
Proactive Feedback for Networked CPS
Sumana Ghosh

sumana.ghosh@tum.de
TU Munich, Germany

Arnab Mondal
amondal23@iitkgp.ac.in
IIT Kharagpur, India

Debayan Roy
debayan.roy@tum.de
TU Munich, Germany

Philipp H. Kindt
philipp.kindt@tum.de
TU Munich, Germany

Soumyajit Dey
soumya@cse.iitkgp.ac.in
IIT Kharagpur, India

Samarjit Chakraborty
samarjit@cs.unc.edu
UNC Chapel Hill, USA

ABSTRACT
While wired networks provide a reliable platform for networked
cyber-physical systems (CPS), there is an increasing demand for
CPS built upon wireless networks. However, wireless connectivity
also implies varying and unpredictable end-to-end delays due to
packet loss, interference by concurrently transmitting nodes or the
necessity to forward packets via one or many intermediate nodes.
This is typically accounted for by designing controllers for the
worst-case end-to-end delay. This guarantees stability also when
the largest possible delay occurs. However, the delays observed
during normal operation are significantly below the worst-case.
As a result of the overly pessimistic controller design, the control
performance becomes unnecessarily low. In this work, for the first
time, we present a generic technique to handle varying end-to-end
delays in wireless CPS.

While maintaining a stable operation, our technique preserves
a high control performance. In essence, we propose a proactive
feedback strategy that computes future control inputs for different
possible delays a priori and sends them to the actuator in a sin-
gle packet. When new control inputs are delayed, pre-computed
ones accounting for higher delays are applied at appropriate actua-
tion instants. In this way, a controller responds fast when control
input arrives with low latencies, while adaptively acting more con-
servatively when packets are delayed. Our proposed strategy is
independent of the controller design technique and the communica-
tion protocol used. We also present a real-world implementation of
our proposed technique on a physical testbed. Experiments suggest
that the proposed strategy improves the control performance of
the system by up to 63 % compared to existing control schemes.

ACM Reference Format:
Sumana Ghosh, Arnab Mondal, Debayan Roy, Philipp H. Kindt, Soumyajit
Dey, and Samarjit Chakraborty. 2021. Proactive Feedback for Networked
CPS. In The 36th ACM/SIGAPP Symposium on Applied Computing (SAC ’21),
March 22–26, 2021, Virtual Event, Republic of Korea. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3412841.3441897

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3441897

1 INTRODUCTION
In networked cyber-physical systems (CPSs), a physical plant is
controlled using software running on a processing unit that typ-
ically receives sensor information and sends control signals over
a communication network. In such systems, the network timing
plays a crucial role in determining the physical behavior of the
plant. Thus, a controller that is designed obliviously to the network
behavior might violate the control requirements [37]. It is particu-
larly challenging to implement a stable controller while at the same
time preserving the control performance from the design stage
when the network resources are constrained, i.e., in the presence
of noise, data loss, and large and variable delay.

In recent years, control over wireless networks is becoming
increasingly common due to requirements for low-cost sensing,
flexibility, and low-power implementations [2, 25]. In this new era
of edge devices with compute and transmit capabilities, applications
in mission/safety-critical domains (e.g., robotic swarm coordination
and motion control) can now have extended ranges and functional-
ities that were not possible earlier due to hardware and networking
limitations.

Figure 1: Delay distribution.

However, such systems
might also have higher
performance require-
ments, e.g., faster stabi-
lization or lower settling
time. As discussed in
[24], high-performance
feedback control, if re-
alized through wireless
networks, has the poten-
tial to revolutionize sev-
eral domains like e.g.,
smart manufacturing,
transportation or tacti-
cal networks for long-range drone control.
Variable delay in wireless networks: In a wired network, pack-
ets typically arrive reliably with small and predictable delays. In
contrast, in a wireless network, packets might collide with packets
from other devices and therefore might get lost. They hence need to
be re-transmitted in such cases, which leads to variable and unpre-
dictable delays. In addition, in multi-hop networks, intermediate
nodes need to forward data from one node to the other. Here, the
delay also depends on the route. In addition, if packets are lost in a
multi-hop network, the delay varies to an even higher extent. For
example, Wireless HART networks [26, 43], which are being used
frequently in industrial process automation applications, subdivide

https://doi.org/10.1145/3412841.3441897
https://doi.org/10.1145/3412841.3441897
samarjit
Typewritten Text
To appear in 36th ACM/SIGAPP Symposium On Applied Computing (SAC), CPS Track, 2021

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Ghosh et al.

time into different slots. Every transmission takes one slot length,
i.e., 10ms. If a packet needs to be relayed among multiple hops, the
delay will be a multiple of this slot length, since a node can only
forward one packet per slot. Hence, the delay also varies with the
number of hops and therefore the route taken through the network.

To get an impression on the variability of delays, let us consider
a simple CPS that consists of a plant, controller, and a transmission
node for intermediate communication. The control loop is formed
by a forward (i.e., sensor-to-controller) and return (i.e., controller-
to-actuator) path. We assume that each transmission between two
nodes incurs a delay of 10ms, and that the 3 nodes are arranged in a
daisy-chained fashion, such that there are 2 hops between controller
and plant. Since an intermediate node receives data in one slot and
then forwards them to the next node in the subsequent slot, the
2 ` 2 “ 4 hops of one round-trip would incur an end-to-end delay
of at least 40ms. If now a certain fraction of transmission attempts
fail, each re-transmission would cause an additional delay of 10ms.
A failure rate of 5 % would result into the distribution of delays
depicted in Figure 1. Congestion is also the main source of delay in
most other wireless networks, even in single-hop ones. For example,
when the channel in an IEEE-802.11 network (WiFi) is busy, every
station waits for a random, exponentially distributed amount of
time before transmitting [11]. This will also lead to variable delays,
especially when the network load is high.
Previously known techniques:With the growing importance of
wireless CPS, techniques to mitigate the effects of varying delays
have been studied thoroughly in the literature. While it is known
that a lower sampling period and a shorter sensing-to-actuation
delay allows the design of controllers with a higher control per-
formance [8, 35, 38], large and varying round-trip delays in the
underlying wireless network negatively impact the control stability.
Hence, previous works have mainly emphasized on designing a
stable controller in the presence of varying delays [13, 15, 29], with-
out mitigating the corresponding performance degradation. Other
works have used a Kalman filter to predict the control input when
packets are delayed [41, 42]. On the other hand, certain works have
tried to address the issue from the networking side by providing
more resources, i.e., either adding a high-quality communication
alternative [6, 33, 34] or redundantly transmitting each packet to
the destination via multiple routes [29].
Novelty of this work: In contrast to these previously known tech-
niques, as explained earlier, we in this paper present a generic
technique that can be used in conjunction with any given wire-
less network and controller. In other words, we provide the “glue”
to efficiently implement a given high-performance controller in a
given network, in spite of variable delays. In particular, neither the
controller needs to be designed using any knowledge about the
underlying network and its delay distribution, nor does the network
need to be adjusted based on the designed controller. Furthermore,
the actuator does not need to execute any computationally ex-
pensive prediction algorithms, while at the same time any delay
distribution and hence network protocol can be accounted for.
Overview of the proposed proactive feedback strategy: In this
paper, we propose a generic proactive feedback strategy to run a
high-performance controller reliably in spite of large delay vari-
ations in wireless networks. Let the controller be designed with

a certain sampling period ℎ that is chosen by considering ideal
network operations with minimal delay. Whenever this controller
is triggered, it proactively computes different control inputs consid-
ering different possible round trip delays, i.e., ℎ, 2 ˆ ℎ, ¨ ¨ ¨ , 𝑘 ˆ ℎ.
These control inputs are then transmitted to the actuator together
in a single packet. Now, if a packet arrives on time at the actuator,
the new control input, which has been computed for the delay of ℎ,
is applied. Otherwise, if a packet is delayed, the control input from
the previously received packet that corresponds to the actual delay
is applied. Thus, the proposed control strategy allows to proactively
compensate for the delay that might occur due to the communica-
tion over the wireless network. This proactive delay compensation
preserves the high control performance, e.g., low settling times.
The strategy we propose here can be used with any control design
techniques, including event- and self-triggered control.
Contributions: Compared to the existing works, we make the
following contributions:
‚ We, for the first time, propose a generic technique to increase
the control performance in wireless CPS by proactively pre-
computing and transmitting different control inputs for different
possible delays.

‚ We propose a proactive feedback strategy that exploits the knowl-
edge of delay variations of the network to pre-calculate control
inputs for future actuation time instants and sends them to the
actuator. These inputs can then be applied to the plant when the
delay is large and the new inputs have not arrived in time.

‚ We implement our proposed strategy on a real-world CPS testbed.
Using real-world experiments on this testbed, we show that a
significantly higher control performance (i.e., up to 63 % w.r.t.
existing approaches) can be obtained for a wireless CPS using our
method, when large and variable end-to-end delays are present.

Organization: The paper is organized as follows. Sec. 2 outlines
related works. Sec. 3 formally describes the systems we consider.
Sec. 4 discusses a motivational example to emphasize the challenges
involved in implementing a high-performance controller when
there is a large variation in the sensing-to-actuation delay. Sec. 5
presents our proposed technique in detail. Sec. 6 describes our
experimental setup and presents experimental results to evaluate
the performance of our proposed feedback strategy. Finally, Sec. 7
provides concluding remarks.

2 RELATEDWORKS
Designing feedback control strategies in the presence of closed-loop
delay is studied in the literature in several contexts [1, 3, 5, 9, 13,
15, 16, 20–23, 28, 29, 37–42, 44]. Here, we broadly categorize the
related works into four orthogonal directions D1, D2, D3 and D4.
D1: This direction of research focuses on the design and analysis
of networked control systems by predicting states and/or delays
based on different communication models [1, 13–15, 41, 42]. For
example, the works in [13, 15] focus on theoretical guarantees on
the robustness of the system under immeasurable variable delay. A
predictor-based controller is presented and its robustness is ana-
lyzed for different uncertainties. In [41, 42], a Kalman filter is used
to compute upper and lower bounds on the estimation error based
on the delay probability. In [1], a pre-defined time frame is used to

Proactive Feedback for Networked CPS SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

mitigate the delay variability where the control inputs are applied
instantly after that specific time. Finally, a predictor-based analysis
is performed for constant delay compensation.
D2: This direction concerns designing a robust controller that can
withstand large delay variations, packet drops and/or network faults
without jeopardising stability [2, 3, 12, 22, 46]. For example, formal
models for analyzing the robustness and stability of a multi-hop
wireless control network (MCN) are given in [3, 46]. In [12], a
fault-tolerant stabilization technique is provided, for which the
necessary and sufficient conditions on the plant dynamics and the
communication protocol are proposed. In a similar context, [22]
gives an analytical bound on the fraction of deadline misses that
can be sustained without violating the control requirements. Note
that the analytical worst-case delay bounds are mostly pessimistic
and a controller designed based on such a bound will result in a
lower average performance.

Most of the works in D1 and D2 focus only on the robustness of
the system. Although, in theory, a performance-aware predictor
might be used to predict the control input when the delay is large,
such an implementation is not feasible on mobile devices, since the
actuator node does not have the bandwidth to run a computationally
expensive predictor, e.g., a Kalman filter. Moreover, unlike D1, we
do not require any knowledge of the actual delay distribution of the
network, but the upper and lower bound of the delay. Furthermore,
unlike D2, we do not design the controller considering only the
worst-case delay and, thus, avoid pessimistic control design and
lower average performance.
D3: This direction of works handles the large and variable delay by
providing more network resources [6, 21, 23, 29, 33, 44]. In [23, 29],
each data packet is simultaneously broadcasted to all possible nodes
in range to increase the reliability and to reduce the number of re-
transmissions, which essentially reduces the end-to-end delay. On
the other hand, in [6, 21, 33, 44], high-quality network resources
are provisioned in parallel to the low-quality resources to obtain a
better performance. Furthermore, [44] considers using an adaptive
controller to improve the performance even when using a low-
quality network. Note that unlike our proposed approach, these
approaches are expensive in terms of cost and/or computation and
might not always be feasible.
D4: This direction of research investigates the co-design of control
and network parameters [5, 16, 17, 28, 29, 38]. In [28], a holistic
controller is proposed that generates actuation signals to physical
plants and re-configures the wireless network (i.e., tunes the re-
transmission count) to maintain the desired control performance,
while saving wireless resources. The problem of selecting sampling
rates and synthesizing network schedules for multiple controllers
sharing a wireless network is addressed in [5, 38]. It is based on a
worst-case end-to-end delay analysis [39] over the network. The
work presented in [16, 17] synthesizes stable control and network
schedules for a shared wireless control network in an integrated
fashion. In the same vein, [20, 40] design controllers with certain
assumptions on the closed-loop delay, and then, a strict constraint
on the delay is assumed while implementing the controller. Here, if
the constraint is violated during implementation, then the controller
has to be redesigned.

The aforementioned works do not consider the performance
degradation owing to large and variable end-to-end-delays, which
is the main focus of this paper. Barring two exceptions in [28, 29],
most of the related works either ignore the validation of the de-
sign in a real-world setup or validate the proposed design only
through simulations. In contrast, we evaluate our proposed tech-
nique through experiments on a custom-built, real-world testbed.

3 SYSTEM MODEL
In this work, we study networked CPSs that are commonly found
in MCNs. An MCN can be represented as a tuple N “ pP,K,Gq,
where P “ t𝑃1, ¨ ¨ ¨ , 𝑃𝑛u is the set of 𝑛 physical plants, K “

t𝐾1, ¨ ¨ ¨ , 𝐾𝑛u is the set of 𝑛 controllers, and G is a graph repre-
senting the communication network between the plants and the
controllers. The feedback controller 𝐾𝑖 controls the plant 𝑃𝑖 , where
the controller receives the sensor data and sends the control in-
puts over the network G. Such a system architecture, where the
controller is located remotely, is common in process control [29].

3.1 Network Model
The network graph is defined as a directed graph G “ pV, Eq,
where the set of vertices V are the nodes of the network, and
the set of edges E Ď V ˆ V models the connectivity. An edge
p𝑣𝑖 , 𝑣 𝑗 q P E, if and only if the node 𝑣 𝑗 can receive data from node 𝑣𝑖 .
We haveV “ 𝑉𝑃 Y𝑉𝐼 YC. Here,𝑉P “ t𝑃1, ¨ ¨ ¨ , 𝑃𝑛u denotes the set
of plant nodes. Each plant node comprises the sensor and actuator
units connected locally to the physical plant (see Figure 3). Sensors
read the states of the plant and transmit the data to the controller,
while the actuator receives the control input from the controller
and applies it to the plant. C denotes the control node responsible
for computing the control input based on the states of the plant.
The communication between the plant nodes and the controller
is realized by the set of nodes 𝑉I denoting the intermediate nodes
that follow a receive and forward policy to route data over the
network. A node 𝑣𝑖 P V can transmit data to a set of nodes,𝑁 p𝑣𝑖q “

t𝑣 𝑗 |p𝑣𝑖 , 𝑣 𝑗 q P Eu within its transmission range.
We consider a setting where the individual plants t𝑃1, ¨ ¨ ¨ , 𝑃𝑛u

are remotely controlled by software running on a shared computing
platform residing in the MCN manager. The MCN manager is a
centralized node C in the network graph G. It collects connectivity
information from all the nodes inV , computes routing paths for
the control loops, and disseminates routing information among the
nodes. A routing path is a sequence of communicating pairs of nodes
through some channels, i.e., frequencies. According to Figure 3,
a possible routing path for the control loop p𝑃1, 𝐾1q is: x𝑃1 Ñ

𝐼1, 𝑓1y, x𝐼1 Ñ 𝐼2, 𝑓1y, x𝐼2 Ñ 𝐼4, 𝑓1y, x𝐼4 Ñ 𝐶, 𝑓1y, x𝐶 Ñ 𝐼4, 𝑓1y, x𝐼4 Ñ

𝐼3, 𝑓1y, x𝐼3 Ñ 𝐼1, 𝑓1y, x𝐼1 Ñ 𝑃1, 𝑓1y, where, e.g., in the first hop, the
plant node 𝑃1 sends state measurement data to the intermediate
node 𝐼1 using the frequency 𝑓1.

3.2 Feedback Control Systems
In this work, we study linear and time-invariant (LTI) systems for
which the discrete time mathematical model can be written as:

𝑥r𝑘 ` 1s “ 𝐴𝑥r𝑘s ` 𝐵𝑢r𝑘s, 𝑦r𝑘s “ 𝐶𝑥r𝑘s. (1)

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Ghosh et al.

For an 𝑛-th order system with𝑚 outputs and 𝑝 inputs, the vectors
𝑥r𝑘s P R𝑛 , 𝑦r𝑘s P R𝑚 , and 𝑢r𝑘s P R𝑝 denote the plant state,
the output, and the control input respectively at time 𝑡 “ 𝑘ℎ,
where 𝑘 “ 0, 1, 2, ..., ℎ is the sampling period, and 𝑡 is the time
for the 𝑘-th sampling instant. The matrices 𝐴 P R𝑛ˆ𝑛, 𝐵 P R𝑛ˆ1,
and 𝐶 P R𝑚ˆ𝑛 represent the discrete-time state transition matrix,
the input matrix, and the output matrix respectively. We further
consider a state-feedback controller for which the control law is:

𝑢r𝑘s “ 𝐾𝑥r𝑘s ` 𝐹𝑟, (2)

where 𝐾 is the feedback gain, 𝐹 is the feedforward gain, and 𝑟 is
the reference output. By combining Eqs. (1) and (2), we get the
closed-loop system model as follows:

𝑥r𝑘 ` 1s “ p𝐴 ` 𝐵𝐾q𝑥r𝑘s ` 𝐹𝑟 “ 𝐴𝑐𝑙𝑥r𝑘s ` 𝐹𝑟 . (3)

The eigenvalues of 𝐴𝑐𝑙 must lie inside the unit circle for the closed-
loop system to be asymptotically stable. Besides stability, control
requirements are often specified, among others, in terms of settling
time, rise time, overshoot and quadratic cost. We assume that the
designed controller t𝐾, 𝐹u must meet the requirements. Standard
design techniques, e.g., pole-placement and linear quadratic regu-
lator (LQR) [4], can be employed to determine 𝐾 , while the final
value theorem [10] can be applied to compute 𝐹 .

Note that, in this work, we do not introduce a new controller
design technique. We instead show how the high performance that
is obtained in the controller design phase can be preserved when
the control loop is being implemented over a wireless network.

4 A MOTIVATIONAL EXAMPLE
Given that in-vehicle wiring lengths and costs are now considered
to be very high, in the future there is a distinct possibility of us-
ing wireless networks in the automotive electrical and electronic
(E/E) architecture. Hence, in this section, we consider the model
of a cruise control system from [36] as a motivational example
to demonstrate the challenges in the implementation of a high-
performance controller. In a cruise control system, the controller
regulates the vehicle speed at a reference level by adjusting the
engine throttle angle. Let the reference speed be 𝑟 “ 30 km{h and
the settling time requirement be 1 s. Settling time is the time taken
by the system output to reach and stay within a certain threshold
(e.g., 1 %) of the reference value. We assume that the controller is
implemented in an MCN setting, where the sensing-to-actuation
delay can vary between 10ms and 50ms. We consider different
sampling periods ℎ for the simulation.
h=50ms: We now consider a controller that is designed based on a
sampling period ℎ “ 50ms given by 𝐾 “

”

23.851 10.29 2.76
ı

and 𝐹 “ 875.64. Here, we use the LQR controller design technique.
a)Wefirst consider an implementation where the control input is

always applied after a time interval of 50ms from the sensing. That
is, even if the control input has reached the actuator with a lower
delay, it will not be applied until the worst-case delay has elapsed.
This is also a standard technique for implementing a controller
in an MCN setup for a more predictable control performance. In
Figure 2, the green colored solid curve with maroon arrow markers
gives the control response for such an implementation, when the

0 0.5 1 1.5 2 2.5 3 3.5 4

Time(s)

0

5

10

15

20

25

30

35

40

S
p

e
e

d
 (

k
m

/h
)

(a) period = 50 ms; delay = 50 ms

(b) period = 50 ms; delay [10 ms, 50 ms]

(d) period = 10 ms; delay [10ms, 50ms]

(e) period = 10 ms; delay = 10 ms

(c) period = 10 ms; delay = 50 ms

b

c

d

e

a

Figure 2: Effect of variable delay in system response.

plant is sampled at 50ms. Here, the slow sampling rate leads to a
low control performance, i.e., the settling time is greater than 1 s.

b) Next, we consider an implementation where the control in-
put is applied as soon as it reaches the actuator. The pink dotted
curve in Figure 2 gives the plant response when the delay varies
randomly between 10ms and 50ms. In this case, we can observe
that the system might take longer to settle down than the first
implementation, despite the average delay being less than 50ms.
This is because the system here experiences a jitter, i.e., the time
between two successive actuation instants varies. However, the
controller is tuned for a fixed period of 50ms, and correspondingly,
a control input is expected to be held for 50ms. Now, if a control
input is held longer, it might result in an overshoot. Similarly, if it
is changed to early, the response might become slower.
h=10 ms: Next, we consider a controller that is designed for a
sampling period ℎ “ 10 ms using the LQR design technique. Note
that the sampling period ℎ is equal to the best-case end-to-end
delay, i.e., ℎ “ 10 ms. The obtained controller is given by 𝐾 “
”

873.206 131.223 10.045
ı

and 𝐹 “ 826.2.
c)We first consider an implementation where the input is always

applied with a delay of 𝑑 “ 50ms. The blue dash-dotted line shows
the response for such an implementation. It may be noted that the
settling time requirement is not met.

d)We further consider an implementation where the delay varies
between 10 and 50ms and the control input is applied as soon as it
reaches the actuator. The black dashed line shows the response for
this case. Again, the requirement is violated and the settling time
is longer compared to the first implementation.

Note that the settling time in Case d) is even longer than that
obtained for the implementation in Case a). In Case a), the output
rises quickly towards the reference, however, it experiences a large
overshoot because of which it takes a longer time to settle down.
The main reason for this overshoot is the large jitter experienced
by the system. When a controller is designed for a sampling period
of 10ms and a constant delay equal to the sampling period, it is
expected that the control input will be adjusted every 10ms. How-
ever, with a delay variation from 10ms to 50ms, the two successive
actuations can be separated by 50ms in the worst-case. Now, when
the output is closer to the reference, the control input might not
get adjusted accordingly because the new value has not reached
the actuator. In such a case, the output can go beyond the reference

Proactive Feedback for Networked CPS SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

and might experience a large overshoot. Note that such events are
nondeterministic when there is a delay variation, and in certain
cases, the output might continuously oscillate around the reference.

e)We also consider a hypothetical case where the delay is con-
stant at 𝑑 “ 10ms. The red solid line in Figure 2 shows the response
for this case. Here, we get a significantly faster response with a set-
tling time less than 1 s, which meets the requirement. Note that with
ℎ “ 10 ms, in each of the implementations, the system response is
faster, i.e., it reaches the reference within 0.5 s. However, for large
and variable delays, the plant oscillates around the reference for a
significant amount of time before settling down.

From the above experiment, we make the following observa-
tions: (i) A higher control performance might be obtained by de-
signing a controller with a smaller sampling period. (ii) When
a controller experiences a large delay variation, the control per-
formance deteriorates. (iii) When the delay is fixed, the control
performance improves with a smaller delay. Thus, our goal is to
show how to maintain the higher control performance obtained
during controller-design time with a smaller sampling period over
the network having large delay variations.

5 PROACTIVE FEEDBACK STRATEGY
The overview of our proposed feedback strategy is as follows. Let
the delays in the forward path (i.e., sensor-to-controller) and the re-
turn path (i.e., controller-to-actuator) of a control loop vary from q𝛿𝑓

to p𝛿𝑓 and from q𝛿𝑟 to p𝛿𝑟 respectively. Our proposed scheme ensures
that sensing and actuation are performed periodically at discrete
time instants according to a given period ℎ, where ℎ can be smaller
than p𝛿𝑓 ` p𝛿𝑟 . Now, let us assume that the sensor data corresponding
to the 𝑘-th sampling instant reaches the controller after a delay
𝛿𝑓 P rq𝛿𝑓 ,

p𝛿𝑓 s. The delay is calculated based on timestamps. Using
theminimum delay (i.e., q𝛿𝑟) in the return path, we can determine the
earliest actuation time instant (i.e., q𝑘𝑎 “ q𝐹 p𝑘, 𝛿𝑓 `q𝛿𝑟 q) before which
the control data might reach the actuator. Furthermore, considering
the maximum delay in the control loop (i.e., p𝛿𝑓 ` p𝛿𝑟), we can also
determine the latest actuation instant (i.e., p𝑘𝑎 “ p𝐹 p𝑘 ` 1, p𝛿𝑓 ` p𝛿𝑟 q)
before which the control inputs based on the next state of the plant
will reach the actuator. Here, q𝐹 p¨q and p𝐹 p¨q are functions. We com-
pute appropriate control inputs, 𝑈

q𝑘𝑎,
p𝑘𝑎
, for all possible actuation

instants from q𝑘𝑎 to p𝑘𝑎 , based on the latest knowledge of the state of
the plant. Towards computing a control input 𝑢r𝑘 1s for the actua-
tion instant 𝑘 1 P rq𝑘𝑎, p𝑘𝑎s, we apply the feedback control law on the
predicted state p𝑥r𝑘 1s. Here, p𝑥r𝑘 1s is calculated based on the closed-
loop system model comprising the plant and the controller. The
computed set of control inputs for all possible delays, i.e.,𝑈

q𝑘𝑎,
p𝑘𝑎
, is

sent to the actuator in a single data-packet. For a particular actua-
tion instant, the actuator finds the appropriate input to apply from
the latest set of control data that it has received.

This scheme is depicted in Figure 3 for a wireless multi-hop con-
trol network (MCN) with two control loops. Here,𝑈 1

q𝑘𝑎,
p𝑘𝑎

and𝑈 2
q𝑘𝑎,

p𝑘𝑎

contain the control inputs, i.e.,𝑈 𝑗

q𝑘𝑎,
p𝑘𝑎

“ t𝑢
𝑗

q𝑘𝑎
, 𝑢

𝑗

q𝑘𝑎`1
, ¨ ¨ ¨ , 𝑢

𝑗

p𝑘𝑎
u,

@ 𝑗 P t1, 2u, for loop 1 and loop 2 respectively. For each actuation

instant, the actuator applies the appropriate input from the latest
set received by it. Thus, we set 𝑢 𝑗 r𝑘s “ 𝑢

𝑗

q𝑘𝑎 �̀�
P 𝑈

𝑗

q𝑘𝑎,
p𝑘𝑎
, 𝑗 “ 1, 2.

Now we discuss each step in details. Let us assume a minimum
delay p𝛿 and a maximum delay q𝛿 in the considered network.

5.1 Predictor Operation
Our proposed strategy relies on a predictor, which works as follows.
The predictor takes as inputs (i) the states of the plant (𝑥r𝑘s) and
(ii) the delay experienced by the packet carrying the state informa-
tion from the plant to the controller (𝛿𝑓). Based on 𝛿𝑓 , the maximum
closed-loop delay, and the minimum delay in the return path (i.e.,
controller to actuator), it first predicts the actuation instants for
which control input might be required to be applied based on the
received state information. Now, corresponding to these predicted
actuation instants, it predicts the state of the plant considering
the evolution of the system based on the proposed strategy. Note
that the predictor operates in an event-triggered fashion, i.e., its
operation is triggered by the arrival of the plant data as sent by the
sensor unit in the plant node of the control loop.

Predicting the actuation instants: Let q𝛿𝑟 be the minimum delay
and p𝛿𝑟 the maximum delay in the return path. Given 𝛿𝑓 as the
delay experienced in the forward path (i.e., sensor to controller), we
can calculate the earliest actuation instant q𝑘𝑎 in which the control
input calculated based on the current state information 𝑥r𝑘s can be
applied as:

q𝑘𝑎 “ 𝑘 ` rp𝛿𝑓 ` 𝜏𝑐 ` q𝛿𝑟 q{ℎs (4)
where 𝜏𝑐 is the computation time for the control input when re-
ceiving the sensor data. Now, we must consider the maximum end-
to-end delay to compute the latest actuation instant p𝑘𝑎 where the
control input calculated based on the current state information 𝑥r𝑘s

might be applied. This is the instant after which we can guarantee
that the control input calculated based on the next state information
will reach the actuator. Thus, the latest actuation instant p𝑘𝑎 can be
calculated as follows:

p𝑘𝑎 “ 𝑘 ` rp𝛿𝑓 ` 𝜏𝑐 ` p𝛿𝑟 q{ℎs (5)

The controller needs to compute appropriate control inputs for all
instants from q𝑘𝑎 to p𝑘𝑎 .
State Prediction: In this work, we derive a predictor to estimate
the plant state at the 𝑘 1-th actuation instant (q𝑘𝑎 ď 𝑘 1 ď p𝑘𝑎) based
on the following information.

i) The plant dynamics given in Eq. (1).
ii) The delay (in terms of number of samples) from sensing to

actuation, i.e., Δ “ 𝑘 1 ´ 𝑘 .
iii) The last measured state 𝑥r𝑘s that has reached the predictor.
iv) All previous control inputs, i.e., 𝑢r𝑘 ` 𝑗s, where 0 ď 𝑗 ď

Δ ´ 1.
Formally, we define the dynamics of predictor as follows [15].

𝑥r𝑘 1s “ 𝐴Δ𝑥r𝑘s `

Δ´1
ÿ

𝑗“0
𝐴Δ´1´𝑗𝐵𝑢r𝑘 ` 𝑗s (6)

Following Eq. (6), for each such predicted actuation instant 𝑘 1 P

tq𝑘𝑎, q𝑘𝑎 ` 1, ¨ ¨ ¨ , p𝑘𝑎u, the predictor estimates the plant-state 𝑥r𝑘 1s

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Ghosh et al.

Actuator 1

Plant 1 Sensor 1

u1[k] =uka+l

Plant 2 Sensor 2 Controllers

K1 K2

1

P1

P2

I1

I2

I3

I4

C

Plant State Space Model
and Network Graph

Final Control
Input Selection

Actuator 2

Final Control
Input Selectionu2[k] =uka+l

2

U
1

U
2

xj[k]

U
j
ka,ka

x1[k]

x2[k]

ka,ka

ka,ka

U
j
ka,ka

= {uka
,uk +1a

,...,uka

j
}

j

I5

I6

I7

VP = {P1, P2}
VI = {I1, I2, ..., I7}

Plant Wireless Network Controller

j

Figure 3: Proposed proactive feedback scheme in a multi-hop wireless network.

based on the last measured state valuation 𝑥r𝑘s and all the inter-
mediate control inputs t𝑢

q𝑘𝑎
, 𝑢

q𝑘𝑎`1, ¨ ¨ ¨ , 𝑢𝑘1´1u.

5.2 Controller Operation
On receiving the estimated state of the plant, 𝑥r𝑘 1s “ 𝑥r𝑘`Δs, for a
sampling instant 𝑘 1, the controller computes the control input,𝑢r𝑘 1s

following Eq. (2). Note that the control input𝑢r𝑘 1s calculated for the
actuation instant 𝑘 1 can be used to predict the state 𝑥r𝑘 1 ` 1s. Thus,
an efficient way of implementing the controller and the predictor is
to predict a state followed by computation of the control input for
an actuation instant. Then, the next state can be predicted based
on the predicted state and the control input of the last instant as:

p𝑥r𝑘 1 ` 1s “ 𝐴p𝑥r𝑘 1s ` 𝐵𝑢r𝑘 1s. (7)
Let us consider an example when 𝑥r2s reaches the control node
after a delay of one sample. The minimum delay in the return path
is one sample and the maximum end-to-end delay is 4 samples.
Here, q𝑘2 “ 4 and p𝑘2 “ 6. Thus, the controller needs to compute
𝑢r4s, 𝑢r5s and 𝑢r6s based on 𝑥r2s. We denote 𝑢r𝑘 1s calculated based
on 𝑥r𝑘s as 𝑢𝑘

𝑘1 . Thus, the control input vector sent by the control
node is𝑈 𝑘 “ t𝑢𝑘

q𝑘𝑎
, 𝑢𝑘

q𝑘𝑎`1
, ¨ ¨ ¨ , 𝑢𝑘

p𝑘𝑎
u.

The controller relies on the assumption that the actual state at
the 𝑘-th instant will be equal to the predicted state, i.e., 𝑥r𝑘s “

𝑥r𝑘s. A controller designed with an assumption of zero delay when
implemented using our proposed strategy does not violate the
assumption. Hence, the stability and the control performance of
the closed-loop system are preserved from the controller design
stage to the implementation.

5.3 Actuator Operation
At each actuation instant, the actuator selects the most appropriate
control input from the control input vector currently available to
it and applies the input to the plant. Thus, it ensures zero delay
in actuation of the control input and exhibits the behaviour of a
zero-delay sampled system with the best choice of the sampling
period. More details are given next.
Control Input Selection: Let the end-to-end delay encountered
by the control input𝑈 𝑘 for reaching the actuator be Δ samples, i.e.,

Delay Lengths:
{1,2,3,4}

Sense

Actuation
k

Obsolete on
arrival of

Figure 4: Implementing zero delay in actuation.

𝑈 𝑘 arrives at the 𝑘 1-th actuation instant, where 𝑘 1 “ 𝑘 ` Δ. Then,
the actuator selects the control input 𝑢𝑘

𝑘`Δ
P 𝑈 𝑘 and subsequently

applies the control input to the plant, i.e., 𝑢r𝑘 1s “ 𝑢𝑘
𝑘1 “ 𝑢𝑘

𝑘`Δ
. E.g.,

for 𝑈 2 “ r𝑢24, 𝑢
2
5, 𝑢

2
6s, if the actual delay-length is Δp𝑘q “ 3, the

actuator applies 𝑢r5s “ 𝑢25 . Note that 𝑢
𝑘
𝑘1 is calculated based on

the predicted state valuation p𝑥r𝑘 1s. Here, p𝑥r𝑘 1s is calculated using
Eq. (6) based on the plant state 𝑥r𝑘s, which is sensed at the 𝑘-th
sampling instant.

An illustrative example is given in Figure 4. Here, the actuator
sets 𝑢r1s “ 0, since no control input has reached by that time.
On reaching the control input vector 𝑈 0 at the 2𝑛𝑑 time step, the
actuator sets 𝑢r2s “ 𝑢02 . Similarly, it sets 𝑢r3s “ 𝑢13 on receiving𝑈 1

at the 3𝑟𝑑 time step. Since it does not receive any input from the
controller at the 4𝑡ℎ time step, it sets 𝑢r4s “ 𝑢14 from the previously
received input vector 𝑈 1 to maintain zero delay in actuation. Sim-
ilarly, it sets 𝑢r6s “ 𝑢26 at the 6

𝑡ℎ time step, while it updates 𝑢r5s

and 𝑢r7s with 𝑢25 and 𝑢
3
7 on receiving𝑈 2 and𝑈 3 at the 5𝑡ℎ and 7𝑡ℎ

time steps respectively. Note that the control input is updated at
each and every sample.

6 EXPERIMENTAL EVALUATION
To evaluate the behavior of our proposed technique in real-world,
we present experimental results obtained on a CPS testbed. We next

Proactive Feedback for Networked CPS SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

Network Manager

Plant BlocksIntermediate Nodes

(Predictor
+

Controller)

Figure 5: The MCN testbed.

describe our experimental setup, i.e., the CPS testbed, and then give
experimental results.

6.1 Experimental Setup
We used the hardware/software co-designed testbed as depicted in
Figure 5 in our experiments, which is built using off-the-shelf radio
hardware. It provides a unique platform to implement, run, and
validate the proposed strategy for any given MCN specification.

Though our testbed is well equipped to configure any givenMCN
configuration, in this work, the MCN specification for the testbed
that we have considered for evaluating the proposed strategy com-
prises two physical plants, seven (battery powered) intermediate
nodes, and a network manager (i.e., the control node) containing
the controller and the predictor. The network topology is depicted
in Figure 3. The forward and return paths are colored red for loop 1
and blue for loop 2. Figure 5 depicts all devices of the testbed within
a single image. However, during the experiments, these nodes were
distributed in a 6m ˆ 6m room ensuring at least 2m separation
between any two nodes. Significantly larger distances can be real-
ized easily, since our network supports multi-hop communication
with a single hop transmission range of up to 30m.

Based on a given MCN specification, the software tool auto-
matically generates and deploys the firmware to all the Arduino
based nodes in the network. The details of our customly developed
software tool, which supports specifying and configuring a wire-
less network through a GUI-driven user interface, can be found
in [19]. This firmware configures the nodes as well as their network
interfaces for realizing the given MCN configuration such that,
when the full system runs, each node performs its designated set
of transmissions and receptions at user-specified frequencies, bit
rates and power levels, thus realizing the routing solution for each
control loop as indicated in the MCN specification. For generating
timestamps, all nodes are equipped with a DS3231 precision real-
time clock (RTC), which get synchronized before carrying out any
experiment.

Plant Node: In our testbed, Double Integrator Circuits (DICs) form
the physical plants, however, the hardware implementation of other

RF
Frontend

(Arduino +
Transceivers
+ SD Card
Interface)

Digital to
analog

Converter
DIC

Circuit

Voltage
Divider

Level
Shifter

(u− 2.5V)

Digital
pins

D0-D7

v′′1

v′′2

v1

v2

Level
Shifter

(vi + 2.5V)

from
network

network
v′1
v′2

to (pin A0)

(pin A4)

Figure 6: Hardware details of the physical plant node.

physical plants can be easily integrated in the future. We consider
DICs that have the following discrete time dynamics [18].

𝑥𝑝 r𝑡 ` 1s “

«

1 0
´1 1

ff

𝑥𝑝 r𝑡s `

«

´1
0.5

ff

𝑢r𝑡s (8)

𝑦r𝑡s “

”

0 1
ı

𝑥𝑝 r𝑡s (9)

In a DIC, the control goal is to maintain a given reference voltage
at the second amplifier’s output by controlling the first amplifier’s
input voltage. The plant node consists of a DIC, one Digital to
Analog Converter (DAC), two voltage level shifters, one voltage
divider, and an ATmega328P-based Arduino UNO microcontroller
running at 16MHz. The UNO board is interfaced with a nRF24L01+
radio-frequency (RF) transceiver device [32], a Real Time Clock
(RTC) module [27], and a SD memory card. The outline of the plant
node is delineated in Fig. 6. During the sensing stage, plant state
measurements are sent to the microcontroller through the voltage
divider and lower level shifter. In case of actuation, on receiving the
data from the network, the microcontroller sends it to the physical
plant through the DAC and the upper level shifter.
Control and Intermediate Node: The control node (i.e., the net-
work manager) is responsible for performing the operation of the
controller and predictor. This node consists of the same hardware
setup as used for the plant node. Additionally, it is connected to a
host PC having high computation capabilities. We use a MATLAB-
Simulink based interface for connecting the Arduino microcon-
troller to the host PC. For controlling the plant, the microcontroller
receives the plant output, sends it to the host PC that computes the
control inputs using a standard LQR control design technique [4],
gets back the control inputs from the PC, and then transmits them.

The predictor model in the network manager works based on
the delays as reported by intermediate nodes in the forward path
of the corresponding control loop. On receiving the plant state
measurements and forward path network delays through the mi-
crocontroller + RF + RTC interface, the predictor estimates the
delay in the return path and plant states accordingly. Thus, two
sets of control input matrices are selected for both plants based on
estimated states and delays.

Each intermediate node also consists of a microcontroller + RF +
RTC interface and a SD memory card. Based on the given routing
paths of the control loops, each intermediate node is configured us-
ing a customly generated firmware. The firmware runs periodically
and performs all transmission-reception cycles in which the node
is a participant.

Wireless Network: On top of the Enhanced ShockBurst proto-
col [31], our bare-bone wireless network is built operating in the
2.4GHz ISM band. The modulation scheme is Gaussian frequency

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Ghosh et al.

shift keying (GSFK) at a data rate of 250 kbit{s. Each node is tuned
to use a transmit power of ´12 dBm, which is sufficient to cover
the distances needed in our experiments. For avoiding collisions,
all communication in the forward and return path is carried out
on distinct wireless channels assigned to each of the two control
loops. The network topology depicted in Figure 3 is realized using
static routing. The basic network operation is as follows.

(1) When being idle, every node listens for incoming packets
on its respective channel during all times.

(2) Whenever there is new data to transmit, e.g., at plant 𝑃1, the
data is transmitted immediately to the next node, e.g., 𝐼1.

(3) After such a transmission, the sending device switches to
the receive mode to wait for an acknowledge packet. If the
acknowledge has arrived, the described procedure repeats
and the device listens for further incoming packets again.
Otherwise, if no acknowledge packet was received within a
time-window of 4ms, the first re-transmission is initiated.
Next, the radio listens for an acknowledge for another 500 µs,
after which the next re-transmission attempt is started. Up
to 8 transmission attempts are possible, which are spaced by
500 µs, each.

(4) Upon a successful reception, the receiving device will imme-
diately transmit the data to the next intermediate hop in the
same manner.

When an intermediate node is part of two control loops, it re-
lays data from a certain node to another one following its routing
scheme. The radio alternates every 8ms between both channels for
listening. Upon a reception, it will first serve the corresponding con-
trol loop before listening to the channel assigned to the other control
loop. For example, in Figure 3, the shared node 𝐼2 may implement
the following routing sequence. x𝐼5 Ñ 𝐼2, 𝑓1y, x𝐼2 Ñ 𝑃1, 𝑓1y, x𝑃2 Ñ

𝐼2, 𝑓2y, x𝐼2 Ñ 𝐼6, 𝑓2y. This means that 𝐼2 is supposed to receive a
packet from node 𝐼5 and transmit to 𝑃1 using frequency 𝑓1 in one
control loop and only after that it can perform the next transmis-
sions corresponding to another control loop using frequency 𝑓2.
This may lead to an additional delay, e.g., when considering that
the message from 𝐼5 is delayed while the one from 𝑃2 is ready to be
transmitted. If a node is not ready for reception on a certain channel,
the re-transmission mechanism that has already been described is
used for realizing a later successful reception.

When a receiving node listens on a different channel w.r.t. a
potential sender, the sender will start re-transmitting its packet
after 4ms, and make its additional re-transmission attempts within
the next 4ms. Therefore, once the receiver changes its channel
within this time-window, it will successfully receive such a re-
transmission.

6.2 Experimental Results
To illustrate the advantages of our proposed proactive feedback
strategy in preserving the high control performance from the design
to the implementation, we conduct the following experiments in
our MCN testbed.

(1) We compare our proposed strategy with standard control
schemes.

(2) We evaluate the performance of our feedback strategy with
variations in the uncertainties of the plant model.

(3) We evaluate the performance of our feedback strategy with
variations in the packet-drop rate of the network.

We consider settling time as the performance metric for the experi-
ments, though any other performance metric can also be used (e.g.,
overshoot). Both DICs (see Sec. 6.1) have a reference value of 3𝑉
(including offset). We analyze our MCN testbed to calculate the
delay variation in a single transmission between a pair of nodes.
We find that the maximum delay in transmitting and receiving a
packet over the network and the maximum delay in processing a
packet on a node is 3457 µs and 8726 µs, respectively, which leads
to an end-to-end delay range of [9ms, 50ms] for both the control
loops. The routing paths of both control loops are highlighted in
Figure 3 (in red and blue respectively). We set the the sampling
period for the DICs as ℎ1 “ ℎ2 “10ms. For these plants, we design
LQR controllers for a sampling period of 10ms. We conduct each
experiment for a time duration of 15 s, in each of which we first
set the voltage output to 0V for both the DICs. The control objec-
tive is to move the output voltage back to the 3V reference value.
Plant output waveforms and CSV files are obtained from a RIGOL
DS1102E digital oscilloscope. We use the MATLAB(x64) version
R2019a for control theoretic and other calculations.

6.2.1 Comparison against standard schemes: The efficacy
of the proposed proactive feedback scheme can be evaluated when
we compare our proposed approach with three state-of-the-art
control design schemes, which are as follows.

WC: In the “worst-case delay based control scheme [7]”, the
sampling periods of both DICs are chosen as 50ms. Due to a higher
sampling period, this approach suffers from a lower performance.

FSFD: In the “fixed-sampling and fixed-delay based control
scheme [45]”, the sampling periods of both DICs are chosen as
10ms. However, we fix the sensing-to-actuation delay to 50ms.
That is, when the input reaches the actuator with a lower delay, it
waits until the delay is equal to 50ms for the actuation.

FSVD: In the “fixed-sampling and variable-delay based control
scheme [5, 30]”, the sampling periods of both DICs are chosen as
10ms. But the sensing-to-actuation delay varies with time, leading
to aperiodic actuation sequences.

Note that in our proposed proactive feedback strategy, the ef-
fect of this variable delay in actuation is mitigated by allowing the
actuator to apply the most appropriate control input from its cur-
rently available control input vector. Figure 7 compares the output
responses of the plant 1 using our proposed strategy and these
aforementioned control techniques. As it is evident in Figure 7,
the system settles quickly (i.e., within 3.689 s) when our proposed
approach is used, as compared to other state-of-the-art control
strategies. In particular, our proposed approach achieves approxi-
mate improvements of 63 %, 26 %, and 49 % compared to WC, FSFD,
and FSVD respectively.

6.2.2 Evaluation under model uncertainties: In order to
demonstrate that the proposed strategy preserves the higher con-
trol performance reasonably well even under model uncertainties,
we perform the following experiment. We can capture model un-
certainties by adding an error margin to the system matrices 𝐴 and
𝐵 (cf. Eq. (1)), i.e., we obtain the modified matrices, �̃� “ 𝐴 ` 𝛾1𝐴
and �̃� “ 𝐵 ` 𝛾2𝐵, for some scalars 𝛾1, 𝛾2 ą 0. Figure 8 depicts

Proactive Feedback for Networked CPS SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

0 5 10 15

Time (s)

-2

0

2

4

6

V
o
lt
a
g
e
 (

V
)

Proposed (Settling time = 3.689 s)

WC (Settling time = 9.971 s)

FSFD (Settling time = 4.995 s)

FSVD (Settling time = 7.277 s)

Figure 7: Response of plant 1 under different schemes.

0 5 10 15

Time (s)

-2

0

2

4

6

V
o
lt
a
g
e
 (

V
)

0% uncertainty (Settling time = 3.689 s)

10% uncertainty (Settling time = 3.754 s)

20% uncertainty (Settling time = 4.211 s)

30% uncertainty (Settling time = 6.375 s)

Figure 8: Impact of model uncertainties on plant 1.

the response of plant 1 and also reports the settling time when
we consider 𝛾1 to be 0%, 10%, 20%, and 30% respectively. For the
cases shown in the figure, no uncertainty is considered in the input
matrix 𝐵 of plant 1, i.e., 𝛾2 “ 0. In Figure 8, we see that even with
30% uncertainty, our proposed strategy provides a settling time of
6.375 s. This is better than even the settling times obtained under
no model uncertainties using WC (9.971 s, cf. Figure 7) and FSVD
(7.277 s, cf. Figure 7) respectively. Note that in the presence of un-
certainties, the performance of each of the three state-of-the-art
techniques, WC, FSVD, and FSFD, will also degrade and, hence, will
be even lower compared to our proposed technique.

6.2.3 Evaluation under packet drops: To establish the effec-
tiveness of the proposed approach further, we consider a scenario of
external non-idealities by modeling packet drops. We inject drops
during the transmissions between 𝑃1 and 𝐼1 (cf. Figure 3), which are
in the routing path of plant 1. Drops are injected at the rate of 0%,
10%, 30%, and 50%. The drop injection is implemented by adding
suitable monitors in the Arduino code that probabilistically create
transmission failures. All other transmission/reception events at
other nodes are assumed to be ideal. Figure 8 shows the responses
of plant 1 with different drop rates. Note that with the gradual
increment of the packet drop rate from 10% to 30%, the settling time
for plant 1 increases from 3.831 s to 13.328 s, exhibiting a gradual
performance degradation, whereas the system becomes unstable
for a 50% packet drop rate.

0 5 10 15

Time (s)

-1

0

2

4

5

V
o
lt
a
g

e
 (

V
)

0% Packet Drop (Settling time = 3.689 s)

10% Packet Drop (Settling time = 3.831 s)

20% Packet Drop (Settling time = 3.976 s)

30% Packet Drop (Settling time = 13.328 s)

50% Packet Drop (Does not settle)

Figure 9: Impact of packet drops on plant 1.

6.2.4 Results for Plant 2: We perform the same three experi-
ments for plant 2, and observe a similar performance as we have
shown earlier for plant 1. In this case, drops are injected during
the transmissions between 𝐼3 and 𝐼7 (see Figure 3) in the routing
path of plant 2. The comparisons of settling times for the aforemen-
tioned experiments are reported in Table 1. We get a settling time of
3.7 s with our proposed proactive scheme, which outperforms the
settling times obtained for the other three state-of-the art control
techniques. As reported earlier for plant 1, we also get satisfactory
results with our scheme in case of plant 2 in the presence of model
uncertainties and packet drops. In the case of 50% packet drops,
plant 2 becomes unstable.

7 CONCLUSIONS AND FUTUREWORK
This paper presents a framework using which high-performance
controllers can be implemented over wireless multi-hop networks,
mitigating the effect of large and variable delays. According to
the proposed strategy, the control algorithm proactively computes
future control inputs based on the current state measurement for
different possible delay values. These inputs are packed in a data-
packet and sent to the actuator. The actuator at the plant side
sees which delay was experienced and uses the most appropriate
control input from the vector to actuate.We also present a hardware-
software co-designed testbed for evaluating the proposed technique.
The testbed can specify and implement different wireless CPS with
negligible effort. Our proposed approach relies on transmitting
multiple control inputs in each packet. Clearly, this increases the

Table 1: Settling Time (in s) of Plant 2

Performance of our proposed feedback scheme

3.7

Performance
against other
techniques

Performance
against model-
uncertainties

Performance
against packet

drops

WC FSFD FSVD 10% 20% 30% 10% 20% 30%

10.4 4.8 7.5 3.9 4.4 7.1 3.8 4.2 12.7

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Ghosh et al.

channel utilization, such that packets collide more frequently when
different devices are in range. An extension of this work will be
analyzing the network and then choosing the appropriate sampling
period for the controller based on the network load. In future work,
the optimal trade-off between the number of control inputs per
packet for maximizing the control performance and minimizing
the collision probability needs to be studied. Another interesting
future work could be the realization of real industrial systems in
the direction of the proposed approach, based on the transmission
capabilities of emerging wireless protocols, e.g., 5G.

ACKNOWLEDGMENT
This work was supported by the DFG Project #387044055 and the
NSF Award #2038960.

REFERENCES
[1] G. Alldredge, M. S. Branicky, and V. Liberatore. 2008. Play-back buffers in net-

worked control systems: Evaluation and design. In American Control Conference
(ACC).

[2] R. Alur, A. D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss. 2009.
Modeling and analysis of multi-hop control networks. In Real-Time and Embedded
Technology and Applications Symposium (RTAS).

[3] R. Alur, A. D’Innocenzo, K. H. Johansson, G. J. Pappas, and G. Weiss. 2011.
Compositional modeling and analysis of multi-hop control networks. IEEE Trans.
Automat. Control 56, 10 (2011), 2345–2357.

[4] K. J Åström and B. Wittenmark. 1997. Computer-controlled systems. Prentice-Hall,
Inc.

[5] J. Bai, E. P. Eyisi, F. Qiu, Y. Xue, and X. D. Koutsoukos. 2012. Optimal cross-
layer design of sampling rate adaptation and network scheduling for wireless
networked control systems. In International Conference on Cyber-Physical Systems
(ICCPS).

[6] M. Balszun, D. Roy, L. Zhang, W. Chang, and S. Chakraborty. 2017. Effectively
utilizing elastic resources in networked control systems. In Embedded and Real-
Time Computing Systems and Applications (RTCSA).

[7] D. Baumann, F. Mager, R. Jacob, L. Thiele, M. Zimmerling, and S. Trimpe. 2019.
Fast feedback control over multi-hop wireless networks with mode changes and
stability guarantees. ACM Transaction on Cyber-Physical Systems) 4, 2, Article 18
(2019), 32 pages.

[8] E. Bini and A. Cervin. 2008. Delay-aware period assignment in control systems.
In Real-Time Systems Symposium (RTSS).

[9] W. Chang, L. Zhang, D. Roy, and S. Chakraborty. 2017. Control/architecture
codesign for cyber-physical systems. Springer Netherlands.

[10] C. Chen. 1994. System and signal analysis. The Oxford Series in Electrical and
Computer Engineering,Oxford University Press, UK.

[11] LAN/MAN Standards Committee et al. 2003. Part 11: Wireless LAN medium
access control (MAC) and physical layer (PHY) specifications. IEEE-SA Standards
Board (2003).

[12] A. D’Innocenzo, M. D. Di Benedetto, and E. Serra. 2013. Fault tolerant control of
multi-hop control networks. IEEE Trans. Automat. Control 58, 6 (2013), 1377–1389.

[13] H. Gao and T. Chen. 2007. New results on stability of discrete-time systems with
time-varying state delay. IEEE Trans. Automat. Control 52, 2 (2007), 328–334.

[14] P. Garcia, P. Castillo, R. Lozano, and P. Albertos. 2006. Robustness with respect
to delay uncertainties of a predictor-observer based discrete-time controller. In
Conference on Decision and Control (CDC).

[15] P. Garcia, A. Gonzalez, P. Castillo, R. Lozano, and P. Albertos. 2012. Robustness of
a discrete-time predictor-based controller for time-varying measurement delay.
Control Engineering Practice 20, 2 (2012), 102 – 110.

[16] S. Ghosh, S. Dey, and P. Dasgupta. 2018. Co-synthesis of loop execution patterns
for multi-hop control networks. IEEE Embedded System Letters (LES) 10, 4 (2018),
111–114.

[17] S. Ghosh, S. Dey, and P. Dasgupta. 2020. Pattern guided integrated scheduling and
routing in multi-hop control networks. ACM Transaction on Embedded Computing
Systems 19, 2, Article 9 (2020), 28 pages.

[18] S. Ghosh, S. Dutta, S. Dey, and P. Dasgupta. 2017. A structured methodology for
pattern based adaptive scheduling in embedded control. ACM Transactions on
Embedded Computing Systems 16, 5s (2017), 189:1–189:22.

[19] S. Ghosh, A. Mondal, P. H. Kindt, P. Sharma, Y. Agarwal, S. Dey, A. K. Deb, and S.
Chakraborty. 2020. A programmable open architecture testbed for CPS education.
IEEE Design & Test 37, 6 (2020), 31–38.

[20] D. Goswami, R. Schneider, and S. Chakraborty. 2011. Co-design of cyber-physical
systems via controllers with flexible delay constraints. In Asia and South Pacific

Design Automation Conference (ASP-DAC).
[21] D. Goswami, R. Schneider, and S. Chakraborty. 2011. Re-engineering cyber-

physical control applications for hybrid communication protocols. In Design,
Automation & Test in Europe (DATE).

[22] D. Goswami, R. Schneider, and S. Chakraborty. 2014. Relaxing signal delay
constraints in distributed embedded controllers. IEEE Transactions on Control
Systems Technology 22, 6 (2014), 2337–2345.

[23] R. Jacob, L. Zhang, M. Zimmerling, J. Beutel, S. Chakraborty, and L. Thiele. 2020.
The time-triggered wireless architecture. In Euromicro Conference on Real-Time
Systems (ECRTS).

[24] R. Jacob, M. Zimmerling, P. Huang, J. Beutel, and L. Thiele. 2016. End-to-end
real-time guarantees in wireless cyber-physical systems. In Real-Time Systems
Symposium (RTSS).

[25] X. Jin, A. Saifullah, C. Lu, and P. Zeng. 2019. Real-time scheduling for event-
triggered and time-triggered flows in industrial wireless sensor-actuator net-
works. In International Conference on Computer Communications (INFOCOM).

[26] A. N. Kim, F. Hekland, S. Petersen, and P. Doyle. 2008. When HART goes wireless:
Understanding and implementing the WirelessHART standard. In IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA).

[27] lastinuteengineers.com. 2020. Interface DS3231: Precision RTC module with
Arduino. https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial. (2020).

[28] Y. Ma, D. Gunatilaka, B. Li, H. Gonzalez, and C. Lu. 2018. Holistic Cyber-Physical
Management for Dependable Wireless Control Systems. ACM Transactions on
Cyber-Physical Systems 3, 1 (2018), 3:1–3:25.

[29] F. Mager, D. Baumann, R. Jacob, L. Thiele, S. Trimpe, and M. Zimmerling. 2019.
Feedback control goes wireless: Guaranteed stability over low-power multi-hop
networks. In International Conference on Cyber-Physical Systems (ICCPS).

[30] R. Mangharam and M. Pajic. 2013. Distributed control for cyber-physical systems.
Journal of the Indian Institute of Science 93, 3 (2013), 353–387.

[31] Nordic Semiconductor. 2019. nRF Connect SDK. https://developer.nordicsemi.
com/nRF_Connect_SDK/doc/1.0.0/nrf/ug_esb.html. (2019). [Online; accessed
11-Nov-2019].

[32] Nordic Semiconductor. 2019. nRF24 Series. https://www.nordicsemi.com/
Products/Low-power-short-range-wireless/nRF24-series. (2019). [Online; ac-
cessed 11-Nov-2019].

[33] D. Roy, W. Chang, S. K. Mitter, and S. Chakraborty. 2019. Tighter dimensioning
of heterogeneous multi-resource autonomous CPS with control performance
guarantees. In Design Automation Conference (DAC).

[34] D. Roy, S. Ghosh, Q. Zhu, M. Caccamo, and S. Chakraborty. 2020. GoodSpread:
Criticality-aware static scheduling of CPS with multi-QoS resources. In Real-Time
Systems Symposium (RTSS).

[35] D. Roy, C. Hobbs, J. Anderson, M. Caccamo, and S. Chakraborty. 2021. Timing
debugging for cyber-physical systems. In Design, Automation and Test in Europe
(DATE).

[36] D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty. 2016. Multi-
objective co-optimization of FlexRay-based distributed control systems. In Real-
Time and Embedded Technology and Applications Symposium (RTAS).

[37] D. Roy, L. Zhang, W. Chang, S. K. Mitter, and S. Chakraborty. 2018. Semantics-
preserving cosynthesis of cyber-physical systems. Proc. IEEE 106, 1 (2018), 171–
200.

[38] A. Saifullah, C. Wu, P. B. Tiwari, Y. Xu, Y. Fu, C. Lu, and Y. Chen. 2014. Near op-
timal rate selection for wireless control systems. ACM Transactions on Embedded
Computing Systems 13, 4s (2014), 128:1–128:25.

[39] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. 2011. End-to-end communication delay
analysis in wirelesshart networks. In Real-Time and Embedded Technology and
Applications Symposium (RTAS).

[40] R. Schneider, D. Goswami, S. Zafar, S. Chakraborty, and M. Lukasiewycz. 2011.
Constraint-driven synthesis and tool-support for FlexRay-based automotive
control systems. In International Conference on Hardware/Software Codesign and
System Synthesis (CODES/ISSS).

[41] L. Shi, L. Xie, and R. M. Murray. 2009. Kalman filtering over a packet-delaying
network: A probabilistic approach. Automatica 45, 9 (2009), 2134 – 2140.

[42] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry.
2004. Kalman filtering with intermittent observations. IEEE Transactions on
Automatic Control (TAC) 49, 9 (2004), 1453–1464.

[43] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt. 2008. Wire-
lessHART: Applying wireless technology in real-time industrial process control.
In Real-Time and Embedded Technology and Applications Symposium (RTAS).

[44] H. Voit, A. Annaswamy, R. Schneider, D. Goswami, and S. Chakraborty. 2012.
Adaptive switching controllers for systems with hybrid communication protocols.
In American Control Conference (ACC).

[45] W. Wang, D. Mosse, D. Cole, and J. G. Pickel. 2018. Dynamic wireless network
reconfiguration for control system applied to a nuclear reactor case study. In
International Conference on Real-Time Networks and Systems (RTNS).

[46] G. Weiss, A. D’Innocenzo, R. Alur, K. H. Johansson, and G. J. Pappas. 2009. Robust
stability of multi-hop control networks. In Conference on Decision and Control
(CDC) held jointly with Chinese Control Conference (CCC).

https://lastminuteengineers.com/ds3231-rtc-arduino-tutorial
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.0.0/nrf/ug_esb.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.0.0/nrf/ug_esb.html
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF24-series
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF24-series

	Abstract
	1 Introduction
	2 Related Works
	3 System Model
	3.1 Network Model
	3.2 Feedback Control Systems

	4 A Motivational Example
	5 Proactive Feedback Strategy
	5.1 Predictor Operation
	5.2 Controller Operation
	5.3 Actuator Operation

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusions and Future Work
	References

