
Insert & Save: Energy Optimization in IP Core
Integration for FPGA-based Real-time Systems

Martin Geier
Chair of Real-Time Computer Systems

Technical University of Munich
geier@rcs.ei.tum.de

Marian Brändle
Chair of Real-Time Computer Systems

Technical University of Munich
braendle@rcs.ei.tum.de

Samarjit Chakraborty
Department of Computer Science

University of North Carolina at Chapel Hill
samarjit@cs.unc.edu

Abstract—Today, many industrial, automotive and autonomous
systems like robots are deployed in high-temperature and battery-
powered environments. Due to cooling and runtime, this limits the
energy consumption and makes the design of such embedded real-
time systems even more challenging. Though Field Programmable
Gate Arrays (FPGAs) offer the required performance, their static
and – load-dependent – dynamic energy consumptions continue to
prevent a widespread adoption. The existing methods for dynamic
power reduction (like clock gating) are either limited in savings or
require disruptive changes to well-established FPGA design flows.
Whilst the former is caused by optimizing on fabric level only, the
latter is due to the lack of support for a more efficient (but not yet
mature and standardized) high-level design entry in current tools.
In this paper, we thus explore an optimization methodology based
on an existing, but not-fully-utilized intermediate level of abstrac-
tion that emerges in the IP core integration phase of the design. To
this end, we exploit the fact that the vast majority of FPGA-based
real-time processing pipelines is not exclusively assembled using a
single type of design entry – i.e., neither entirely hand-written nor
high-level synthesis only. Instead, suitable IP cores (from a variety
of sources) are integrated via standardized bus interfaces such as
AXI, Avalon or Wishbone. To facilitate effort- and power-efficient
clock gating on integration-level, we present two “insert and save”
IP cores that harness application information extracted from cur-
rent AXI3 and AXI4-Stream interfaces. Based thereon, both cores
precisely control the clock signals of every downstream processing
stage for maximum energy savings. This approach not only nicely
integrates with today’s predominantly AXI-based designs but also
results in clock gating structures that are particularly suitable for
current FPGAs – as demonstrated by experimental evaluations on
a Zynq-based Visual Servoing System with energy savings of 26%.

I. INTRODUCTION

The sustained need for higher communication and computation
densities continues to yield increasingly complex system archi-
tectures. Besides rising the costs for design and manufacturing,
those developments also affect the overall energy consumption,
causing additional challenges to power and cool the device. For
Real-time Systems (RTSs) that are bound to predefined latency
constraints, energy efficiency traditionally has not been a major
concern. Recently, however, the advent of autonomous systems
with their often battery-, space- and heat-constrained operating
environments has intensified the need to carefully balance cost,
functional-temporal aspects and energy consumption during all
design phases. Even though power-only management strategies
are well researched for both stationary and mobile systems [1],
[2], their application in safety-critical domains – such as avion-
ics, industrial or automotive – requires additional care to avoid,
or at least limit, adversely affecting the temporal RTS behavior.

Typical deadlines range from hundreds of µs to several ms, and
issue from the dynamics of the physical process [3]. Therefore,
most closed-loop control systems cannot tolerate the additional
delay caused by, e.g., Dynamic Voltage and Frequency Scaling
(DVFS) [4], data buffering [5] and other system-level methods.
This is because additional or, often worse, variable delay – i.e.,
jitter – invalidates previous assumptions about crucial temporal
RTS characteristics like its input-to-output latencies. The latter
capture the overall delay from arrival of a sensor value until the
corresponding actuation signal is computed/sent by the system.
Their inherent negative impact on the closed-loop performance
is usually compensated during control design [6], and assumed
to be constant. In contrast to relatively new sensor-event-driven
approaches, traditional control strategies are often based on the
time-triggered periodic activation of each control task mapped
to the RTS. To simplify the formal design process and increase
the stability of the closed control loop, the deadline of the task
commonly is fixed to a value smaller than its period [7], [8]. As
this and further RTS choices often result in slack (i.e., stages of
the processing pipeline being temporarily idle, cf. Sec. II-B), it
also creates an opportunity for energy optimization – e.g., after
deadlines. To avoid physical instability such as oscillation, it is,
however, crucial not to interfere with the RTS’s temporal – and
thus indirectly functional – aspects during energy optimization.

Existing methods thus either aim at (often system-level) co-
optimization/verification, or reduce the energy consumption on
a much lower and thus less effective level of abstraction. Apart
from traditional, software-driven Systems-on-Chip (SoCs), this
also holds true for heterogeneous RTSs that combine a flexible,
but energy-inefficient Field Programmable Gate Array (FPGA)
fabric with a fixed-function SoC. With the latter containing one
or even more highly efficient Central Processing Units (CPUs),
memory controllers and I/O peripherals, such a Programmable
SoC (pSoC) is particularly suitable for high-speed mixed-hard-
ware/software real-time pipelines, often found in industrial, au-
tomotive and autonomous application contexts [9]–[11]. Albeit
such FPGA-based architectures provide the required communi-
cation and computation capabilities, the flexibility of their run-
time-programmable fabric comes at a cost. Firstly, their design
flows are considerably more complex than traditional software-
only development – due to the additional effort in specification,
implementation and integration of custom, application-specific
processing blocks in hardware. Such Intellectual Property (IP)
cores come from various sources such as FPGA/pSoC vendors,

0:00:04 0:00:060:00:03 0:00:05 0:00:07

Time (h:mm:ss.us)

100

40

60

80

S
u
p
p
ly

 C
u

rr
e
n
t

o
f

th
e
 F

P
G

A
 F

a
b
ri

c
(m

A
)

Fr
a
m

e
 #

1
0

2
7

Fr
a
m

e
 #

1
0

2
8

Fr
a
m

e
 #

1
0

2
9

Fr
a
m

e
 #

1
0

3
0

Fr
a
m

e
 #

1
0

3
1

Fr
a
m

e
 #

1
0

3
2

Fr
a
m

e
 #

1
0

3
3

Fr
a
m

e
 #

1
0

3
4

Fr
a
m

e
 #

1
0

3
5

Fr
a
m

e
 #

1
0

3
6

Fr
a
m

e
 #

1
0

3
7

Fr
a
m

e
 #

1
0

3
8

Fr
a
m

e
 #

1
0

3
9

Fr
a
m

e
 #

1
0

4
0

Fr
a
m

e
 #

1
0

4
1

Fr
a
m

e
 #

1
0

4
2

Fr
a
m

e
 #

1
0

4
3

Fr
a
m

e
 #

1
0

4
4

Fr
a
m

e
 #

1
0

4
5

Fr
a
m

e
 #

1
0

4
6

Fr
a
m

e
 #

1
0

4
7

Fr
a
m

e
 #

1
0

4
8

Fr
a
m

e
 #

1
0

4
9

Fr
a
m

e
 #

1
0

5
0

Fr
a
m

e
 #

1
0

5
1

Fr
a
m

e
 #

1
0

5
2

Fr
a
m

e
 #

1
0

5
3

Fr
a
m

e
 #

1
0

5
4

Fr
a
m

e
 #

1
0

5
5

Fr
a
m

e
 #

1
0

5
6

Fr
a
m

e
 #

1
0

5
7

Fr
a
m

e
 #

1
0

5
8

Fr
a
m

e
 #

1
0

5
9

Fr
a
m

e
 #

1
0

6
0

Fr
a
m

e
 #

1
0

6
1

Fr
a
m

e
 #

1
0

6
2

Fr
a
m

e
 #

1
0

6
3

Fr
a
m

e
 #

1
0

6
4

Fr
a
m

e
 #

1
0

6
5

Fr
a
m

e
 #

1
0

6
6

Fr
a
m

e
 #

1
0

6
7

Fr
a
m

e
 #

1
0

6
8

Fr
a
m

e
 #

1
0

6
9

Fr
a
m

e
 #

1
0

7
0

Fr
a
m

e
 #

1
0

7
1

Fr
a
m

e
 #

1
0

7
2

Fr
a
m

e
 #

1
0

7
3

Fr
a
m

e
 #

1
0

7
4

Fr
a
m

e
 #

1
0

7
5

O
p
ti

m
iz

e
 G

E
V

B

O
p
ti

m
iz

e
 G

a
u

ss

O
p
ti

m
iz

e
 C

a
n

n
y

Fig. 1. Achieved Savings in our Vision System with IP Cores for Image Acquisition (GEVB), Smoothing (Gauss) and Edge Detection (Canny): 23%, 3% and 6%

3rd-party companies, high-level synthesis (HLS) tools or hand-
written Hardware Description Language (HDL) code [12], and
predominantly incorporate standardized bus interfaces (such as
ARM’s AXI [13], Intel’s Avalon or Wishbone). Based thereon,
the system designer selects suitable IP cores to create the hard-
ware subsystem of the real-time application pipeline. Their bus
interfaces not only simplify the core-to-core integration (within
the FPGA fabric), but also connect the hardware pipeline to the
software-based remainder of the RTS, i.e., its CPUs, memories
and I/O peripherals. Although standardized bus interfaces such
as AXI3 for memory-mapped and AXI4-Stream for, e.g., video
ports thus serve as a helpful “lowest common denominator” (as
detailed in Sec. II-C), the subsequent integration/verification of
such heterogeneous embedded or RTSs remains a difficult task.

As a second disadvantage, today’s FPGA fabric still requires
considerably more energy than a functionally equivalent, fixed-
feature Application-specific Integrated Circuit (ASIC) [14] due
to the inherent implementation overheads for logic and routing.
Compensating for this, FPGA vendors continuously implement
new power management features in the device fabrics (Sec. II).
Currently, however, these hardware improvements are not fully
utilized in the majority of FPGA-based RTSs, as the associated
offline design and (online) management techniques are limited.
As detailed in Sec. II-A, runtime solutions such as D(V)FS and
(partial) power gating cause latencies beyond what many RTSs
are able to tolerate. Design-time approaches, like automatically
inferred or HLS-based register enables, on the other hand, only
yield relatively small savings and require disruptive changes to
the established, decentralized FPGA design flows, respectively.

Proposed Methodology: In this paper, we thus investigate a
level of IP abstraction that enables an intermediate clock gating
methodology for modern FPGA-based RTSs. It utilizes already
existing medium-grained power management capabilities with-
out major changes to established design flows, and exploits the
precise application information intrinsically contained in most,
e.g., AXI-based, standardized bus protocols used in today’s IP-
driven hardware pipelines. We present two “insert and save” IP
cores that can easily be added to current designs with memory-
mapped AXI3 and/or less complex, e.g., video-carrying AXI4-
Stream (AXI4S) interfaces. By tracking individual transactions
on the respective bus ports and carefully manipulating the flow
control and data signals, our IP cores are able to precisely limit
the switching activities of all the connected downstream clocks
and hardware pipeline IPs. Such integration-level clock gating
has many advantages over traditional (high- or low-level) tech-

niques that render it particularly applicable to today’s complex,
mixed-hardware/software processing devices. Firstly, thanks to
their efficient design, our IP cores neither require a lot of fabric
resources, nor have significant effect on the pipeline’s temporal
behavior – thus avoiding a functional modification of a system.
Secondly, this approach directly integrates with the established
IP-based designs flows (as our cores are simply added to the IP
catalog of the respective tool) and is suitable for (FPGA-based)
embedded and RTSs as well. Lastly, the chosen level of “clock
gating abstraction” maps rather nicely to the (medium-grained)
FPGA clocking resources. All this can be seen in our extensive
experimental evaluations on a Xilinx Zynq pSoC, for which we
apply this methodology to optimize the energy consumption of
a real-world mixed-hardware/software Visual Servoing System
(VSS). Driven by a high-speed GigE Vision camera, hardware-
accelerated image acquisition/processing stages and a software
controller enable the RTS to stabilize a magnetic levitating ball
used as a reference application scenario for complex VSSs. By
applying the clock gating methodology to the VSS’s individual
IP cores (for image acquisition and processing), we are able to
significantly reduce the dynamic power, as evident from Fig. 1.
As the absolute savings scale with a pipeline’s complexity, this
approach is highly beneficial to constrained autonomous RTSs,
while only barely affecting fabric performance and utilization.
In summary, the main contributions of this paper are

• Integration-level Clock Gating for immediate reduction of
dynamic energy consumption in current FPGAs & pSoCs,

• Design and Implementation of Clock Gating IP Cores for
memory-mapped AXI3 and stream-based AXI4S IPs, and

• Evaluation of achievable Power Reduction in a real-world
VSS with the derivation of a Savings Model for our cores.

Outline: The rest of this paper is organized as follows. Techni-
cal background and related work are presented in Sec. II – also
including a comparison to our solution and a discussion of vital
aspects in control design and typical hardware architectures for
today’s embedded or real-time systems. Based thereon, Sec. III
infers the underlying principles and discusses key properties of
integration-level clock gating on different bus interfaces. Then,
Sec. IV-A describes crucial features of modern pSoCs (using a
Xilinx Zynq as an example), while Sec. IV-B touches upon the
VSS scenario. Implementation details and evaluation results of
our two IP cores for energy optimization of the real-world VSS
are given in Sec. V, including our IP utilization- and size-based
power savings model. We finally conclude our work in Sec. VI.

II. BACKGROUND AND RELATED WORK

Besides the considerably larger development effort (in contrast
to a software-only platform), FPGA-based systems suffer from
inherent implementation overheads of logic circuits (cf. Sec. I),
yielding higher energy consumption than a fixed-function RTS.
Their flexibility, short time-to-market and, compared to ASICs,
insignificantly low setup costs, however, continue to accelerate
FPGAs into formerly unreachable application domains. Simul-
taneously, power management features steadily improve on the
fabric-level (to be combined with suitable design and/or online
techniques for maximum efficiency). Current FPGA fabric thus
incorporates automated power gating of unused memories [15]
to control their static leakage. The dynamic power, by contrast,
is reduced via scaling advances in chip fabrication, support for
medium-grained clock gating [16], and automated inference of
register(-set) enables [17]. Although numerous (predominantly
high-level) techniques have been proposed over the years [18]–
[25], these already available power management capabilities of
FPGAs are currently deployed neither systematically nor to the
extent already technically possible. Apart from their (potential)
impact on the RTS’s temporal behavior, this is because most of
the high-level techniques – intrinsically – require that the entire
design (or at least a large part thereof) is under the control of a
single central, but not (yet) established tool. Besides the higher
risk of (unidentified) tool issues, this centralization breaks with
the traditional IP-based design flow, thus complicating not only
the initial integration but also testing/verification. For low-level
solutions (e.g., inference of register enables) already integrated
into commercial design tools, on the other hand, this also holds
true as their lack of application awareness limits the achievable
energy savings, albeit without significant impact on the timing.

This work, in contrast, specifically uses the medium-grained
(i.e., global and/or regional) clock gating capabilities of current
device fabrics to comprehensively reduce the energy consump-
tion of FPGA-based RTSs (Sec. II-A) with fixed and negligible
latency and resource overheads. Both proposed IP cores utilize
the idle time often found in a mixed-hardware/software control
loop (Sec. II-B), and nicely integrate with the standardized bus
interfaces in SoC-, FPGA-, or pSoC-based systems (Sec. II-C).

A. Energy Consumption & Management Techniques in FPGAs

As dynamic energy consumption of CMOS circuits depends
on supply voltage and switching activity, ASIC designers heav-
ily rely on a variety of established methods to reduce either one
or both factors – with a lower voltage also decreasing the static
leakage. While only a few techniques such as DVFS thus limit
both static and dynamic power, others are focused on lowering
the switching activities on clock and/or data signals alone, with
intrinsically no effects on leakage currents. Nevertheless, clock
gating, register enables and various other online techniques for
reduction of dynamic power are widely used in current, heavily
optimized fixed-function devices. There, necessary additions to
the circuitry are included during the ASIC design process, and
thus cause only minimum area overhead. For FPGAs, however,
only a subset of methods is available, as their fabrics cannot be
customized to the same (i.e., transistor-level) degree as ASICs.

Instead, designers and tools are restricted to the capabilities the
respective FPGA architecture provides. For modern fabric, this
includes Dynamic Partial Reconfiguration (DPR) and, recently,
multi-level clock gating (CG) ranging from global and regional
clock buffers to per-resource (e.g., few registers) clock enables.
Architecturally, there is a key difference between those two CG
extremes – based on whether they influence an entire clock tree
(spanning across significant area of the device) or an individual
resource like the eight single-bit registers in a Xilinx slice [26].
Although less customizable than on an ASIC, medium-grained
CG has been reported to enable similar dynamic power savings
in FPGAs [27]. Details of the clock distribution in current, e.g.,
Xilinx Zynq pSoCs and other internals are shown in Sec. IV-A.

In addition to low-level optimizations already integrated into
current synthesis tools (such as automated inference of register
enables), the DPR- or CG-based high-level techniques fall into
the following main categories. DPR depends on predefined and
pre-synthesized IP cores (e.g., hardware accelerators) that then
are repetitively swapped in and out of the FPGA. This can save
energy (either by disabling the fabric entirely or by using some
parts of the device for multiple IPs sequentially instead of im-
plementing all stages in parallel) and intrinsically requires app-
lication-level design and runtime control. As reconfiguration of
even relatively small accelerators requires several ms, however,
DPR-based power management significantly impacts temporal
system behavior [18]. If then complemented with power gating
(for even higher savings), the fabric’s turn-off/on times have to
be factored in as well [19], which further reduces applicability,
as many RTSs cannot tolerate the resulting latencies. In case of
high-rate control systems, application deadlines are in the same
order of magnitude (due to similarly short periods, e.g., 5.6 ms
for typical VSSs as shown in Sec. IV-B), thus prohibiting DPR.

Software-controlled CG, as another high-level approach, has
similar limitations w.r.t. application timing constraints, as each
CPU-based (de)activation using memory-mapped I/O (MMIO)
writes has a comparable delay [20], [21]. It, in addition, is only
applicable if the software runtime environment has some “prior
knowledge” of when CG may be applied. While this holds true
for traditional hardware accelerators that are only used by CPU
software, any I/O interfaces implemented in the FPGA (such as
I/O peripherals like Ethernet controllers) have to be operational
at all times as incoming data are lost otherwise. As the runtime
environment is unaware of any asynchronously arriving data, it
is unable to reactivate the I/O controller’s clock when required.

Automatically inferred CG, however, is mostly controlled by
enable signals generated within the FPGA hardware itself. This
holds true for automatically inferred clock enable (CE) signals,
as locally produced by current implementation flows, and those
derived by selected HLS tools. In the former – low-level – case
of, e.g., Xilinx’ “Intelligent Clock Gating” solution [17], small
logic-only circuits to compute the CE signals are automatically
added during the place-and-route phase of the flow. Automated
analysis of logic equations is used to identify both the registers
whose outputs are not always processed further and the control
signals determining that. Based thereon, the CE inputs of every
suitable slice are used to reduce downstream switching activity.

More “application-aware” CE logic, on the other hand, may be
explicitly created by dedicated HLS design tools often used on
top of the traditional synthesis, place and route steps [22], [23].
While such fabric-controlled CG yields negligible (i.e., single-
cycle) delays and thus not impacts RTS latencies, this approach
only reduces the energy consumption of the cores created with-
in such a tool. As the conversion of existing IP libraries to HLS
would not only require considerable efforts but also disrupt the
established design, simulation, implementation and verification
flows, HLS-based CG, currently, only has limited applicability.

Asynchronously controlled CG for ASICs possibly combines
low latencies and traditional IP-based design by inserting local,
distributed CG controllers [24]. Driven by asynchronous hand-
shake signals, latch-based CG blocks dynamically determine if
the downstream logic can be disabled. Their use of latches and
inverted clock signals, however, restricts this solution to ASICs
as such circuits may not be implemented for current FPGAs. In
addition, the proposed controller appears to support only single
read/write accesses at a time – rendering it unusable for today’s
complex interfaces that support many outstanding transactions.
The counter-based alternative proposed in [25] remedies this as
evident from its schematic (cf. Fig. 8 on Sheet 8 of [25]), albeit
again targeting fixed-function ASICs/SoCs. In addition, it aims
at CG between the bus master(s) in the system and any, directly
connected (synchronous or asynchronous) bus bridge functions
such as rate/width converters, memory management unit, or an
interconnect slave port. This may restrict the CG to a relatively
small fraction of the system – thus limiting achievable savings.

It should be noted that, despite steadily increasing flexibility
of current FPGA fabrics and design tools, a fixed-function RTS
may benefit from additional energy optimizations such as core-
internal, clock-based automatic wake-up (e.g., using local CG).
Due to lack of fabric support for arbitrary clock routing, IPs for
FPGAs could only implement this via the medium-grained CG
resources (Sec. IV-A). As evident from their utilization reports,
however, this is not the case, leaving only manual instantiation.

Relation to the Proposed Methodology: Contrastingly, our
integration-level CG has negligible impact on the application’s
temporal behavior and conforms to established IP-based design
flows. Once added (using, e.g., Xilinx’ IP Integrator), our cores
are capable of tracking bus activity on fully-featured AXI3 and
AXI4S interfaces, and enabling a downstream clock with fixed,
single-cycle delay. They thus neither impact timing nor restrict
RTS designers w.r.t. flow, and, moreover, facilitate a significant
reduction of the dynamic power for all AXI3- or AXI4S-driven
IP cores with known or observable – or no – tail latencies. This
extends our methodology beyond CPU-controlled accelerators,
as demonstrated for the purely FPGA-driven image acquisition
of the VSS (cf. Sec. V-A1). Compared to (even less obtrusive)
inference of register-level CEs, our IP cores yield higher power
reductions (due to their integration-level application awareness
and their capability to gate entire clock trees), and have a lower
logic overhead. Unlike above ASIC implementations, however,
they insert fixed single-cycle delays, or buffer the data path. As
with other CG-based solutions, and in contrast to DPR or pow-
er gating, reducing the static leakage also remains out of reach.

B. Closed-loop Control: Design & Implementation Challenges

Even before digital computer systems were readily available
like today, closed-loop control was widely used to stabilize and
guide physical processes (by either mechanical means or using
analog circuitry). Based on one or multiple sensors, the current
state of the process, also known as plant, is captured. A control
algorithm then converts these sensor signals and predetermined
set-values/trajectories into an output signal by implementing a
fixed, or even adaptive control law. Designed to minimize both
the difference between actual and desired states (i.e., the error)
and, often, the energy spent to do so, the output signal prompts
an actuator to implement the computed control action onto the
physical process. The resulting feedback-driven changes to the
plant state finally close the control loop and enable its designer
to compensate instability or disturbances in the physical world.

Establishing the appropriate control law(s) for one particular
plant, however, can be a challenging process even without real-
world complications such as sensor noise or actuation limits. In
addition to capturing the properties of the physical process into
a plant model (i.e., initial system identification), the subsequent
control design phase also may not be sufficiently tractable with
the established linear methods for which closed-form solutions
are available. If control problems at hand are beyond such, e.g.,
linear-quadratic (LQ) or proportional-integral-derivative (PID)
controllers [28], [29], complex non-linear approaches are used,
which often rely on numerical (i.e., non-closed) computations.
In both cases, the addition of the feedback path from plant (via
sensor) to controller and back to the plant (via actuator) has the
potential to get any otherwise stable physical setup to oscillate.

Even in time- and value-continuous systems (using mechan-
ical or analog feedback), the stability of a plant with controller
often is difficult to ensure due to the unstable and/or non-linear
nature of the physical processes alone. As additional challenge,
implementing a perfectly stable (mechanical/analog) controller
using a digital computer system can cause new instabilities that
render the system unusable. Apart from discretization issues in
terms of sampling events and signal values, such digital control
systems intrinsically add a delay for sensor acquisition, control
computation and output of an actuation signal. Even though the
former can be remedied with, e.g., high-rate/resolution analog-
to-digital/digital-to-analog converters (ADCs/DACs), the latter
effectively reduces the remaining phase margin of the loop and
thus its stability [8]. During the offline control design step, this
input-to-output latency will therefore be compensated [6], e.g.,
by increasing the gains of the control law (which yields a more
aggressive actuation behavior also reducing overall resilience).
As this (formal) design of the desired control law and its actual
implementation in form of the controller mapped to a computer
system are regularly performed independently, constant latency
values are thus selected and used. Any deviation thereof during
the execution of the controller then causes a mismatch between
the projected and actual closed-loop performance, which limits
the applicability of effective energy reduction tools (Sec. II-A).

Like many of their embedded (i.e., not so tightly constrained
w.r.t. delay) relatives, the majority of RTSs follows an inherent

Fig. 2. Typical Control System: Physical World (Plant, Sensors and Actuators;
top) and FPGA-based Real-time System (center) with an exemplary Execution
Schedule of the Processing Pipeline and Idle Times within a Period T (bottom)

input-process-output structure to, e.g., close a control loop. For
highest-possible predictability of its timing, resource usage and
the resulting control performance, all critical tasks (i.e., sensor
acquisition, computation of control law and output of actuation
signal) are predominantly performed periodically. Such a time-
triggered approach is well supported by a variety of scheduling
algorithms in real-time operating systems, although period and
priorities in the entire system still have to be selected carefully.

Fig. 2 shows a typical (networked) control system consisting
of the physical world (with plant, sensors and actuators) and an
FPGA-based RTS (top and center, respectively). Its functional-
temporal behavior is as follows, and also seen in the exemplary
execution schedule in Fig. 2 (bottom). The sensed plant state is
received (RX) by the RTS over a communication infrastructure
and, once read by an input task (I/O RX, light blue), fed to the
actual processing stages. Except for measurement delays in the
sensor (e.g., camera) itself, the total latency up to this point can
often be neglected due to large plant inertia and long execution
times of the subsequent hardware/software tasks. Each of these
processing stages (light purple, Fig. 2 center/bottom) performs
a vital function towards implementing the control law – such as
sensor acquisition, filtering or control computation – and there-
fore gets individually mapped to either hardware or software of
the RTS. Based on the transmitted (TX) actuation signal issued
from an output task (light green), the loop is eventually closed.
It can be clearly seen that this results in significant idle periods
(i.e., slack), in particular for every hardware-accelerated stage,
as it is only active for a short fraction of each period and as un-
derlying fabric resources cannot be reused by DPR (Sec. II-A).

In case an event-triggered control/execution scheme is used,
its inherent property to compute and actuate as rarely as (upper
and present) error values allow commonly results in longer idle
phases compared to its less adaptive, time-driven alternative. In
summary, both time- and event-triggered systems typically idle
for a non-zero amount of time and within at least some of their
hardware processing stages/units. The resulting opportunity for
energy optimization, however, has to be seized on the per-stage
basis for maximum savings, and without adding any significant
processing delays that would degrade the control performance.
For FPGA- and – if factored in before the costly manufacturing
step – even ASIC-based systems, our IP cores implement just
that, although their actual deployability depends on the number
of bus interfaces and the underlying general hardware pipeline.

C. Typical Architecture & Bus Interfaces of Real-time Systems

The hardware architectures of modern embedded or real-time
systems typically comprise various communication, processing
and storage elements as shown in Fig. 3. For generic (e.g., non-
video) data, standard I/O controllers (such as CAN, Ethernet or
USB cores) and computational resources like traditional CPUs,
Graphics Processing Units (GPUs) with General-purpose (GP-
GPU) computing capabilities or, recently, artificial intelligence
accelerators are integrated via bus interconnects and memories.
Predominately, a large, central (e.g., DDR) memory containing
countless independent data buffers serves as an exchange point
for all system components. In traditional software-driven SoCs
without an FPGA fabric, the individual buffers are managed by
an Operating System (OS) running on the CPUs – and assigned
to other components via a Hardware Abstraction Layer (HAL).
Based thereon, I/O peripherals (such as USB and Ethernet IPs),
accelerators (e.g., GP-GPUs) and software tasks running on the
CPUs exchange the application information using memory and
MMIO transactions to and from the data buffers independently.

To facilitate the use of such a central memory and reduce the
design and verification effort, the vast majority of architectures
relies on standardized bus interfaces between components, e.g.,
ARM’s AXI, AXI-Lite or AHB definitions. Such interfaces for
memory-mapped transfers are necessary on all aforementioned
system components (cf. cyan links in Fig. 3) and carry address,
data, and control information. A master device (such as a CPU)
initiates transactions by defining transfer direction (read/write),
desired address (range), and additional parameters such as beat
width and alignment. Slaves (e.g., memories) then respond via
data and/or control signals, whereas interconnects link multiple
masters and slaves by arbitrating the incoming transactions. As
a crucial difference between write and read transfers, the latter
require at least two phases transmitting, firstly, an address from
master to slave and, secondly, the slave’s response carrying the
requested data. For writes, address and data are commonly sent
simultaneously – leaving only the slave’s acknowledgement for
later transmission. With bus interfaces that support outstanding
transactions (i.e., issuing another request before the current one
has finished), however, the transfers of associated address, data
and acknowledgements become interleaved. This not only adds
considerable complexities to masters, interconnects and slaves,
but also makes monitoring the interface states/activity difficult.
Nevertheless, the integration and performance advantages have
made a small number of complex but standardized bus systems
the predominant solution for memory-mapped interfaces today.

A similar situation exists for specialized stream-based – e.g.,
video – acquisition, processing and output pipelines commonly
found in high-performance RTSs (Fig. 3, top). Due to the deep-
ly parallel nature of input data and processing algorithms from,
e.g., camera, radar or lidar sensors and applications, traditional
memory-mapped I/O and computational resources are often no
longer sufficient to meet the performance goals. Thus, purpose-
built application-specific pipelines are used that heavily rely on
stream-based transfers between their individual components as
indicated by the corresponding interfaces in Fig. 3 (pink links).

Fig. 3. Typical System Architecture: Acquisition, Processing and Output Units
integrated via memory-mapped (cyan) and stream-based (pink) Bus Interfaces,
with all possible Locations for our CG Controllers indicated by cyan/pink Dots

In many cases, they combine multiple back-to-back processing
stages to form an in-stream pipeline that (e.g., in case of video)
operates on single pixels or image rows (stored in a linebuffer).
This, for instance, often holds true for image acquisition blocks
(such as Bayer demosaicing, gamma correction and scaling) or
convolution-based (2-D) algorithms like Gaussian filtering [9].
More complex image processing steps such as rectification (for
subsequent stereo vision), however, depend on the entire image
to be available in a Frame Buffer (FB) for non-sequential reads
predefined by Look-up Tables (LUTs). Each conversion from a
stream-based to a memory-mapped interface or vice versa then
requires Direct Memory Access (DMA) controllers connecting
the pipeline to its associated FBs (Fig. 3, gray and light green).

III. PROPOSED METHODOLOGY FOR ENERGY REDUCTION
OF FPGA-RTSS VIA INTEGRATION-LEVEL CLOCK GATING

In the foreseeable future, the design, test and integration flows
for FPGA-based embedded and RTSs will remain driven by all
kinds of IP cores that are linked via standardized bus interfaces
as introduced in Sec. II-C. Whether an entirely HLS-generated,
unified and globally optimized system design might be feasible
is not yet clear. Based on this and the additional insight that the
dynamic energy consumption of the underlying fabric remains
significant (Sec. V-B), we argue that an intermediate solution,
combining traditional IP-based design with higher-level energy
optimization, is required. Therefore, we propose to consider all
the deployed, standardized bus interfaces as potential locations
to insert a small, decentralized CG controller using established
and proven IP-based design flows. Once looped into the chosen
link, a protocol-specific bus snooping logic decodes all passing
transactions to determine whether any write or read requests to
its downstream slaves are still pending. The system designer is
then provided with a precisely controlled, gated clock signal to
be fed into the downstream core(s) of choice. By disabling this
clock whenever possible, a significant reduction in the dynamic
energy consumption can be achieved. As the CG controllers are
instantiated at the same time and phase of the design process as
all other IP cores, such integration-level clock gating combines
application-aware power management and the established flow.

Fig. 4. Generic Bus Interface between Master (left) and Slave (right), Internals
of Bus Channels and CG Controller (center) and Synchronization Mechanisms

The methodology is applicable to both memory-mapped and
stream-based interfaces with downstream IPs not continuously
used, and covers most links in typical systems, as shown by the
candidates denoted by cyan or pink dots in Fig. 3. Even though
there are numerous possibilities, the CG controllers (currently)
are inserted manually – although an automated identification of
meaningful “CG islands” based on bus interfaces, clock signals
and fabric usage of IPs is feasible. Their in-depth knowledge of
the application pipeline at hand, however, enables experienced
system designers to arrive rapidly at an optimized CG solution.
Due to the extremely low resource and latency overhead of our
cores (Sec. V-C), their bypass feature (Sec. V-A), and the large
number of CG-capable local clocks available in current FPGAs
(cf. Sec. IV-A), moreover, it is entirely feasible to assign one of
our CG controllers to every applicable link. Such a (temporary)
FPGA design then may easily drive a systematic exploration of
the achievable savings for given architectures in one single run.

Fig. 4 illustrates integration-level clock gating by means of a
generic bus interface composed of, at least, one master-to-slave
communication channel (orange), which holds true for the vast
majority of today’s systems. Besides its (address, control/status
or actual data) payload, each channel also intrinsically includes
a set of handshake signals. While ChannelDataValid indicates
to the receiving side that the payload signals are currently valid
on this channel, ReadyToReceive informs the transmitting node
whether the receiver is accepting or consuming new payload at
this time. Together, they coordinate the synchronous transfer of
payload across channels – either from upstream to downstream
device (master-to-slave, orange) or vice versa (slave-to-master,
light red). Each ReadyToReceive also serves as a means of flow
control and enables the receiving side to slow the transmissions
via a backpressure mechanism. While, for instance, (memory-
mapped) AXI3 comprises three master-to-slave plus two slave-
to-master channels, a (stream-based) AXI4S interface only has
one master-to-slave channel, as detailed in Sec. V-A1/3 or [13].

Normally, a master is connected directly to its slave(s), often
accompanied by a shared, common clock (Fig. 4, dashed gray).
Once placed in between, our resource-efficient CG controllers
exploit these already existing handshake signals in two ways to
generate a dedicated, gated clock for their downstream core(s).
On the one hand, the states of both the master-to-slave (orange,
cf. Fig. 4) and slave-to-master (light red) channels are analyzed
by a small CE logic within our cores (cyan), which detects any
bus activity based thereon and counts outstanding transactions.
On the other hand, all master-to-slave channels (of which there
are three/one in AXI3/AXI4S, respectively) are rather carefully

altered by adding a multiplexer to each ReadyToReceive signal.
As shown in Fig. 4, these simple switches are controlled by the
CE logic (red wire) and used to de-assert each ReadyToReceive
from slave to master if CG is currently enabled. This way, each
newly arriving transaction is stalled until the CE logic activates
the gated downstream clock (gclk) by re-enabling the included
buffer (BUF) in the FPGA’s clock tree (cf. Sec. IV-A/V-A). As
the CG cores require only one single clock cycle for activation,
this results in a known, constant and negligible delay of, e.g.,
8 ns for a typical rate of 125 MHz (as in the VSS, cf. Sec. V-C).

The reverse transition from an active to the clock-gated state
only occurs after all the bus transactions are completed and the
downstream logic is no longer active. The latter is reflected via
a fixed or variable tail (i.e., post-transaction) latency – which is
either statically determined (and stored in the CG controller) or
dynamically captured by means of a “running” signal from any
downstream IP. With our CG cores implementing this extended
handshake/packpressure mechanism, a master is stalled instead
of accessing unreachable slaves – which, conversely, inhibit an
early shutdown of their gated clock as long as remaining active
(despite all interface channels already reaching their respective
standby states again). In other words, CG is applied if and only
if no bus transactions are pending plus the downstream logic is
idle – enabling a fine-grained, per-cycle activation of the entire
(now dedicated) clock tree with all associated fabric resources.
The methodology at hand thus combines significant reductions
in (dynamic) energy consumption, low resource usage and ease
of use with deterministically low impact on the timing, making
our CG cores an efficient and safe solution for IP-based flows.

It thus is ideal for all latency- and energy-constrained RTSs,
which not only require latency-neutral energy optimization but
also “by design” exhibit significant idle phases to be exploited.
This slack, on the one hand, is a result of the control designer’s
choice to increase stability by selecting a deadline shorter than
the period. On the other hand, the complex sensing and control
application pipelines required today heavily depend on FPGAs
to implement a suitable mixed-hardware/software architecture,
which also causes slack due to the sequential execution of each
task comprising the control pipeline (cf. Fig. 2). Particularly in
case of processing stages mapped to hardware (i.e., the FPGA’s
fabric), the accumulated idle slack of the various bus interfaces
(Sec. II-C) and associated IP cores implies substantial potential
for energy savings. The plant’s dynamics and sensors therefore
(indirectly) define the best case, which thus is hard to estimate.

Implementation details and evaluation results of our generic
AXI3/AXI4S CG cores are given in Sec. V. It should be noted
that they are not only applicable to RTSs but any sort of system
mapped to current FPGAs or, if adapted accordingly, to ASICs.

IV. REFERENCE PLATFORM AND APPLICATION SCENARIO

We use the Xilinx Zynq as one of the two major pSoC architec-
tures currently available to introduce their SoC/fabric internals.
The Zynq enables a high-speed, mixed-hardware/software VSS
serving as our reference application, hosted by a ZC702 board.
Besides pSoC (Sec. IV-A) and real-world use case (Sec. IV-B),
we also briefly introduce our measurement system (Sec. IV-C).

1©

2©

3©

4©

5©6©

Fig. 5. Visual Servoing Scenario on Zynq: PS I/Os (left), PS (center) and PL
with hardware-based Image Acquisition/Processing & AXI Interfaces (1©– 6©)
implementing memory-mapped (cyan) and stream-based (pink) Data Transfers

A. Zynq: Processing System, Programmable Logic & Internals

Like their Intel counterparts, Xilinx Zynq pSoCs combine a
fixed-function, CPU-driven SoC with flexible FPGA fabric. On
the medium-sized Zynq 7Z020 used in our evaluations, a dual-
core ARM Cortex-A9 with shared L2 cache, On-Chip Memory
(OCM), various I/O peripherals and bus interconnects form the
Processing System (PS) as shown in Fig. 5 (dark gray). It relies
on four general-purpose (GP), four high-performance (HP) and
one ACP (Accelerator Coherency Port) AXI3 interfaces to link
to the FPGA-equivalent Programmable Logic (PL). While two
Master GP (M-GP) ports enable transfers from PS components
to IP cores in the PL (light gray), the Slave GP (S-GP), HP and
ACP interfaces serve the opposite direction (i.e., PL to PS). A
variety of fixed-function I/O cores with interrupt request (IRQ)
and (in selected cases only) DMA capability are integrated into
the PS, and (due to their low energy consumption) often help to
connect the RTS to its outside world. This includes two Gigabit
Ethernet (GigE) controllers that use Scatter-Gather (SG) DMA
to transfer incoming and outgoing data to and from the off-chip
DDR memory, respectively. In the receive direction (crucial for
the VSS’s hardware-based image acquisition in Sec. IV-B), the
detailed mode of (SG/DMA) operation is as follows. At initial-
ization, the CPUs allocate a linear region in DDR memory that
contains addresses and utilization status of 256 receive buffers.
The GigE controller continuously searches this list for the next
unused receive buffer and saves its respective memory address.
After reception, the frame payload is then stored at the location
identified before – which is tagged as “used” for later retrieval.
Incoming Ethernet frames are thus scattered to non-sequential,
potentially changing receive buffers without CPU intervention,
which improves performance and reduces energy consumption.
Details of GigE controllers and SG/DMA are available in [30].

Apart from Configurable Logic Blocks (CLBs), Block-RAM
(BRAM) and DSP slices, current FPGA fabric features various
dedicated resources for clock generation and distribution [16].
Depending on the size of the PL, Zynq devices contain up to 8
clock management tiles capable of synthesizing frequency- and
phase-shifted signals (from dedicated clock inputs). In addition
to those, up to four “fabric clocks” (FCLKx) are available from
the PS. Together, they feed 32 global clock lines – reaching the
entire device – albeit only 12 can be used within a single clock
region (CR). As each CR spans 50 CLB rows and supports four
additional regional clocks, the number of clocks increases with
the device (i.e., PL) size. Depending on the used clock sources,

1©

2©

3©

c© a©

n©

Fig. 6. Bus Transactions on AXI Interfaces of GEVB over 2 Control Iterations

thus at least 16 independent clock signals are available per CR.
Due to restrictions of the clock management tiles (CMTs) that,
amongst others, drive the regional clocks, only 12 clock signals
can be gated by means of a horizontal clock buffer (BUFHCE)
in each CR. Compared to earlier architectures, however, such a
medium-grained CG capability is a significant improvement as
designers (or tools) no longer have to use precious global clock
lines to reduce the switching activity of one, localized IP core.
For complex logic structures that span across multiple CRs and
thus cannot be gated using one single BUFHCE, a global clock
signal has the advantage that CG can be implemented using the
associated upstream buffer (BUFGCE) for even higher savings.
On the local (e.g., CLB/BRAM) level, individual, per-resource
CEs are available for mostly manual CG – as tooling is limited.

B. VSS: Image Acquisition, Image Processing & Control Loop

To evaluate the achievable savings of integration-level CG in
a realistic real-time application scenario, we draw upon a high-
speed, mixed-hardware/software VSS implemented on a Zynq-
based RTS. The control goal is to maintain the stable levitation
of a metallic hemisphere, located below a configurable electro-
magnet. An industrial GigE Vision camera continuously, i.e., at
178 frames per second, records the sphere’s position – in terms
of a grayscale image transferred via the GigE Vision Streaming
Protocol (GVSP) [31]. Once received by the RTS, the image is
passed through a (mixed-hardware/software) Image Processing
Pipeline (IPP) implemented in PL (Fig. 5, green) and PS. After
Gaussian filtering and Canny preprocessing via two IP cores in
the PL, the remaining steps (edge tracking/detection, bounding
box identification and distance look-up) are executed by a user-
space application on the PS CPUs. Based on the present sphere
position, the current sent through the electromagnet is adapted,
which closes the control loop and enables levitation. To ensure
stability, the overall processing latency has to be limited, which
requires not only a mixed IPP but also image acquisition in PL.

With camera images arriving every 5.6 ms, a (PS) processing
latency of already 3.8 ms and the software overhead of network
stacks, traditional CPU-based image acquisition is insufficient.
The VSS thus utilizes a dedicated image acquisition core in the
PL that relies on a PS GigE controller for maximum efficiency.
The GigE Vision Bridge (GEVB) core (Fig. 5, dark green) cap-
italizes on the controller’s SG/DMA capability, and operates as
follows. Instead of directly writing to the 256 receive buffers in
DDR memory (cf. Sec. IV-A), the reconfigured controller is in-
teracting with an alternate list of receive buffers that the GEVB
(connected to the M-GP interface, 1© in Fig. 5) provides. Once

1©
x©

m©

Fig. 7. Bus Transactions PS/GigE→GEVB and GEVB-CE for a GVSP Frame

the GigE controller has decoded one incoming Ethernet frame,
it – like before – stores the payload at the given buffer location,
which now, however, is under control of the GEVB. Internally,
the GEVB thus includes two fabric-based memories, reachable
via its AXI3 slave port (1©). While one is the linear array with
addresses and utilization status of four receive buffers (read by
the GigE controller), the other contains the actual buffers (each
large enough for one regular, full-sized Ethernet frame). As the
former list points to the memory addresses of the latter buffers,
incoming Ethernet frames are thus redirected from the external
DDR memory into the PL. After reception, the GEVB analyzes
each Ethernet frame to determine whether it holds some part of
a camera image (i.e., is a valid GVSP packet), or if it is a non-
image frame. While pixel data are extracted and sent to the IPP
over the AXI4S port of the GEVB (3©), non-image frames are
proxied to the 256 CPU-controlled receive buffers in the DDR
memory (Sec. IV-A) by means of the core’s AXI3 master (2©),
which interfaces the DDR controller using one of the PS’s four
HP ports. Non-image frames thus reach the DDR memory as if
regularly received without GEVB, which preserves subsequent
IRQ- or polling-based processing by CPUs and network stacks.

Fig. 6 shows the bus transactions on all three AXI interfaces
of the GEVB (1©– 3©), over a period of two control iterations.
Two clusters of 56 Ethernet frames (c©/ a©) comprise a camera
image each. Each cluster is preceded by one (additional) frame
that transfers the GVSP Leader (pink), which indicate the start
of a control iteration initiated by the camera. With reception of
the first frame containing actual image pixels (blue), the GEVB
initiates a new transaction on its AXI4S port (3© in Fig. 5), as
indicated by the blue lines in Fig. 6 (3©). Over the next 4.3 ms,
the camera transmits the remaining image by means of 55 tem-
porally distributed GVSP frames due to limited sensor readout.

With the IPP operating in-stream, i.e., without frame buffers,
the hardware pipeline finishes shortly after the reception of the
last GVSP frame, which ends the AXI4S transaction, as shown
by the red lines in Fig. 6 (3©). The AXI DMA core pushes the
preprocessed camera image to the PS over ACP (6© in Fig. 5).

Fig. 6 also shows a non-image frame (n©) that automatically
is proxied back into the PS. Details of SG/DMA Proxying, and
internals and characteristics of the IP cores can be found in [9].

C. Measurement Methodology: Voltage, Current & RTS States

We use a Xilinx ZC702 evaluation board in our experiments
with the VSS and the proposed CG cores (Sec. V-C). Besides a
medium-sized Zynq 7Z020 pSoC, it also features a GigE PHY,
an external DDR memory of 1 GB, various other interfaces and
peripherals, and a complex multi-rail supply solution – capable
of measuring voltages and currents on each rail. The integrated

if (!last_write_start && awvalid && awready): writes_pending++

if (!last_bvalid && bvalid) : writes_pending--

if (!last_read_start && arvalid && arready) : reads_pending++

if (!last_rvalid && rvalid) : reads_pending--

RUNNING!awvalid && !wvalid && !bvalid

&& !arvalid && !rvalid

&& reads_pending == 0

&& writes_pending == 0

&& !next_stage_running

arvalid

|| awvalid

|| wvalid

WAIT4GATE
s_arready = m_arready

s_awready = m_awready

s_wready = m_wready

IDLE
clk_en = 0

s_arready = 0; s_awready = 0; s_wready = 0

reads_pending = 0; writes_pending = 0 {clk_en = 1}

Fig. 8. AXI3 Clock Gating Controller: FSM for CE Generation (i.e., clk_en)

ADCs and readout logic of the supply controllers, however, are
severely limited in terms of resolution, which renders them un-
suitable for the evaluation of the high-speed VSS and our fine-
granular CG methodology. Even if only a single rail is needed,
the effective average sampling rate of below 3.5 kSPS – which
yields less than 20 samples per VSS iteration of 5.6 ms – leaves
a clear identification of intra-period savings out of reach. With
our approach capable of such savings and, orthogonally, coarse
ADC (current) readings in the tens of mA, the on-board supply
solution cannot be used for accurate evaluation of our IP cores.

We thus deploy our custom external measurement system re-
siding on an FPGA Mezzanine Card (FMC), which attaches to
the ZC702 by means of analog voltage and current probes, and
the digital FMC interface. With its 18-channel acquisition sub-
system capturing analog 16-bit values at over 200 kilo-samples
per second, this solution precisely identifies any changes in the
energy consumption (due to, e.g., CG). An additional feature is
the acquisition of digital state information from the RTS, such
as (VSS) frame numbers and CG enable/bypass events (Fig. 1),
enabling an automated analysis of achieved savings (Sec. V-C).
Key concepts and detailed implementation information for this
hybrid measurement/tracing methodology are available in [32].

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

Based on the principles identified in Sec. III, we implement the
two IPs for integration-level CG (Sec. V-A) to analyze achiev-
able real-world energy savings and their resource consumption.
With an accurate baseline (Sec. V-B), we quantify and discuss
area and performance of the CG cores (Sec. V-C) for the VSS.
Based thereon, Sec. V-D presents two regression-based savings
models that enable extrapolations for other IPs and utilizations.

A. IP Cores for Integration-level Clock Gating

Despite not being tailored to any particular memory-mapped
or stream-based bus interface, we use AXI3 and AXI4S (as the
most widely used protocols in SoCs or FPGAs) to elaborate on
the conceptual design (Sec. III) and particular implementation
challenges of integration-level CG. Besides both generating the
CE and gated clock signals, and manipulating certain incoming
transactions, this also includes the detection of bus activity. We
thus illustrate all this by means of the real-world VSS scenario
(Sec. IV-B) for AXI3 (Sec. V-A1) and AXI4S CG (Sec. V-A3).

1) The AXI3 CG Controller for Memory-mapped Interfaces:
For an AXI3 interface, such as the connection between PS (i.e.,
its M-GP port) and GEVB shown in Fig. 5 (1©), the intricacies
of the underlying bus protocol have to be carefully considered.
It comprises five independent channels – with two dedicated to
addresses only [13]. Per transfer direction (i.e., read and write),

1©

3©

Fig. 9. Bus Transactions PS→GEVB→IPP and IPP-CEs in a Control Iteration

an address and a data channel each carry the requested memory
location (32 bits), and a 32/64-bit word (GP vs. HP/ACP ports)
per clock cycle. The remaining write response channel enables
the (otherwise only receiving) slave to acknowledge successful
writes. For increased performance, outstanding transactions are
supported and have to be taken into account for the CG design.

Fig. 7 shows the transactions on the write and read channels
between PS GigE Controller and GEVB (1©) during reception
of one GVSP frame. For write, 23 full-length bursts of 16 beats
each are followed by a partial transfer. With each beat carrying
32 bits, all 1518 bytes of the GVSP frame thus are written to a
receive buffer of the GEVB – followed by 5 short transactions
to update metadata and tag the buffer as “used”. Subsequently,
the GigE Controller queries the GEVB for the next free buffer.

In combination with Fig. 6 that shows two control iterations
(each containing 56 GVSP frames as detailed above), it can be
clearly seen that the AXI3 interface (1©), driving the GEVB, is
mostly idle due to the slow camera sensor readout (Sec. IV-B).
Thus, CG can be applied – as long as neither AXI transactions
are pending (x© in Fig. 7) nor the GEVB is moving data (m©).

While the latter can easily be detected based on the GEVB’s
status, the former requires monitoring of all 5 AXI channels to
ensure its timely wakeup. As each relies on a pair of handshake
signals (READY/VALID) used to indicate not only transactions
but also flow control, a stateful CG controller is needed, which
detects the different types of transactions across all 5 channels.

Fig. 8 reproduces its main finite-state machine (FSM) gener-
ating the CE signal, while facing the following two challenges.
Firstly, global/regional clock buffers (BUFxCE, cf. Sec. IV-A)
require one cycle (after CE activation) until their clock outputs
become active. Thus, incoming transactions have to be delayed
until the downstream IP core is able to respond (i.e., it receives
a clock). Otherwise, reads/writes from PS to GEVB will cause
a timeout – rendering the VSS inoperative. The FSM overrides
selected READY signals for one clock cycle – if CG is currently
active – and thus (shortly) stalls incoming transactions until the
downstream clock/core is active. This is implemented using the
transition between the IDLE and WAIT4GATE states, which is
taken once one of the three upstream-driven channels becomes
active, as indicated by arvalid, awvalid and wvalid. At
the same time, the BUFxCE is enabled (by means of clk_en).
Once in WAIT4GATE, the READY signals are forwarded regu-
larly and the FSM transitions to RUNNING after a clock cycle.
In this state, handshake signals, next_stage_running and

AXI4S Next Stage AXI4S
D Qpayload

TVALID

TREADY

AXI4S

BUFGCE/BUFHCE
clk

gclkbypass

next stage running

3© 4©
4© 5©

Fig. 10. AXI4S Clock Gating Controller for Gauss (3©/ 4©) and Canny (4©/ 5©)

two internal transaction counters are monitored, to detect if the
clock can be disabled again by returning to the IDLE state. The
counters track outstanding read and write transactions (that are
currently delayed or processed by downstream interconnects or
slaves, respectively), solving the second challenge. To achieve
a resource-optimal implementation of each counter, we retrieve
the configuration of the upstream interconnect (in our case via
Xilinx’ IP Integrator). Based on the defined maximum number
of outstanding write and read transactions, the counters’ widths
are adjusted accordingly. As the AXI3 CG core is independent
of address/data channels, its size depends on the counters only.

2) An application-specific CG Solution for both IPP Cores:
As an intermediate step towards an integration-level CG for the
AXI4S-only IPP (Sec. V-A3), we explored a – temporally and
spatially – coarse-grained CG option that requires modification
of the GEVB. The FSM pushing the video to the AXI4S port is
extended to output an enable signal one clock cycle before the
next AXI4S transaction (3© in Fig. 6/9) is initiated (cf. vertical
blue lines). Based thereon, the gated clock for both IPP cores is
enabled until Canny preprocessing ends (≈ red lines, Fig. 6/9).

3) The AXI4S CG Controller for Stream-based Interfaces:
Given the protocol’s simplicity, CG for any AXI4S-driven core
(e.g., the two IPP ones) is considerably less complex. With one
data payload and two handshake signals (TREADY/TVALID as
per Fig. 10) only, the start of a single AXI4S transaction and its
individual bus beats can easily be detected. Although the single
transaction per control iteration (3© in Fig. 9) lasts 4.3 ms, the
actual activity is considerably lower – as indicated by the space
between GVSP frames (1©). In contrast to Sec. V-A2, this en-
ables a much more fine-grained CG – both temporally (as only
actual bus activity, i.e., bus beats activate the CE) and spatially
(as the IPP’s two AXI4S-driven cores can be gated separately).

Not requiring internal states, the AXI4S CG controller has a
less complex inner structure as given in Fig. 10. To compensate
the BUFxCE activation delay, the core buffers the payload data
in a register driven by the ungated clock (clk). As an alternative
(in line with the above AXI3 CG controller), TREADY could be
overridden. The clock output is enabled during transactions (as
indicated by TVALID), in bypass mode, or if the (downstream)
IPP core is running. As annotated in Fig. 10, this CG controller
can be used for both AXI4S-driven cores in the IPP of the VSS
(i.e., Gauss & Canny in Fig. 5) by simply instantiating it twice.

Like its AXI3 counterpart, the AXI4S CG controller features
an optional next_stage_running input port to support any
downstream cores with variable or even unknown tail latencies.
This signal can be generated either by the particular core itself,
as in case of the VSS (for GEVB, Gauss and Canny), or using
an external downstream monitoring IP tailored to the scenario.
As the AXI4S CG core buffers the payload data, its size varies.

TABLE I
FPGA RESOURCE USAGE: DEVICE VS. BASE IPS VS. VSS VS. CG CORES

Component / Subsys. Slice LUTs Slice Regs Slices BRAM1

Zynq 7Z020 53200 106400 13330 280

Base System

Interconnect 1 1406 1394 567 0
Interconnect 2 415 489 172 0
State Tracing 462 484 197 4

Visual Servoing System

GEVB 2745 2648 1185 16
Gauss 394 335 182 2
Canny 991 648 382 6
DMA 806 1158 401 2

Proposed Clock Gating IP Cores

AXI3 (constant) 13 11 7 0
AXI4S (8 bit)2 1 11 7 0

NB: 1)18 Kbit each / 2)resource usage of one 8-bit AXI4S CG core (instantiated twice)

B. Energy Baselines and Best-case Estimation

To characterize the achievable energy savings, the following
baseline measurements were taken with all CG controllers dis-
abled by means of their bypass signals. The PL needs 105 mW
during idle, which increases to 113 mW once the camera starts
to transmit. As the application is strictly periodic, power thus is
proportional to energy and used instead. Stopping the entire PL
by means of gating FCLKx from the PS yields a residual power
consumption of 38 mW, saving 66% compared to active. Using
the GEVB’s PL utilization (36%) and activity (15.6%), a best-
case reduction of 66% · 36% · (1-15.6%) = 20.1% is estimated.

Tab. I summarizes the fabric utilization of the design, which
is dominated by AXI interconnects and the GEVB (particularly
due to its own interconnect and BRAM-based receive buffers).

C. Optimized VSS: Savings and Observations

Being compatible to the traditional IP-based design flow, our
AXI-based CG controllers are easily integrated into an existing
mixed-PS/PL hardware pipeline like the VSS (Sec. IV-B). The
AXI3 CG controller is implanted onto the link between PS and
GEVB (1© in Fig. 5), and manages the GEVB’s clock. For the
two IPP cores, a coarse-grained and our proposed per-IPP-core
CG scenario is evaluated sequently. In the first, traditional case
(cf. Sec. V-A2), all IPP cores are driven by a shared clock that
is enabled during the entire AXI4S transaction. Secondly, each
IPP core is individually managed by one AXI4S controller that
is inserted upstream (at 3©/ 4© for Gauss/Canny, cf. Fig. 5/10).

In both cases, an AXI3 core controls the GEVB. With two 2-
bit counters, the entire CG core occupies 13 slice LUTs (SLs),
11 slice registers (SRs) and a BUFxCE, while generation logic
of the GEVB’s next_stage_running signal adds 1 SL and
1 SR. With our 8-bit payload, every AXI4S CG core uses 1 SL,
11 SRs and a BUFxCE, and IPP cores grow by 7 SLs and 1 SR.

As even the medium-sized Zynq 7Z020 provides 53200 SLs,
106400 SRs, 32 BUFGCEs and 72 BUFHCEs, the PL resource
usage of CG cores and the added GEVB/IPP flags is negligible.
As a point of comparison, the VSS pipeline alone (i.e., without
surrounding infrastructure) already uses thousands of SLs/SRs,
which is evident from Tab. I. Even for wide payload data (e.g.,

1©

Fig. 11. Bus Transactions PS/GigE→GEVB and CEs for 1+4 Ethernet Frames

64 bit), the non-constant size of AXI4S CG controllers remains
below that of any other IP core and their register stage even im-
proves timing closure on the AXI4S links. For all experiments,
the entire design is driven using a 125 MHz clock from the PS.

Fig. 7/11 show the resulting CE signal for the GEVB in time
scales of one/multiple Ethernet frames, indicating a mostly dis-
abled clock. In terms of power, savings of 21 mW or 18.3% are
achieved for the GEVB with our AXI3 CG controller. For both
IPP cores, the coarse-grained traditional approach only cuts the
power by 1.3 mW due to the (near-)nonstop AXI4S transaction
(3© in Fig. 6/9). In contrast, two of our AXI4S CG controllers
reduce the power consumption of Gauss/Canny IPs by 2.6 mW
(2.3%) and 5.7 mW (5%), respectively, i.e., over 6x more than
for shared CG. As shown in Fig. 9/11, the generated CE signals
for Gauss and Canny are as fine-grained as that for the GEVB,
whereas the higher power reduction in case of the latter results
from the IPP cores’ lower resource utilization. In addition, ac-
tual GEVB savings are near the best-case estimate (Sec. V-B),
which confirms its tail latency (m© in Fig. 7) measured before.
With total savings of approx. 29 mW (25.6%), our CG solution
is as efficient as frequency reduction – while not imposing any
limits on the maximum duty cycle or burstiness of transactions.
As each of the three VSS IP cores (GEVB, Gauss, and Canny),
like most others, requires at least hundreds of slices and several
BRAMs, their fabric utilization nicely maps to the size of CRs
in current FPGAs (Sec. IV-A). With over ten CG-capable clock
signals in every CR, the proposed integration- or core-level CG
methodology thus is neither too fine- nor too coarse-granular in
relation to now prevailing medium-grained clocking resources.
Depending on the core size and available resources, the system
designer can easily migrate between global and regional clocks
using a configuration parameter of our cores. Correct operation
was verified for both a BUFGCE- and BUFHCE-gated version.

It should be noted that all the aforementioned savings apply
to regular operation of the VSS, i.e., the camera capturing at its
upper limit of 178 frames per second. In this configuration, the
control goal of stable levitation can be reached with PID or LQ
controllers and appropriate gains. Higher sampling/frame rates
would improve stability, but are impossible due to the camera’s
sensor. As lower utilizations like the 10 frames per second case
in Fig. 1 (with overall savings of 31.7%, compared to 25.6% at
full speed) generally yield higher savings due to less switching
activity, a wider range of rates has to be explored methodically.

To this end, we recorded the GVSP frames sent by the actual
camera (“Mako”) to create a virtual counterpart (“vCam”) with

TABLE II
CLOCK GATING FOR VSS (EXCERPT): TEST SETUP, POWER AND SAVINGS

Frame Rate Video Power Relative Savings
Set Real source active GEVB Gauss Canny

10 10.0 Mako 106.1 mW 22.9% 2.8% 6.1%
50 50.0 Mako 107.6 mW 21.7% 2.8% 5.9%

100 100.0 Mako 109.7 mW 20.3% 2.6% 5.5%
150 150.0 Mako 111.5 mW 19.0% 2.3% 5.2%
max 178.1 Mako 112.7 mW 18.3% 2.3% 5.0%

250 249.9 vCam 115.8 mW 17.3% 2.1% 4.7%
400 395.7 vCam 121.1 mW 14.3% 1.8% 3.9%
550 539.4 vCam 126.9 mW 11.6% 1.4% 3.2%
700 675.4 vCam 132.5 mW 9.1% 1.3% 2.7%
850 805.3 vCam 137.8 mW 7.0% 1.1% 2.2%

higher maximum frame rate. By speeding up the stream replay,
we are able to reach the saturation limits of the VSS at 300 and
800 frames per second for software and hardware, respectively.
With frame numbers and CG configuration captured along with
the analog values (Sec. IV-C), actual frame rate, active power,
and relative savings are automatically measured. Tab. II shows
an excerpt of the captured data including the worst case of over
800 frames per second. Despite such a high utilization, our CG
controllers still yield savings of 10.3% (at negligible overheads
w.r.t. both the added pipeline latency of 8 ns and PL resources).

D. Savings Model for Integration-level CG
As the achievable savings for CG-based energy optimization

heavily depend on core size and activity in the design (e.g., the
VSS), it can be hard to estimate them in advance and for other,
not-yet-evaluated scenarios. Given the known, linear relation
between activity and power, we, however, argue that – for one
given type of FPGA fabric – such extrapolations might indeed
be feasible based on our exhaustive measurements. To this end,
we present and investigate two models for achievable savings,
each populated via an ordinary least squares regression. While
Model 1 (M1) is strictly linear, Model 2 (M2) also contains an
interaction term. Both map the independent variables of IP size
(C) and activity (A) to the dependent variable ∆ of the relative
savings, cf. (1). In M1, no interaction is assumed, thus γ = 0.

∆(A,C, δ, α, β, γ) = δ +A · α+ C · β +A · C · γ (1)

In R, we identify δ, α, β, and γ (M2 only) by minimizing each
total quadratic error between our measurements and the model.
Due to our 108 observations (Sec. V-C), both models are well
defined, although M1 only yields R2 = 0.931, i.e., it is able to
explain 93% of the measured savings values. M2, on the other
hand, results in a near-perfect coefficient of determination with
R2 = 0.998 and thus nicely predicts the potential savings ∆
as a function of A and C – with δ, α, β, and γ as given in (2).

δ=− 1.1277 ; α=0.0013 ; β=0.0198 ; γ=− 1.784 · 10−5 (2)

Fig. 12 shows the actual measurements (single dots, cf. Tab. II)
and the predicted savings based on M2. It can be clearly seen
that the estimation errors are low, as already indicated by the
large R2 of M2. As our measurements cover three separate IP
cores, two bus interfaces, and dozens of activity values (i.e.,
frame rates), we are confident that M2 is suitable to predict the
potential savings of our solution for various scenarios and IPs.

Core
 Size

 (S
lic

es)

200
400

600
800

1000
1200

1400Activity (fps)

0
200

400
600

800
1000

E
n
e
rg

y
 S

a
v
in

g
s (%

) 0

5

10

15

20

25

Fig. 12. Energy Savings: Measured (dots) and Predicted via M2 (surface plot)

VI. CONCLUSION

In this paper, we evaluated clock gating on integration level for
today’s IP-driven FPGA/pSoC pipelines to reduce the dynamic
energy consumption of the underlying device fabric. Using the
fact that the majority of current FPGA-based real-time systems
are designed using IP cores and standardized bus interfaces, we
presented two efficient AXI-based clock gating controllers that
neither require new design flows nor negatively impact tempo-
ral system characteristics. Based on application information on
the bus, downstream cores are accurately optimized for energy.

Our experimental evaluation of a real-world VSS application
on a Zynq pSoC shows overall energy savings of 25.6%, while
maintaining both timing and I/O via the SoC part of the device.
For future work, we intend to extend our optimizations beyond
fabrics by devising, e.g., delay-aware DFS strategies for CPUs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewer(s) for
pointing out the related work in reference [25]. While our work
implements a similar concept in the context of FPGAs and on a
per-core basis, the comparison made this paper more complete.

REFERENCES

[1] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive
system shutdown and other architectural techniques for energy efficient
programmable computation,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (TVLSI), vol. 4, no. 1, pp. 42–55, Mar. 1996.

[2] A. W. Min, R. Wang, J. Tsai, and T. C. Tai, “Joint optimization of dvfs
and low-power sleep-state selection for mobile platforms,” in 2014 IEEE
International Conference on Communications (ICC).

[3] I. Bate, J. McDermid, and P. Nightingale, “Establishing timing require-
ments for control loops in real-time systems,” Microprocessors and
Microsystems, vol. 27, no. 4, pp. 159–169, May 2003.

[4] X. Mei, X. Chu, H. Liu, Y. Leung, and Z. Li, “Energy efficient real-
time task scheduling on cpu-gpu hybrid clusters,” in 2017 36th IEEE
Conference on Computer Communications (INFOCOM).

[5] M. Hosseinabady and J. L. Nunez-Yanez, “Energy optimization of fpga-
based stream-oriented computing with power gating,” in 2015 25th In-
ternational Conference on Field Programmable Logic and Applications
(FPL).

[6] M. Törngren, “Fundamentals of implementing real-time control appli-
cations in distributed computer systems,” Real-Time Systems, vol. 14,
no. 3, pp. 219–250, May 1998.

[7] T. Kim, H. Shin, and N. Chang, “Deadline assignment to reduce output
jitter of real-time tasks,” in 2000 16th IFAC Workshop on Distributed
Computer Control Systems (DCCS).

[8] G. Buttazzo and A. Cervin, “Comparative assessment and evaluation
of jitter control methods,” in 2007 15th Conference on Real-Time and
Network Systems (RTNS).

[9] M. Geier, F. Pitzl, and S. Chakraborty, “GigE vision data acquisition for
visual servoing using sg/dma proxying,” in 2016 14th ACM/IEEE Sym-
posium on Embedded Systems for Real-Time Multimedia (ESTIMedia).

[10] C. Claus, R. Ahmed, F. Altenried, and W. Stechele, “Towards rapid
dynamic partial reconfiguration in video-based driver assistance sys-
tems,” in 2010 6th International Symposium on Applied Reconfigurable
Computing: Architectures, Tools and Applications (ARC).

[11] M. Hosseinabady and J. L. Nunez-Yanez, “Dynamic energy management
of fpga accelerators in embedded systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 17, no. 3, pp. 63:1–63:26,
May 2018.

[12] Xilinx Inc., “Vivado Design Suite User Guide: Designing with IP,” https:
//www.xilinx.com/cgi-bin/docs/rdoc?v=2019_2;d=ug896-vivado-ip.pdf,
2020, [UG896; Revision v2019.2 of March 3, 2020].

[13] ARM Ltd., “AMBA Specifications,” https://www.arm.com/products/
silicon-ip-system/embedded-system-design/amba-specifications, 2019.

[14] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 26, no. 2, pp. 203–215, Feb. 2007.

[15] Xilinx Inc., “7 Series FPGAs Memory Resources,” https:
//www.xilinx.com/support/documentation/user_guides/ug473_7Series_
Memory_Resources.pdf, 2019, [UG473; Revision 1.14 of July 3, 2019].

[16] Xilinx Inc., “7 Series FPGAs Clocking Resources,” https://www.xilinx.
com/support/documentation/user_guides/ug472_7Series_Clocking.pdf,
2018, [UG472; Revision 1.14 of July 30, 2018].

[17] Xilinx Inc., “Reducing Switching Power with Intelligent Clock Gating,”
https://www.xilinx.com/support/documentation/white_papers/wp370_
Intelligent_Clock_Gating.pdf, 2013, [WP370; Revision 1.4 of August
29, 2013].

[18] A. Becher, J. Pirkl, A. Herrmann, J. Teich, and S. Wildermann, “Hybrid
energy-aware reconfiguration management on xilinx zynq socs,” in 2016
International Conference on ReConFigurable Computing and FPGAs
(ReConFig).

[19] M. Hosseinabady and J. L. Nunez-Yanez, “Run-time power gating in
hybrid arm-fpga devices,” in 2014 24th International Conference on
Field Programmable Logic and Applications (FPL).

[20] X. Chang, M. Zhang, G. Zhang, Z. Zhang, and J. Wang, “Adaptive clock
gating technique for low power ip core in soc design,” in 2007 IEEE
International Symposium on Circuits and Systems (ISCAS).

[21] A. Hermanek, M. Kunes, and M. Tichy, “Reducing power consumption
of an embedded dsp platform through the clock-gating technique,” in
2010 20th International Conference on Field Programmable Logic and
Applications (FPL).

[22] M. R. Alam, M. E. S. Nasab, and S. M. Fakhraie, “Power efficient
high-level synthesis by centralized and fine-grained clock gating,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 34, no. 12, pp. 1954–1963, Dec. 2015.

[23] E. Bezati, S. Casale-Brunet, M. Mattavelli, and J. W. Janneck, “Clock-
gating of streaming applications for energy efficient implementations
on fpgas,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 36, no. 4, pp. 699–703, Apr. 2017.

[24] C. A. Khatib, C. Aupetit, A. Chagoya, C. Chevalier, G. Sicard, and
L. Fesquet, “Distributed asynchronous controllers for clock management
in low power systems,” in 2014 21st IEEE International Conference on
Electronics, Circuits and Systems (ICECS).

[25] J. Yun, L. Liao, and B. Jeong, “Bus system in soc and method of gating
root clocks therefor,” U.S. Patent 9 152 213, Oct. 6, 2015.

[26] Xilinx Inc., “7 Series FPGAs Configurable Logic Block,”
https://www.xilinx.com/support/documentation/user_guides/ug474_
7Series_CLB.pdf, 2016, [UG474; Revision 1.8 of September 27, 2016].

[27] Y. Zhang, J. Roivainen, and A. Mammela, “Clock-gating in fpgas: A
novel and comparative evaluation,” in 2006 9th EUROMICRO Confer-
ence on Digital System Design (DSD).

[28] M. Athans, “The role and use of the stochastic linear-quadratic-gaussian
problem in control system design,” IEEE Transactions on Automatic
Control, vol. 16, no. 6, pp. 529–552, Dec. 1971.

[29] B. Wittenmark, “Integrators, nonlinearities, and anti-reset windup for
different control structures,” in 1989 American Control Conference.

[30] Xilinx Inc., “Zynq-7000 All Programmable SoC Technical Ref-
erence Manual,” https://www.xilinx.com/support/documentation/user_
guides/ug585-Zynq-7000-TRM.pdf, 2018, [UG585; Revision 1.12.2 of
July 1, 2018].

[31] AIA, “GigE Vision Main Page - AIA Vision Standards,” https://www.
visiononline.org/vision-standards-details.cfm?type=5, 2018.

[32] M. Geier, M. Brändle, D. Faller, and S. Chakraborty, “Debugging
fpga-accelerated real-time systems,” in 2020 25th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS).

