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Abstract—In practice, safety-critical cyber-physical systems
(CPS) are often implemented using high quality-of-service (QoS)
resources to provide maximum performance in all scenarios. Such
implementations are oblivious to the changing criticality levels of
CPS based on their physical dynamics (e.g., steady or transient
state). Considering that high-QoS resources are constrained
for cost-sensitive CPS, such criticality-oblivious implementations
are highly inefficient. Towards a tighter dimensioning of these
resources, state-of-the-art approaches have considered multi-QoS
resources and studied criticality-aware dynamic resource alloca-
tion along the lines of mixed-criticality systems. However, these
approaches have high implementation overheads. Moreover, in
safety-critical domains like automotive and avionics, certification
of such dynamic policies is challenging and the implementation
platforms typically do not support dynamic reconfiguration.
To address these challenges, we present GoodSpread that uses
a static scheduling strategy and offers the same performance
guarantees while saving resources (more than 50% in certain
cases) compared to the existing dynamic schemes. The main idea
here is to spread the high-QoS resources as uniformly as possible
over time in order to accommodate the uncertainty of when
the criticality level might change. Our proposed strategy studies
the physical dynamics to determine the spread factor, i.e., how
often the high-QoS resources need to be provisioned. We further
propose an extensibility-driven optimization approach to obtain
a static schedule that will accommodate future workloads on the
remaining resources with maximum flexibility.

I. INTRODUCTION

State of practice: In cyber-physical systems (CPS), a physical
process is typically controlled by software running on an
electrical and electronic (E/E) platform. For safety-critical
processes, the control software needs to provide performance
guarantees. Besides the control algorithm, the control perfor-
mance also depends on the platform resources (e.g., computa-
tion, communication, and memory resources) on which the
software is implemented [1], [2]. The software implemen-
tation influences the control timings (e.g., sampling period
and closed-loop delay) that have a huge impact on the pro-
cess dynamics. In practice, to offer maximum performance
in all scenarios, the safety-critical control software often
uses resources with high quality-of-service (QoS) (e.g., time-
triggered resources) [3].

Criticality levels of a CPS: Typically, a controlled process
exhibits multiple criticality levels based on its physical dy-
namics [4]. For example, when the plant is in steady state, the
control software is in a low-criticality mode where delayed
or infrequent control actions will not jeopardize the system’s
safety. Conversely, when there is a disturbance, the system
must reject it within a specified time limit, and therefore,
the software must run in the high criticality mode with hard

timing guarantees. Note that with changing criticality levels,
the resource requirements of the control software also change.

Multi-QoS resources: In several CPS domains, E/E platforms
comprise resources with different QoS [5]. For example, a
processor can run time- or event-triggered scheduling schemes
where the former gives precise timing information while for
the latter, the response time of a software task might vary.
Similarly, communication buses have different bandwidths,
e.g., 500 kbit/s for CAN [6] and 10 Mbit/s for FlexRay [7].
Hybrid communication buses are also prevalent, e.g., FlexRay
in automotive and Profinet in industry automation. In the same
vein, using dedicated scratchpad for predictable and faster
execution of software code has become a common practice
to mitigate large variation in memory access times [8].

Criticality-aware dynamic scheduling: Previous works have
shown that criticality-aware implementation of control ap-
plications using multi-QoS resources enables prudent usage
of high-QoS resources [9]–[11]. This is important in cost-
sensitive safety-critical domains like automotive where limited
high-QoS resources are available but in high demand. In a
criticality-aware implementation, the controller mostly uses
low-QoS resources and switches to high-QoS resources only
for a certain time while experiencing disturbances. Compared
to the conservative implementation with only high-QoS re-
sources, the criticality-aware implementation uses only a frac-
tion of high-QoS resources to meet the control requirements.

Despite these approaches showing promise in saving high-
QoS resources, they are not applied in practice. One pos-
sible reason is that they require dynamic resource alloca-
tion. In safety-critical domains like automotive, the under-
lying E/E platforms typically do not support dynamic re-
configuration [12], [13]. Moreover, certification of dynamic
schemes is challenging [14]. They also have significant imple-
mentation overhead as an arbiter needs to run for monitoring
the physical states of a set of controlled plants to decide their
criticalities and, accordingly, allocating the resources [15].

Proposed scheduling approach: Although several dynamic
scheduling policies have been studied so far for multi-QoS
resources, the potential of static scheduling has not yet been
explored. In this paper, we propose a framework GoodSpread
that statically allocates multi-QoS resources to a set of control
applications so that each of them meets its performance
requirements in all scenarios while using the minimum amount
of high-QoS resources. To demonstrate our proposed idea, we
study the implementation of distributed control applications
on FlexRay-based ECU networks. Here, the main reason is
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that the previous works [9]–[11] also use this setup to study
dynamic policies, and therefore, there are results available for
comparison. FlexRay supports two different scheduling poli-
cies, i.e., time-division multiple access (TDMA) and flexible
TDMA (FTDMA) [7]. Using TDMA slots, the closed-loop de-
lay can be minimized to a negligible value while for FTDMA
communication, the worst-case delay can be significantly high.
Hence, the control performance will strongly depend on how
the control data is sent on the bus.

The main technique proposed in this paper can also be
applied to many different scenarios. For example, we can
implement a control task using dual priorities. For a higher
priority, the worst-case response time will be shorter, thus,
resulting in a shorter closed-loop delay. Conversely, a lower
priority will give a longer delay. In the same vein, we can
prefetch the code for a control task into the scratchpad for a
shorter execution time, and hence, a shorter closed-loop delay.
Running the code from the main memory via cache can result
in a significantly longer worst-case execution time.

In our problem setting, each instance of the control data can
be sent using two different scheduling policies. Thus, there are
exponential number of scheduling options. It is computation-
ally challenging to evaluate all possible options to determine
the one that uses the least number of TDMA slots to meet the
performance requirements. However, experiments show that a
control application, along with its control performance objec-
tives and disturbance arrival patterns, can be characterized
by a spread factor. This factor quantifies how the TDMA
slots should be spread over time in order to accommodate
the uncertainty in how the criticality level of the system might
change. For a spread factor given by {nh, n̂h}, GoodSpread
constructs a periodic schedule where nh slots are distributed
as uniformly as possible over n̂h samples. A similar intuition
is also used to distribute drops in weakly-hard scheduling of
control applications [16], [17]. Considering the characteristics
of the FlexRay protocol, GoodSpread uses a polynomial-time
algorithm that studies the closed-loop dynamics to derive the
spread factor for an application.

Given the spread factor for each control application, Good-
Spread formulates an optimization problem to determine a
concrete FlexRay schedule for the applications. As the main
goal here is to prudently use the high-QoS resources, Good-
Spread maximize the extensibility of the schedule, i.e., the
obtained schedule offers the maximum flexibility in accom-
modating future frames on the remaining slots. Towards this,
we propose an iterative approach that incrementally adds
prospective data frames to the set of control data frames
and tries to co-schedule them. In each iteration, we find the
prospective data frame with maximum possible scheduling
demand, and if it is not schedulable, we reduce the scheduling
demand for the next iteration. We use a similar notion of
extensibility as introduced in [18], [19]. Here, the premise is
that if a frame with a periodicity of r cycles can be scheduled,
then two frames with a periodicity of 2r are also schedulable,
however, the converse is not always true for FlexRay.

Our experiments suggest that the static scheduling approach
in GoodSpread saves TDMA slots (more than 50% in certain

cases) compared to existing dynamic schemes [11]. Such a
result is surprising considering that a dynamic policy is sup-
posed to be more flexible. Typically, in real-time scheduling,
the amount of processor time required by a task is assumed to
be a constant. However, for control applications implemented
using multi-QoS resources, there is a tight coupling between
the amount of high-QoS resources required and the order
in which the application gets the high-QoS resources. For
example, allocating a TDMA slot every 4 control samples
might be sufficient to reject a disturbance in 16 samples,
however, when the application does not get a slot in the
first 8 samples, it might require a slot in each of the next 8
samples to reject the disturbance. Existing dynamic scheduling
schemes have only considered the worst-case requirement, and
hence, over-provisioned high-QoS resources. Conversely, we
allocate TDMA slots statically in the order in which their
usage is minimized, and thus, our proposed strategy performs
better than the existing dynamic schemes. As a future work,
it would be interesting to devise a dynamic scheme following
the intuition derived in this paper. However, the main focus
here is static scheduling because of its practical relevance.

Related works: Our work mainly follows the idea introduced
in [9], i.e., implementing a control application using multi-QoS
resources leads to savings in high-QoS resources. Following
this work, several dynamic scheduling strategies, e.g., [10],
[11], have been proposed along the lines of mixed-criticality
systems [20]. That is, when the controlled plant is in steady
state (low-criticality mode), the controller uses the low-QoS
resources, while during a disturbance (high-criticality mode),
it tries to get high-QoS resources to reject the disturbance
faster. In addition to having limited scope in practical safety-
critical systems, these dynamic schemes have largely been
conservative to accommodate for the worst-case switching
sequence that may arise from arbitration. Conversely, a static
scheduling strategy, which is the main focus of this work,
is easier to implement and can tune the switching between
resources offline based on the system dynamics.

Performance-aware static scheduling of control applications
is extensively studied for both time- [21], [22] and event-
triggered architectures [23], [24]. However, such a scheduling
problem is not well-known for multi-QoS resources.

Furthermore, in control theory, there have been works on
optimal control of switched systems [25], [26]. These works
mostly consider theoretical performance metrics like quadratic
cost [26] and H∞ [25]. It is challenging to formulate a closed-
form mathematical problem to minimize the usage of high-
QoS resources while meeting the performance requirements.

In the context of multi-modal scheduling of control applica-
tions, several works have considered to switch between sam-
pling periods online [27], [28] and offline [29]. Here, [29] uses
genetic algorithm to determine feasible dual-mode schedules
for a set of control applications. Although the motivation is
similar, we consider a concrete multi-QoS platform, for which
the approach used in [29] cannot be applied.

Another related research direction for this work is
extensibility-driven scheduling. Different notions of extensibil-
ity exist in the literature, e.g., ability (or cost) to accommodate
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Fig. 1. Distributed control applications share a communication bus.

future workloads [18], [19], [30] or extension in existing work-
loads [31], [32]. We follow a similar notion of extensibility
as in [18], [19]. While [18] uses bin packing heuristics to
maximize the extensibility of the FlexRay schedules, [19] uses
simulated annealing. In contrast to these heurtistic approaches,
the proposed extensibility-driven schedule optimization tech-
nique guarantees optimality.

Contributions: This paper has the following contributions:

• We show that for control applications implemented using
multi-QoS resources, established dynamic policies might be
significantly inefficient compared to a static schedule, unlike
popular beliefs. This is the main novelty of this work.

• We propose a multi-stage optimization framework Good-
Spread to statically allocate high-QoS resources to control
applications. In the first stage, we compute the spread factor
for each application, i.e., how often the high-QoS resources
must be provided for an application to meet the performance
requirements in all scenarios. In the second stage, given the
spread factors, we determine the most extensible schedule
configuration for the applications.

• For spread factor computation, we propose a polynomial-
time algorithm based on the intuition that it is resource-
efficient to spread the high-QoS resources uniformly over
time. This intuition is based on empirical evidence.

• For schedule synthesis, we propose an iterative method for
optimization that guarantees maximum extensibility.

Paper organization: The rest of the paper is organized as
follows. Sec. II describes the problem setting and derives
the system model. In Sec. III, using a motivational example,
we compare different scheduling schemes. Sec. IV outlines
the proposed algorithm to derive the spread factor for a
control application. The proposed extensibility-driven schedule
optimization approach is explained in Sec. V. Experimental
results are provided in Sec. VI, and we conclude in Sec. VII.

II. PROBLEM SETTING

We study a problem setting where a number of electronic
control units (ECUs) communicate over a shared communi-
cation bus, as shown in Fig. 1. Multiple control applications,
denoted by C = {C1, C2, . . . , Cn}, are implemented on this
distributed E/E platform. Each application Ci comprises three
tasks, i.e., Ts,i, Tc,i, and Ta,i. Ts,i is the sensor task, Tc,i

is the controller task, and Ta,i is the actuator task. Ts,i and
Tc,i are mapped on the same ECU while Ta,i is mapped on a

different ECU. The control input is calculated by Tc,i based
on the sensor values read by Ts,i. The control data is then
communicated over the shared bus to Ta,i that will eventually
actuate the plant. This is a common scenario in a CPS setting
where sensors and actuators are spatially distributed. Note that
our proposed technique can also be applied for different task
partitioning and mapping schemes.

A. Heterogeneous Resources
We consider that a controller can be implemented using

a mix of high- and low-QoS resources. Towards this, in our
problem setting, the communication takes place over the hy-
brid FlexRay bus. FlexRay is commonly used in modern cars
for data transmission by safety-critical functions like steering
and brake control in the chassis domain [33]. According to the
FlexRay protocol [7], each communication cycle comprises a
static segment and a dynamic segment.

In the static segment, messages are transmitted based on
the TDMA protocol. That is, the segment is partitioned into
fixed-length time-slots, as shown in Fig. 2. We denote the
length of a static slot as Δ. The time when a message frame
is sent on a TDMA slot can be precisely computed. These
slots are in high demand because they are required to send
safety-critical data with strict timing requirements. However,
note that an empty frame is sent when the data is not ready,
and therefore, the slot cannot be used by other message frames.
Such inflexibility leads to a lower utilization of static slots. Our
proposed scheduling scheme allocates these slots prudently so
that a higher number of time-critical messages can use them.

The dynamic segment, as shown in Fig. 2, is partitioned
into mini-slots of length δ, where δ � Δ (e.g., δ ≤ 0.1Δ).
A FlexRay frame can take more than one mini-slots on the
dynamic segment. Unlike the static segment where the slot
counter is updated at the end of a slot, in the dynamic segment,
the slot counter is updated when a frame is completely sent
or at the end of an empty mini-slot. Thus, the time when a
frame is sent on the dynamic segment depends on the size of
the preceding frames. And therefore, a frame can experience
significant timing jitters, while the worst-case response time
can still be bounded [34]. However, when the data is not ready,
only a mini-slot will go unused. Such a flexible TDMA policy
results in a higher resource utilization. Hence, our proposed
scheduling strategy tries to maximize the usage of the dynamic
segment for sending the control data.

It is important to note here that in a general multi-QoS
resource, the time division between high-QoS and low-QoS
segments is dynamic, which is not the case with FlexRay.
However, in our problem setting, each instance of a control
data can be sent using either high-QoS (in a static slot) or
low-QoS (in the dynamic segment). Considering the time
granularity of one control period, FlexRay offers high-QoS and
low-QoS communication options. Hence, we term FlexRay as
a multi-QoS resource.

FlexRay communication is organized as an infinite repeti-
tion of Ncom = 2N bus cycles, where Ncom is configurable
for FlexRay 3.0.1. Each bus cycle is of length Tbus time units.
For N = 6, communication in the first 64 bus cycles can be
configured, which will repeat in the next 64 cycles and so on.
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Fig. 2. Closed-loop timings for the two scheduling modes.

The schedule of a control data frame mc,i corresponding to
the application Ci is represented using a tuple {sc,i, bc,i, rc,i}.
Here (i) sc,i is the assigned slot id, (ii) bc,i is the base cycle,
i.e., the first cycle where the message is allocated the slot
si, and (ii) rc,i ∈ {2k|0 ≤ k ≤ log2 Ncom} is the cycle
repetition rate that denotes the number of cycles between two
consecutive slot allocations.

Slot multiplexing: FlexRay schedules are typically static and
configured offline. While configuring the FlexRay schedules,
we consider that no two frames are assigned the same slot in
a FlexRay cycle. However, one slot id can be provisioned for
different frames in different cycles. For example, two frames
with schedules {5, 0, 2} and {5, 1, 2} are sent on slot 5 in
even and odd cycles respectively. We exploit this opportunity
of slot multiplexing as offered by FlexRay 3.0.1.

Despite the fact that FlexRay schedules cannot be reconfig-
ured online, previous works, e.g., [10], [11], have proposed
strategies to dynamically allocate static slots. These works
exploit the middleware proposed in [15]. It requires a software
to run on the same ECU as the controller tasks. This software
selects and sends only one of the control data coupled with
an identification tag on a slot in a bus cycle. An actuator
task receives data in each cycle and evaluates the identifier
to determine if the data is destined for the task. Thus, the
controller tasks that are mapped on the same ECU can share
a slot, which is a limitation. A dynamic policy would also
require a scheduler to run on the ECU for each shared slot.
In contrast, our proposed static scheduling strategy does not
have any implementation overheads.

B. Switched Control Systems

In this work, we study linear and time-invariant (LTI)
physical systems as they are common in practice [35], [36].
The continuous-time mathematical model for such a system is
given as follows:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where x(t), u(t), and y(t) represent the state, the control input,
and the output, respectively. A, B, and C are the constant
system matrices.

We study a distributed implementation of full state-feedback
discrete-time controllers where the control data can be sent
over the static or the dynamic segment of a FlexRay commu-
nication cycle [9], as depicted in Fig. 2. The two scheduling
modes are denoted as HC (i.e., high-cost) and LC (i.e., low-
cost) respectively, implying that the static slots are scarce, and

hence, considered expensive to use compared to the commu-
nication over the dynamic segment. We denote the sensing-to-
actuation delay in the HC and the LC modes as dHC and dLC

respectively. In the HC mode, the communication delay is
known precisely and is equal to the length of a static slot. Thus,
the schedule of the tasks Ts,i, Tc,i, and Ta,i can be optimized
to obtain a very small delay. However, in the LC mode,
the worst-case communication latency can be significantly
high and the tasks have to be scheduled accommodating for
the worst-case. Hence, we get dHC � dLC , as depicted in
Fig. 2. Note that this assumption is also true for several other
multi-modal implementation scenarios, e.g., (i) the control task
switches between a high-priority (i.e., the HC mode) and a
low priority (i.e., the LC mode); and (ii) the control task is
executed from the scratchpad (i.e., the HC mode) or from the
main memory (i.e., the LC mode).

For a delay dM and a sampling period h, the equivalent
discrete-time model of the plant in mode M ∈ {HC,LC}
can be written, similar to [37], as follows:

x[k + 1] = Φx[k] + Γ0
Mu

[
k −

⌊
dM
h

⌋]
+ Γ1

Mu

[
k −

⌈
dM
h

⌉]
,

y[k] = Cx[k].
(2)

Here, x[k] denotes the system states at the sampling instant tk
where tk+1−tk = h, while u[k] is the control input calculated
based on x[k]. Thus, for a zero-order hold implementation,
u(t) = u[k], ∀ tk + dM ≤ t < tk+1 + dM . In Eq. (2), Φ, Γ0

M ,
and Γ1

M are calculated as follows:

Φ = eAh; Γ0
M =

∫ h−d′
M

0

eAtBdt; Γ1
M =

∫ h

h−d′
M

eAtBdt;

(3)
where d′M = dM − ⌊

dM

h

⌋
h.

Let us consider an augmented state vector z[k] =[
x[k] u[k − 1] · · ·u [k − ⌈

dM

h

⌉]]T
. For 0 < dM ≤ h,

Eq. (2) can be rewritten as follows:

z[k + 1] =

[
Φ Γ1

M

0 0

]
z[k] +

[
Γ0
M

I

]
u[k]

= Φa
Mz[k] + Γa

Mu[k];

y[k] = [C 0] z[k] = Ca
Mz[k].

(4)

For dM > h, Eq. (2) becomes:

z[k + 1] =

⎡
⎢⎢⎢⎢⎣

Φ 0 · · · Γ0
M Γ1

M

0 0 · · · 0 0
0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0

⎤
⎥⎥⎥⎥⎦ z[k] +

⎡
⎢⎢⎢⎢⎣

0
I
0
...
0

⎤
⎥⎥⎥⎥⎦u[k]

= Φa
Mz[k] + Γa

Mu[k];

y[k] = [C 0 · · · 0] z[k] = Ca
Mz[k].

(5)

Here, 0 and I are zero and identity matrices of appropriate
dimensions.

The feedback control law is given by:

u[k] = −KM · z[k], (6)

where KM is the feedback gain. The closed-loop model in
mode M , therefore, is given by:

z[k + 1] = (Φa
M − Γa

MKM )z[k] = Φcl
M · z[k], (7)

where Φcl
M is the closed-loop state-transition matrix.
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Control performance: Typically, the control performance
J improves with a smaller sensing-to-actuation delay [38].
This is because a smaller delay enables a faster reaction
from the controller to any physical disturbance (in case of
stabilization control) or change in reference input (during
reference tracking). We, therefore, assume that the control
performance JHC that is obtained when the controller runs
only in the HC mode is better than the control performance
JLC obtained using the LC mode exclusively. In several
real-world stabilization control problems like car suspension
system and motor position control, it is critical to reject a
physical disturbance within a specific time. Hence, we study
settling time as the control performance measure that is defined
as the amount of time the controller takes to reject the
disturbance and get the plant back to the steady state. The
lower the settling time is, the better the control performance
is. It is important to note that the techniques proposed in
this work can also be applied to reference tracking or even
other performance metrics, e.g., quadratic cost. If Jr is the
minimum settling time requirement and JHC < Jr < JLC ,
then operating the controller only in the LC mode does not
meet the requirement. Conversely, exclusive use of the HC
mode might be too conservative. Thus, we consider to switch
between the modes to minimize the usage of static slots while
simultaneously ensuring that the requirements are met.

Switching stability: In this work, we eventually compute a
periodic static sequence of scheduling modes (HC and LC)
for a controller such that the settling time requirement is met
while the usage of high-QoS resources is minimized. Given a
periodic sequence M = {M1,M2, · · · ,Mm}, we can derive
an equivalent closed-loop system as follows:

z[k +m] = Φcl
Mm

× Φcl
Mm−1

× · · ·Φcl
M1

z[k] = Φcl
Mz[k]. (8)

If the eigenvalues of Φcl
M lie inside a unit circle then the

switched system is asymptotically stable. This means that the
controller can reject any disturbance that might arrive. For
the problem under study, if

⌈
dHC

h

⌉ �= ⌈
dLC

h

⌉
, then Φcl

HC and

Φcl
LC have different dimensions. However, we can compute an

equivalent Φcl
HC of a higher dimension as Φcl

LC by starting with
the same augmented state vector z[k] as for the LC mode. For
example, if 0 < dHC ≤ h and h < dHC ≤ 2h, we consider

z[k] =
[
x[k] u[k − 1] u[k − 2]

]T
. Thus, Eq. (4) becomes:

z[k + 1] =

[
Φ Γ1 0
0 0 0
0 I 0

]
z[k] +

[
Γ0

I
0

]
u[k],

and Eq. (6) becomes:

u[k] = − [
KHC 0

]
z[k].

We can compute Φcl
HC accordingly.

C. The Scheduling Problem

The implementation of a set of distributed control appli-
cations in the setting under consideration comprises several
stages: (i) determining a periodic sequence of HC and LC
modes for each application such that the usage of FlexRay
static slots is minimized while the settling time requirement
is met; (ii) allocating FlexRay static slots for the applications;
(iii) scheduling the control data frames in the dynamic seg-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time [s]
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Fig. 3. Control responses for different static schedules.

ment; and (iv) scheduling the application tasks on the ECUs.
In this paper, we propose novel algorithms for the first two
stages in Sec. IV and Sec. V respectively. Once the sequence of
scheduling modes are fixed and the static slots are allocated for
the HC modes, in stage (iii), we can check the schedulability
of control data frames in the dynamic segment corresponding
to the LC modes using a standard technique [34]. Here,
we assume that a frame mapped on the dynamic segment
will not be lost, i.e., it has a bounded worst-case latency.
Further, in stage (iv), we can determine the task schedules
on the processors by solving a constraint programming prob-
lem [21], [39]. Note that FlexRay-based ECU networks are
time-synchronized and safety-critical control applications are
typically implemented using time-triggered tasks [21], [39].
Details of stages (iii) and (iv) are omitted from this paper due
to the limited space.

III. A MOTIVATIONAL EXAMPLE

We study a DC motor position control system [40] for which
the continuous-time plant model is given by:

A =

[
0 1 0
0 −0.0227 54.5455
0 −34.2857 −70

]
, B =

[
0
0

28.1754

]
, CT =

[
1
0
0

]
. (9)

Here, the control goal is to stabilize the motor after a distur-
bance at the position y = 0 within a setting time of J =0.24 s.
Towards modeling disturbances, we follow [41] that says “the
effect of a disturbance on a linear system can be analyzed as
an initial-value problem” in Page-370. Let us assume that the

disturbance brings the motor to a state x =
[
1 0 0

]T
and

the stability threshold is given by ||y[k]|| ≤ 0.02, ∀k ≥ J .
For a sampling period of h = 0.02 s, we consider control

gains KHC and KLC for the HC and the LC modes respec-
tively. They are given as follows:

KHC = [30 1.2626 1.1071] , (10)

KLC = [13.8921 0.5773 0.8672 1.0866] . (11)

When the controller uses KHC in the HC mode and KLC

in the LC mode, switching between the modes is stable, i.e.,
there exists a CQLF.

In Fig. 3, we show the control responses corresponding to
different schedules. Case 1: When the controller only operates
in the HC mode, the settling time is 0.18 s (gray dashed
line). Case 2: When the controller operates only in the LC
mode, the settling time becomes 0.7 s (orange dash-dotted
line). Case 3: When the controller stays in the LC mode
for 3 control instances followed by 1 instance in the HC
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mode, and then repeats the pattern, the settling time is 0.24 s
(blue dotted line). Case 4: This one replicates the dynamic
scheduling policy proposed in [11] for which the settling
time is also 0.24 s (green solid line). In this case, after the
disturbance, the controller waits in the LC mode for 4 control
instances before switching to the HC mode where it stays until
the performance requirement is guaranteed to be met (i.e., 5
control instances in this case). And thereafter, it switches back
to the LC mode until the next disturbance.

There are two important observations here: (i) In Case 3,
by switching to the HC mode for 25% of the instances,
we can improve the settling time by almost 65%. Thus, it
is possible to save static slots without compromising much on
the control performance. (ii) For the state-of-the-art dynamic
scheduling policy in Case 4, 5 static slots are required to reject
the disturbance within 0.24 s compared to Case 3 where only 3
slots were provided within 0.24 s. As the disturbance can arrive
at any control instance, the dynamic policy needs to provision
5 slots for any window of 0.24 s or 12 control instances. Thus,
to account for the worst-case, 41.67% of the slots needs to
be provisioned in case of the dynamic policy. However, in
Case 3, we use only 25% of the slots. In this work, we try to
derive a static schedule for the control applications similar to
Case 3, thereby, enabling further resource savings.

Note that we consider static allocation of resources where
the disturbance can arrive at any control instance. Thus, for
a certain slot allocation, there can be multiple sequences of
operating modes after a disturbance. For example, if mc,i is
scheduled as {1, 0, 4}, i.e., it is sent on slot 1 every 4-th cycle
starting from cycle 0. Now, if the disturbance arrives at cycle 0,
then the sequence of operating modes will be 10001000 · · · ;
while if the disturbance comes at cycle 1, then the sequence
will be 00010001 · · · . Here, 0 and 1 imply that the controller
operates in the LC and the HC modes respectively. For a
given slot allocation, we must evaluate all possible sequences
that can be obtained by cyclic shift, and verify if the settling
time requirement is met in all cases. In the same vein, the
set of sequences for two slot allocations mc,i ∼ {1, 0, 4} and
mc,i ∼ {1, 3, 4} are identical.

Now, for the switched controller, we obtain all possible slot
allocations in which the controller can stay in the HC mode
for 2 out of 8 consecutive instances. Overall, there are 28
such possibilities. For each slot allocation, we derive the set
of all possible operating sequences. Note that there are only
four unique sets of operating sequences. These sets are as
follows: (i) Q1 = {11000000 � i|0 ≤ i < 8}; (ii) Q2 =
{10100000 � i|0 ≤ i < 8}; (iii) (i) Q3 = {10010000 �
i|0 ≤ i < 8}; (iv) Q4 = {10001000 � i|0 ≤ i < 4}. Here,
y � x implies a circular left shift of the literals in y by x
positions, i.e., 10010000 � 2 = 01000010. For each set, we

determine the worst-case settling time Ĵ that are tabulated in
TABLE I. Note that the lowest settling time is obtained when
the static slots are spread uniformly over control instances,
while the maximum settling time is obtained when the two
slots are allocated consecutively.

Note that in weakly-hard scheduling of control applications,
uniform distribution of packet drops (or deadline misses in

TABLE I
WORST-CASE SETTLING TIME (Ĵ ) FOR DIFFERENT SLOT ALLOCATIONS

Set of operating sequence Qi Q1 Q2 Q3 Q4

Worst-case settling time Ĵ [s] 0.36 0.25 0.32 0.24

tasks) improves the control performance [16], [17]. Our ex-
periments show a similar trend, i.e., when the static slots are
spaced uniformly, a higher control performance is obtained.
We use this intuition while determining the spread factor
(i.e., how often the slots must be provisioned to meet the
performance requirements in all scenarios) for the control
applications in Sec. IV.

IV. SPREAD FACTOR COMPUTATION

When a control application Ci uses only the static slots
for communication, one slot is assigned periodically to the
application based on the period with which the controlled plant
is sampled. For a sampling period hi and a bus cycle time
Tbus, the control data frame mc,i will be scheduled with a

repetition rate rc,i =
hi

Tbus
. In Ncom FlexRay cycles, the total

number of slots used by the frame is equal to the number
of control instances, i.e., n̂h,i = Ncom

rc,i
. For the switched

controller under study, it might not be necessary to provide a
slot for every instance as the control data can alternatively be
sent on the dynamic segment. Here, our proposed framework
GoodSpread uses a scalable technique to derive the number of
slots nh,i that must be assigned to an application for sending
the control data in n̂h,i control instances so that the settling
time requirement is met. Note that according to the FlexRay
protocol, the slot assignments repeat every Ncom cycles, i.e.,
n̂h,i control instances.

We denote Jr,i as the settling time requirement for Ci and Ĵi
as the worst-case settling time obtained after scheduling. Thus,

mc,i must be scheduled to guarantee Ĵi ≤ Jr,i. The settling
time will depend on the closed-loop system properties in the
HC and the LC modes respectively and the exact sequence of
the modes in which the controller operates after a disturbance.
For a particular slot assignment, there can be several operating
sequences of the switched controller to reject disturbances.
As explained in Sec. III, this is because a disturbance can
arrive at any control instance. We are interested in the worst-
case settling time considering all possible switching sequences
corresponding to a slot assignment. It is challenging to deduce
a mathematical expression for the settling time that can be used
as a constraint during slot allocation. Thus, we have to search
for a slot assignment that meets the settling time requirement
using minimum number of static slots.

For example, when hi = Tbus and Ncom = 64 cycles,
there are 264 ways in which slots can be assigned to mc,i. To
ensure that the settling time requirement will be met for a slot
assignment, it is required to perform closed-loop simulations
for all possible disturbance arrivals. Thus, it is computationally
challenging to obtain a slot assignment for which we can
guarantee that the application uses the minimum number of
static slots to satisfy the settling time requirement.

Towards a more scalable search of the design space, Good-
Spread uses the intuition gained from the example in Sec. III.
That is, the settling time is the maximum when the slot
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Algorithm 1: Compute spread factor

Input : Φi = (Ai, Bi, Ci), hi, KHC,i, KLC,i, Jr,i, Tbus,
Ncom

Output : {nh,i, n̂h,i}, Si

1 n̂h,i =
Ncom·Tbus

hi
;

2 for nh,i ← 0 to n̂h,i do
3 Si = zeros(1, n̂h,i);
4 if nh,i > 0 then
5 Si(1) = 1;
6 pos = 1;
7 for j ← 1 to nh,i − 1 do
8 dpos = round( n̂h,i+1−pos

nh,i+1−j
);

9 pos = pos+ dpos;
10 Si(pos) = 1;
11 end
12 end
13 isFeasible = true;
14 for k ← 0 to n̂h,i − 1 do
15 Q = Si � k ; // cyclic left shift
16 Jk

i = Simulate
(
Φi, hi,KHC,i,KLC,i, Q

)
;

17 if Jk
i > Jr,i then

18 isFeasible = false;
19 break;
20 end
21 end
22 if isFeasible == true then
23 return {nh,i, n̂h,i}, Si;
24 end
25 end
26 return {}, [ ];

allocation is contiguous while the settling is the minimum
when the slots are spread uniformly over time. For the
example in Sec. III, let us consider a settling time requirement
Jr,i =0.24 s. We know from the results in TABLE I that 2 out
of 8 slots are sufficient to meet the requirement when the 2
static slots are separated by 4 samples. However, if we assign
static slots in consecutive samples, then we need 5 of them
in 8 control instances to meet the settling time requirement.
Considering that the main goal of this paper is to save static
slots, we only evaluate the case where the slots are spread
uniformly over time.

Proposed algorithm: GoodSpread uses Algorithm 1 to com-
pute the spread factor that quantifies how to efficiently spread
the static slots over the control instances for an application
Ci to meet the settling time requirement Jr,i in all possible
scenarios. Based on our intuition, we denote the spread factor
as {nh,i, n̂h,i}, i.e., nh,i static slots are spread as uniformly
as possible over n̂h,i control instances. Algorithm 1 takes as
input the continuous-time plant model Φi = (Ai, Bi, Ci), the
sampling period hi, the control gains, KHC,i and KLC,i, for
the HC and the LC modes respectively, the settling time
requirement Jr,i, the bus cycle time Tbus and the number of
configurable FlexRay cycles Ncom. It returns the spread factor
{nh,i, n̂h,i} and a corresponding slot assignment Si.

In line 1, the algorithm calculates the total number of control
instances n̂h,i in Ncom consecutive cycles. In lines 2-25, it
starts with zero slot and increments by one in each iteration
until n̂h,i, while simultaneously determining the minimum
number of slots that meets the settling time requirement.

In lines 3-12, the algorithm generates a slot assignment Si

for n̂h,i control instances with the given number of slots in
the current iteration, i.e., nh,i slots. Based on our intuition, we

distribute the slots as uniformly as possible. Note that the slot
assignment will repeat infinitely. For example, if we assign a
static slot for the third control instance and n̂h,i = 16, then a
slot will also be provided for the 19-th control instance. Now,
in line 3, we initialize Si with zero slots. In lines 4-12, we add
slots to Si only if nh,i > 0. In line 5, the first slot is placed in
the first control instance and its position pos is noted in line 6.
In lines 7-11, the algorithm places the remaining nh,i−1 slots
one by one. Towards this, in line 8, it calculates the distance
dpos to the next slot from the current slot. Note that the slot
corresponding to Si(1) will repeat at n̂h,i +1. Until that slot,
there are n̂h,i + 1 − pos control instances and nh,i + 1 − j
slots. Thus, the algorithm calculates the average distance and
round it up to get dpos. The current position pos is updated
based on the value of dpos in line 9. A slot is assigned in the
updated position in line 10.

Let us consider an example where we want to assign 3
slots in 8 control instances. We start with Si(1) = 1 and
then we have 2 remaining slots to be assigned. In the first
iteration, dpos = round( 83 ) = 3, and therefore, we place the
next slot in the fourth control instance, i.e., Si(4) = 1. In the
next iteration, we get dpos = round( 52 ) = 3, and therefore,
the next slot is provided in the seventh control instance, i.e.,
Si(7) = 1. Finally, we obtain Si = [1, 0, 0, 1, 0, 0, 1, 0].

In lines 13-24, for the obtained slot assignment Si, all
possible sequences are evaluated in which the controller can
operate after a disturbance. When the disturbance arrives in
the first control instance and Si = [1, 0, 0, 1, 0, 0, 1, 0], the
periodic sequence of operating modes is given by Q = Si.
Here, 0 and 1 imply that the controller operates in the LC
and the HC modes respectively. However, for the same
Si, if the disturbance is experienced in the third control
instance, then the periodic operating sequence is given by
Q = [0, 1, 0, 0, 1, 0, 1, 0], i.e., Si � 2. Similarly, we can
obtain all possible operating sequences for a particular slot
assignment by cyclically shifting positions of the array ele-
ments towards left or right. The set of operating sequences, is
therefore, given by:

Q = {Si � k | 0 ≤ k < n̂h,i}. (12)

In line 13, isFeasible is initialized as true. Using a for-loop
(lines 14-21), all possible operating sequences are iterated by
changing the value of k from 0 to n̂h,i−1. A periodic operating
sequence Q is obtained by performing a left circular shift on
the elements of Si by k positions (line 15). For the obtained Q,
the closed-loop system is simulated based on the plant model
Φi = (Ai, Bi, Ci), the sampling period hi, and the control
gains in the two modes (KHC,i and KLC,i), as per Eq. (7).
Here, the algorithm also evaluates if the system is stable for
the given operating sequence as explained in Sec. II-B. From
the simulated control response, the value of the settling time
Jk
i is calculated (line 16). If Jk

i > Jr,i, it implies that there
exists a sequence for the current slot assignment for which
the settling time requirement is violated, and therefore, it is
not necessary to evaluate further sequences for the current slot
assignment (lines 17-20). Correspondingly, isFeasible is set
to false (line 18) and then the algorithm breaks out of the loop
(line 19). On the other hand, if the settling time requirement
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TABLE II
WORST-CASE SETTLING TIME VS NUMBER OF STATIC SLOTS

No. of static slots in 16 control samples 1 2 3 4
Worst-case settling time Ĵi [s] 0.5 0.36 0.35 0.24

is met for all possible sequences then isFeasible remains
true. Thus, in lines 22-24, isFeasible is evaluated, and if it is
true then the spread factor is returned as {nh,i, n̂h,i} together
with a slot assignment Si that satisfies the spread factor. Note
that nh,i is the minimum number of slots that must be spread
uniformly over n̂h,i control instances to meet the settling time
requirement for any disturbance pattern. Furthermore, in case
the requirement is not met even by operating the controller
only in the HC mode, i.e., Jr,i < JHC,i, the algorithm
returns empty sets for the spread factor and the slot allocation
respectively denoting that the problem is infeasible (line 26).

Algorithm 1 returns only one slot assignment Si corre-
sponding to the obtained spread factor. However, we can
perform a circular shift on the elements of Si to derive more
scheduling options. For example, if Sj

i = [1, 0, 0, 1, 0, 0, 1, 0]
is returned by the algorithm when the spread factor in {3, 8},

then Sj′
i = [0, 0, 1, 0, 0, 1, 0, 1] also satisfies the spread factor

{3, 8}. Both slot assignments will result in an identical set of

operating sequences. If Sj′
i is obtained from Sj

i by performing

a circular left shift, then an operating sequence for Sj
i is also

a sequence for Sj′
i and vice versa. This is written as follows:

Sj
i � k′ = Sj′

i =⇒ Sj
i � k = Sj′

i � (k − k′). (13)

As we have evaluated the settling time for each possible
sequence of operation modes corresponding to Sj

i , it is equiv-
alent to verifying the settling time for each sequence obtained

for Sj′
i . Therefore, if Sj

i is a feasible slot assignment then Sj′
i

is also feasible.

Example: We apply Algorithm 1 to determine the spread
factor for the DC motor position control application (Ci) given
in Sec. III. We assume Tbus = hi = 0.2 s, Ncom = 16, and
Jr,i =0.24 s. It can be seen in TABLE II that using 4 slots in

16 control samples, the worst-case settling time Ĵi is 0.24 s.
Using a lower number of slots, the requirement is not met.
Thus, the spread factor in this case is {4, 16}.

Complexity analysis of Algorithm 1: In the algorithm, we
have two for-loops, i.e., lines 7-11 (IL1) and lines 14-24 (IL2)
respectively, inside an outer loop OL (lines 2-25). Here, for
each value of nh,i within the range [1, n̂h,i] in OL, IL1 iterates
(nh,i−1) times. Therefore, the total iterations for IL1 is upper

bounded by
n̂h,i·(n̂h,i−1)

2 . On the other hand, for a value of
nh,i, IL2 can maximally run n̂h,i times. Thus, the total number
of iterations for IL2 is upper-bounded by n̂h,i·(n̂h,i+1). Here,
n̂h,i can attain a maximum value of Ncom. Further, in IL2,
we simulate the closed-loop system. Considering that in the
worst-case, the settling time for an operating sequence will
be JLC,i, i.e., the settling time obtained when the controller
operates only in the LC mode. Thus, we can simulate the

system up to nLC,i =
JLC,i

hi
samples. Note that we design the

control gains such that the closed-loop system is stable, thus,
nLC,i is not exponential. In fact, we study fast control loops
with lower settling times that are common in domains like

automotive, avionics and industry automation. The maximum
number of times we compute the system states and the control
input (as per Eq. (7) and Eq. (6) respectively) is given by n̂h,i ·
(n̂h,i + 1) · nLC,i. Therefore, the asymptotic time complexity
of the proposed algorithm is O(n̂2

h,i ·nLC,i). This implies that
Algorithm 3 has polynomial-time complexity.

V. EXTENSIBILITY-DRIVEN SCHEDULE OPTIMIZATION

Based on the control requirements, GoodSpread determines
the spread factor using Algorithm 1 corresponding to which
there is a set of scheduling options for an application. Next,
GoodSpread selects a feasible static allocation of slots to
applications taking into account the available options. In the
process, it optimizes the extensibility of the schedule. Here, the
scheduling problem is formulated with a Satisfiability Modulo
Theories (SMT) model.

Scheduling constraint for an application: Let us consider a
set of binary variables {γi,j ∈ {0, 1} | 1 ≤ j ≤ Ncom}, where
γi,j = 1 denotes that Ci will get a slot in the communication
cycle j−1. Here, the cycles are numbered from 0 to Ncom−1.
For a spread factor {nh,i, n̂h,i}, we can formulate a constraint
using the binary variables as follows:

Ncom∑
j=1

γi,j = nh,i. (A1)

This constraint states that we should allocate exactly nh,i slots
within Ncom cycles.

Note that it is not sufficient to ensure that we assign nh,i

slots to Ci in Ncom cycles. We must also consider the order
in which the slots are assigned. Towards this, we can first
determine the set of control instances Ki in which the slots
are assigned in Si as follows:

Ki = {k ∈ N | Si(k) = 1}. (14)

For a sampling period hi = 2m·Tbus, a control instance k ∈ Ki

does not always correspond to the cycle number k − 1. This
is because when sampling period is higher than the bus cycle
time, the control data is not sent every cycle. For example, if
Si = [1, 0, 1, 0], hi = 4 · Tbus, and the first control instance
is scheduled in cycle 0, then Ki = {1, 3} will imply that Ci
will get a slot in cycles 0 and 8. Thus, γi,1 and γi,9 will be 1.
Here, two slots are separated by 8 cycles, i.e., two samples,
which is also suggested by Si. Considering that the first control
instance is scheduled in cycle 0, we can determine a set of
cycle numbers corresponding to Si using Ki as follows:

K∗
i = {(k − 1) · hi

Tbus
| k ∈ Ki}. (15)

Now, if we want to assign slots exactly in the cycles contained
in K∗

i , we can formulate a constraint as follows:∧
j∈K∗

i

γi,j+1 = 1. (16)

However, the first control instance can be scheduled any-
where between cycles 0 and cycle h

Tbus
− 1. Moreover, as

argued in Sec. IV, a slot assignment that is obtained by
performing a circular shift on Si also satisfies the spread factor
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{nh,i, n̂h,i}. Considering these flexibilities, we formulate a
constraint as follows:

Ncom−1∨
j′=0

⎛⎝ ∧
j∈K∗

i

γi,mod(j+j′,Ncom)+1

⎞⎠ = 1. (A2)

Here, mod(x, y) gives the remainder when x is divided by
y. For the case where Si = [1, 0, 1, 0] and hi = 4 · Tbus, the
constraint is written as follows:

(γi,1 ∧ γi,9) ∨ (γi,2 ∧ γi,10) ∨ · · · ∨ (γi,16 ∧ γi,8) = 1.

Note that there might be some redundant terms in the con-
straint, e.g., γi,8 ∧ γi,16 and γi,16 ∧ γi,8, that can be easily
handled in the implementation.

Notion of extensibility: Schneider et al. in [18] have studied
extensibility of FlexRay schedules. We follow a similar notion
of extensibility as explained using the following example.

Three control applications C1, C2, and C3 require nh,1 = 1,
nh,2 = 1, and nh,3 = 3 slots in Ncom = 8 communication
cycles. Based on the requirements, we can derive two sets of
FlexRay schedules as follows: (i) Case 1: mc,1 ∼ {1, 2, 8},
mc,2 ∼ {1, 4, 8}, and mc,3 ∼ [{1, 0, 8}, {1, 3, 8}, {1, 6, 8}];
(ii) Case 2: mc,1 ∼ {1, 1, 8}, mc,2 ∼ {1, 7, 8}, and mc,3 ∼
[{1, 0, 8}, {1, 3, 8}, {1, 6, 8}]. In Case 1, slot id 1 is allocated
in cycles 0, 2, 3, 4, and 6 while in Case 2, applications use
slot id 1 in cycles 0, 1, 3, 6, and 7. Thus, in Case 1, we can
still add schedules {1, 1, 4} and {1, 7, 8}, while in Case 2, we
can add {1, 2, 8}, {1, 4, 8}, and {1, 5, 8}. Now, if we want to
add a periodic FlexRay frame with a repetition rate of 4, it
is possible in slot id 1 for Case 1, however, it is not possible
for Case 2 despite having the same number of unused slots.
Note that in Case 1, slot id 1 can alternatively accommodate
three different frames with a repetition rate of 8, as similar
to Case 2. Thus, Case 1 is more extensible than Case 2 as it
provides maximum flexibility for adding future messages.

Minimizing the use of different slot ids: Let us consider
an example where we need to schedule two periodic FlexRay
frames, each with a repetition rate of 2. We can schedule them
using either two different slot ids, e.g., {4, 0, 2} and {5, 0, 2},
or a single slot id, e.g., {4, 0, 2} and {4, 1, 2}. Here, the latter
schedule is more extensible than the former. This is because
slot id 5 can be provided to a future message frame requiring a
repetition rate of 1 in the latter schedule, which is not possible
in the former case. Towards our goal of synthesizing extensible
schedules, it is important to use as fewer slot ids as possible.

Note that, in this paper, we also consider aperiodic schedul-
ing of control data frames in the FlexRay static segment.
For example, if Si = [1, 0, 0, 1, 0, 0, 1, 0] and hi = Tbus,
then the control data can be sent in bus cycles 0, 3, and
6. That is, the first and the second frame instances are
separated by 3 bus cycles, while 2 bus cycles elapse between
the third and the fourth instances. Now, for such schedules,
the minimum number of slot ids Nid that will be used

cannot be calculated trivially as
⌈∑

Ci∈C
nh,i

Ncom

⌉
. For example,

if two control applications C1 and C2 need to be scheduled
with S1 = [1, 0, 0, 1, 0, 0, 1, 0] and S2 = [1, 0, 1, 0, 1, 0, 1, 0]
respectively, we cannot schedule them using one slot id despite
nh,1 + nh,2 = 3 + 4 = 7 ≤ Ncom = 8. As there does not

Algorithm 2: Determine dummy requirements

Input : Ns, Nid, Ncom

Output : D
1 N∗

s = Nid ·Ncom −Ns;
2 D = [ ];
3 r = 2;
4 while N∗

s > 0 do
5 Nd = Ncom

r
;

6 if N∗
s ≥ Nd then

7 D = [D r];
8 N∗

s = N∗
s −Nd;

9 else
10 r = 2 · r;
11 end
12 end
13 return D;

exist a trivial expression for Nid, GoodSpread formulates an
optimization problem to determine Nid. Towards this, we add
the following set of constraints:∑

Ci∈C

γi,j ≤ Nid, ∀ 1 ≤ j ≤ Ncom. (A3)

That is, in each cycle, we can allocate a maximum of Nid

slots. The optimization problem can then be written as:

Minimize Nid s.t. (A1), (A2), and (A3). (O1)

Determining prospective FlexRay frames: Based on the
value of Nid as obtained by solving (O1), GoodSpread deter-
mines a set of prospective frames D with maximum scheduling
demands. Here, the lower the repetition rate is, the higher is the
scheduling demand. If these frames in D can be co-scheduled
with the control applications without increasing the slot ids,
then such a schedule is guaranteed to have the maximum
extensibility. Towards determining the set D, GoodSpread first
calculates the total number of slots Ns used by the control
applications in Ncom cycles as follows:

Ns =
∑
Ci∈C

nh,i. (17)

Let us consider an example where Ncom = 64, Ns = 75,
and Nid = 2. There are 53 unused slots for the two slot ids. For
such a case, the prospective frames in D will have repetition
rates of 2, 4, 16, and 64, i.e., they will use 32, 16, 4, and
1 slots respectively. If Nid · Ncom − Ns ≥ Ncom, it means
there are more than Ncom free slots in total in Ncom cycles.
However, D will not have a frame with a repetition rate of
1. This is because if it was possible to add a frame with a
repetition rate of 1, then the optimizer would have returned a
lower value of Nid.

Using Algorithm 2, GoodSpread obtains D based on the
values of Ns, Nid, and Ncom. In line 1, the algorithm
calculates the number of unused slots N∗

s in Ncom cycles for
Nid slot ids. It initializes D as an empty set in line 2. In line 3,
r is initialized as 2, which implies that the algorithm will first
try to add a frame with a repetition rate of 2. Note that 2 is the
lowest possible repetition rate of a frame that can be mapped
on a partially used slot id. Using the while loop in lines 4-
12, the algorithm tries to find prospective frames until there
are some unused slots, i.e., N∗

s > 0. For a repetition rate r,
the number of slots Nd required in Ncom cycles is calculated
in line 5. Now, if the number of unused slots N∗

s is greater
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than Nd, then a frame is added in D with a repetition rate
of r and N∗

s is adapted accordingly (lines 6-8). Otherwise,
the algorithm cannot add any more frames with a repetition
rate r, and therefore, the value of r is incremented to the next
possible value (lines 9-11). In line 13, it returns the set of
prospective frames D.

Maximizing extensibility: In this paper, we propose an al-
gorithm to maximize the extensibility of the schedule for the
control applications. The idea is to co-schedule prospective
FlexRay frames with maximum possible scheduling demands
together with the control data frames. This will ensure that
slots are allocated to the control applications in an extensi-
ble way. Now, let us consider that we want to schedule a
prospective frame Dt with a repetition rate rt. We have to
add scheduling constraints for such a frame. We take a set of
binary variables {βt,j |1 ≤ j ≤ rt}, where βt,j = 1 if a slot is
allocated to Dt in cycle j − 1. We can formulate a constraint
to ensure that we allocate a slot within rt cycles as follows:

rt∑
j=1

βt,j = 1. (A4)

Let D+ represent the set of prospective frames that can be
feasibly incorporated into the schedule of control applications
and Dt′ represent a new frame that we want to co-schedule.
We need to reformulate the constraint set (A3) considering
these additional frames. That is, we cannot allocate more slots
in one cycle than Nid that is obtained by solving (O1). This
is formulated as follows:∑

Ci∈C

γi,j +
∑

Dt∈D+∪Dt′

βt,mod(j−1,rt)+1 ≤ Nid,

∀ 1 ≤ j ≤ Ncom.

(A5)

Here, the first and the second terms on the left-hand side
calculates the slots allocated to the control data frames and
the prospective frames respectively in the (j − 1)-th cycle.

GoodSpread uses Algorithm 3 to maximize the extensibil-
ity during schedule synthesis. It takes as inputs (i) the set
of control applications C; (ii) the sampling periods of the
applications H; (iii) the set of scheduling options S for the
applications; (iv) the minimum number of slot ids Nid required
to schedule the applications; (v) the ordered set of prospective
frames D; (vi) the number of configurable FlexRay cycles
Ncom; and (vii) the bus cycle time Tbus. The algorithm returns
a valid schedule Ω with maximum possible extensibility.

In line 1, we initialize D+ as an empty set, where D+

denotes the set of prospective frames that can be feasibly co-
scheduled with the control applications using Nid slot ids. In
line 2, we declare Φ1 as an SMT model. In lines 3 and 4,
we add scheduling constraints (A1) and (A2) for the control
applications. In lines 5-22, we identify the prospective frames
with maximum scheduling demands that can be scheduled
together with the control data frames.

In lines 6 and 7 respectively, we initialize an empty SMT
model Φ2 and copy the constraints from Φ1 to Φ2. We try
to schedule the first frame D(1) in D, and therefore, in
line 8, we add constraint (A4) for D(1) in Φ2. Note that
this frame will have the maximum scheduling demand (or the
lowest repetition rate) among all frames in D. In line 9, we

Algorithm 3: Maximize extensibility

Input : C, H = {hi|Ci ∈ C}, S = {Si|Ci ∈ C}, Nid, D,
Ncom, Tbus

Output : Ω
1 D+ = [ ];
2 Φ1 = initializeSMTmodel();
3 Φ1.addConstraint(A1,S, Ncom);
4 Φ1.addConstraint(A2,S,H, Ncom, Tbus);
5 while D �= [ ] do
6 Φ2 = initializeSMTmodel();
7 Φ2 = Φ1;
8 Φ2.addConstraint(A4,D(1));
9 Φ2.addConstraint(A5,C,D+,D(1), Nid);

10 {Ω, isFeasible} = Φ2.solve();
11 if isFeasible == true then
12 Φ1.addConstraint(A4,D(1));
13 D+ =

[
D+ D(1)

]
;

14 D = D\D(1);
15 else
16 r = D(1);
17 t = 1;
18 while D(t) == r do
19 D = [D(1 : t− 1) 2r 2r D(t+ 1 : end)];
20 t=t+2;
21 end
22 end
23 end
24 return Ω;

add constraints (A5) considering the control data frames, the
frames in D+, and D(1). We solve Φ2 in line 10. If there exists
a feasible solution for Φ2 then D(1) can be feasibly scheduled
(lines 11-14). Correspondingly, we incorporate the constraint
(A4) for D(1) in Φ1 (line 12), add D(1) in D+ (line 13), and
delete D(1) from D (line 14). However, if Φ2 cannot be solved
then D(1) cannot be scheduled (lines 15-22). This implies that
the scheduling demand of D(1) cannot be met. In that case,
we take D(1) and all other frames in D that have the same
repetition rate and split each of them into two frames with
double the repetition rate (lines 16-21).

For example, if Ncom = 8 and a control application
occupies slot 4 in the cycles 0, 3, and 6, then D =

[
2 8

]
for slot 4. However, a frame with a repetition rate of 2 cannot
be co-scheduled with the control application. Thus, after the
first iteration D becomes

[
4 4 8

]
. That is, when a certain

repetition rate becomes infeasible we try the next possible
value higher than that. This will ensure that we find a set
of schedulable prospective frames with maximum possible
scheduling demands. And this, in essence, maximizes the
extensibility of the synthesized schedule.

When there is no further frames in D, it means that the
control data frames together with the frames in D+ completely
occupy the slots corresponding to Nid slot ids in Ncom

communication cycles. The schedule Ω is returned by the
algorithm in line 24. Note that in Ω, the slots allocated to
the frames in D+ are actually free for future messages.

Complexity analysis of Algorithm 3: In the algorithm, we
have a while loop (lines 5-23) which iterates until all the
unused slots are allocated to the prospective frames. Let the

number of unused slots be N
∗
s . Then, the maximum number

of iterations is linear with respect to N
∗
s and is given by:

N
∗
s + min(log2

Ncom

2 ,
⌊
log2 N

∗
s

⌋
). This is the case when

only prospective frames with a repetition rate of Ncom can
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be accommodated. For example, if N
∗
s = 27 and Ncom = 64,

we first try prospective frames with repetition rates of 4, 8, 16,
and 32 respectively. If these are not schedulable then we can
add 27 frames with a repetition rate of 64. That is, in total we
will have 31 iterations. In case, we can schedule a prospective
frame with a lower repetition rate r < Ncom, then we will
have at least (Ncom

r − 1) less iterations.

In each iteration, the algorithm solves an SMT problem.
For Nm number of frames to be scheduled (including the
propsective ones), the maximum number of variables of the
SMT problem is Nm · Ncom and the maximum number of
constraints is 2Nm+Ncom. For a given FlexRay configuration,
Ncom is a constant, and therefore, the numbers of variables
and constraints are linear with respect to Nm. For example,
when Nm = 100 and Ncom = 64, the maximum number of
variables and constraints are 6400 and 264 respectively. This
is a reasonable-sized problem for the Z3 solver [42], [43] that
we use in this work.

VI. EXPERIMENTAL RESULTS

For our experiments, we consider 6 control applications
denoted as C1, C2, C3, C4, C5, and C6 respectively. For these
applications, the continuous-time plant models {Ai, Bi, Ci}
are given in TABLE III. We assume a sampling period of
hi = 0.02s for each application. The control gains, KHC,i and
KLC,i, that we use in the HC and the LC modes respectively,
are provided in TABLE III. The control gains are obtained
using pole placement considering the closed-loop model given
in Eq. (7). For the HC mode, we assume zero delay, while for
the LC mode, the delay is assumed to be equal to one sampling
period. For each application, we assume that the steady state

is x(∞) =
[
0 0 · · · 0

]T
and the initial state after a

disturbance is x(0) =
[
1 0 · · · 0

]T
. The settling times,

JHC,i and JLC,i, that are obtained by operating the controller
only in the HC mode or in the LC mode respectively, are
shown in TABLE III. Note that for better comparison, we take
the plant models and the control gains from [11]. For FlexRay,
we assume that the bus cycle time is Tbus = 0.02 s and the
number of configurable FlexRay cycles is Ncom = 16.

Deriving permissible slot allocations: For each application,
we take two different settling time requirements, noted as
Jr,i under Case 1 and Case 2 respectively in Table III. We
use Algorithm 1 in GoodSpread to compute the spread factor
{nh,i, n̂h,i} for each application considering the two settling
time requirements. The obtained spread factors are reported in
TABLE III. For example, in case of C1, when Jr,1 = 0.36 s,
the spread factor is {2, 16}, while for Jr,1 = 0.24s, the spread
factor is {4, 16}. A spread factor of {2, 16} implies that 2 slots
are provided in 16 communication cycles where the slots are
separated by 8 cycles, i.e., the slots are spread uniformly over
the bus cycles. Corresponding to a spread factor of {2, 16},
we can provide a slot each in cycles 0 and 8, for example.

For this example where n̂h,i = 16, there are 216 possible
slot allocations. We also perform an exhaustive search through
all possible options as an alternative to Algorithm 1. For
C3, we could obtain feasible allocations using 3 and 5 slots
respectively for Jr,i = 0.4 s and Jr,i = 0.3 s, i.e., 1 slot

Bus cycles 

Sl
ot

s 

Bus cycles

Sl
ot

s 

(a)

(b)
Fig. 4. Static slot allocation. (a) Case 1. (b) Case 2.

could be saved in each case using exhaustive search. For all
other cases, Algorithm 1 provides solutions with minimum
number of slots. The results suggest that Algorithm 1 performs
well in most cases, however, it does not guarantee optimality.
Algorithm 1 is several order faster compared to the exhaustive
search, and in cases, where n̂h,i = 2n > 16, exhaustive
search is not feasible. Moreover, compared to existing dynamic
schemes, Algorithm 1 enables to save significant number of
static slots, as will be shown later in this section.

Maximizing extensibility during scheduling: We first con-
sider the set of spread factors noted under Case 1 in TABLE III
and try to determine a FlexRay schedule for the applications
based on them using GoodSpread. Here, we solve (O1) and
obtain that 2 slot ids are required to schedule the applications.
Now, we apply Algorithm 2 and Algorithm 3 to determine
the most extensible schedule as shown in Fig. 4(a). Note that
overall we require 20 slots, thus, 12 slots are unused for the
two slot ids s1 and s2. Correspondingly, D = [2 4], i.e.,
if the unused slots can be allocated to two message frames
with repetition rates of 2 and 4 respectively, there cannot be a
schedule more extensible than that. For this case, we could find
a schedule that can still accommodate two frames as {s2, 0, 2}
and {s2, 1, 4}. This shows that Algorithm 3 in GoodSpread can
maximize the extensibility of the obtained schedule.

Now, for the set of spread factors given under Case 2 in
TABLE III, we solve (O1) and subsequently apply Algorithm 2
and Algorithm 3 to obtain the schedule shown in Fig. 4(b). In
this case, 22 slots are occupied using 2 slot ids, and therefore,
there are 10 unused slots. We get D = [2 8]. However, in
this case, there is no feasible schedule that can accommodate
two additional frames with repetition rates of 2 and 8. The
most extensible schedule that can be obtained in this case using
GoodSpread, can accommodate frames with repetition rates 4,
8, and 16, i.e., {s1, 2, 4}, {s1, 5, 8}, {s1, 11, 16}, {s1, 11, 16},
{s2, 1, 16}, {s2, 4, 16}, and {s2, 10, 16}.

Comparing with state-of-the-art techniques: We compare
the results obtained using GoodSpread with the most efficient
dynamic scheme [11] known so far. In this scheme, a slot id is
fully reserved in all cycles for a set of applications. Now, when
there is a disturbance, an application might have to wait for
higher-priority applications to stop using the static slots. After
waiting for nw,i = k samples, when it switches to the HC
mode, it will use the slots for nh,i(k) consecutive instances,
i.e., nh,i(·) is a predetermined function of nw,i. For nw,i =
k, we determine nh,i(k) = max0≤j≤k nh,i(j), i.e., within
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TABLE III
SPECIFICATION FOR THE CONTROL APPLICATIONS AND THEIR SPREAD FACTORS OBTAINED USING ALGORITHM 1

Ci {Ai,Bi, Ci} KHC,i KLC,i JHC,i [s] JLC,i [s]
Case 1 Case 2

Jr,i [s] {nh,i, n̂h,i} Jr,i [s] {nh,i, n̂h,i}
C1 Eq. (9) Eq. (10) Eq. (11) 0.18 0.7 0.36 {2, 16} 0.24 {4, 16}

C2

A =

⎡⎢⎣0 1 0

0 −1.0865 8.4872 · 103

0 −9.9636 · 103 −1.4545 · 106

⎤⎥⎦,

B =
[
0 0 3.6364 · 105

]T
,

C =
[
1 0 0

]
⎡⎢⎣ 0.1198

−0.0130

−2.9588

⎤⎥⎦
T

⎡⎢⎢⎢⎣
0.0864

−0.0128

−1.6833

0.4059

⎤⎥⎥⎥⎦
T

0.3 1 0.5 {4, 16} 0.7 {2, 16}

C3
A =

[
−0.2 0.67

−10 −100

]
, B =

[
0

37000

]
,

C =
[
1 0

]
[

0.0500

−0.0002

]T ⎡⎢⎣0.0336

0.0004

0.4453

⎤⎥⎦
T

0.2 0.62 0.4 {4, 16} 0.3 {6, 16}

C4 A =

[
−10 1

−0.02 −2

]
, B =

[
0

2

]
, C =

[
1 0

] [
100.0000

15.6226

]T ⎡⎢⎣−77.8275

24.3161

1.0265

⎤⎥⎦
T

0.2 0.62 0.38 {4, 16} 0.4 {3, 16}

C5 A =

[
−10 1

−0.2 15

]
, B =

[
0

20

]
, C =

[
1 0

] [
10.0000

1.0524

]T ⎡⎢⎣−2.4223

0.7014

0.2950

⎤⎥⎦
T

0.2 0.5 0.36 {2, 16} 0.26 {5, 16}

C6 A = −0.05, B = 0.001, C = 1 15000

[
8125.6

0.8659

]T
0.22 0.82 0.4 {4, 16} 0.5 {2, 16}

TABLE IV
RESOURCE PROVISIONING FOR DYNAMIC SCHEME IN [11]

Ci
Case 1 Case 2

n∗
w n∗

h,i Slots [%] n∗
w n∗

h,i Slots [%]

C1 10 4 28.57 4 5 55.56

C2 12 7 36.84 26 5 16.13

C3 15 4 21.05 7 6 46.15

C4 12 5 29.41 14 5 26.32

C5 12 4 25 3 6 66.67

C6 12 8 40 19 6 24

consecutive k + nh,i(k) instances, at least nh,i(k) slots must
be provided to meet the requirement in all scenarios. Now, we
determine n∗

w,i and n∗
h,i as follows:

{n∗
w,i, n

∗
h,i} = arg min

∀nw,i=k

nh,i(k)

nh,i(k) + nw,i
.

Here,
n∗
h,i

n∗
h,i+n∗

w,i
gives the minimum fraction of instances for

which slots must be provisioned for Ci using the dynamic
policy. The results are given in TABLE IV for each application
considering the two settling time requirements.

We can also calculate the fraction of instances for which
slots are provided using GoodSpread from the spread factor as
nh,i

n̂h,i
. For Case 1, we allocate slots for 20.83% of the instances

per application compared to 30.15% that is obtained for the
dynamic policy, i.e., almost one-third of the slots can be saved
per application. For Case 2, we can save even further, i.e., 40%
of the slots per application.

Note that for C3, when Jr,i = 0.4, our technique provisions
slots for 25% of the instances compared to 21.05% in case
of the dynamic policy. This is mainly because Algorithm 1
returns a sub-optimal result for C3. An exhaustive search gives
the spread factor as {3, 16}. That is, 18.75% of the instances
use static slots which is less than that obtained using the
dynamic policy. Although our proposed technique performs
better than the existing dynamic schemes in most cases, it does
not guarantee optimality. Devising provably optimal static and
dynamic policies is a future work.

Furthermore, the dynamic policy in [11] will reserve 2 and 3
slot ids respectively for Case 1 and Case 2. Considering that
the slots corresponding to these slot ids cannot be used by
any other application, in total 32 and 48 slots are reserved for
Case 1 and Case 2 respectively. On the other hand, using our

proposed technique, we use only 20 and 22 slots respectively
for Case 1 and Case 2. Thus, in Case 1, we save 37.5% slots,
while in Case 2, we save 54.17%. This shows that significant
savings in high-QoS resources is possible using GoodSpread.

Scalability of Algorithm 3: Note that in Algorithm 3, we
solve an SMT problem in each iteration. In this work, we use
Z3 [44], [45] as the SMT solver. For Case 1 and Case 2, Algo-
rithm 3 takes 0.9 s and 8.3 s respectively. Here, Case 2 takes a
longer time because there are UNSAT problem instances (i.e.,
no feasible solution) and the solver takes time to prove that a
problem is infeasible. To further evaluate the scalability of the
algorithm, we construct a case combining Case 1 and Case 2.
That is, we have to schedule 12 control messages. For this
case, we even consider Tbus = 5ms and Ncom = 64. Thus, for
each message, we need to consider 64 binary variables. This
problem takes 70min to run. Again, in this case the majority
of the time is taken by UNSAT instances. The largest SAT
instance (i.e., has a feasible solution) takes only 10 s, which
schedules 23 frames including 11 prospective ones. Here, the
algorithm has encountered 11 SAT instances and 7 UNSAT
instances. Now, when we put a time limit of 20 s in Z3 to
solve a single instance, we get the same result in 193 s, i.e.
the computation time is reduced by 95%. Thus, based on the
size of the problem, we can adjust the time limit in Z3 so that
we do not have to wait a long time for UNSAT instances. This
improves the scalability of Algorithm 3 significantly.

VII. CONCLUSION

This paper addresses the challenging problem of minimizing
the provisioning of high-QoS resources in safety-critical cost-
sensitive CPS. We follow a prevalent idea of substituting
a fraction of high-QoS resources with lower-QoS resources
without jeopardising the system’s safety. While past works
have considered dynamic allocation of resources, we demon-
strate that, unlike the popular convention, a static allocation
can save resource significantly in addition to its practical
relevance. Here, we propose a simple idea of spreading the
allocation of high-QoS resources as uniformly as possible
over time so that whenever a disturbance arrives, it will be
effectively rejected within the specified time. We further pro-
pose an optimization approach to prudently allocate high-QoS
resources while maximizing the extensibility of the schedule.
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