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ABSTRACT
EVs suffer from long charging times and short-drive ranges, limiting
EV usage to daily short-range commuting rather than general pur-
pose use. Among the candidates for EV charging infrastructures, the
public EV charging station architecture has benefits in that it allows
an efficient investment of costly equipments, and a long-range travel
with multiple charging cycles. This paper focuses on an EC charging
station architecture comprising PV panels, an energy storage system
(ESS) and multiple fast-DC charging posts. Systematically deriving
the optimal planning, i.e., determining the optimal sizes of these
components, is a complicated problem as the EV charging station
operations and planning are intertwined. In this paper, we derive
EV charging station operation policies by formulating an average
reward Markov decision process (MDP) maximization problem to
synthesize controllers that maximize the operating income. Then,
these controllers are used to evaluate the operating income, for the
purpose of EV charging station planning. For efficient exploration
of the design space, we perform a mixed search-based technique
combining sequential quadratic programming (SQP) with a greedy
algorithm. There will be significant gain in terms of long-term oper-
ating cost when the costs of ESS and PV panels continue to reduce
in the future. Our solution framework is a helpful tool for such rea-
soning, and for identifying optimal planning and operation policies
for public EV charging stations.

CCS CONCEPTS
• Hardware → Energy generation and storage; Power conver-
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physical systems;
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Figure 1: Tesla Supercharger equipped with PV panels [2].
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1 INTRODUCTION
Recent increase in electric vehicle (EV) and hybrid electric vehicle
(HEV) ownership has lead to the growing need for easily acces-
sible public charging infrastructure supporting ultra-fast charging.
Despite the recent advances in battery technology, EVs still suffer
from long charging time, which often goes up to several hours, and
short-drive range, practically limited to 100 to 150 km for low- to
medium-priced models. Thus, most of the EV models in the market
target consumers using the vehicle for short-range commuting pur-
poses within an urban area, where EVs could be periodically charged
at fixed locations such as homes and parking lots at work places.
The lack of EV charging infrastructure and the short drive range
of EVs discourage wide adoption of EVs for general use including
long-range travels. A number of EV charging concepts differing in
physical architecture, deployment locations and financial contractual
relationships have been proposed [1], but not all concepts have been
thoroughly studied to figure out which architectures would best serve
the EV market’s demands. The vast design space of EV charging
infrastructure is yet to be explored as it is a complex problem in-
volving multiple agents in the industry ranging from EV owners, EV
manufacturers, EV charging service suppliers, to distribution grid
system operators coupled by various contractual relationships.

Examples of such charging infrastructure concepts include EVs
being charged at home as domestic appliances/specialized contracts,
charging service provider offering a location unrestricted service,
and the public charging station architecture. The public EV charging
station architecture resembles the existing gas station (or petrol
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Figure 2: Service and financial flow between players in public
EV charging station.

station) architecture in that there is a location restricted private
charging service supplier/retailer (gas station owner) operating the
charging station by re-selling the electricity (petroleum) bought from
the utility provider (oil companies). This architecture has potential
benefits in that it can provide differentiated charging services such as
fast-DC charging, which are not provided by home or public parking
lot charging posts. Also, it easily integrates with renewable energy
sources and an energy storage system (ESS), enabling EVs to run on
a cleaner energy source as well as minimizing the impact on the grid
by reducing the EV charging load. One such example architecture
is the Supercharger network shown in Fig. 1 built by Tesla Motors.
They began constructing Supercharger networks in US, Europe, and
Asia in 2012, to let Tesla customers make long-distance journeys.

The active players in such charging infrastructure and the relation-
ship among them are summarized in Fig. 2. A private EV charging
station operator buys electricity from a utility provider and re-sells
it to EV owners by providing them with a fast DC charging service.
There could be multiple EV charging station operators competing
against each other. The main incentive for the EV charging station
operator will be the financial profit. The problem of how to plan and
operate the EV charging station from the financial perspective will
be the key to its success. The EV charging owners should make ini-
tial investments on the equipments wisely and manage the installed
equipments in the most profitable way such that they can minimize
the operating cost and maximize the profit.

This paper first proposes a systematic methodology to solve the
EV charging station operation problem, and then provides an algo-
rithm to solve the EV charging station planning under various cost
projections of battery and PV panel.

EV charging station operation problem involves determining
when and how to charge or discharge the ESS, use the grid electric-
ity, PV panel-generated electricity for charging the EVs. We model
the EV charging station as a Markov decision process (MDP) and
employ stochastic dynamic programming to synthesize an optimal
controller using the relative value iteration method [3]. The opera-
tion strategy has a significant impact on the operating income, the
objective of the problem, as we will show in this paper.

EV charging station planning involves determining the design
parameters, i.e., ESS size, PV array size, number of charging posts,
etc., which have a huge impact on the long-term operating income
of an EV charging station. The objective is the same as the operation
problem, i.e., the operating income, but it takes different control
parameters related to initial investments, or planning, while the
operation problem assumes fixed installations of equipments and
rather focuses on how to make use of them. However, the time
required to synthesize a controller, which could take up to tens of
minutes, prohibits efficient search of the optimal solution for the
planning problem. Given that the controller has to be synthesized

many times, the search for the optimal design could take excessive
amount of time. We adopt several measures to efficiently explore the
design space. A mixed search-based technique combining sequential
quadratic programming (SQP) and a greedy algorithm is proposed
to efficiently explore the design space. In addition, we propose to
use approximate controllers, not the optimal ones, in order to avoid
synthesizing the optimal controller for each set of design parameters.
With this methodology, solutions for both problems are obtained in
a tractable fashion.

The contributions of this paper are summarized as follows.
• We, for the first time, perform a financial analysis on gas

station-like EV charging station architecture with an ESS and
a PV array.

• We formulate the EV charging station operation problem
as an average reward MDP maximization problem consider-
ing the stochastic nature of the EV arrival pattern and solar
irradiance.

• We propose EV charging station planning problem based
on mixed-search technique combining SQP and the greedy
algorithm that determines the optimal sizes of the comprising
components.

• Based on EV charging station planning results, we perform
profitability analysis of comprising components under various
future cost projections.

We also show that the resulting design will be sustainable under
current cost projections in that the EV charging station operators
would not have to reduce their installation capacity later on due
to burden of depreciation costs, and instead maintain an optimal
infrastructure at all points in time under the prevailing components
costs. To the best of our knowledge, no other work has performed
systematic optimization-based analysis focused on the public EV
charging station architecture from a financial perspective.

2 RELATED WORK
There has been a lot of advances in the design of the hardware/software
architectures of EVs over the past one decade [4, 5]. Since the bat-
tery subsystem is one of the most crucial components in an EV, and
also currently a major cost and performance bottleneck, there have
been numerous studies on various aspects of battery pack design
for EVs and stationary electrical energy storage systems [6, 7]. In
particular, new battery architectures [8], equipping battery cells with
sensing and computing power for better management [9], and the
use of design automation techniques for battery design [10] has been
studied. While EV charging infrastructure and business models have
drawn relatively less attention, nevertheless a variety of EV charging
concepts exist that differ in the accessibility of the charging posts
to the public, the agents involved in the EV charging contract and
the physical location of the charging points [1]. Most existing works
have focused on distributed EV charging at homes or elsewhere
on the grid. The objectives of the distributed EV charging schemes
could be minimizing power losses, improving voltage profile of the
grid, minimizing load variance, maximizing supportable EV pene-
tration level, and so on. Many of them rely on centralized control
of EV charging profiles to achieve these objectives [11–15]. Some
works tackle the infrastructure needed for centralized control and
propose decentralized EV charging schemes. An iterative algorithm
to determine EV charging profile relying on price profile broadcast
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Figure 3: EV public charging station architecture.

by an utility company decentralizes the control to each EV [16].
Existence of Nash equilibrium has been proved on a decentralized
EV charging system weakly coupled with electricity price [17].

Integration of renewable energy to the EV charging infrastructure
is another important issue as the environmental impact of EVs is
closely correlated with the source of grid electricity. In this regard,
co-optimization of EV charging profile and renewable energy gener-
ation could greatly improve grid load balancing [18]. A recent work
performed life cycle cost analysis of EV battery swap stations and its
impact on local distribution networks[19]. EV batteries may also be
viewed as a grid energy storage used to stabilize fluctuating power
generation of renewable energy sources by utilizing V2G (vehicle to
grid) capabilities [20, 21].

While all of these works focused on grid-scale control and integra-
tion of EV charging and renewable energy sources, few works have
explored the problem at smaller scale systems such as public EV
charging stations. PowerMatcher uses a combination of agent-based
optimization and combinatorial optimization to derive a charging
strategy for a fleet of EVs to match the power generation and demand
in real-time [22]. Particle swarm optimization is used to charge and
discharge a fleet of EVs in a parking garage to maximize profit by
exploiting the grid electricity price difference [23]. A profitability
analysis for business within a microgrid has been performed [24].
These studies have similar goals to this paper, but our work analyzes
profitability based on a systematic optimization method considering
the stochastic nature of the problem while previous attempts used
rather simple heuristic algorithms. In summary, while there has been
some research on the design and management of energy storage
systems with renewable energy sources, no work has systematically
investigated the design and management of public electric vehicle
charging stations.

3 OVERALL DESIGN FLOW
In this section, we detail the EV charging station planning and
operation problem, and provide an overview of the proposed design
flow. We consider an EV charging station, which has a PV array and
ESS installed as shown in Fig. 3. An optimized controller must be
assumed in order to evaluate a design. For this reason, we investigate
the EV charging station operation problem first. The objective of the
EV charging station operation problem is the net income per day.

𝑛𝑒𝑡𝐼𝑛𝑐𝑜𝑚𝑒 =

𝑁∑
𝑛=1

(
𝐸𝑒𝑣 [𝑛] ·𝐶𝑜𝑠𝑡𝑒𝑣 − 𝐸𝑔𝑟𝑖𝑑 [𝑛] ·𝐶𝑜𝑠𝑡𝑔𝑟𝑖𝑑 [𝑛]

)
, (1)
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Figure 4: EV charging station controller synthesis and evalua-
tion flow.

where 𝑁 is the number of time slots in a day, 𝐸𝑒𝑣 [𝑛] is the sum of
EV charging energy, 𝐸𝑔𝑟𝑖𝑑 [𝑛] is the electric energy drawn from the
grid, 𝐶𝑜𝑠𝑡𝑒𝑣 is the unit tariff an EV owner pays, and 𝐶𝑜𝑠𝑡𝑔𝑟𝑖𝑑 [𝑛] is
the time-varying grid electricity price, and 𝑛 is the index for a time
slot, respectively. The synthesized controller, which maximizes (1),
determines the energy put into ESS, 𝐸𝑒𝑠𝑠 , over time. The energy flow
is described by the following equation.

𝐸𝑔𝑟𝑖𝑑 [𝑛] = 𝐸𝑒𝑣 [𝑛] + 𝐸𝑒𝑠𝑠 [𝑛] − 𝐸𝑝𝑣 [𝑛], (2)

where 𝐸𝑒𝑠𝑠 [𝑛], and 𝐸𝑝𝑣 [𝑛] are energy fed into ESS, and generated
by PV at time slot 𝑛, respectively. Unlike all the other energy values,
𝐸𝑒𝑠𝑠 may have minus value, which means ESS is being discharged.
𝐸𝑔𝑟𝑖𝑑 is always positive as we do not consider a scenario where
electricity is sold back to the grid.

The overall controller synthesis flow for the EV charging sta-
tion operation problem is shown in Fig. 4. System specifications are
given as input to the solution framework. Specifications include solar
irradiance profile of the geographical location, average number of
EV arrival according to the time of day, ESS size, PV panel size, and
the number of fast DC chargers. From the system specifications, we
construct stochastic models of solar irradiance and EV arrivals. EV
arrival and charging are modeled as M/M/c/K birth-death Markov
process. A probabilistic cloud coverage model is built based on the
statistical data from the past. Using the stochastic models, the whole
EV charging station is modeled as a Markov decision process. Tran-
sition probability matrix (TRM) and transition reward matrix (TRM)
specify the probability and reward (instantaneous financial profit) of
a state transition when an action (decision to charge/discharge ESS)
is taken by the controller. The matrices serve as inputs to the average
reward optimization process using the relative value iteration method.
The algorithm synthesizes a controller that maximizes the long-term
average reward, i.e., the net profit. Finally, the synthesized controller
is used to control the charging station on a simulator implemented
on MATLAB.

The EV charging station planning is done on top of the results
of the EV charging station operation problem. However, the time
required to go through all the process in Fig. 4, i.e., the operation
problem, takes up to tens of minutes, which prohibits an exhaustive
search of design space in a continuous domain of ESS and PV sizes
for the planning problem. Therefore, we adopt two measures to
speed up the design space exploration. First, we perform a mixed
search-based optimization technique, which combines the SQP and
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Figure 5: Distribution of traffic over time of day [25].

the greedy algorithm. Second, we do not use the exact controller for
each design parameter, but use an approximate controller for similar
designs, which reduces the number of times the operations problem
is solved. We elaborate each step in the process in the subsequent
sections.

4 CHARGING STATION MODELING
4.1 EV Charging Demand Model
In this section, we stochastically model the EV arrival rate and
charging service rate. The incoming EVs are served by a pre-defined
number of fast DC charging posts that charge the EV with 2C to
3C rate, which means the EV charging will finish within 20 to 30
minutes. The number of EVs in a charging station can be modeled as
an M/M/c/K birth-death Markov process. EV arrivals are modeled as
an inhomogeneous Poisson process with the rate 𝜆EV, which varies
with the time of a day. The rate of EV arrival usually peaks in the
morning and in the evening as shown in Fig. 5. EV charging service
time is modeled as a homogeneous Poisson process with the rate
𝜇EV. The total number of charging posts at a charging station is
𝑐posts. When the number of EVs at the charging station is 𝑖, we say
that the process is in state 𝑖. 𝐾EV is the maximum number of EVs
allowed in the charging station, and thus 𝑖 ∈ {0, 1, ..., 𝐾EV}.

To derive the state transition probability matrix, we first build the
(𝐾EV + 1) × (𝐾EV + 1) transition rate matrix 𝑄 as

𝑄 =

©«
−𝜆EV 𝜆EV 0 · · ·
𝜇EV −(𝜇EV + 𝜆EV) 𝜆EV · · ·
0 2𝜇EV −(2𝜇EV + 𝜆EV) · · ·
.
.
.

.

.

.
.
.
.

. . .

ª®®®®¬
. (3)

where the row index denotes the current state and the column index
denotes the next state. To be more precise,

𝑄 (𝑖, 𝑖) = −(𝑖𝜇EV − +𝜆EV),∀0 ≤ 𝑖 ≤ 𝑐posts . (4)

𝑄 (𝑖, 𝑖 − 1) = 𝑖𝜇EV,∀1 ≤ 𝑖 ≤ 𝑐posts . (5)

𝑄 (𝑖, 𝑖 + 1) = 𝜆EV,∀0 ≤ 𝑖 ≤ 𝐾EV − 1. (6)

When the number of EVs at the charging station exceeds the number
of posts, i.e., 𝑖 > 𝑐posts, extra EVs must idly wait without getting
charged. Therefore, the transition rate from a state 𝑖 to 𝑖 −1 is capped
at 𝑐posts𝜇EV and we have
∀𝑐posts < 𝑖 ≤ 𝐾EV,

𝑄 (𝑖, 𝑖 − 1) = 𝑐posts · 𝜇EV, 𝑄 (𝑖, 𝑖) = −
(
𝑐posts · 𝜇EV + 𝜆EV

)
. (7)

where 𝑄 (𝑖, 𝑗) represents the element on row 𝑖 and column 𝑗 of the
matrix. The above equations imply that the arrival rate is always
𝜆𝐸𝑉 unless the systems is full, and the service rate is 𝜇𝐸𝑉 times the
number of vehicle being charged. The state transition probability

matrix can be calculated by taking a matrix exponential of 𝑄 as
follows.

𝑃𝜆EV (𝑡) = 𝑒
𝑄𝑡 . (8)

The element 𝑃 (𝑖, 𝑗) describes the probability that the process
starting in the state 𝑖 is in the state 𝑗 after the period of time 𝑡 . As we
are building a time slot-based algorithm, the resulting state transition
matrix 𝑞𝜆EV is given by

𝑞𝜆EV = 𝑒𝑄𝜏 , (9)

where 𝜏 is the length of the unit time slot. The final outcome is a
three-dimensional (𝐾EV + 1) × (𝐾EV + 1) × ΛEV probability matrix,
where ΛEV is the number of 𝜆EV values within a day.

4.2 Solar Irradiance Model
Solar Irradiance on Horizontal Surface Model: First, the global
solar irradiation 𝐺 at a certain time and geographic location on the
Earth is calculated by (10) [26].

𝐺 =

[
𝑎0 (𝑁 ) + 𝑎1 (𝑁 ) sin𝜓 + 𝑎3 (𝑁 ) sin3𝜓 − 𝐿(𝑁 )

𝑎(𝑁 )

]
, (10)

where 𝑁 is the cloud cover, 𝑎0, 𝑎1, 𝑎3, 𝑎, 𝐿 are empirical parameters
depending on cloud cover, and𝜓 is the solar elevation angle, respec-
tively. Actual values of the parameters we used are taken from [27]
and [26], which are fitted using empirical data to describe the rela-
tionship between the global solar radiation and the cloud coverage.
Solar elevation angle𝜓 is calculated as follows.

sin𝜓 = sin𝜙 sin𝛿𝑠 − cos𝜙 cos𝛿𝑠 cos
[
2𝜋𝑡UTC
𝑡𝑑

− 𝜆𝑒
]
, (11)

where 𝜙 and 𝜆𝑒 being the latitude and longitude (here 48.1364◦ and
11.5508◦), 𝑡UTC the current coordinated universal time (h), and 𝑡𝑑
the hours in a day (h). The vector of the solar declination angles 𝛿𝑠
accounting for seasonal effects is calculated by

𝛿𝑠 = 𝛷𝑟 cos
[
2𝜋 (𝑑 − 𝑑𝑟 )

𝑑𝑦

]
, (12)

where𝛷𝑟 = 0.409 rad is the tilt of the earth axis, 𝑑 is vector of the
day of the year, 𝑑𝑟 is the day of summer solstice and 𝑑𝑦 the total
number of days in a year.

Second, we derive the transition probability matrix between cloud
coverage states based on [27]. The cloud coverage states are dis-
cretized into nine levels where level 0 denotes no cloud and 8 denotes
full cloud coverage. We use data sets provided by The National Me-
teorological Service of Germany which provides cloud coverage
in Munich for the years 1979 to 2012 [28]. Using this data, the
transition matrix 𝐴 in % is calculated:

𝐴 =



78.6 10.4 3.8 2.3 1.4 0.8 0.8 1.2 0.6
18.0 55.3 14.1 5.4 2.1 1.7 1.2 1.6 0.6
7.9 20.1 36.8 18.0 6.6 3.6 3.3 2.9 0.9
4.0 7.2 18.3 34.1 16.2 8.7 5.5 4.7 1.3
2.4 3.1 7.8 18.7 28.8 17.8 11.3 8.1 1.8
1.5 1.7 3.3 9.0 16.2 27.8 22.9 14.6 3.0
0.9 0.9 1.9 4.0 7.8 14.1 36.8 28.7 4.9
0.6 0.5 0.8 1.5 2.3 4.5 12.7 56.3 20.8
0.2 0.1 0.2 0.4 0.5 0.8 2.1 13.8 81.9


, (13)

where the rows and columns correspond to the current and the next
cloud coverage state, respectively.
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Figure 6: Equivalent circuit model of a solar cell.
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Figure 7: Equivalent circuit model of a battery cell [30].

4.3 Components Modeling
PV panel model: A widely used model to describe the behavior of a
PV cell is shown in Fig. 6 [29]. The relationship between the output
voltage 𝑉𝑝𝑣 , output current 𝐼𝑝𝑣 and other values shown in Fig. 6
is described by a open form equation [29], which is numerically
evaluated using the Newton-Raphson method.
ESS model: A widely used model which is suitable for systematic
design optimization is a circuit-based model given in Fig. 7 [30].
The resistance and capacitance values of the equivalent circuit model
are functions of state of charge (SOC). We use the values for Li-ion
battery given in [30].
Battery Cycle Life Model: Battery aging means loss of power capa-
bility as well as the loss of available capacity. Factors that influence
calendar aging are the ambient temperature and the (average) SOC
of the battery. When the battery is in use, its degradation is addition-
ally increased by cycle aging, which depends on the SOC deviation
and the charging/discharging current. We use the crack propagation
model in [31], which uses average SOC and SOC deviation and
temperature as inputs. Summing up the damage done by each cycle,
we calculate the remaining life of the battery.

4.4 Electricity Price Model
Although the proposed methodology is not limited to particular
pricing policy, we choose one of the most widely used pricing pol-
icy, time-of-use (TOU) pricing. TOU pricing charges different rates
according to the time when electricity is used. The rates are prede-
termined and do not change frequently, so that users are aware in
advance and may voluntarily shift their usage out of the peak hours.
An example of such policy from Los Angeles Department of Water
and Power (LADWP) can be seen from [32].

5 ESS MANAGEMENT ALGORITHM
5.1 Markov Decision Process Modeling of System
We propose a charging station ESS management algorithm that
determines the SOC throughout the day and when to buy or not to
buy electricity from the grid for maximizing daily operating income.
We model the EV charging station behavior using MDP as shown
in Fig. 8. A state of the system 𝑠𝑖 ∈ 𝑆 is defined as a four tuple
(𝑠𝑜𝑐𝑥 , 𝑔𝑦, 𝑡𝑧 , 𝑤) where 𝑠𝑜𝑐𝑥 , 𝑔𝑦 and 𝑡𝑧 denote 𝑥-, 𝑦-, and 𝑧-th
discretized value of the SOC of the ESS, solar irradiance and time

t0 t1 tn

…

… … …
x1

x2

xm
…

xm+1

xm+2

x2m xnm

xn�m+1

xn�m+2

m
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X
⇥

Y
⇥

W

n = Z

Figure 8: EV charging station modeled as a Markov decision
process.

of day, and𝑤 denotes the number of cars in the charging station. In
𝑠𝑖 = (𝑠𝑜𝑐𝑥 , 𝑔𝑦, 𝑡𝑧 , 𝑤), where 𝑖 = 𝑥 ·𝑌 ·𝑍 ·𝑊 +𝑦 ·𝑍 ·𝑊 +𝑧 ·𝑊 +𝑤 , and
𝑋 , 𝑌 , 𝑍 , and𝑊 denote total number of discretized steps for SOC
of the ESS, solar irradiance, time of day, and maximum number
of allowed cars in the system. The number of states 𝐼 is equal to
𝑋 ·𝑊 · 𝑍 ·𝑊 .

The transition between 𝑠𝑖 ∈ 𝑆 and 𝑠 𝑗 ∈ 𝑆 is defined as 𝑡𝑟𝑖, 𝑗 .
An action 𝑎𝑘 corresponds to the controller output, which is 𝑘-th
discretized level of ESS charging current. A two-tuple (𝑡𝑟𝑖, 𝑗 , 𝑎𝑘 )
is associated with a probability value 𝑝𝑟𝑖, 𝑗,𝑘 and a reward value
𝑟𝑤𝑖, 𝑗,𝑘 . The value 𝑝𝑟𝑖, 𝑗,𝑘 denotes the probability of transition 𝑡𝑟𝑖, 𝑗
taking place when action 𝑎𝑘 is chosen in state 𝑠𝑖 . A TPM is the array
of 𝑝𝑟𝑖, 𝑗,𝑘 . The value 𝑟𝑤𝑖, 𝑗,𝑘 denotes the reward of transition 𝑡𝑟𝑖, 𝑗
when action 𝑎𝑘 is chosen in state 𝑠𝑖 . A TRM is the array of 𝑟𝑤𝑖, 𝑗,𝑘 .
In our problem formulation, reward 𝑟𝑤𝑖, 𝑗,𝑘 is the financial benefit,
which is equivalent to EV owners’ payment subtracted by the cost
of electricity drawn from the grid in a time slot.

5.2 Transition Probability and Reward Matrix
Construction

The following equations show how the probability and reward value
for each valid transition is computed.

𝑝𝑟𝑖, 𝑗,𝑘 = 𝑝𝑟𝑠𝑜𝑐 (𝑖, 𝑗, 𝑘)·𝑝𝑟𝑐𝑐 (𝑖, 𝑗) · 𝑝𝑟𝑡𝑖𝑚𝑒 (𝑖, 𝑗) · 𝑝𝑟𝑐𝑎𝑟 (𝑖, 𝑗, 𝑘),
𝑝𝑟𝑠𝑜𝑐 (𝑖, 𝑗, 𝑘) = 1, 𝑝𝑟𝑐𝑐 (𝑖, 𝑗) = 𝐴(𝑤𝑖 ,𝑤 𝑗 ),
𝑝𝑟𝑡𝑖𝑚𝑒 (𝑖, 𝑗) = 1, 𝑝𝑟𝑐𝑎𝑟 (𝑖, 𝑗, 𝑘) = 𝑞(𝑤𝑖 ,𝑤 𝑗 ) .

(14)

𝑟𝑤𝑖, 𝑗,𝑘 = 𝑃𝑔𝑟𝑖𝑑,𝑖, 𝑗,𝑘 ·𝐶𝑜𝑠𝑡𝑔𝑟𝑖𝑑,𝑡𝑖 ,
𝑃𝑔𝑟𝑖𝑑,𝑖, 𝑗,𝑘 = 𝑃𝑒𝑣,𝑖, 𝑗 + 𝑃𝑒𝑠𝑠,𝑖,𝑘 − 𝑃𝑝𝑣,𝑖 ,
𝑃𝑒𝑣,𝑖, 𝑗,𝑘 = 𝑤𝑖 ·𝑉𝑒𝑣,𝑛𝑜𝑚 · 𝐼𝑐ℎ𝑔 .

(15)

Variable 𝑝𝑟𝑠𝑜𝑐 (𝑖, 𝑗, 𝑘) denotes probability of ESS SOC changing
from the value corresponding to state 𝑠𝑖 to 𝑠 𝑗 when action 𝑎𝑘 is
taken. Change is SOC is deterministic, so the probability value is 1.
Variable 𝑝𝑟𝑐𝑐 (𝑖, 𝑗) denotes the probability that the cloud cover of the
geographic location would change from the value corresponding to 𝑠𝑖
to the one corresponding to 𝑠 𝑗 . It is obtained from the model given in
Section 4.2. Value 𝑝𝑟𝑡𝑖𝑚𝑒 (𝑖, 𝑗) denotes the probability that the time
would proceed. This value is 1 as time will proceed deterministically.
Value 𝑝𝑟𝑐𝑎𝑟 (𝑖, 𝑗), defined in a similar fashion, is the probability the
number of cars change, which is obtained from 𝑞𝑖, 𝑗,𝜆𝐸𝑉 probability
matrix derived in Section 4.1.
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Figure 9: Relative value iteration algorithm [3].

5.3 Relative Value Iteration Algorithm for
Maximizing Average Reward

The objective is to find a policy 𝑎, an 𝐼 -tuple of actions, which
defines controller outputs corresponding to each state of the system
while maximizing the average reward value. We use a relative value
iteration algorithm shown in Fig. 9, which relies on a variant of
Bellman optimality equation [3] given as,

𝐽𝑘+1 (𝑖) = max
𝑎∈𝐴(𝑖)

[
𝑟𝑤 (𝑖, 𝑎) +

|𝑆 |∑
𝑗=1

𝑝𝑟 (𝑖, 𝑗, 𝑎) 𝐽𝑘 ( 𝑗)
]
,∀𝑖 |𝑠𝑖 ∈ 𝑆, (16)

where 𝑎(𝑖) denotes the action selected in state 𝑖 under the policy 𝑎,
𝑟𝑤 (𝑖, 𝑎(𝑖)), denotes the expected immediate reward for action 𝑎(𝑖)
in state 𝑖, 𝑝𝑟 (𝑖, 𝑗, 𝑎(𝑖)) denotes the probability a transition 𝑡𝑟𝑖, 𝑗 would
occur when action 𝑎(𝑖) is chosen in state 𝑖, 𝐽𝑘 denotes the unknowns
in the system of 𝑖 equations at 𝑘-th iteration of the algorithm. The
overall flow in Fig. 9 is iterative while the termination condition
is determined by a constant 𝜖. The output of the algorithms are
𝜖-optimal policy, 𝑎, and the reward estimate of the policy, 𝜌. The
algorithm starts with assigning an arbitrary state 𝑖∗ |𝑠𝑖∗ ∈ 𝑆 , and value
vector ®𝐽 1 for the first iteration. In every iteration, (16) is evaluated,
𝜌 is subtracted from each 𝐽 , and the span, 𝑠𝑝 ( ®𝑥) = max(𝑥) −min(𝑥),
is calculated. The mathematical background of the optimality of the
solution is beyond the scope of this paper and we refer to [3].

6 MIXED SEARCH-BASED OPTIMIZATION
In this section, we provide a solution for EV charging station plan-
ning problem. Design of a public charging station involves decisions
on the ESS size, PV size, number of charging posts, and charging
speed, aiming for the maximum possible profit per day. This is a con-
strained single-objective optimization problem with a 4-dimensional
mixed design space, which is composed of both continuous and
discrete portions. The significantly non-linear cost function is con-
structed by using the controller from Section 5. To solve this op-
timization problem, we propose a mixed search-based technique
combining the SQP and the greedy algorithm, as summarized in
Algorithm 1.

The feasible design space S consists of the discrete space D (the
number of charging posts and charging speed) and the continuous
space C (the ESS and PV size). The number of particles deployed
in the search is 𝑁𝑝 and the maximum number of iterations is 𝑁𝑚 .

Algorithm 1: The mixed search-based optimization tech-
nique

Input: S = D ∪ C, 𝑁𝑝 , 𝑁𝑚, 𝑦𝑡 , 𝜇

Output: 𝑠best, 𝑦best
1 for 𝑖 ∈ {1, 2, . . . , 𝑁𝑝 } do
2 do
3 Randomly initialize 𝑠𝑖 in S;
4 Evaluate the cost function using evaluateGridded(𝑠𝑖 ) to obtain 𝑦𝑖 ;
5 while 𝑦𝑖 ≤ 𝑦𝑡 ;

6 for 𝑗 ∈ {1, 2, . . . , 𝑁𝑟 } do
7 for 𝑖 ∈ {1, 2, . . . , 𝑁𝑚 } do
8 for four neighbor points in D do
9 Construct a quadratic model in C;

10 Maximize this quadratic model;

11 Select the point 𝑠𝑡
𝑖

with the maximum objective value 𝑦𝑡
𝑖

of the four
models;

12 if 𝑦𝑡
𝑖
> 𝑦𝑖 then

13 Update 𝑠𝑖 and 𝑦𝑖 with 𝑠𝑡
𝑖

and 𝑦𝑡
𝑖

;

14 if the convergence rate ≤ 𝜇 then
15 break;

16 return 𝑠best, 𝑦best;

𝑦𝑡 is the minimum objective value required in the initialization
process and 𝜇 is the reference convergence rate as the termination
condition. Throughout the algorithm, we keep track of the maximum
objective value 𝑦best and its corresponding design point 𝑠best. In
the initialization, the design point 𝑠𝑖 is randomly decided in the
feasible design space S. If its objective value 𝑦𝑖 is not larger than
𝑦𝑡 , the initialization is repeated. Since our search only takes local
information, we use 𝑦𝑡 to avoid design points with a small objective
value, which are unlikely to be helpful in this maximization problem.
It is noted that 𝑦𝑡 takes a reasonably large value to prevent the
initialization from taking too long. (Lines 1-5) In each iteration,
we update every particle with hopefully a larger objective value. In
the discrete design space D, we visit four neighbor points in four
directions, since D is 2-dimensional. For each neighbor point, we
construct a quadratic model in the continous design space C and
maximize it (Lines 9-10). This is essentially the process in SQP. The
design point with the maximum objective value 𝑦𝑡

𝑖
of all four models

is denoted by 𝑠𝑡
𝑖

(Line 11). 𝑠𝑖 and 𝑦𝑖 are updated if 𝑦𝑡
𝑖

is larger than
𝑦𝑖 (Lines 12-13). This is the greedy algorithm. The algorithm is
terminated when either 𝑁𝑟 is reached or the reference convergence
rate 𝜇 is passed.

We further speed up the process by reusing the controller of a
similar 𝑠𝑖 . It is based on the expectation that the controller for a
similar 𝑠𝑖 , i.e., similar ESS size, PV size, charging speed and number
of charging posts would behave similarly. We divide the design
space into grids of reasonable size and synthesize only one controller
within the grid. This approximation is applied in evaluateGridded()
in line 4 and 11. By using the mixed search-based algorithm and
approximate controllers, we allow efficient exploration of the design
space and find the optimal design in a tractable manner.

7 EXPERIMENTS
In this section, we perform return-on-investment analysis on ESS
and PV panel installations for public EV charging stations. The main
goal of this analysis is to determine optimal sizes of ESS and PV
panels according to a number of future scenarios for battery price,
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Figure 10: Simulator framework.
PV panel price, and grid electricity pricing policies. In order to serve
this purpose, a discrete-time based simulation framework shown
in Fig. 10 is implemented in MATLAB environment. Inputs to the
simulator are the actual traces of solar irradiance, EV arrival patterns
and optimal policy obtained by relative value iteration algorithm and
the output is the return-on-investment analysis of ESS and PV panel
installations for the public EV charging station.

ESS cost assumptions: A number of reports forecast that battery
and PV panel prices are going to drop significantly in the near
future [33, 34]. Future goals for selling prices of Li-ion batteries for
electric vehicles range from long-term goals of 100 to 150 USD/kWh,
set by United States Advanced Battery Consortium, and 360 to 440
USD/kWh by Boston Consulting Group [33]. We could also consider
using second-hand Li-ion batteries from EVs, which still retain 80%
of its original capacity. Competitive price for used Li-ion battery
that includes refurbishing cost is expected to be somewhere between
75 USD/kWh to 220 USD/kWh by 2020 [33].

PV cost assumptions: PV panel costs are also decreasing rapidly.
Global module average selling price have declined from 1.37 USD/W
in 2011 to approximately 0.74 USD/W in 2013 [34]. A number of
factors other than panel cost such as inverter and balance of system
(BOS) affect overall installation cost, which makes up 3.43 USD/W
in total in commercial rooftop use in 2011. US Department of Energy
aims at making PV cost competitive by reducing the cost of PV-
generated electricity by about 75% between 2010 and 2020 [34].

Electricity price assumptions: Determining the appropriate grid
pricing policy is beyond the scope of this paper, so we limit the de-
sign space and consider a variant of the existing pricing policy based
on LADWP electric rates for primary service A-2(B) TOU [32]. The
pricing policy we have used is shown in Fig. 11(b) and (c) where
the pricing policy peaks twice per day when the EV charging de-
mands are the highest. Apart from grid electricity prices, we make
assumptions on the tariff the EV owner charges on the EV owners.
We assume a uniform 30 cents/kWh tariff, which is still competitive,
but slightly higher than usual residential tariffs. We assume that
EV owners will be willing to pay this price as they receive faster
charging service.

7.1 Short-Term Simulation Validation
Fig. 11 shows various short-term time-series plots, which give clues
on the correctness and validity of the simulation results. The sim-
ulation is for four days when PV panel size is 300 kW and ESS
size is 100 kWh for EV charging demand shown in Fig. 11(d). Grid
electricity price is shown in Fig. 11(c). Solar irradiance profile is
based on actual cloud coverage data from Munich, Germany in June,
2013. We used a synthetic EV arrival pattern that follows Poisson
distribution shown in Fig. 11(d). The overall power flow is shown in
Fig. 11(a). The synthesized controller avoids using grid electricity
during the peak hours by first utilizing the PV power directly and
then drawing electricity (minus power in graph) from the ESS. If the
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(a) EV charging station power flow when ESS size is 100 kWh.
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Figure 11: Short-term simulation results for four days when the
ESS size is 100 kWh and PV panel size is 300 kW.

ESS capacity allows, residual PV power around noon is stored into
the ESS. Solar irradiance pattern is different for each day and the
PV electricity generation is the smallest on the fourth day. The SOC
change is shown in Fig. 11(b). It shows clearly that ESS is usually
discharged during the peak hours and charged during the off-peak
hours and when there is residual PV electricity. Fig. 11(c) shows
that investment of 100 kWh ESS for the system could offer around
17% savings in electricity cost for the four days compared with the
configuration with PV panel installations only.
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Figure 12: Performance, in terms of cumulative cost, of baseline
1, 2, and proposed controller for different ESS, PV size configu-
rations.

7.2 Synthesized Controller Performance
Now, we show the performance of the synthesized controller, the
solution to EV charging station operation problem, in comparison
with other reasonable baselines. The baseline controller we consider
are i) a controller that maintains inversely proportional SOC to the
grid electricity prices (baseline 1), and ii) a controller that prioritizes
the usage of PV generated power (baseline 2). Baseline 1 tries to
maintain the target SOC every moment while prioritizing the PV
generated power. In other words, target SOC is achieved by first
utilizing the PV generated power first, not the grid electricity, so
that grid electricity usage can still be minimized. Baseline 2 does
not care about the SOC level as long as it does not violate the upper
and lower threshold values, 90% and 10%, respectively. It basically
controls as if the EV charging station is a standalone system without
grid connection. Grid electricity is used only if SOC reaches its
lower threshold.

Fig. 12 shows the performance of the controllers in terms of cu-
mulative expenditure. We have tested the controllers for multiple
combinations of ESS and PV panel sizes. Both graphs show in gen-
eral if the size of PV and ESS are larger, the cumulative cost is
lower. The left graph shows that baseline 1 performs the worst while
baseline 2 and the proposed controller exhibits almost the same
cumulative cost. The right graph shows that the proposed controller
performs better than baseline 2. We have observed that the pro-
posed controller, the solution to EV charging station operation
problem synthesized using the method described in Section 5,
shows the best performance in all the cases.

7.3 Design Space Exploration of EV Charging
Station

In this subsection, we explore the ESS and PV panel size design
space by solving the EV charging station planning problem and
compare the amortized cost for a number of scenarios for future
battery and PV panel prices. Each combination of different ESS and
PV panel sizes requires re-generation of transition reward matrices
and solving relative value iteration algorithm.

Fig. 13 shows EV charging station profit defined as the EV owner
payment subtracted by operating cost including depreciation costs
within a restricted search space around the global optimum found
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Figure 13: EV charging station profit according to ESS and
PV size when ESS cost is 200 USD/kWh and PV cost is 1000
USD/kW.

by Algorithm 1. Cycle life evaluation of ESS for calculating the
amortized cost is from the model in Section 4.3. PV panel is assumed
to have 20 year lifespan. It shows that the net profit per day is
a roughly, but not strictly, convex function of PV size and ESS
size. If ESS size is small, smaller PV size becomes more beneficial
as excess PV power cannot be used. If ESS size is large, larger PV
size becomes more beneficial as more of PV generated power can be
used. If PV size is small, large ESS size is hardly beneficial because
not all of its large capacity is not utilized efficiently by storing power
PV generated power.

Table 1 shows the design space exploration result obtained by
solving EV charging station planning problem using the mixed
search-based algorithm described in Section 6. Besides the size of
ESS and PV discussed above, if the number of charging posts is too
small, the operator would lose potential benefit, and if the number is
too large, the initial investment does not pay off. The cost model we
use for the charging posts is given as follows.

𝐶𝑜𝑠𝑡𝑐ℎ𝑔𝑟 (𝑐𝑠𝑝𝑑 ) = 𝐶𝑜𝑠𝑡𝑏𝑎𝑠𝑒 · (0.7 + 0.3 · 𝑐𝑠𝑝𝑑/2), (17)

where 𝐶𝑜𝑠𝑡𝑐ℎ𝑎𝑟 is the charger cost as a function of charging speed,
𝑐𝑠𝑝𝑑 in C rating. 𝐶𝑜𝑠𝑡𝑏𝑎𝑠𝑒 is 15,000 USD obtained from [35]. This
model is simple, but it can be replaced with an arbitrary cost model
without losing generality. The results show that, in general, having
8-9 charging posts, which is comparable to the instantaneous peak
demand of our EV arrival profile, is enough. Also, slower speed
charger is preferred in this case as it is cheaper while being able to
meet the incoming EV charging demands. The optimal size of ESS
and PV depends on the unit cost scenarios as visualized in Fig. 14.
Obviously, the optimal ESS sizes and PV sizes increases as their unit
cost goes down. There is cross dependency of the optimal ESS size
to the PV unit cost, and vice versa, as well. This is because lower PV
unit cost results in larger optimal PV size, which in turn increases the
benefit of having a larger ESS, and vice versa. Assuming that the
expected reduction in unit cost of ESS and PV panels continues,
it seems that there will be significant financial gains by installing
PV panels and ESS.

8 CONCLUDING REMARKS
This paper investigates profitability of public EV charging station
architectures comprising an ESS and a PV array. Gas station-like
public EV charging station architecture has benefits in that it allows
more flexible EV usage including long-range travels. We identify
two sub-problems the EV charging station operations problem, and
planning problem where the objective is the financial benefit. We
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Unit cost ESS PV NumChg ChgSpdESS PV size size
1000 983.8 2383.0 8 2

100 2000 681.0 1210.7 9 2
3000 416.31 761.2 8 2
1000 731.7 1895.9 8 2

150 2000 103.7 1229.9 8 2.2
3000 252.5 764.4 8 2.0
1000 51.3 2177.8 8 2

200 2000 224.5 1112.7 9 2
3000 221.0 671.8 8 2

500 2500 114 223 9 2
20 50 767 2071 8 2

Table 1: Optimal ESS and PV panel sizes for different unit costs.
ESS unit cost is in USD/kWh, PV unit cost in USD/kW, ESS size
in kWh, PV size in kW, charging speed in C rate).
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Figure 14: Optimal sizes of ESS and PV according to difference
unit price values.

solve the former by modeling the station as an MDP to synthesize
a controller using relative value iteration method. Then, the latter
is solved by a mixed-search algorithm combining SQP and greedy
algorithm that allows a fast exploration of the ESS size, PV size and
charging post design space. To the best of our knowledge, this is the
first work to explore the design space of such an architecture under
various battery and PV cost scenarios. We analyze the profitability of
ESS and PV installations under a number of future cost projections
and show that they will be worth an investment if their sizes are
chosen appropriately as suggested by this work.
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