next section, we introduce the math-
ematical models of feedback control systems and processor
scheduling. In Sec. III, using an example, we demonstrate the
complex relation between physical dynamics and system poles.
In Sec. IV, we discuss a few preliminary metrics based on the
closed-loop poles that can guide the timing debugging process,
and we, further, propose an optimization algorithm to search
for the task periods that will minimize the deviation in the
physical dynamics. In Sec. V, we apply different heuristics on
a case study and show that the location of the closed-loop poles
can guide the timing debugging process if appropriately used.
Sec. VI provides the concluding remarks.

II. BACKGROUND

We study a CPS setting comprising a set of control tasks
running on a single processing unit. Each task implements
a feedback controller for a physical plant. In this section,
we introduce the mathematical models concerning processor
scheduling and feedback control systems.

Schedulability of control tasks: We consider that the processor
runs the tasks based on EDF scheduling policy. A task τi is

represented by a tuple {ei, pi}, where ei is the worst-case
execution time (WCET) and pi is the period. Here, we assume
implicit-deadline tasks, i.e., the deadline is equal to the period.
Let T represent the set of tasks running on the processor.
The schedulability of the tasks in T can be evaluated using
a utilization bound test as follows:

U =
∑
τi∈T

ei
pi

≤ 1. (1)

Here, U is the processor utilization.

Plant model: In this work, we study linear and time-invariant
(LTI) physical plants for which the continuous-time mathemat-
ical model can be written as follows:

ẋ(t) = Ax(t) +Bu(t); y(t) = Cx(t). (2)

Here, x(t), u(t), and y(t) represent system states, control input,
and plant output, respectively, at time t. A, B, and C are
constant system matrices.

For an embedded implementation of the controller, the
control input is periodically calculated based on the sampled
state of the plant. The software task that calculates the control
input takes a non-negligible time for computation, especially
in a resource-constrained platform. Moreover, we assume EDF
scheduling on the processor, and therefore, a control task may
have to wait for or be preempted by higher-priority tasks.
Thus, there is a delay from sampling to the time when the
control input is ready. This delay is upper-bounded by the
task’s deadline in a schedulable system. Considering that the
controller is implemented following the logical execution time
(LET) paradigm [13], [14], the control input is applied to the
plant at the task’s deadline. Thus, we get a fixed sampling-to-
actuation delay that enables precise control predictions.

For a control task τi, the sampling period hi is equal
to the task period pi, i.e., hi = pi. For a zero-order hold
implementation, the sampled-data model of the plant for one-
sample delay can be written as follows [15]:

x[k + 1] = Φx[k] + Γu[k − 1]; y[k] = Cx[k];

where Φ = eAh, Γ =

∫ h

0

eAsds ·B.
(3)

Here, k is a sampling instant.

For an augmented state vector given by z[k] =[
x[k] u[k − 1]

]T
, Eq. (3) can be reformulated as follows:

z[k + 1] = Φaz[k] + Γau[k]; y[k] = Caz[k],

where, Φa =

[
Φ Γ
0 0

]
; Γa =

[
0 I

]
; Ca =

[
C 0

]
.

(4)

Here, 0 and I are zero matrix and identity matrix respectively.

Feedback control law: We study stabilization control where
the control input is calculated based on the feedback control
law that is given by

u[k] = −Kz[k]. (5)

Here, K is the feedback control gain. In this work, the control
law that a task implements is known a priori. Note that the
feedback control law can be obtained using standard techniques,
e.g., pole placement (Chapter 5 in [16]) and linear-quadratic
regulator (LQR) (Chapter 11 in [16]). From Eq. (4) and (5),



we derive the closed-loop system model as follows:

z[k + 1] = (Φa − ΓaK)z[k] = Φclz[k]. (6)

Here, Φcl is the closed-loop state-transition matrix. The eigen-
values of Φcl are the poles of the closed-loop system. For an
asymptotically stable system, each pole ρj ∈ P must lie inside
a unit circle, i.e., |ρj | < 1. These poles also influence the
system response. The farther the pole is from the origin in
the z-plane, the slower is the system response. For second or
higher order systems with multiple closed-loop poles, the pole
that is farthest to the origin is called the dominant pole, which
mostly determines the speed with which the system stabilizes.

Performance measures: Typically, the control response is
characterized by rise time, settling time, overshoot, and input
energy. For stabilization control, let us assume that the goal
is to maintain the system output y at 0. We further consider
that a disturbance brings the output to yd. Here we follow [16],
where it is stated in page 370, “the effect of a disturbance on
a linear system can be analyzed as an initial-value problem.”
We are interested in the system response after a disturbance.
Thus, we define the performance measures accordingly. (i) Rise
time (Tr) is the time taken the system response to go from
90% of yd to 10% of yd. (ii) Settling time (Ts) is the
time taken by the system response to reach and stay within
[−0.01yd, 0.01yd]. (iii) Assuming yd is positive, overshoot (O)
is defined based on the minimum value ymin attained by y, i.e.,

O = |ymin|
yd

· 100 %. (iv) Input energy Eu is defined based on
the control inputs applied to the plant to reject the disturbance,
i.e., Eu = h ·∑∞

k=0 |u[k]|.
III. A MOTIVATIONAL EXAMPLE

We study a second-order DC motor speed control system [17]
for which the continuous-time plant model is given as follows:

ẋ(t) =

[ −10 1
−0.02 −2

]
x(t) +

[
0
2

]
u(t); y(t) = [1 0] (t). (7)

For a sampling period h = 20ms and one-sample delay, we
obtain two different control laws as follows:

KS : u[k] = − [
0.0084 0.7448 −0.6205

]
z[k],

KF : u[k] = − [
216.8020 24.6962 0.8795

]
z[k].

KS and KF place the three closed-loop poles at 0.8 and 0.3, re-
spectively. As shown in Fig. 2(a), KS leads to a slower response
compared to KF as the poles are farther from the origin.

We increment the sampling period h in a step of 1ms from
h = 20ms until h = 200ms. For each increment, we note the
new closed-loop poles for both KS and KF respectively. Let us
denote the new poles as {ρ′1, ρ′2, ρ′3}, where |ρ′1| ≥ |ρ′2| ≥ |ρ′3|,
and the expected poles (i.e., for h = 20 ms) as {ρ1, ρ2, ρ3},
where |ρ1| ≥ |ρ2| ≥ |ρ3|. We calculate the displacement D
of the poles as D = |ρ1 − ρ′1| + |ρ2 − ρ′2| + |ρ3 − ρ′3|. We
further calculate the displacement D∗ of the dominant pole
as D∗ =

∣∣|ρ1| − |ρ′1|
∣∣. Here, D∗ measures the change in the

distance of the dominant pole from the origin.

For both KS and KF , we plot D and D∗ with change in
the sampling period in Fig. 2(b). It can be observed that for
the slow controller KS , changing the sampling period does not
displace the poles as much as in case of the fast controller KF .
Moreover, using KF , the closed-loop system becomes unstable
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Fig. 3. Rise time, settling time, overshoot, and input energy vs sampling period
for (a) a slow controller KS and (b) a fast controller KF .

if the sampling period is increased beyond 35ms. Further, note
that using KS , the distance of the dominant pole from the origin
changes negligibly with the increase in the sampling period.

We also simulate the plant with both KS and KF respectively
while varying the sampling period, and we note down the rise
time, settling time, overshoot, and input energy. Fig. 3 shows
the variation of these measures with sampling period for both
KS and KF . It can be observed that the deviation is insignificant
for KS even if the sampling period is increased to 200ms, i.e.,
10 times the value of the sampling period h = 20ms for which
the control law is originally synthesized. This might be because
D∗ remains close to 0 even at such high sampling period values.
While the rise time remains fairly constant for KF , the settling
time, overshoot, and input energy deviate significantly with
increase in the sampling period for KF .

To further visualize the deviation in the physical dynamics,
we plot, in Fig. 2(a), the responses when (i) KS is used at
h = 200 ms and (ii) KF is used at h = 25 ms. We denote Δy

as the root sum square difference in plant response. That is,
Δy(K, h, h′) =

√∑∞
0 (y[k′]− y′[k′])2, where y[k′] and y′[k′]

are the responses when K is used at sampling period h and
h′ respectively. Here, k′ denotes a discrete time instant, and
for our experiments, we assume that two consecutive instants
are separated by 0.1ms. For the responses in Fig. 2(a), we
get Δy(KS , 20, 200) = 0.022 and Δy(KF , 20, 25) = 1.412.
This is also reflected in the figure where there is no noticeable
deviation in the responses corresponding to KS while there is
a significant deviation in the responses corresponding to KF .



In summary, we have three main takeaways from this exam-
ple: (i) Each control loop might have a different sensitivity to
the sampling period. During timing debugging, it is important to
increase the periods of the control tasks that are less sensitive to
the change. (ii) Both displacement of the poles and deviation in
the physical dynamics might increase with increasing sampling
period, however, the rate of change can be very different. Thus,
the relation between the change in physical dynamics and the
shift in the closed-loop poles can be challenging to model.
(iii) While a certain characteristic of system response might
remain unchanged, others might deviate appreciably with a
change in the sampling period. This multi-dimensional aspect
makes the timing debugging even more challenging.

IV. HEURISTICS FOR TIMING DEBUGGING

We consider a set of tasks T = {τ1, τ2, · · · , τn} that is
mapped on a processing resource. Each task τi implements a
controller Ki that controls a physical plant (Ai, Bi, Ci). Ki is
obtained for a sampling period hi and one sample delay. Thus,
τi is expected to run with a period pi = hi, and accordingly, the
closed-loop poles will be placed at {ρi,1, ρi,2, . . . , ρi,νi

}, where
|ρi,1| ≥ |ρi,2| ≥ · · · ≥ |ρi,νi

|. We assume that the WCET ei of
a task τi ∈ T is known a priori.

Problem formulation for timing debugging: In this work,
we look into the following question: What should be changed
if the task set T is not schedulable? In our problem setting,
T is not schedulable if Eq. (1) is violated, i.e., the processor
utilization U is greater than 1. WCETs of the tasks cannot be
changed as the processor architecture is fixed. Thus, U can
be reduced only by increasing the task periods. Therefore the
problem boils down to determining the period p′i with which
each task τi ∈ T should run such that T becomes schedulable.

There are numerous possible ways in which the periods of
the tasks can be changed such that Eq. (1) holds. However,
the goal is to find the option for which the dynamics of the
physical plants, that these tasks control, change minimally. Let
F represent a function that captures the change in the physical
dynamics of the controlled plants. The timing debugging then
essentially becomes a constrained optimization problem where
the task periods {p′1, p′2, · · · , p′n} are the variables, Eq. (1) is
a constraint, and the objective is to minimize F .

Now, the main challenge in timing debugging is to formulate
F appropriately. From control theory, we know that plant
dynamics depend on the closed-loop poles. Hence, an intuitive
approach would be to change the task periods in such a way
that the closed-loop poles experience minimal shift. We denote
that the closed-loop poles shift to {ρ′i,1, ρ′i,2, · · · , ρ′i,νi

} for a
task τi when the period is changed to p′i. We assume that
|ρ′i,1| ≥ |ρ′i,2| ≥ · · · ≥ |ρ′i,νi

|. In this work, we evaluate three
simple formulations for F .

As studied in Sec. III, the first formulation considers the
change in the magnitude of the dominant pole. We denote this
change as D∗

i for a task τi. Thus, F is given by:

F =
∑
τi∈T

D∗
i , where : D∗

i =
∣∣∣|ρi,1| − |ρ′i,1|

∣∣∣. (8)

Next, we consider the displacement between the set of new
poles {ρ′i,1, ρ′i,2, · · · , ρ′i,νi

} and the corresponding expected

Algorithm 1: Optimal timing debugging

Input : {{Ai, Bi, Ci,Ki, ei, pi}|∀ τi ∈ T}
Output: P

1 Ω[1].P = {p1, p2, · · · , pn};
2 Ω[1].U =

∑n
i=1

ei
Ω[1].P [i]

;

3 Ω[1].F = 0;
4 while ∃i Ω[i].U > 1 do
5 Ω′ = {};
6 for i ← 1 to |Ω| do
7 if Ω[i].U ≤ 1 then
8 Ω′.add( Ω[i] );
9 else

10 for j ← 1 to n do
11 Ω∗ = Ω[i];
12 Ω∗.P [j] = Ω∗.P [j] + Δp;
13 if stable(Ω∗.P [j]) == true then
14 Ω∗.U =

∑n
k=1

ek
Ω∗.P [k]

;

15 Ω∗.F = calculateF( Ω∗.P );
16 Ω′.add( Ω∗ );
17 end
18 end
19 end
20 end
21 Ω = {};
22 for i ← 1 to |Ω′| do
23 if (�j Ω′[j].U ≤ Ω′[i].U ∧ Ω′[j].F ≤ Ω′[i].F ∧ Ω′[j] 	=

Ω′[i]) then
24 Ω.add( Ω′[i] );
25 end
26 end
27 end
28 i∗ = arg min

1≤j≤|Ω|
Ω[j].F ;

29 return P = Ω[i∗].P ;

poles {ρi,1, ρi,2, . . . , ρi,νi}. We denote this displacement as Di

for a task τi. Accordingly, we formulate F as follows:

F =
∑
τi∈T

Di, where : Di =

∑νi

j=1 |ρ′i,j − ρi,j |
νi

. (9)

Furthermore, we take into consideration how the control
response and the dominant pole change with the sampling

period. Let D̂i capture the change in the physical dynamics of
the plant corresponding to τi. Now, we formulate F as follows:

F =
∑
τi∈T

D̂i, where : D̂i = (D∗
i · |ρi,1|)2. (10)

We have observed that when the dominant pole ρi,1 is farther
away from the origin, the dynamics changes faster with respect
to D∗

i . Thus, we multiply D∗
i with |ρi,1| (i.e, the distance of the

dominant pole from the origin) to normalize this rate of change
based on the position of the dominant pole. Furthermore, in
Fig. 2(b), it can be seen that the rate of increase in D∗

i reduces
with the increase in the sampling period in case of KF . On the
other hand, the change in the dynamics (e.g., settling time and
overshoot) becomes more rapid at higher values of sampling
period, as seen in Fig. 3(b). To appropriately represent the
relation between the change in the dynamics and D∗

i , we raise
the term (D∗

i · |ρi,1|) to the power 2, as shown in Eq. (10).

Optimization algorithm: The relation between the closed-loop
poles and the period of a task is not linear. Also, the expression
for F is non-linear in the task periods. Thus, it is challenging
to search for the set of task periods such that F is minimized.

We propose a dynamic programming approach in Algo-
rithm 1 to search for the optimal set of task periods P that
ensure schedulability. We assume that task periods can be



TABLE I
CASE STUDY SPECIFICATION

τi {Ai,Bi, Ci} {ρi,j} Ki

τ1 Eq.(7)

⎡⎢⎣0.5

0.5

0.5

⎤⎥⎦
⎡⎢⎣122.8023

16.7514

0.3311

⎤⎥⎦
T

τ2
A =

[
−0.2 0.67

−10 −100

]
, B =

[
0

37000

]
,

C =
[
1 0

]
⎡⎢⎣0.4

0.4

0.4

⎤⎥⎦
⎡⎢⎣0.1365

0.0009

0.1655

⎤⎥⎦
T

τ3 A =

[
−10 1

−0.2 −15

]
, B =

[
0

20

]
, C =

[
1 0

] ⎡⎢⎣0.7

0.7

0.7

⎤⎥⎦
⎡⎢⎣ 0.2938

0.0566

−0.5405

⎤⎥⎦
T

τ4

A =

⎡⎢⎣0 1 0

0 −1.0865 8.4872 · 103

0 −9.9636 · 103 −1.4545 · 106

⎤⎥⎦,

B =
[
0 0 3.6364 · 105

]T
,

C =
[
1 0 0

]

⎡⎢⎢⎢⎣
0.7

0.7

0.7

0.7

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.0091

0.0201

5.6765

−1.6308

⎤⎥⎥⎥⎦
T

τ5

A =

⎡⎢⎣0 1 0

0 −0.0227 54.5455

0 −35.2857 −70

⎤⎥⎦,

B =
[
0 0 28.1754

]T
,

C =
[
1 0 0

]

⎡⎢⎢⎢⎣
0.3

0.3

0.3

0.3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
23.3252

0.8360

0.6791

0.4576

⎤⎥⎥⎥⎦
T

τi ei [ms] pi [ms] Tr [s] Ts [s] O [%] Eu

τ1 5 15 0.1 0.18 0 5.363

τ2 3 10 0.05 0.1 0 0.004

τ3 6 20 0.2 0.38 0 0.056

τ4 8 30 0.41 0.84 0 0.028

τ5 7 25 0.1 0.23 0 1.253

incremented only in discrete steps of size Δp. We start with
the expected task periods {p1, p2, · · · , pn} and determine the
processor utilization corresponding to them (lines 1–2). F is
0 for this initial case (line 3). Note that Ω can hold sets of
task periods together with the utilization U and the objective
value F . We iteratively expand Ω by incrementing the period
of one task at a time by Δp; this continues until the processor
utilization corresponding to each set in Ω is at most 1 (lines 4–
27). In each iteration, Ω′ is initialized as a null set (line 5).
We go through the sets in Ω one by one (lines 6–20). If the
utilization corresponding to a set Ω[i] is acceptable, then we do
not need to change the periods any more and add the set directly
to Ω′ (lines 7–8). Otherwise, we increment the task periods
in Ω[i] one by one and add the feasible new combinations
to Ω′ (lines 9–19). Now, we set Ω to a null set (line 21).
In lines 22–26, we insert only those sets from Ω′ to Ω that
are not dominated by any other set. That is, if for a set of
task periods Ω′[i].P , there exists another set Ω′[j].P that has a
lower utilization and a lower objective value, then Ω′[i] is not
added to Ω. At the end, we determine the set that has the lowest
objective value which is also the optimal solution (lines 28–29).

V. EXPERIMENTAL RESULTS

We consider a case study where 5 control tasks are mapped
on a single processing unit. Each task controls a physical
plant. The 5 physical plants come from DC motor speed
and position control systems [17]. The continuous-time plant
models ({Ai, Bi, Ci}) are provided in Table I.

The execution times (ei) of the control tasks are assumed
as given in Table I. A feedback control law is synthesized for
each task for a given task period using pole placement. The task
periods (pi), the control gains (Ki), and the closed-loop poles
({ρi,1, ρi,2, · · · , ρi,νi

}) are tabulated in Table I. We simulate
each plant for a sampling period hi = pi and the obtained con-
trol gains Ki. The rise time (Tr), settling time (Ts), overshoot
(O), and input energy (Eu) are noted in Table I. When the
control tasks are implemented with the expected periods, the

TABLE II
RESULTS USING NAÏVE APPROACH

τi p′
i [ms] T ′

r [s] T ′
s [s] O′ [%] E′

u Δy

τ1 20 0.09 0.21 0 7.182 0.88
τ2 15 0.03 0.15 9 0.005 2.87
τ3 30 0.2 0.36 0 0.059 0.15
τ4 50 0.32 2.52 19.7 0.05 14.77
τ5 40 0.07 0.36 14.1 1.702 5.69

TABLE III
RESULTS COMPARISON FOR DIFFERENT APPROACHES

Naı̈ve F(D∗
i )/F(Di) F(D̂i)

(p′
i) ms Table II (15, 15, 65, 85, 25) Table IV

ΔT r% 20.39 10.44 16

ΔT s% 65.69 2040.25 18.57

ΔO% 8.56 14.68 3.14

ΔEu% 35.74 676.29 21.47

Δy 4.872 30.9 1.574

utilization is U = 5
15 + 3

10 + 6
20 + 8

30 + 7
25 = 1.48 > 1. Thus,

the given configuration is not feasible.

A naı̈ve approach: For this case study, we first consider a
naı̈ve approach to changing the period of each task where
all tasks contribute almost equally to the reduction in the
processor utilization. The solution obtained using this approach
is outlined in Table II, along with the rise time, settling time,
overshoot, and input energy measured corresponding to the
updated period of each task. For τ4, the deviation in the physical
dynamics is the greatest: the settling time becomes almost three
times the expected value and there is an overshoot of 19%. The
root sum square difference in the plant response is Δy = 14.77,
which is significant given that the maximum value of y is 1. The
average change in the response characteristics obtained using
this naı̈ve approach is provided in Table III.

Proposed heuristics: We also use the metrics discussed in
Sec. IV for timing debugging. For each of three objective

functions (using D∗
i , Di, and D̂i respectively), we apply

Algorithm 1 to find how the task periods should be changed.
When we use D∗

i and Di respectively to capture the deviation
in the physical dynamics, we obtain the same set of task periods
as given in Table III. Here, the periods of the tasks τ3 and
τ4 are predominantly changed, i.e., from 20ms to 65ms and
from 30ms to 85ms respectively. Note that the original closed-
loop poles corresponding to these two tasks are farther away
from the origin compared to other tasks, as shown in Table I.
As mentioned in Sec. IV, when the original poles are farther
from the origin, the physical dynamics change at a faster rate
with respect to Di and D∗

i . As the values of Di and D∗
i

are smaller, it is expected that the dynamics will not change
significantly. However, this is not the case with τ4, where the
settling time increases from 0.84 s to 86 s, the input energy
increases from 0.028 to 0.96, and the overshoot becomes 64%.
Due to the large deviation in the plant dynamics for τ4, the
average changes in settling time, overshoot, and input energy
are exorbitantly high as given in Table III. The main purpose
of showing these results in the paper is to bring into attention
that the most intuitive heuristics for timing debugging might not
give acceptable results. The main reason for this is the complex
relation between the physical dynamics and the closed-loop
poles that is challenging to model.

When we use D̂i to capture the change in the physical
dynamics, we get a solution that is summarized in Table IV.



TABLE IV
RESULTS USING PROPOSED APPROACH F(D̂i)

τi p′
i [ms] T ′

r [s] T ′
s [s] O′ [%] E′

u Δy

τ1 20 0.09 0.21 0 7.182 0.88

τ2 15 0.03 0.15 9 0.005 2.87

τ3 75 0.2 0.33 0.9 0.075 0.73

τ4 30 0.41 0.84 0 0.028 0

τ5 35 0.07 0.26 5.8 1.435 3.39
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Fig. 4. Change in control responses using the proposed heuristics.

This heuristic successfully determines the task τ3 for which the
dynamics does not change appreciable with increase in the task
period. Thus, it changes the period of τ3 from 20ms to 75ms.
The average changes in the rise time, settling time, overshoot,
and input energy respectively are provided in Table III. Note
that it performs better than the naı̈ve approach in all respects.
In particular, the average change in the settling time is reduced
from 65.69% to 18.57% and the average change in the
input energy is reduced from 35.74% to 21.47%. These are
significant gains. In Fig. 4, control responses corresponding to
the expected task periods and the updated periods are shown
for better illustration of the change in the dynamics. Control
response for τ4 is not shown as the period is not changed.

Comparison against optimal solution: We perform an ex-
haustive search to determine the periods for which the average
root sum square Δy of the difference in the control response
is the minimum. We get an optimal solution where the task
periods are 25, 15, 115, 30, and 25 respectively (in order) and
Δy = 1.265. Using our proposed heuristic, we get Δy = 1.574,
i.e., 24.43% higher. However, for this solution, the average
change in the settling time is 37.54%, i.e., 102.15% higher than
the solution obtained using our proposed heuristic. On the other
hand, when we perform an exhaustive search to minimize the
change in the settling time, we get the same results as obtained
using our proposed heuristic. This shows that timing debugging
for CPS is a multi-dimensional optimization problem.

Performance of Algorithm 1 For all three metrics (i.e., D∗
i ,

Di, and D̂i respectively), Algorithm 1 gives results within
3min. The exhaustive searches we performed to find the
optimal set of task periods took almost 2 h to run. Thus, Algo-
rithm 1 reduces the search runtime by approximately 97.5%.
On the other hand, for each of the three metrics, Algorithm 1
gives the optimal solution, i.e., it does not compromise on the
optimality to reduce the runtime.

VI. CONCLUDING REMARKS

This paper calls attention to the fundamental yet unexplored
problem of timing debugging for cyber-physical systems (CPS).

Towards solving this problem, we show that the main challenge
is to quantify how the dynamics of a physical plant will deviate
when the timing properties of the control software is changed.
Here, we explore the possibility of exploiting the shift in
the closed-loop system poles to capture the deviation in the
physical dynamics. Although simpler models involving system
poles fail to show promise, a more detailed metric guides
appropriately in the debugging process.

Although this work gives some preliminary results, the
robustness of the proposed heuristic is yet to be evaluated.
Furthermore, we believe that machine learning algorithms can
be applied to learn a more complex model that can guide the
timing debugger. Given a robust guide, it would be interest-
ing to formulate the timing debugging problem for complex
distributed systems with interdependent tasks and messages.
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