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The topic of Cyber-Physical Systems (CPS) is very interdisci-
plinary and covers a wide variety of applications. A large class
of CPS involves the combination of control theory and embedded
systems. Many CPS curricula aim to teach different aspects of
how designing control algorithms and embedded systems impact
each other. Building an experimental platform to illustrate this
interdependency is however non-trivial. A purely theoretical
exposition on this topic without any real experiments is also
not effective. To address this, in this paper, we propose a novel
programmable testbed that models complex, networked CPS with
minimal design effort. As the heart of this testbed, we propose a
software tool that provides an easy-to-use interface for specifying
various CPS configurations and implementing them in hardware.

Index Terms—Cyber-Physical Systems, CPS, Testbed, MCN,
Control, Education, Wireless Network

I. INTRODUCTION

In Cyber-Physical Systems (CPS), the behavior of the entire
system is defined by the complex interactions between control
algorithms, the hardware platform, and the communication
network connecting the different devices. In particular, CPS in
which controller and plant are connected through a multi-hop
wireless network are deployed frequently, since they offer a
higher degree of flexibility, lower maintenance and installation
cost, and a better adaptability than conventional CPS [2], [4].
While a lot of research has been done on wired as well as
wireless CPS, there are no platforms available that facilitate
education of distributed CPS systems in general and wireless
CPS in particular.
CPS Education: Understanding and developing CPS requires
interdisciplinary knowledge from Computer Science, Mathe-
matics, Electrical Engineering, Mechanical Engineering and
other domains. Different design choices affect different layers
of abstraction, and the complex interactions among multiple
layers are often difficult to understand. Providing a good
understanding of such cross-layer effects is of fundamental
importance in CPS education and training [6], especially in
the light of safety-critical CPS.

However, establishing a deeper understanding of cross-layer
interactions that occur in real-world CPS cannot be achieved
without performing experiments on feature-rich testbeds [7],
which expose a future practitioner to the non-ideal charac-
teristics of CPS implementation platforms and their effects
on performance and safety. However, many of the available

testbeds consist of simplistic setups, which typically comprise
only a simple plant and a single microcontroller. Here, the
behavior of the testbed does not differ significantly from what
is predicted by the theory, because non-idealities occurring in
real-world setups are not present. As a result, they are only of
limited use for conveying the necessary insights into practical
CPS.
Testbed Development: A networked CPS consists of multiple
nodes with different roles (e.g., plant, controller, intermediate
node, router, etc.), which all require their customly developed
firmware. Moreover, these nodes have to be interconnected
through a wireless network, which requires further design
effort. As a result, developing such a setup from scratch
remains a very complex and time-consuming task. Despite
suitable text book material on embedded and cyber physical
systems [5], in many courses and institutions, training on
practical CPS is eluded. This leads to a gap between the
growing importance of CPS on the one hand and appropriate
training on the other hand.
This Paper: In this paper, we address this problem and present
a novel programmable testbed for specifying, implementing,
and analyzing various networked CPS configurations in a
user-friendly way. The testbed provides a unique opportunity
to design, run, and validate wireless control algorithms for
different networked CPS configurations through hands-on ex-
periments. The proposed testbed is complex enough to exhibit
hardware effects like timing delays, packet drops, etc., which
are also present in real-world setups. As a result, students
and CPS practitioners can validate the robustness of their
control algorithms against these non-idealities. Since our main
goal is exhibiting this behavior for educational purposes, we
have additionally included the option to insert programmable,
artificial faults.
Proposed Testbed: At the heart of our testbed, there is a
software tool that supports a graphical user interface (GUI)-
based easy-to-use front-end for specifying a given CPS con-
figuration, and then implementing it on real hardware. Based
on a CPS specification, which is given in terms of network
parameters, control parameters and plant dynamics, our tool
automatically generates and deploys the firmware of the
individual nodes in the network. It thereby configures the
nodes, as well as their network interfaces. Each such node
is formed by a widely-used Arduino UNO microcontroller,
which is equipped with a nRF24L01+ RF module [1]. Some
of these nodes take over the role of a controller, whereas
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Figure 1: Overview of our proposed CPS-testbed.

others are equipped with some physical setup to be controlled
(the physical plant), or act as intermediate nodes that relay
information. The firmware images are deployed over-the-air,
which reduces the effort of testbed deployment. After these
steps, a testbed that implements the specified CPS configura-
tion and failure characteristics is ready to use. Further, during
the experiments on the resulting CPS, every node records
and stores data. After the experiment, this data is wirelessly
transmitted to the PC, on which our proposed tool orchestrates
data collection, aggregation, and visualization. The data can
be replayed for analyzing events of interest (e.g., specification
violations, unstable behavior, etc.). The salient features of our
testbed are summarized as follows.

1) The testbed supports specifying and analyzing a CPS
configuration in an easy-to-use manner using a novel
GUI-driven software tool with minimal design effort.

2) Artificial faults can be injected by specifying the proba-
bility distributions for packet loss and other errors.

3) Experimental data and execution statistics of each node
can be retrieved with zero effort. Based on them, the
platform’s and controller’s behavior can be evaluated.

The testbed thus targets educational and teaching purposes.
The extremely low design effort greatly reduces the devel-
opment cost and time. The testbed allows studying various
CPS concepts by carrying out different experiments through
an easy-to-use interface. The required hardware consists solely
of widely-available off-the-shelf components (e.g., Arduino),
thereby making the testbed accessible and low-cost.

Paper Organization: The rest of this paper is organized as
follows. In Sec. II, we describe the relevance of our testbed in
CPS education. In Sec. III, we present our proposed testbed
in detail. Next, in Sec. IV, we demonstrate multiple teaching
experiments for learning different aspects of real-world CPS,
and present the concluding remarks in Sec. V.

II. CPS TESTBED FOR EDUCATION

Fig. 1 shows the overview of our proposed testbed. A set
of n physical plants are controlled by n controllers running
in parallel on a dedicated node, called the control node.
Intermediate nodes connect plants and the control node by
realizing a muti-hop wireless network. Each plant can be a
real-world physical system or a Simulink model. Currently, our
tool supports Double Integrator Circuits (DICs) as a physical
plant. However, support for other physical plants can be added
easily in the future. A DIC is an operational amplifier-based
circuit that computes the integral over the integral of its input
signal. We have chosen a DIC as our first supported plant,
since it forms a standard control-theoretic benchmark that is
widely used in control engineering.

As already mentioned, the proposed testbed targets educa-
tional purposes. We have therefore implemented the following
five primary features that make it particularly suitable for CPS
education and training.
Low-Cost Components: Many of the existing CPS testbeds
target research applications [8]. Here, the cost of the com-
ponents is not a key aspect, since often, a single setup is
sufficient. In contrast, hands-on educational formats are more
cost-sensitive, since a larger number of course participants
require multiple setups in parallel. Therefore, our testbed is
built upon the off-the-shelf Arduino UNO microcontroller
equipped with a nRF24L01+ RF module [1]. Besides the wide
global availability of these components, they lead to a low cost
of ≈ 30USD per intermediate- or control node, and a cost of
≈ 45USD per plant node. Overall, a CPS setup having one
plant node, five intermediate nodes and a control node incurs
≈ 225USD, which easily suits the typical budgets of most
educational institutions.
Versatility: A testbed used for education and training should
be versatile enough to support a large number of different
experiments, which will convey knowledge on various aspects
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of CPS. The proposed testbed can easily realize different CPS
configurations by simply adjusting the following parameters
and configuration options.

1) Plant Parameters: Number of plants and their types,
given by their mathematical descriptions.

2) Control Parameters: Sampling periods and specifica-
tions of the different discrete controllers.

3) Network Parameters: Number of nodes, network topol-
ogy, routing paths of all plant-control loops, number of
parallel channels, number of re-transmissions of packets
by each node, etc.

Realistic Behavior: The behavior of a CPS testbed should be
as close as possible to that of a real-world setup. In particular,
it should be suitable for studying the robustness of a CPS
design in the presence of non-ideal behavior. Hence, it is
inevitable that a testbed exhibits non-idealities such as packet
drops, network delays, etc. Our proposed testbed is complex
enough to exhibit such non-ideal behavior. In addition, it
comes with a programmable fault insertion methodology, using
which users can insert artificial faults that correspond to the
errors described above. Hence, the robustness of e.g., a given
control algorithm, can be tested easily.
Easy-To-Use GUI: A feature that makes our testbed unique
compared to existing ones is its easy-to-use GUI-based inter-
face. Based on this GUI, the following tasks can be controlled.
1) Automatized CPS configuration, 2) generation of firmware
for each node, 3) wireless deployment of the firmware onto
each node, 4) real-time execution and orchestration of the CPS,
and 5) data aggregation and visualization. In other words, a
user can specify its configuration in a simple fashion, and our
tool will generate a CPS testbed realizing these specifications
on-the-fly. This allows for studying CPS testbed configurations
that are actually different CPS, while using one physical setup.
With our approach, manually integrating plants, controllers
and the communication network is no longer required.
Easy Development and Scalability: The proposed testbed
can be developed with minimalistic development effort and
is highly scalable. Extra hardware can be added or existing
devices can be upgraded easily, without requiring a time-
consuming software redesign. For example, a small network
can be easily transformed into a larger network by adding
additional nodes. The only required step is the GUI-driven
configuration, specification and automated regeneration of
the software. Furthermore, different network topologies, e.g.,
single- and multi-hop, can be generated easily.

The proposed system has already demonstrated its practical-
ity for teaching at universities. In particular, it has been used
in the courses entitled 1. Computational Foundation of Cyber-
Physical Systems, 2. Introduction to Programming Intelligent
Physical Systems at the Indian Institute of Technology (IIT)
Kharagpur in 2019. More than 50 students from several
disciplines, including CS, EE, and others attended both the
courses. Many of them did not have any prior background in
control theory and/or networking. Based on their feedback,
we can claim that the participants found the setup helpful for
understanding different aspects of CPS, e.g., communication,
distributed controllers, different design options and perfor-
mance issues under non-ideal conditions.

III. PROPOSED CPS TESTBED

In this section, we describe our proposed software tool and
the corresponding hardware details of the testbed.

A. Tool for Automated CPS Generation and Operation

The core of our proposed testbed is a software tool, which
runs on a PC that is wirelessly connected to the CPS setup.
Our software tool mainly fulfills the following two purposes.

1) Configuration and Firmware Generation
The GUI-based front-end is shown in Fig. 2a. It is used

for specifying the CPS that is to be realized. Among others,
aspects that can be configured are the network topology,
routing paths of the control loops, reference values of the plant
outputs, and properties related to fault injection.

The upper part marked ‘A’ of Fig. 2a shows the main
configuration window, which can be used for specifying the
length of routing paths, the number of nodes, and the injection
of artificial faults. In the middle Part B, inputs for specifying
the routes of the control loops are provided. More specifically,
the wireless channel is subdivided into multiple time-slots, and
each slot can be used for transmitting data between a certain
pair of sender and receiver on a certain wireless channel. The
user can specify the set of nodes that form a route and the
corresponding set of slots used.

The lower Part C of the figure is used for specifying prob-
abilities of simulated packet loss and for specifying the target
values of plant outputs (i.e., reference values). Based on these
inputs and more elaborate specifications from configuration
files, the software-tool generates and wirelessly deploys a
firmware image for each node.

2) Data Analysis
After an experiment of the CPS has been carried out,

the data is transmitted wirelessly to the PC and can then
be analyzed using our software tool. Our tool orchestrates
data collection and aggregation and provides functionality to
visualize and analyze the CPS behavior. The front-end for
data analysis is depicted in Fig. 2b. It offers the following
functionality.
Record and Store Data: During an experiment, each node
stores information on every network transaction on a SD
memory card. After the experiment, this data is transmitted
to the PC for analysis.
Visualize and Analyze: The upper Part A of Fig. 2b visualizes
the CPS. Suitable icons represent plants, intermediate nodes
and controllers. On request, the tool animates the actual
CPS operation, based on the recorded data. As shown in
Fig. 2b, Plant 1 and Node 1 are highlighted using green
color, indicating a successful transmission between them. In
the depicted example, Plant 1 is in reception mode, which is
annotated by the “dotted” line. Similarly, Node 4 successfully
transmits to the controller, which is indicated by the green
double-frame. In contrast, Plant 2 faces a transmission failure
as indicated by the red color.

On the left of the lower Part B of Fig. 2b, the user can select
the point in time of the experiment to be examined. In the
middle of Part B, a console depicts various messages. On the
right of Part B, the Autoplay Settings allow for automatically
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(a) Configuration front-end.

(b) Analysis Front-end.

Figure 2: The GUI-driven software tool.
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advancing the point in time under consideration. This enables
a record and playback - style of operation. Since an experiment
typically generates a large set of data, the Autoplay Settings
also provide a discontinuous and fast mode of replay. Here, the
playback is interrupted whenever certain events, such as packet
loss or communication errors, occur. The right Part C of the
figure shows the internal state of each node at the point in time
under consideration. For each node, the current timestamp, the
corresponding channel, the most recently received data from
each plant, the controller output and the failure/success status
of the last executed transmission are depicted.

B. Hardware Implementation

We next describe key aspects of the testbed hardware.
The different hardware components forming the testbed are
depicted in Fig. 3.

Controller
Intermediate 

Nodes

 Clock 
  Node

Plant Nodes

Figure 3: The CPS testbed consisting of a control node, four
intermediate nodes and two physical plants.

1) Plant Node
As mentioned earlier, we consider a DIC as the first physical

plant supported by our testbed. It consists of two operational
amplifiers (UA741) connected in series, thereby computing
the integral over the integral of the input signal of the first
amplifier. The control objective is maintaining a given target
voltage (i.e., the reference value) at the output of the second
amplifier by adjusting the input voltage of the first amplifier.
An overview of a plant node is depicted in the lower-left part
of Fig. 1.

2) Control and Intermediate Nodes
Controller- and intermediate nodes consist of a microcon-

troller, RF interface and SD memory card. The microcontroller
is entirely programmed using our software tool. On a control
node, the microcontroller receives plant output, computes the
control input using standard control design techniques such
as pole placement [3], and then wirelessly transmits control
input.

3) Global Clock Node
The clock node consists of the same hardware and provides

a clock signal to which all nodes are synchronized. With
a period equivalent to the slot length, a clock signal is
broadcasted to all nodes. In addition, the clock node is also
responsible for orchestrating the collection of experimental
data over the network.

4) Communication Network
Given the GUI-based CPS specification, firmware for each

node is generated and deployed by the software tool. This
firmware is also responsible for controlling the connectivity.
The wireless communication is built on top of the Enhanced
ShockBurst protocol, which operates in the ISM band (2.400 -
2.4835GHz). We use an over-the-air data rate of 250 kbit/s.
As a congestion control mechanism, the NRF24L01P RF
module implements up to 6 logical addresses (called pipes) for
listening in parallel. A module can only transmit to one pipe
at a time. In our setup, three pipes are maintained by each RF
module for handling the global clock, plant/control and log
data. Channel arbitration is done based on time-multiplexed
media access. Time is subdivided into 10ms-slots and the
clock node transmits a synchronization pulse to all nodes every
10ms. Upon receiving the clock pulse, each node first checks
if there is any data to be processed. A node may initiate a
transmission, whenever the current slot is assigned to this node
for transmission. Similarly, a node will listen for incoming
transmissions from other nodes during the appropriate slots.
The clock node can also initiate data logging on a node, or
request the transmission of the previously logged data.

IV. DEMONSTRATION OF TEACHING EXPERIMENTS

In this section, we demonstrate how important curricular
activities like CPS- and controller design, execution, perfor-
mance evaluation, and refinement can be easily performed
using our testbed. Five different teaching experiments, which
can be used to study different aspects of CPS, are exemplified
below. In each experiment, the testbed is executed for 15 s. We
initially set the output voltage of both plants to 0V, whereas
the reference value is 3V. Upon starting such an experiment,
the controller will attempt to bring the output voltage to the
reference value. The standard measure of quality of control in
CPS is minimizing the settling time, which is the time until
the 2% envelope around the reference value is reached.

1) Experiment 1 - Simple CPS
We demonstrate a simplistic CPS platform, in which a

single-hop wireless network connects the two plants and the
shared control platform. Here, each plant is sampled with
a period of 20ms and pole placement-based controllers are
employed for both plants. Fig. 5 depicts the output signal of
Plant 1, which is measured using an oscilloscope. As can be
seen in Fig. 5, the system settles quickly within 3.303 s for
Plant 1.

2) Experiment 2 - Multi-hop CPS
Here, we demonstrate a more involved CPS model, in which

plants and controllers exchange messages through a multi-
hop wireless network. Due to the limited receiver sensitivity,
platform level data loss occurs (e.g., ∼1% in our example). We
realize the topology of the wireless network depicted in Fig. 4,
with two plants P1 and P2, and two controllers running on the
shared control node C. The routing paths for the pair of control
loops are depicted by the dotted lines between P1 and C and
between P2 and C. As mentioned in Sec. III-A1, in each
slot, one transmission between one pair of nodes per channel
is possible. Recall that transmissions occur with a slot length
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Figure 5: Output of Plant 1 for all Teaching Experiments.

of 10ms. For the control loop between P1 and C, a round-
trip delay of 80ms is induced by the 2× 4 hops. For the loop
between P2 and C, Node I3 will be busy with relaying data for
P1 for two slot lengths, and hence, the round-trip delay for this
loop becomes 100ms. We therefore choose sampling periods
of 80ms and 100ms for controlling P1 and P2, respectively,
and apply pole-placement based controllers. As can be seen
from Fig. 5, the settling time for Plant 1 has increased to
4.344 s as a result of the increased sampling period of 80ms.
The settling time of Plant 2, as reported in Table I, exhibits a
similar behavior.

3) Experiment 3 - Impact of Different Controllers
Experiment 2 makes clear that the multi-hop network

degrades the control performance. In this experiment, we
study how this degradation can be mitigated by applying
different controllers. Whereas we have used a pole placement-
based controller in the previous experiments, we switch to a
controller based on the linear quadratic regulator [3] optimal
control design technique for Plant 2. Table I clearly shows the
improvement in settling time on applying this new controller.

4) Experiment 4 - Effect of Non-Ideal Multi-hop CPS
In order to explore more practical situations, we now con-

sider packet drops during transmission. We therefore specify
packet drop rates for Node I3 (cf. Fig. 4), which are realized
by regenerating the firmware of Node I3 using our tool. Fig. 5
shows the output response of Plant 1 for different packet drop
rates. As can be seen, such transmission loss significantly
reduces the control performance. For Plant 2, similar effects
in terms of increasing settling time and eventual unstable
behavior are reported in Table I.

5) Experiment 5 - Impact of Re-Transmission of Packets
The effect of packet drops can be reduced by tuning the

number of re-transmissions. In particular, our tool can config-
ure the number of re-transmission attempts to be automatically
made by each node whenever its transmission has failed.
Settling time values considering this refinement are given in
Table I. As can be seen in Table I, a larger number of re-
transmissions improve the control performance.

Table I: Settling Time (in s) of Plant 2

No Loss Packet Loss

Single-Hop Multi-Hop 10% 30% 50%

3.285 4.979 6.248 14.144 unstable

Performance Improvement by Changing the Controller

2.896 4.162 5.229 13.059 unstable

Performance Tuning by Enabling Re-Transmission

3.138 4.517 5.183 9.361 unstable

V. CONCLUDING REMARKS

1) Learning Objectives

Each of the experiments provides opportunities for imbibing
students with the salient features of CPS design. The first two
experiments will help students to learn the effects of network
parameters (e.g., routing path, delay) and control parameters
(e.g., sampling period) on the control performance. Experi-
ment 3 will teach how the degradation in system performance
caused by network-delay can be mitigated by designing the
controller appropriately. Experiment 4 will help students to
understand the impact of environmental non-idealities and
faults on the system behaviour. In Experiment 5, students will
learn how the effect of such non-idealities (e.g., packet drops)
can be mitigated by re-configuring some network parameters,
e.g., tuning the number of re-transmissions. This experiment
also helps students to understand how a vulnerable node in the
network can cause performance degradation. Such directions
can potentially motivate a student to undertake more involved
work in the domain of fault-tolerant, distributed CPS design,
fault-diagnosis, mitigation, etc.

2) Conclusion and Future Extension

The experiments demonstrate that our proposed testbed
is versatile and facilitates rapid prototyping of CPS config-
urations with different numbers of control loops, network
links, routing configurations etc. It can provide hands-on
experimental support for teaching courses in CPS that involve
control theory and the implementation of control algorithms on
embedded platforms. On the other end of the spectrum, more
complex configurations of the testbed with a larger number of
nodes can be used for a course project or a thesis, where
the students need to develop intelligent control strategies,
wireless protocols, and their combination exploring the co-
design aspect of CPS. In future, we plan to add support for
further physical plant types, e.g., inverted pendulums and also
firmware generation support for other popular low power wire-
less platforms. Further, we intend to make this software tool
available in a free repository online, along with instructions for
interfacing intermediate nodes and physical/simulated plants.
This will allow others to easily replicate and make use of
the proposed testbed, leveraging our versatile but easy-to-use
software interface.
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