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Abstract—A crucial requirement for control tasks in safety-
critical systems like automotive is that all deadlines be met. This is
becoming increasingly difficult when several tasks share common
resources. One main reason for this lies in obtaining tight WCET
estimations, especially as software and processor architectures
continue to become more complex. Using safe but not necessarily
tight WCET estimates and meeting all deadlines come at the ex-
pense of very pessimistic and inefficient implementations. In this
paper, we show that by focusing on “higher-level” properties like
control safety, instead of trying to meet all deadlines, it is possible
to achieve more efficient implementations of control tasks on
shared resources. This has considerable benefits in cost-sensitive
domains like automotive. The core of our technique follows the
AUTOSAR paradigm where groups of control computations with
the same period constitute units of scheduling. Towards this, we
suitably increase (boost) or decrease (compress) the sampling
periods of control tasks and schedule them in a manner that
is cognizant of their high-level safety constraints, but does not
necessarily meet all deadlines. Our results for several standard
controllers from the automotive domain illustrate the benefits of
our approach.

Index Terms—Real-time and embedded systems, Dynamic
systems and control, safety

I. INTRODUCTION

Proposed scheme: We propose a new technique for max-
imizing the number of control tasks that may be “packed”
on a processor or resource. Our main novelty is a scheduling
technique that satisfies “system-level” properties like control
safety, described later in the paper, instead of aiming to
meet all task deadlines. This shift in focus buys considerable
implementation efficiency, which has not been explored in
the past in the manner that we do. Figure 1 provides an
overview of our approach. Given 1 a set of control tasks
T1, T2, . . . with distinct sampling periods P1, P2, . . ., our first
step is to determine a common sampling period PC by suitably
increasing (boosting) or reducing (compressing) each period
P1, P2, . . .. This results in a new task set 2 that is then
scheduled in a time-triggered manner on a resource where
time is partitioned into slots of the chosen period size PC .
Such a schedule 3 only allows a subset of tasks from the set
T1, T2, . . . to be executed in each slot. The ones not scheduled
miss their deadlines. In the example shown in Figure 1, the
schedule for the task T1 is 110110 . . ., that of T2 is 010010 . . .,
T3 is 101101 . . ., and finally, that of T4 is 001001 . . ., where
a 1 denotes the deadline being met and a 0 a deadline miss.
Here, each slot is only large enough to execute at most two of
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Fig. 1. Proposed implementation scheme for control tasks T1, . . . , T4.

the four tasks. Although there are several deadline misses, the
schedule is derived in a manner that system-level properties
of relevance, like the safety of the physical system being
controlled, is not violated. If all the deadlines were to be
met, then the full task set (T1 to T4) would not have been
implementable on this single resource and more processors
would be necessary. Given pre-designed controllers 1 and a
safety property associated with each task Ti, how to obtain

3 while guaranteeing all the safety properties, is the main
technical contribution of this paper. While there is a large
volume of literature on scheduling safety-critical tasks to meet
safety properties [1], [2], they rather attempt to meet all
deadlines and thereby ensure safety, rather than focus on safety
with deadline misses.

Background and motivation: Efficient implementation of
software is a key to success in many cost-sensitive domains
like automotive. Today, a modern car has several hundred mil-
lion lines of software code implemented on different electronic
control units (ECUs). The core functionality implemented by
such code consists of various feedback control loops, e.g.,
engine control, brake control, cruise control, motor control,
and suspension and vibration control. Here, the traditional
implementation workflow consists of the control strategy being
designed first, followed by implementing it as a software task,
that is scheduled to meet the deadline determined during the
controller design phase. This ensures a separation of concerns
that enables control theorists and embedded systems engineers
to only communicate via the deadlines that needed to be met.

However, meeting all deadlines—which is assumed in the
above workflow—is turning out to be increasingly chal-
lenging. With growing software and processor architecture
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complexity, estimating safe and tight worst case execution
time (WCET) estimates of software tasks is becoming a
losing proposition [3]. For WCET estimates to be safe, they
are increasingly overestimated. Meeting all task deadlines
with such overestimated WCET values leads to pessimistic
or infeasible implementations. Further, automotive in-vehicle
architectures are rapidly moving away from “one function per
ECU” or federated, to multiple functions sharing resources,
viz., “integrated” architectures [4]. The clear trend is that future
architectures will be less “static” than before, as indicated
by developments like AUTOSAR Adaptive [5] and service-
oriented paradigms [6]. Such trends necessitate decoupling the
software from the underlying hardware architecture, to attain
flexibility and ease of task migration across architectures.
However, “architecture-independent” WCET estimates exac-
erbate the pessimism even further. As a result, all downstream
scheduling techniques that rely on safe WCET estimates of
tasks are becoming too pessimistic to remain useful in practice.

Deadlines are only a means to an end: This paper,
therefore, asks the question—can implementation pessimism
be reduced by not having to meet all deadlines? In other
words, can the focus be shifted to satisfying properties of con-
sequence, instead of deadlines? In the context of our problem,
they are “safety” properties defined on the physical system
being controlled by the software tasks to be implemented
and scheduled. We define them as follows: Given a plant
and a suitable controller, let τnom be a trajectory in the state
space of the closed-loop system (plant + controller) when the
control task meets all deadlines. This is referred to as the
ideal or nominal behavior. Any other trajectory τ is referred
to as “safe” if it is at most a specified dsafe distance away
from τnom , under a suitably defined distance metric. This is
mathematically defined later in the paper. The intuition here
is that occasional deadline misses will result in a different but
acceptable state space trajectory, as long as its deviation is not
too much from the ideal one. As outlined at the start of this
section, how to schedule multiple control tasks with different
sampling periods and safety properties, in order to reduce
implementation pessimism, is the key technical contribution
of this paper.

For simplicity of exposition, we consider implementations
on a single processor only. But the general scheme derived
here can be extended to cases where control tasks are parti-
tioned and implemented on multiple computation and com-
munication resources. Our proposed scheme is also compliant
with OSEK and AUTOSAR, where runnables or tasks with
the same period are grouped together for scheduling [7], [8].

Organization: The rest of this paper is organized as fol-
lows: in Section II, we review the existing literature relevant
to our work. In Section III, we introduce the necessary
mathematical preliminaries and the models used in this work.
We formally state the problem in Section IV, followed by our
proposed approach in Section V. Numerical results showing
the benefits of this approach are presented in Section VII.
Finally, Section VIII concludes the paper followed by an
outline of possible extensions.

II. RELATED WORK

How to implement multiple control applications on
resource-constrained embedded systems is being actively stud-
ied over the past couple of years [9]. These studies have
been motivated by the increasing volumes of software in
domains like automotive [10], where the algorithmic core of
the software is a feedback control algorithm. Exploiting the
robustness of such control algorithms to adaptively allocate
resources, e.g., by switching between time-triggered and event-
triggered communication, has been studied in the past [11].
Whether to schedule a control task or not (in which case it
misses its deadline) can be considered to be a form of resource
allocation in a similar vein.

There is indeed a considerable volume of literature on
checking where control safety properties (including stability)
are satisfied under a given deadline hit/miss pattern. Some
of the representative recent literature on this include [12]–
[16]. Work in this domain stems from the difficulty in timing
analysis of control software [17], which is attributed to both
– the challenges in WCET analysis and the modeling of
the code structure [18]. But there has been much less work
on how to synthesize task schedules to meet control safety
properties, and especially properties that are more general than
stability, as we do in this paper. The work in [19] investigated
scheduling with safety constraints, but the applicability of
their methods is limited to controllers with the same period.
Our work is also closely related to scheduling using weakly-
hard constraints (that specify deadline hit/miss patterns) [20]
and its applications [14], [21], [22], as we discuss in the
next section. It is worth noting that while the focus of this
paper is on scheduling, viz., determining when a control task
meets its deadline and when not, the underlying principle
of focussing in the system-level property and not focusing
on “secondary” properties like timing behavior is applicable
more generally. For example, when messages are not fully
encrypted or authenticated for security [23], [24], it might be
shown that a safety property of the form studied in this paper
cannot be violated even if the system is under attack. Similar
results may also be established in the case of ensuring system
reliability [25].

III. SYSTEM MODELLING

In this section, we introduce the necessary background on
system modeling that will be utilized throughout the remainder
of the work. We first wish to lay out the fundamentals of
modeling control systems, then move on to the discussion
about the characterization of deadline hit/miss patterns and
how they affect system behavior such as control safety.

A. The State-Space Model

Control systems are dynamic in nature and are often de-
scribed using differential equations. One common represen-
tation of control systems is the state-space model, where
the state of the system is represented by a state vector
x(t) = [x1(t) x2(t) . . . xn(t)]

T and the input to the system
by u(t) = [u1(t) u2(t) . . . up(t)]

T . Using these notations,



the state-space model of a continuous linear time-invariant
system is given by

ẋ(t) = Ax(t) +Bu(t), (1)

where A ∈ Rn×n, and B ∈ Rn×p. Eq. (1) shows that the
rate of change of the system state (ẋ(t)) depends both on the
current state (x(t)) and the control input (u(t)). When imple-
mented on a processor, the state-space model is discretized,
with a discretization period of P , and assumes the form of

x[t+ 1] = Adx[t] +Bdu[t]. (2)

In this work, we assume that the system model is closed-
loop, where the measurement of the current state is used to
determine the control input of the next actuation. In practice,
the control input u is computed by a periodic real-time task
running on a processor and is assumed to be of the form

u[t] = Kx[t− 1], (3)

where K ∈ Rp×n is the feedback gain. We follow the logical
execution time (LET) paradigm, where the deadline equals the
sampling period. A new control input is always applied at the
deadline of the control job, i.e., the system state is sampled at
time t − 1 and used to compute the control input for time t,
where the state and control input are computed according to
Eqs. (2) and (3).

B. Characterizing Deadline Hit/Miss Patterns
The feedback gain matrix K in Eq. (3) is designed in tandem

with the discretization period P of the system, and the correct
behavior of the control system relies on the timely completion
of the computation of the control input u by the end of each
period. If the periodic real-time task computing the control
input misses its deadline, then control performance suffers, and
the system may deviate from its ideal behavior and become
unsafe. However, not all deadline misses have the same impact,
and many control systems can tolerate a certain amount
of deadline misses before the system is considered unsafe.
Many works have studied the characterization of deadline
misses and how they impact control performance. Notably,
the work in [20] proposes a systematic method for character-
izing deadline hit/miss patterns. These so-called weakly-hard
constraints—especially the

(
m
k

)
model, which demands that

in any k consecutive invocations of a task, there can be at
most m deadline misses—have been studied in a number of
settings, including schedulability analysis, formal verification,
and runtime monitoring, with [14], [21], [22] being some
recent examples. In this work, we focus on constraints of
the type

(
m
k

)
[20] which states that there are at least m

deadline hits in any k consecutive invocations of the task.
This is equivalent to the constraint

(
k−m
k

)
. Finally, as outlined

in Section I, if we represent the hit/miss patterns using a bit
string, where 0 represents a deadline miss and 1 a deadline hit,
then all hit/miss patterns that comply with the constraint

(
m
k

)
will be a regular language over the alphabet {0, 1} [26]. We
shall denote this language as L(m,k) and exploit the properties
of regular languages to synthesize task schedules.
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Fig. 2. An example of deviations as a result of deadline misses.

C. System Behavior under Deadline Misses

We now characterize the effects of deadline misses on
system behavior. Suppose x[t] is the plant state and u[t] is
the control input at time t. When x[t− 1] is read, a software
job corresponding to the control task is released to compute
u[t], which is then applied to the physical plant at time t if the
job completes within its deadline. If the job is not scheduled
(see Figure 1) then no new control input is computed and the
previous control input continues to hold.

We consider the behavior of the plant only over a finite time
horizon H . Thus the states of the plant will be recorded at time
points 0, 1, . . . ,H . For ease of exposition, we also assume that
the initial state of the system is z[0] ∈ Rn. With the initial
state z[0], we define the nominal trajectory of the plant as the
trajectory resulting from no deadline misses, denoted as τnom .
Formally, it is the sequence of states of length H + 1 of the
form x[0], x[1] . . . , x[H] with x[0] = z[0], where x[t + 1] is
computed with Eq. (2) and u[t] is computed with Eq. (3). As an
example, the black-colored trajectory in Fig. 2 is the nominal
trajectory. We next wish to define the set of trajectories that do
not deviate from the nominal trajectory τnom by more than a
safety bound dsafe , shown as the light blue envelope in Fig. 2.
Let T = {τ} be the set of sequences of length H+1 over Rn

where τ = (τ [0], τ [1] . . . , τ [H]) with τ [i] = x[i], x[0] = z[0]
and i = 0, . . . ,H . Intuitively, T denotes the set of all possible
trajectories of length H +1 in the state space that starts from
z[0], including ones where some task deadlines are missed.
Clearly, the nominal trajectory—where all deadlines are met—
is also a member of T .

To quantify deviations from the nominal trajectory, we
first define the distance between two points in Rn using a
distance metric dis(·). This can be any metric such as the
Euclidean distance. We then define the distance between a
pair of trajectories (τ, τ ′), also denoted as dis(·), given by:

dis(τ, τ ′) = max
0≤t≤H

dis(τ [t], τ ′[t]). (4)

We now fix a safety margin dsafe > 0. This leads to the set
of safe trajectories Tsafe ⊂ T , defined as

Tsafe = {τ | dis(τ, τnom) ≤ dsafe}. (5)

Intuitively, this is the set of trajectories that do not exceed the
safety margin around the nominal trajectory, i.e., trajectories



that do not deviate more than dsafe from the nominal trajec-
tory. For example, the green trajectory in Fig. 2 is a member of
Tsafe , while the red one is not. Clearly, the nominal trajectory
is also a member of Tsafe .

Finally, suppose γ ∈ {0, 1}H is a sequence of length
H representing a pattern of deadline hits and misses. Then
starting from z[0] we can compute the sequence of plant states
with Eq. (2) and control inputs with Eq. (3) if γ[t] = 1, or
hold the previous control input if γ[t] = 0. We denote the
resulting plant trajectory as τγ . This leads to

T(m,k) = {τγ | γ ∈ L(m,k)}. (6)

In other words, T(m,k) is the set of all state space trajectories
resulting from deadline hit/miss patterns in the regular lan-
guage L(m,k). We call the plant safe under

(
m
k

)
if and only

if T(m,k) ⊆ Tsafe .

IV. PROBLEM STATEMENT

As we have established in Section III, we are interested
in leveraging the relationship between deadline misses and
control performance to produce a safe schedule for all systems.
However, it is difficult to relate the deadline miss patterns of
different control tasks if they are running at distinct sampling
periods. In contrast, if control tasks were to run at the same
sampling period, then the resource contention problem would
be identical within each period and become much more
tractable. We wish to study the interactions between changing
periods and scheduling while still focusing on the properties of
consequences, viz., control safety. Towards this, we formulate
the problem as follows.

Problem 1 (Safe Schedule Synthesis): Given a set of
controller tasks T of distinct periods, each with parameters
WCET (Ci), period (Pi), and safety margin (dsafei ), determine
if a schedule can be obtained by increasing (boosting) or
reducing (compressing) the sampling periods of the control
tasks while still maintaining their respective safety properties.
Synthesize one if such schedules exist.

Note that we are assuming the sampling periods of control
tasks are reasonably close to each other (e.g. within the same
order of magnitude), as large changes in sampling periods are
often accompanied by undesirable shifts in system behavior.

V. PROPOSED APPROACH

We propose a two-stage solution to Problem 1 as follows:
1) Determine suitable common sampling periods (schedul-

ing slot size) PC for all control tasks.
2) Synthesize a time-triggered schedule on the computation

resource where time is partitioned into slots of size PC .
The overview of our approach is outlined in Fig. 3. While

converting all control tasks to the same sampling periods
makes the safety analysis and scheduling problem much
simpler, modifying sampling periods (either by boosting or
compressing) changes the dynamics of the closed-loop system.
This is further complicated by the fact that the tasks are im-
plemented on a resource-constrained platform, and cannot be
scheduled to meet all deadlines. This leads to some unintuitive
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Fig. 3. An overview of the proposed period compression/boosting and
schedule synthesis scheme.

effects on the schedulability of the system. For example, while
a shorter sampling period generally enhances—or at least does
not deteriorate—the control performance of a single system, it
also means that fewer tasks can fit in that shorter period and
will miss more deadlines. Therefore, the control period must
be carefully determined to trade off the control performance
of the systems with the number of tasks that fit within the
period (i.e., not causing too many deadline misses). Despite
the complications, we argue that when done carefully, the
combined effect of the two can be used to produce a safe
and more efficient implementation of control tasks. We now
present the details of period compression and boosting and
schedule synthesis in the next two subsections.

A. Period Compression and Boosting

Choosing a common period for all control tasks is a delicate
issue. We proceed by considering the WCETs of each control
task. Assume we are given a set of controller tasks. For each
task Ti, its WCET, period, and safety margin are denoted by
Ci, Pi, and dsafei , respectively. We assume that the task set
is not schedulable on the shared processor when no deadline
misses are allowed (e.g., the utilization U =

∑
i Ci/Pi > 1),

since otherwise, a standard scheduling algorithm such as
earliest deadline first (EDF) will suffice. We first sort the
execution times from large to small, and define potential
common periods or slot sizes for scheduling (see Figure 1)
as follows:

PC
k =

∑
i≤k

Ck. (7)



We choose these values to ensure that when we use PC
k as

the common time slot size, any k controller tasks can be
executed within it. This is because it is large enough to fit
the sum of the k largest WCET values. As an example, for
the set of five controller tasks in Table III, the possible PC

k

values would be 15ms, 28ms, 40ms, 50ms, and 60ms. As
discussed earlier, it is important to note that the chosen PC

k

will determine how much a control task is over- or under-
sampled compared to its original design, and this by itself
might violate a task’s safety property. Missing deadlines on
top of it, by not scheduling the task at every slot, might
only further deteriorate the violation and not correct it. But
depending on the underlying dynamics of the closed-loop
system, certain patterns of deadline misses might also correct
a violation caused by over- or under-sampling, causing the
combination of the two steps to be important and interesting.

Recomputing controller gains: Finally, we have an ad-
ditional design dimension: whether or not the controller gain
values are recomputed based on the chosen common sampling
period [27]. This is because gain values designed for the
originally-intended sampling period might not work well for
a new period. However, it may not always be realistic to
redesign a controller for each implementation architecture,
especially when controller design and implementation phases
are handled by different teams. We explore both possibilities
in Section VII.

B. Schedule Synthesis

After the period compression and boosting process outlined
in Section V-A, we now have a set of control tasks with the
same period. The next step is to synthesize a safe schedule
(if one exists) for the task set. We use the two-step synthesis
scheme proposed in [19] to model the connection between
deadline miss patterns and system behaviors, as discussed
in Sections III-B and III-C. For completeness, this scheme
is summarized below:

1) For each controller, we find a set of weakly-hard con-
straints

(
m
k

)
whose resulting trajectories T(m,k) are safe.

2) We use these sets of constraints and properties of regular
languages to synthesize a schedule satisfying the con-
straints for all controllers.

1) Safe constraints: Given a control task Ti and its safety
margin dsafei , we wish to determine the set of weakly-hard
constraints under which the system is safe. Checking safety
under a particular constraint

(
m
k

)
amounts to checking if

T(m,k) ⊆ Tsafe , or whether d(m, k) ≤ dsafei . Here, d(m, k) is
the maximum deviation of the trajectories in T(m,k) from the
nominal trajectory of Ti. More precisely,

d(m, k) = max
{
dis(τ, τnom)

∣∣ τ ∈ T(m,k)

}
. (8)

However, checking this directly is expensive, due to the expo-
nential number of hit/miss patterns of length H . Instead, we
adapt the BoundedRuns algorithm proposed in [12] to com-
pute an upper bound d̂(m, k) on d(m, k). The BoundedRuns

algorithm divides the total H periods into smaller subse-
quences, each containing t periods (t ≪ H). Within each

subsequence, the algorithm computes all 2t potential hit/miss
sequences and calculates the trajectory corresponding to each
sequence. At the end of each subsequence, it computes a
bounding box for the reachable states resulting from the 2t

trajectories and uses it as a single starting condition for the
next subsequence. Although the output d̂(m, k) overestimates
d(m, k), the time complexity is significantly reduced from
O(2H) to O(2t Ht ). It then suffices to check that d̂(m, k) ≤
dsafe to guarantee the safety of the system.

Equipped with the method to check a single constraint(
m
k

)
, we move on to generate the set of safe constraints

by iterating through all weakly-hard constraints
(
m
k

)
up to

a maximum window size kmax , a parameter fixed by the
user. For each constraint

(
m
k

)
, we compute d̂(m, k) using

the BoundedRuns algorithm and compare it with dsafei . If
d̂(m, k) ≤ dsafei , we conclude that the system is safe under(
m
k

)
and add

(
m
k

)
to the set of safe constraints. Otherwise,

no conclusion can be drawn and we do not add it to the set.
We additionally apply an optimization scheme that reduces the
required number of iterations to generate the list based on the
following observations:

m1 ≥ m2 =⇒ L(m1,k) ⊆ L(m2,k) (9)
k1 ≥ k2 =⇒ L(m,k1) ⊇ L(m,k2) (10)

These observations imply that
1)

(m1

k

)
is safe if

(m2

k

)
is safe and m1 ≥ m2, and

2)
( m
k1

)
has no safe guarantee if

( m
k2

)
has no safe guarantee

and k1 ≥ k2

Therefore, we do not need to iterate over every
(
m
k

)
constraint.

Instead, we start with m = 1 and k = 2, increment k when
d̂(m, k) ≤ dsafei , and increment m when d̂(m, k) > dsafei .
As a result, the total number of iterations is reduced from
O(kmax

2) to O(kmax ). It is important to note that this
reduction in computation does not lead to a reduced solution
space, as all safe contraints will be considered in the next step
for schedule synthesis, regardless of the observations made in
Eqs. (9) and (10).

2) Synthesizing safe schedules: As introduced in Sec-
tion III-B, a weakly-hard constraint

(
m
k

)
is a regular language

L(m, k) over {0, 1}, where a string represents a hit/miss
pattern satisfying

(
m
k

)
. The set of safe constraints generated

for controller Ti in the previous step can be represented as
regular language as well, by taking the union of the regular
languages representing each of the constraints. We use an
automaton Ai = ⟨Li,Σ, T i, Li

f , ℓ
i
0⟩ to represent the weakly-

hard constraints for the control task Ti, where Li is a set of
locations (states), Σ = {0, 1} is the input alphabet, T i is the
transition function, Li

f is the set of accepting locations, and
ℓi0 is the initial location.

With this construction, an accepting run of Ai is a hit/miss
pattern that satisfies at least one safe weakly-hard constraint
for the corresponding controller task Ti. Corresponding to a
task set with N control tasks, we will use the set of controller
automata {Ai | i ∈ 1, . . . , N} to construct a scheduler
automaton, and use it to synthesize a schedule (of the form



shown in Figure 1, where N = 4). We consider a time horizon
of H time slots and assume that J (< N ) controller jobs can
fit into one time slot. Thus, we shall construct the scheduler
automaton as a product of the N controller automata, where
accepting runs of length H + 1 of the scheduler automaton
will constitute the set of safe schedules that we seek.

Example: Consider the following example, where two
controller automata {A1,A2} representing a set of weakly-
hard constraints on control tasks T1 and T2 are given, for
which we wish to synthesize a schedule such that only one
task can be scheduled in each time slot. Assume that 011011
is an accepting run of A1, representing a pattern of deadline
hit/miss that does not violate the safety constraint of T1, up to
a time horizon of 6. Similarly, assume 100100 is an accepting
run of A2. Clearly, given the two accepting runs, a possible
schedule can be given as vectors

(
0
1

)(
1
0

)(
1
0

)(
0
1

)(
1
0

)(
1
0

)
,

where each vector denotes the set of tasks that should be
scheduled at each time. Control task T1 should be scheduled
in the given time step if and only if there is a 1 in the first
position of the vector. Similarly, T2 should be scheduled if
and only if there is a 1 in the second position of the vector—
for instance,

(
0
1

)
denotes that controller task T2 should be

scheduled at that time step. We next show how to derive such
schedules from a set {Ai}.

Definition 1: A scheduler automaton AS for a set of N
control tasks whose constraints are represented by the au-
tomata of the form Ai = ⟨Li,Σ, T i, Li

f , ℓ
i
0⟩, where at most

J controllers can be scheduled in each time slot, is defined as
an automaton ⟨LS ,ΣS , TS , LS

f , ℓ
S
0 ⟩:

LS set of locations, LS =
∏

i L
i;

ΣS input alphabet, ΣS ⊂ {0, 1}N . A sequence σ ∈ {0, 1}N
is in ΣS if and only if

∑
i σ

i ≤ J ;
TS transition function, TS(ℓ, σ) =

∏
i T

i(ℓi, σi);
LS
f accepting locations of the automaton, LS

f =
∏

i L
i
f ;

ℓS0 initial location of the automaton, ℓS0 =
∏

i ℓ
i
0.

The new set of locations LS of the scheduler automaton is
obtained by taking a Cartesian product of all the controller
automata locations Li. Similarly, the initial location and the
accepting locations are Cartesian products of the individual
controller automata’s initial locations and accepting locations,
respectively. The set of actions ΣS ⊂ {0, 1}N represents
the legal actions to take at each time slot, i.e., an action
σ ∈ Σs is valid if and only if

∑
i σ

i ≤ J . The transition
function of the scheduler automaton is a modified Cartesian
product. Intuitively, it is emulating all the (safe) weakly-
hard constraints of all controllers together. Therefore, all the
transitions that lead to an accepting state are in the set of valid
schedules.

With this construction of the scheduler automaton, an ac-
cepting run of the automaton represents a safe schedule of the
control tasks. The existence of safe schedules can be checked
by running an emptiness check on the scheduler automaton,
and schedules can be generated using breadth-first search
(BFS).

For simplicity of exposition, we have presented the main
steps of our construction explicitly. However, this will not be

System WCET (Ci) Period (Pi) Safety Margin (dsafei )

Task 1 10ms 18ms 2.5
Task 2 15ms 20ms 1.2

TABLE I
THE EXAMPLE TASK SET

Task Window
Size (k)

Minimum Hits (m)
1 2 3

Task 1
2 ✓ — —
3 × ✓ —
4 × ✓ ✓

Task 2
2 ✓ — —
3 ✓ ✓ —
4 × ✓ ✓

TABLE II
SAFE CONSTRAINTS FOR THE EXAMPLE SYSTEMS IN TABLE I WITH

COMMON PERIOD PC = 15ms.

the most efficient implementation and there is significant scope
for optimization using standard formal verification tools [28].
For instance, one might just work with a set of weakly-hard
constraints for each controller and begin to explore the state
space of the scheduler automaton on the fly while inferring
the state spaces of the controller automata (capturing the
associated weakly-hard constraints) as needed. We will stop
as soon as an accepting run of the scheduler automaton is
found. Thus the full price of the construction will be incurred
only when there is no feasible schedule.

VI. ILLUSTRATION OF THE PROPOSED APPROACH

In this section, we illustrate the methods proposed in Sec-
tion V using a simple task set with two controller tasks (shown
in Table I). Note that the utilization of this example test
set is U ≈ 1.3 > 1 and is not schedulable with conven-
tional deadline-based methods. We will first find the suitable
common periods for scheduling, and then verify them with
schedule synthesis. We refer to Algorithm 1 as a structured
guide for this section:
Line 1 The first step is to find suitable common periods so that

the methods of schedule synthesis can be applied. Sort-
ing the tasks by their WCET, we obtain the common
periods PC

1 = 15ms, and PC
2 = 15 + 10 = 25ms.

These are the slot sizes that fit one and two tasks,
respectively.

Line 3 For each possible common period, we attempt to
synthesize a safe schedule of the two systems. The
first common period we use for schedule synthesis is
PC = 15ms.

Line 4 Assume that the dynamic of system 1 is described by
the following state-space model:

ẋ1(t) =

[
5 −2
0.7 −1

]
x(t) +

[
2
0.2

]
u(t).

The system is initially discretized for its original
period P = 18ms. To apply the schedule synthesis



methods, we first re-discretize it using the new com-
mon period PC

1 = 15ms and obtain the following
discrete state-space model:

x1[t] =

[
1.0777 −0.0309
0.0108 0.9850

]
x(t) +

[
0.0311
0.0031

]
u(t).

We apply the same process to Task 2 and obtain the
discretized state-space model for it as well.

Line 5 Assume the time horizon H = 20 and maximum win-
dow size kmax = 4. Running scheduleSynthesis

returns the safe constraints shown in Table II, where
a “✓” in position (m, k) means that the weakly-hard
constraint

(
m
k

)
is safe for that system, and an “×”

indicates that the constraint is not known to be safe.
Additionally, a safe schedule is synthesized, shown
in Fig. 4. Intuitively, the scheduling strategy is to
alternate between scheduling Task 1 and Task 2 in
the given 15ms slots, and it is easy to check that the
deadline miss pattern of either task satisfies the

(
1
2

)
constraint, a safe constraint for both systems.

Line 7 In this simple example, our algorithm is able to find a
safe schedule without recomputing the gain values and
exits. If this is not the case, the algorithm will proceed
to the second half and repeat the above process, but
with recomputed gains for each potential PC . The
algorithm will return None if it reaches the end of
the second loop without finding any safe schedule.

Algorithm 1: Illustration of the proposed approach.
input : A set of controller tasks T with parameters

{Ci, Pi, d
safe
i } (WCET, period, safety margin)

output: A safe schedule with its period PC ; or None
if no safe schedule can be found

1 P← getCommonPeriods({Ci}) ;
2 // Try scheduling without recomputing controller gains

;
3 for PC

k ∈ P do
4 Td ← discretize(T, PC

k ) ;
5 s← scheduleSynthesis(Td) ;
6 if s is not None then
7 return s

8 // Try scheduling with recomputing controller gains ;
9 for PC

k ∈ P do
10 T′ ← recomputeGains(T, PC

k ) ;
11 Td ← discretize(T′, PC

k ) ;
12 s← scheduleSynthesis(Td, P

C
k ) ;

13 if s is not None then
14 return s

15 return None

VII. EXPERIMENTAL RESULTS

We implemented our techniques using Julia and evaluated
them on five standard controllers from the automotive do-
main. In Section VII-A, we introduce these five controllers

Task 2
1 2 3 4

Task 1

19 20

Repeat

Fig. 4. Safe schedule for the example systems in Table I with common period
PC = 15ms.

along with their parameters (such as WCETs and periods),
and the required safety margins that they must satisfy. In
Section VII-B, we give an overview of our approach and a
summary of our findings. Section VII-C describes the details
of the schedule synthesis process, and finally in Section VII-D,
we discuss the insights gained from our results.

A. Plant Models

Each of our five controllers is designed for a certain
sampling period and WCET, and must be within the given
safety margins—Table III provides these parameters.

1) RC Network (RC): Our first model is a resistor-capacitor
network [29] with the following model:

ẋ(t) =

[
−6.0 1.0
0.2 −0.7

]
x(t) +

[
5.0
0.5

]
u(t).

2) F1Tenth Car (F1): Our second model is the linearized
motion of an F1Tenth model car [30]:

ẋ(t) =

[
0 6.5
0 0

]
x(t) +

[
0

19.685

]
u(t).

Our next three plant models are selected from [31] and also
represent subsystems from the automotive domain.

3) DC Motor (DC): Our third model is the speed control
for DC motor adapted from [32]:

ẋ(t) =

[
−10 1
−0.02 −2

]
x(t) +

[
0
2

]
u(t).

4) Car Suspension (CS): Our fourth model is a suspension
system adapted from [33]:

ẋ(t) =


0 1 0 0
−8 −4 8 4
0 0 0 1
80 40 −160 −60

x(t) +


0
80
20
−1120

u(t).

5) Cruise Control (CC): Our final model is a cruise control
system adapted from [34]:

ẋ(t) =

 0 1 0
0 0 1

−6.0476 −5.2856 −0.238

x(t)+

 0
0

2.4767

u(t).



System WCET Period Safety Margin

RC 10ms 23ms 5.8
F1 13ms 20ms 0.37
DC 12ms 23ms 0.18
CS 10ms 27ms 2.1
CC 15ms 28ms 0.48

TABLE III
PARAMETERS FOR THE CONTROLLERS DEFINED IN SECTION VII-A

Period (PC ) Original gain Recomputed gain

15ms (1 task) Not schedulable Not schedulable
28ms (2 tasks) Schedulable Schedulable
40ms (3 tasks) Not schedulable Schedulable

TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS

B. Experiment Overview

As Table III shows, the control tasks have different periods
and their utilization U(≈ 2.51) is far greater than 1. That is,
these tasks are not schedulable on a single processor if no
deadline misses are allowed. In this section, we attempt to
derive a common period for the controllers and demonstrate
that with our proposed schedule synthesis technique they can
be scheduled on a single processor while satisfying their safety
margins (while missing certain deadlines).

With the WCET values shown in Table III, we derive a
number of suitable common periods and convert all the control
tasks to one of the common periods so that our schedule
synthesis technique may be applied. The common periods
we explore are: PC

1 = 15ms (where any one controller task
can fit inside one scheduling slot), PC

2 = 15 + 13 = 28ms
(any two tasks fit), and PC

3 = 15 + 13 + 12 = 40ms (any
three tasks fit). PC

4 = 50ms and PC
5 = 60ms are too long

for some systems to stay within their safety margins, and
therefore are not discussed here. For each common period, we
explore both—using the original and recomputed controller
gain values as discussed in Section V-A. A summary of
the final results is shown in Table IV. In particular, for
the common period PC

1 = 15ms, no safe schedule can be
obtained; for PC

2 = 28ms, a safe schedule can be obtained
either with the original gain values or recomputed gain values
using the new period; for PC

3 = 40ms a safe schedule is
only obtained when the control gain values are recomputed,
i.e., the controllers are recomputed. The results demonstrate
that recomputing the controller gain values is not always
required to obtain a safe schedule. We present the details of
our schedule synthesis scheme in the next section.

C. Schedule Synthesis

For each common period, we first discretize all plant models
using the selected common period. Using either the original
or recomputed gain values, we apply our schedule synthesis
technique to determine a safe schedule. We demonstrate this
process with the common period PC

2 = 28ms. In this
example, we use the original gain values and do not recompute

Model Window
Size (k)

Minimum Hits (m)
1 2 3 4 5

RC

2 ✓ — — — —
3 × ✓ — — —
4 × × ✓ — —
5 × × × ✓ —
6 × × × × ✓

F1

2 ✓ — — — —
3 × ✓ — — —
4 × × ✓ — —
5 × × × ✓ —
6 × × × × ✓

DC

2 ✓ — — — —
3 ✓ ✓ — — —
4 × ✓ ✓ — —
5 × × ✓ ✓ —
6 × × × ✓ ✓

CS

2 ✓ — — — —
3 ✓ ✓ — — —
4 ✓ ✓ ✓ — —
5 × ✓ ✓ ✓ —
6 × ✓ ✓ ✓ ✓

CC

2 ✓ — — — —
3 ✓ ✓ — — —
4 × ✓ ✓ — —
5 × ✓ ✓ ✓ —
6 × × ✓ ✓ ✓

TABLE V
SYNTHESIZED CONSTRAINTS FOR PC = 28ms, NO RECOMPUTING

them using this common period. The results of this schedule
synthesis are presented below.

Safe constraints: For each controller, we discretize the
state-space model using the common period PC

2 = 28ms and
use our constraint synthesis technique outlined in Section V-B.
The time horizon H is set to 100, and the maximum window
size kmax is set to 6. The results are shown in Table V,
where a “✓” in position (m, k) means that the weakly-hard
constraint

(
m
k

)
is safe for that system. Viz., a hit/miss pattern

satisfying the weakly-hard constraint
(
m
k

)
would guarantee

that the evolution of the plant stays within its safety margin.
An “×” mark indicates that the constraint is not known to be
safe.

Synthesize safe schedules: After we select the common
period and compute the list of safe weakly-hard constraints for
each controller, we attempt to schedule all the controller tasks
using the automata-based approach outlined in Section V-B.
With the common period PC

2 = 28ms, two controller tasks
can fit within one period/slot. We are able to derive a schedule
for the five controllers, where each controller satisfies its cor-
responding safety constraints despite missing some deadlines
and some of them running with a longer period than what they
were designed for.

As shown in Fig. 5, one example of a valid schedule is
as follows: From t = 1 to t = 9, the tasks to be scheduled
in each slot (Step(t)) are shown in the table. From t = 10 to
t = 100, the schedule is repeated from t = 4 to t = 9, viz., the
schedule at time t ∈ [10, 100] can be given as σ[((t−10) mod
6) + 4]. We note that this is not the only valid schedule for



CC
1 2 3 4 5 6 7 8 9

CS

DC

F1

RC

Repeat

Fig. 5. Synthesized schedule for the five controllers outlined in Section VII-A.

this particular set of control tasks with the common period
PC
2 = 28ms. The accepting runs of the scheduler automaton

represent the set of all the valid schedules. Furthermore, there
might be other common periods that can be used to schedule
these tasks, but with PC

2 = 28ms, we are able to satisfy the
safety requirements of all the control tasks.

D. Insights from the results obtained

To understand the effects of period compression and boost-
ing and of deadline misses on system safety, we show the
closed-loop dynamics of two specific controllers: the F1tenth
Car and the Cruise Control system (see Fig. 6). The black
lines denote their nominal trajectories, while the colored lines,
except the red ones, represent their evolution under different
safe common periods and schedules. There is no feasible
schedule for PC

3 = 40ms without recomputing the gain
values of all the controllers. To illustrate this, we first obtain a
feasible task schedule for PC

3 = 40ms with recomputed gain
values for all controllers. When this same schedule is applied
to the controllers without recomputing their gain values, we
obtain the red trajectories showing safety violations (viz., the
trajectories of F1 and CC go outside their safety pipes).

As shown in the 1st subplot of Fig. 6, a system can diverge
in some cases with a period change. For the F1tenth Car,
whose controller was originally designed for a period of 20ms,
when its period is changed to PC

3 = 40ms and its gains are not
recomputed, it diverges. This is clearly a safety violation. After
recomputing the gain values for 40ms, however, the system
becomes safe under weakly-hard constraint

(
5
6

)
. Another type

of safety violation is highlighted in the 2nd subplot of Fig. 6.
When CC’s sampling period is changed to 40ms without
recomputing its gains, it still remains convergent. However,
its trajectory (in red) nevertheless goes outside its safety pipe
and is thus deemed unsafe. For common period PC

1 = 15ms,
all systems have safe weakly-hard constraints that satisfy their
safety property. But since only one out of the five tasks can fit
in a time slot, the task set cannot be safely scheduled despite
the fact that, in theory, a shorter period enhances control
performance. This highlights the unintuitive nature of period
compression and boosting: what is beneficial to systems on
their own may not yield desirable results for the whole task set,

and only a joint exploration of common periods and schedules
provides the complete picture.

VIII. CONCLUDING REMARKS

In this paper, we have studied the problem of packing
multiple control tasks on a shared processor. The novelty
of our approach lies in shifting the focus from ensuring all
the deadlines are being met to satisfying system-level safety
properties despite some deadline misses. This significantly
enlarges the space of schedules that can be explored. To
achieve this, we first address the issue of deriving a common
sampling period for a set of control tasks that may be originally
designed with distinct periods. This turns out to be a delicate
problem involving unintuitive tradeoffs between the quality of
control, the safety properties, and schedulability. We then use
the language of weakly-hard constraints to capture the patterns
of deadline misses that may be suffered by the control tasks
and use them as the bridge between the system-level safety
properties and the valid schedules. More precisely, given a
safety property of a control system, we extract a set of weakly-
hard constraints such that the system is guaranteed to be safe
so long as these weakly-hard constraints are maintained. Then
we construct a schedule for the task set such that deadline
misses suffered by each control task satisfy its associated set of
constraints. Note that increasing a task period makes it easier
to meet its deadline, but compromises safety. But reducing the
period also compromises safety, while making it easier for the
task to meet its deadline. Our work shows how to evaluate
this tradeoff using a quantifiable notion of safety.

Our experimental results show that considerably less pes-
simistic implementations can be obtained—and more sched-
ules become feasible on a shared resource—when the focus is
shifted from the usual goal of meeting all deadlines to meeting
the safety properties of the systems under control. Further-
more, our approach is in line with the evolving paradigms in
the automotive domain such as AUTOSAR Adaptive.

In our future work, we shall further explore the facets of
deriving the common period, such as using periods that allow
a different number of tasks to be scheduled, depending on their
WCETs. We shall also expand on the system properties that
must be ensured from the single definition of control safety



Fig. 6. Dynamics of the F1tenth Car (left) and Cruise Control (right) models

used in this work. For example, multiple levels of criticality
can be specified, and the scheduling algorithm will take it into
account when making scheduling decisions.
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