
Work-In-Progress: Cooling by Core-idling:
Thermal-aware Thread Scheduling for Mobile

Multicore Processors
Srijeeta Maity1, Anirban Ghose1, Soumyajit Dey1, Sangyoung Park 2, and Samarjit Chakrabarty 3

1IIT Kharagpur, 2TU Berlin, 3UNC Chapel Hill

Abstract—Thermal efficient resource mapping and scheduling
techniques are particularly important for mobile processors
because of limited opportunities for external cooling. In mobile
processors such as the ones using ARM’s big.LITTLE architec-
tures, the cores of either the big or the LITTLE processor cannot
be individually voltage/frequency scaled. However, we show that
by forcing all the application threads to a single core, and not
having any workload on the other cores of a processor, there
is still considerable thermal benefit. This is counter intuitive
since all the cores run at the same frequency. We show real
measurements and discuss what impact this has on thermal-
aware scheduling for such multicore processors.

I. INTRODUCTION

As processor geometries continue to shrink, thermal issues
degrade the performance of embedded systems thus posing a
major reliability challenge. This is evident in smartphones,
where prolonged usage of compute-intensive tasks such as
games result in overheating, and occasional shutdowns. Hence,
thermal efficient resource mapping and scheduling techniques
are of prime importance in heterogeneous embedded mobile
platforms, where the scope of external cooling is limited by
space constraints. So, several thermal management techniques,
e.g., [1] have emerged for mitigating thermal constraint vio-
lations in multicore platforms.

Popular heterogeneous multicore mobile processors like
the Exynos series employ the ARM big.LITTLE architecture
comprising two types of CPUs (a big and a LITTLE) where
each CPU is a cluster of multiple homogeneous cores. In
such platforms, DVFS (dynamic voltage/frequency scaling) is
supported at the cluster level i.e., the big and the LITTLE
clusters can be independently voltage-frequency scaled. But
all cores in the same cluster need to have the same voltage
and frequency setting. Additionally, in such platforms, idle
cores cannot be independently powered down. So even if any
one core is executing a thread keeping the other cores idle,
the idle cores in the same cluster still consume power at the
same voltage and frequency setting as the non-idle core. This
is why, running a CPU at a high frequency with multiple cores
being idle, intuitively does not appear to be a suitable thread
mapping option.

In a typical multicore thread mapping, the executions of
multiple threads mapped to the same core are interleaved
using some thread scheduling policy. But threads mapped to

This work was supported by the MHRD SPARC grant “Transportation
Cyber-Physical Systems”.

different cores execute in parallel. Among possible thread-
core mappings, let us consider two extreme ones. Scenario 1:
the threads are mapped for the best possible load balancing,
and Scenario 2: all the threads are mapped onto a single
core, with the remaining cores being idle but running at the
same voltage and frequency as the loaded core. The load
balanced mapping engages all cores for possibly the shortest
time, while the other mapping engages the single core for a
longer time.

Main result: Intuitively, it seems that at high clock frequen-
cies, engaging all cores in the cluster for a shorter time would
lead to better thermal behavior, compared to forcing all threads
to a single core and prolonging the total runtime. However,
our main result in this paper is a different finding. Our studies
show that engaging a single core for longer time by forcing all
the threads to it, while keeping the other cores in the cluster
idle, can lead to significant peak temperature reductions. While
non-intuitive, this is because of the idle cores experiencing
less switching activity and therefore consuming less power,
resulting in lower temperatures. With this key observation, the
main contributions of this work are (i) an experimental study of
the thermal benefits of different thread-to-core mappings, and
(ii) a proposal on how our observations open up a new control
surface for thermal-aware scheduling for mobile processors.

After discussing related work in the next section, we discuss
our experimental setup, followed by outlining in Section IV
how this new control surface for thermal management of
multicore processors exposes new trade-offs beyond what is
obtained using DVFS alone.

II. RELATED WORK

There exists a myriad of thermal-aware scheduling tech-
niques for single-core and multicore CPU systems that primar-
ily use frequency scaling to reduce power consumption [2] and
temperature [1]. Recent research on scheduling time sensitive
tasks focused on DVFS for thermal management while meet-
ing timing constraints for uni-processor [3] and multiprocessor
platforms [4]. Apart from DVFS, mechanisms like thermal-
aware core mapping and inserting idle periods have also gained
traction for dynamically regulating runtime chip temperatures.
Prior works include (i) heuristics [5], [6], (ii) control theoretic
mapping schemes [7], [8], and (iii) using Machine Learning
(ML) [9], all of which use DVFS techniques [1], [10], thread
migration schemes [11], thread-to-core mapping [10], [12],
and their various combinations.

Some dynamic thermal management techniques in multicore
systems do not rely on DVFS at all and do suitable thread
migration or thread-to-core assignment to decrease chip tem-
perature, such as M-DTM [13] and RT-TAS [14]. The work
reported in [13] migrates applications from big CPU cores
to LITTLE CPU cores in case of thermal violation without
modifying frequency settings, whereas in [14] thermally-
balanced task-to-core assignments avoid simultaneous peak
power dissipation on both CPUs and GPUs, thus mitigating
temperature rise. But thermal management by core idling – as
studied in this paper – has not been explored until now.

III. SETUP AND MOTIVATING EXAMPLE

We conducted our experiments on an ODROID XU4 plat-
form that has a DVFS-equipped Samsung Exynos 5422 SoC
comprising of (i) a quad-core ARM Cortex-A7 (LITTLE)
CPU, (ii) a quad-core ARM Cortex-A15 (big) CPU, and (iii) a
ARM Mali-T628 GPU. The platform supports temperature

OS OS

TEMP.
MONITOR
THREAD

SCHEDUL
-ER

THREAD

512KB L2 CACHE 2MB L2 CACHE

CORE CORE

CORE CORE

2GB DDR3 RAM

128KB L2 CACHE

CORE CORE

CORE CORE

CORE CORE

ARM Cortex CPU ARM Mali GPU

ARM Cortex A7 ARM Cortex A15

Fig. 1: Odroid XU4 architecture.

sensors for each of the A15 cores and for the Mali GPU.
Like most mobile processors, the big (A15) and the LITTLE
(A7) CPUs do not allow DVFS of the individual cores. For
running the experiments, we have restricted the OS (Ubuntu
18.04 LTS) processes to the first two cores of the quad-core
little CPU and our scheduler thread executing on the fourth
core. Additionally, we have the temperature monitor process
executing on the third core of the little CPU which discretely
samples the temperature readings from the sensors with a
sampling period of 50 ms.

In this paper, we investigate the effectiveness of different
thread mapping techniques and their implications on thermal
management by measuring the sensor temperature directly
and characterizing the latency overhead. The plots depicted
in Fig. 2 represent the temperature profiles (in ◦C) for the
individual cores in the A15 CPU while executing one iteration
of a representative computation, viz., a neural network based
object-detection pipeline. In this example, we consider a single
layer operation where four independent instances of a General
Matrix Multiply (GEMM) computation operate on matrices of
size 512 × 512, executing in two different scenarios. Plot A
represents the scenario where each instance of the GEMM
computation executes in parallel on all A15 cores. Plot B
represents the scenario where computation is sequentially
mapped onto a single A15 core (core 1) keeping the other cores
idle. All the cores were set at the maximum clock frequency
setting in both the cases. We have used only the big (A15) CPU

for our experiments, since it provides temperature sensors on
all of its four cores.

Serialized
threads

A15
Core1

A15
Core2

A15
Core3

A15
Core4

Single core assignmentMulticore assignment

A15
Core1

A15
Core2

A15
Core3

A15
Core4

core1 core2 core3 core4Plot A Plot B

Fig. 2: Thermal profile for different assignment scenarios.

A CPU’s core temperature depends on multiple factors such
as (i) the difference between the steady-state temperature and
the current core temperature, (ii) physical layout of the chip,
(iii) the workload of the core and of the neighbouring cores,
(iv) thread execution time, and the (v) the voltage frequency
level [3]. We know that most of the heat dissipation on a die
takes place in the vertical direction [15] and is much larger
compared to lateral heat dissipation. Naturally, the scope of
benefiting from lateral dissipation by having cooler adjacent
cores is assumed to be negligible. Moreover, as all cores
are running at maximum frequency setting throughout the
execution of the threads, if a single core is engaged for a
longer time it is natural to assume that the peak temperature
of that core would be significantly high.

As depicted in Fig. 2, we observe that the execution
time of the four instances of the GEMM operation under the
multicore parallel assignment (Plot A) is approximately one-
fourth of that in the single core serial assignment case (Plot
B). However, the maximum core temperature is much higher
in the multicore assignment (Plot A). It is also observed in
Plot B that the temperature of the idle cores rises by 7 – 8 ◦C
even though the cores are kept idle. But the temperature rise
in all the four cores in Plot A is higher than the temperature
rise in the cores in Plot B. Even core 1 that runs for a much
longer time in Plot B has a lower peak temperature than all
the cores in Plot A.

From this experiment we observe that core idling at cluster
level can significantly drop peak temperature of CPUs even
when individual core-level DVFS and power gating are not
supported. We conclude that when multiple cores are engaged
simultaneously, the cumulative core-to-core thermal coupling
[14], [16] results in positive feedback, causing an overall
temperature spike in the processor. In contrast, when only a
single core is engaged, the temperature of that core initially
spikes up but gradually settles down due to heat-sinking by
adjacent idle cores with much lower temperature, as all cores
lie on the same die through which heat flow occurs.

With an accurate characterization of the thermal impacts
of such thread-to-core allocation, and a characterization of
the overhead of such thread mapping, we can investigate
potential thermal management techniques to leverage this new
control surface. We plan to use this thread-to-core allocation
with existing control-theoretic scheduling schemes [17], which
have primarily focused on either tuning core-level DVFS or
performing thread migration across different processors until
now. We next outline a thermal-aware scheduling scheme that
utilizes this control knob and demonstrates its usefulness.

IV. PROPOSED SCHEME AND INITIAL RESULTS

We propose a control-theoretic scheme for thermal-aware
scheduling in embedded heterogeneous mobile platforms with
thread-to-core allocation as a tuning parameter, which was not
investigated before for mitigating thermal violations. Fig. 3 is
an overview of a hierarchical scheduling scheme that demon-
strates how the earlier discussed observations can be integrated
into control-theoretic multicore task dispatch algorithms.

Parallel
Mode

Serial
Mode

≤ ≥𝝉𝑯 < 𝝉𝑳

𝝉𝑯

𝝉𝑳𝒕𝒎𝒑𝒎𝒂𝒙

𝒕𝒎𝒑𝒎𝒂𝒙

𝒕𝒎𝒑𝒎𝒂𝒙𝒕𝒎𝒑𝒎𝒂𝒙

Implemented controller automata

Estimator

Set and 𝝉𝑳 𝝉𝑯

Time and
thermal budget

Ex. time &
temp.

>

Supervisory
Controller

Controllers for tuning other parameters like frequency

Fig. 3: Scheduler architecture: high-level overview.

As depicted in Fig.3, we implement a control scheme that
switches between two distinct modes of dispatch: (i) parallel
mode, and (ii) serial mode. The serial mode is activated if
the maximum core temperature of the platform exceeds a
preset threshold τH . In this mode, for each invocation of
an application, the A15 core with the minimum temperature
is identified and all threads of the application are executed
sequentially on that core. This results in a drop in the
maximum core temperature, as illustrated in the motivational
example. Whenever the maximum core temperature falls be-
low a threshold τL, the controller switches to the parallel
mode, where threads are mapped to all the A15 cores. In
this mode, the maximum core temperature begins to rise up
again till reaching the threshold τH and switches back to
serial mode again. The threshold parameters in this context
typically control the dominance of the dispatch modes. If the
parallel mode is dominant, then execution time reduces and
temperature constraints are neglected, whereas the serial mode
will perform better thermally at the cost of execution time.

We consider 20 consecutive iterations of the earlier work-
load and present a comparative evaluation between three
different scheduling schemes: (i) concurrent dispatch which
always uses parallel mode, (ii) sequential dispatch which

always uses serial mode, and (iii) hybrid dispatch which is
our thermal-aware adaptive scheme that switches between the
parallel and the serial modes in order to achieve a suitable
trade-off between thermal behavior and response times.

Plot-A

plot-B

100%

63%

Plot-B

0

Concurrent dispatch scheme
Sequential dispatch scheme
Hybrid dispatch scheme

100%

Pe
ak

Co
re

 w
ise

Fig. 4: Thermal profile for different dispatch schemes.
For hybrid dispatch, the threshold parameters we have con-

sidered are τH = 80◦C and τL = 60◦C with core frequency for
all A15 cores set to 2GHz. These threshold parameters were
set empirically through experiments, and they determine the
condition for switching between the two modes. The peak core
temperatures observed for each scheme is depicted in Plot A of
Fig. 4. When using concurrent dispatch, the temperature of one
of the cores increases beyond 90◦C, with the CPU governor
automatically reducing the big CPU frequency to 1.6 GHz by
DVFS (potentially compromising the performance in terms of
latency). As a result of this the temperature is reduced to 85◦C.
This change in frequency by DVFS is a safety mechanism
by the hardware to avoid system failure and is known as
thermal throttling. For sequential dispatch, the maximum core
temperature drops after regular intervals of time as a result of
control actions in the serial mode that periodically remap the
threads to the core with the lowest temperature (thus reducing
the average operating temperature as well). This is depicted
in Plot A of Fig. 4. We observe that the execution time of
sequential dispatch is increased by approximately 3.25× of
that of concurrent dispatch. This difference in execution time
may be attributed to the reduction in parallelism in sequential
dispatch and frequency reduction due to thermal throttling in
concurrent dispatch.

Our scheduling scheme, hybrid dispatch, provides a rela-
tively better trade-off with respect to the other schemes. The
maximum temperature always remains below 82◦C (a 12% re-
duction) and the average temperature is 5% lower while taking
approximately 2× more time than that of concurrent dispatch.
We can further improve the latency performance by slightly
alternating the current control action. In the serial mode, tasks
or threads can be mapped to two diagonal cores instead of
one thus balancing between fully serial and fully parallel
execution. Using temperature feedback and this setting inside
our hybrid dispatch scheme, the peak and average temperatures
reduce by 8% and 3% respectively, while taking approximately

1.7× more time than that of concurrent dispatch. Hence, in
general we can dynamically map threads to any 1 ≤ i ≤ n
number of cores (for an n-core system) with an appropriate
control strategy.

Plot B in Fig. 4 depicts a detailed thermal profile of
the individual A15 cores with hybrid dispatch. Instances of
alternating between the parallel mode and the serial mode
and vice-versa are marked by blue crosses and orange dots,
respectively. Instances depicting the remapping of the active
core in serial mode are marked by green triangles in the same
plot. At these instances, the temperature of the hottest core
starts falling rapidly as it becomes idle and the temperature
of the newly assigned core rapidly increases as the threads
start running on it. This occurs only when the scheduling
scheme operates in serial mode for a prolonged period of
time. Alternating between different modes of dispatch during
the application’s lifetime only causes temperatures of only
two A15 cores (core 2 and core 3) to rise significantly. The
maximum temperatures of these cores exceed 80◦C for a
very short time and never crossed 90◦C, thus inhibiting the
activation of DVFS by the CPU governor. The remaining core
temperatures always remain below 75◦C.

For mobile applications [17] that run for prolonged time
periods in the background such as GPS updates, system
and application specific updates, and device synchronisation,
power drainage and thermal violation are of greater concern
than their response or execution times. Maintaining stable
chip temperatures and power dissipation rates are critical
for executing such applications in mobile devices. This is
where our proposed scheduling scheme is suitable. In this
work, we have highlighted only one hybrid dispatch mode
for scheduling. We note that this can be further refined by
incorporating other control surfaces such as frequency scaling,
and also target metrics that enforce deadline requirements and
performance guarantees.

To account for workload-awareness and the dynamic be-
haviour of workloads, we propose to add a top-level controller
as an extension to this work. This top level controller can set
the goal priority of the system based on its current perfor-
mance. If the system misses timing constraints, the priority
will be changed to reduce execution time at the cost of higher
core temperatures. But if the maximum core temperature goes
beyond the thermal envelope, reducing the core temperature
is given priority at the cost of increased execution time.

The proposed approach promotes opportunistic serialization
as a control surface which can be a useful augmentation
to existing control theoretic as well as machine learning
based multicore scheduling schemes [9]. Existing works that
advocate using a mix of machine learning and control theory
for heterogeneous system scheduling [9] have shown that
the right combination of techniques from these two domains
can provide good operating points along with guaranteed
performance. We propose the use of a Supervisory Controller
(SC) as the top level controller in the hierarchical scheduler in
Fig. 3. Given a timing budget and temperature envelope, SC
can set the threshold parameters empirically and refine them

on the fly at different iterations of the application. The values
of τH and τL control the dominance of the two modes, which
in effect tunes the priority of conflicting control objectives,
viz., temperature and execution time. The SC can periodically
act upon system state estimates generated using temperature,
execution time measurements, and core frequency settings and
perform periodic high level parameter updates for the thermal
controller (i.e., τH and τL), DVFS controller, DRAM frequency
controller, etc. The SC and other control surfaces are shown
as dotted components in Fig. 3 and are the future extension
of this current work.

V. CONCLUDING REMARKS

The goal of this paper was to present a new thermal-aware
adaptive scheduling scheme based on the observation that
restricting application level parallelism can impact the thermal
behavior of multicore processors. Our current efforts include:
(i) realizing the hierarchical scheduling scheme for multicore
CPU-GPU platforms, (ii) adding support for data-parallel
languages like OpenCL/Vulkan API, and (iii) quantifying the
impact on user experience, viz., response time guarantees of
the proposed approach, versus existing approaches that rely
on DVFS alone.

REFERENCES

[1] H. F. Sheikh et al., “An overview and classification of thermal-aware
scheduling techniques for multi-core processing systems,” Sustainable
Computing: Informatics and Systems, vol. 2, no. 3, pp. 151–169, 2012.

[2] N. Peters et al., “Web browser workload characterization for power
management on hmp platforms,” in CODES+ ISSS, 2016.

[3] Y. Lee et al., “Thermal-aware resource management for embedded
real-time systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 11, pp. 2857–2868, 2018.

[4] K. Lampka et al., “Keep it slow and in time: Online dvfs with hard
real-time workloads,” in DATE, 2016.

[5] S. Maity et al., “Thermal-aware adaptive platform management for
heterogeneous embedded systems,” in EMSOFT, 2021.

[6] S. Maity et al., “Thermal load-aware adaptive scheduling for heteroge-
neous platforms,” in VLSID, 2020.

[7] A. Bartolini et al., “Thermal and energy management of high-
performance multicores: Distributed and self-calibrating model-
predictive controller,” IEEE TPDS, vol. 24, no. 1, pp. 170–183, 2013.

[8] A. M. Rahmani et al., “Spectr: Formal supervisory control and coordi-
nation for many-core systems resource management,” in ASPLOS, 2018.

[9] N. Mishra et al., “Caloree: Learning control for predictable latency and
low energy,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 184–198, 2018.

[10] B. K. Reddy et al., “Inter-cluster thread-to-core mapping and dvfs on
heterogeneous multi-cores,” IEEE Transactions on Multi-Scale Comput-
ing Systems, vol. 4, no. 3, pp. 369–382, 2017.

[11] V. Hanumaiah et al., “Performance optimal online dvfs and task migra-
tion techniques for thermally constrained multi-core processors,” IEEE
TCAD, vol. 30, no. 11, pp. 1677–1690, 2011.

[12] N. Peters et al., “Phase-aware web browser power management on hmp
platforms,” in ICS, 2018.

[13] Y. G. Kim et al., “M-dtm: Migration-based dynamic thermal manage-
ment for heterogeneous mobile multi-core processors,” in DATE, 2015.

[14] Y. Lee et al., “Thermal-aware scheduling for integrated cpus–gpu plat-
forms,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 18, no. 5s, pp. 1–25, 2019.

[15] W. Huang et al., “Hotspot: A compact thermal modeling methodology
for early-stage vlsi design,” IEEE Transactions on very large scale
integration (VLSI) systems, vol. 14, no. 5, pp. 501–513, 2006.

[16] S. Corbetta et al., “Estimation of thermal status in multi-core systems,”
in ISCAS, 2011.

[17] B. Dietrich et al., “Time series characterization of gaming workload for
runtime power management,” IEEE Transactions on Computers, vol. 64,
no. 1, pp. 260–273, 2013.

	Introduction
	Related work
	 Setup and Motivating Example
	 Proposed scheme and initial results
	Concluding Remarks
	References

