
1

Tool Integration for Automated Synthesis of
Distributed Embedded Controllers∗

DEBAYAN ROY, Technical University of Munich, Germany
LICONG ZHANG, Technical University of Munich, Germany
WANLI CHANG, Hunan University, China
DIP GOSWAMI, Eindhoven University of Technology, Netherlands
BIRGIT VOGEL-HEUSER, Technical University of Munich, Germany
SAMARJIT CHAKRABORTY, University of North Carolina at Chapel Hill, USA

Controller design and their software implementations are usually done in isolated design spaces using
respective COTS design tools. However, this separation of concerns can lead to long debugging and integration
phases. This is because assumptions made about the implementation platform during the design phase – e.g.,
related to timing – might not hold in practice, thereby leading to unacceptable control performance. In order
to address this, several control/architecture co-design techniques have been proposed in the literature. However,
their adoption in practice has been hampered by the lack of design flows using commercial tools. To the best
of our knowledge, this is the first paper that implements such a co-designmethod using commercially available
design tools in an automotive setting, with the aim of minimally disrupting existing design flows practiced in
the industry. The goal of such co-design is to jointly determine controller and platform parameters in order
to avoid any design-implementation gap, thereby minimizing implementation time testing and debugging.
Our setting involves distributed implementations of control algorithms on automotive electronic control
units (ECUs) communicating via a FlexRay bus. The co-design and the associated toolchain Co-Flex jointly
determines controller and FlexRay parameters (that impact signal delays) in order to optimize specified design
metrics. Co-Flex seamlessly integrates the modeling and analysis of control systems in MATLAB/Simulink
with platform modeling and configuration in SIMTOOLS/SIMTARGET that is used for configuring FlexRay
bus parameters. It automates the generation of multiple Pareto-optimal design options with respect to the
quality of control and the resource usage, that an engineer can choose from. In this paper, we outline a
step-by-step software development process based on Co-Flex tools for distributed control applications. While
our exposition is automotive specific, this design flow can easily be extended to other domains.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; • Soft-
ware and its engineering → Software development techniques; • Networks → Cyber-physical net-
works; • General and reference→ Design.

Additional Key Words and Phrases: co-design, cyber-physical systems, toolchain, real-time scheduling, embed-
ded control, design automation
∗This paper builds on an earlier publication entitled Multi-Objective Co-Optimization of FlexRay-Based Distributed Control
Systems that appeared at the 2016 IEEE Real-Time and Embedded Technology and Application Symposium (RTAS).

Authors’ addresses: Debayan Roy, debayan.roy@tum.de, Technical University of Munich, Germany; Licong Zhang, licong.
zhang@tum.de, Technical University of Munich, Germany; Wanli Chang, wanli.chang.rts@gmail.com, Hunan University,
China; Dip Goswami, D.Goswami@tue.nl, Eindhoven University of Technology, Netherlands; Birgit Vogel-Heuser, vogel-
heuser@tum.de, Technical University of Munich, Germany; Samarjit Chakraborty, samarjit@cs.unc.edu, University of
North Carolina at Chapel Hill, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/1-ART1 $15.00
https://doi.org/10.1145/3477499

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3477499

1:2 Roy et al.

ACM Reference Format:
Debayan Roy, Licong Zhang, Wanli Chang, Dip Goswami, Birgit Vogel-Heuser, and Samarjit Chakraborty.
2021. Tool Integration for Automated Synthesis of Distributed Embedded Controllers. ACM Transactions on
Cyber-Physical Systems 1, 1, Article 1 (January 2021), 30 pages. https://doi.org/10.1145/3477499

1 INTRODUCTION
Software-based implementations of controllers are becoming increasingly more common in domains
like avionics, automotive and industrial automation. For example, in the automotive domain, control
functions like steering and braking are gradually moving from traditional mechanical or hydraulics
systems to electronics and software. These applications are typically implemented on a distributed
electrical and electronic (E/E) platform, where a number of electronic control units (ECUs), sensors,
and actuators are connected via communication buses such as Ethernet, FlexRay, and CAN. Hence,
a distributed embedded control application is partitioned into several software tasks mapped on
different ECUs and these tasks communicate via messages sent over the bus. The design of such
applications involves two different phases, viz., controller design and platform design. Controller
design determines the control law, its parameters, and the appropriate sampling period for an
application. Platform design, among other things, computes the task and message schedules.

Conventionally, the platform and the controllers are first designed in isolated design spaces and
then integrated [27, 29]. In this approach, the values of the sampling period and the closed-loop delay
assumed during the controller design might not be satisfied in the actual platform implementation
(i.e., the tasks and/or messages are not schedulable). Similarly, during the platform implementation,
it might be assumed that a small change in the periods (or priorities) of the tasks and/or messages
will not lead to a significant degradation in the quality of control (QoC). Such assumptions might
lead to an error-prone design or long debugging and integration phases. Therefore, to guarantee
the safety of the system, engineers often make more conservative assumptions, resulting in less
efficient designs. However, as the size and the complexity of systems increase, both computation
and communication resources are becoming scarce, making resource-efficient design increasingly
important. To address this problem, there has been work [15, 36, 38, 39] on platform and control
co-design. In contrast to the conventional principle of separation of concerns, co-design approaches
try to integrate the design of platform and controllers in an early design phase and exploit the
characteristics on both sides to arrive at a more efficient design. Typically, the objectives are to
achieve better QoC and minimize resource usage.

Although there is consensus on the advantages of co-design techniques, state of the art co-design
methods are far away from the state of practice [47]. The main reason for this is that tools used for
controller design and those used for platform design are separate and, more importantly, they are
often from different suppliers. Each tool is a product of years of experience in a specific domain.
Tool developers and users mostly have a particular set of expertise. Thus, it is challenging to extend
one tool and incorporate the functionalities of another from a different domain. An integrated tool
flow requires strong collaboration among tool suppliers from different domains [46].

In this context, we consider, as an example, FlexRay-based ECU (electronic control unit) networks
from the automotive domain and studied the implementation of controllers on such a platform.
We propose a toolchain that enables the development of FlexRay-based systems. This toolchain
consists of MATLAB/Simulink for the modeling, design, and analysis of control systems, and
SIMTOOLS/SIMTARGET toolboxes [4, 41, 42] for platform modeling and configuration. We first
studied the conventional design flow of automotive embedded controllers using such a toolchain.
In this work, we then integrated these tools to support a control/platform co-design scheme [36]. In
other words, we propose an integrated toolchain to addresses the challenges faced when extending

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3477499

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:3

Specification

Design Parameters

Implementation Model

Codes and Binaries

Specification

Specification Model

Implementation Model

Codes and Binaries

Design Phase

Implementation
Phase

Code/Binary
Generation Phase

Specification
Modeling

Design and
Implementation Phase

Code/Binary
Generation Phase

 Manual design
 COTS design tools

 Simulink
 SIMTOOLS
 SIMTARGET

 Simulink RTW
 SIMTARGET

 Simulink
 Co-Flex: Model
 SIMTOOLS

Conventional Design Flow Proposed Design Flow

Tools Tools

Prosp. Control Design

Spec. Extraction

Co-Optimization

Parameter Writeback

 Co-Flex
 Simulink
 SIMTARGET

 SIMTOOLS
 Simulink RTW
 SIMTARGET

App SW Modeling

 Co-Flex: Control

Tools

 Co-Flex: Parse
 SIMTOOLS

 Co-Flex: Opti

 Co-Flex: Writeback
 SIMTOOLS

 Co-Flex: Dissemble
 Simulink
 SIMTARGET

Sec. 3.2.2

Sec. 3.2.1

Sec. 3.2.3

Sec. 3.2.4

Sec. 3.1

Manual Automatic

Sec. 3.2

Sec. 3.2.5

Fig. 1. Schematic of the proposed frame work and the toolchain support

co-design methods to practice in an industrial setting. When compared to a conventional one, our
proposed toolchain enables a more convenient and efficient design flow (see Fig. 1 for a comparison).

Conventional design flow: Traditionally, control software development can be divided into
three phases: (i) the design phase – which involves the calculation and validation of parameters
like the control gains, and task and message schedules based on some specification (such as plant
models, performance criteria, and an architecture model); (ii) the implementation phase – where
the system and application software are modeled and configured using the parameters obtained
from the design phase; and (iii) the code generation phase – where the implemented models are
used to generate code and binary files for deployment on a hardware platform. The available
toolchains automate certain parts of this development process, e.g., (i) SIMTOOLS/SIMTARGET
provide specific blocksets that enable modeling of ECUs and a FlexRay network, partitioning and
mapping of tasks, packing of messages into frames, configuration of task and message schedules,
and defining input and output interfaces; and (ii) the Simulink Realtime Workshop (RTW) along
with SIMTARGET can be used to generate C-code and binary files.

Nevertheless, using such tools, software development also involves the following manual pro-
cesses and is time-consuming and error-prone. (i) In the design phase, the specification needs to
be interpreted to manually formulate the parameter synthesis problem that can then be solved
either manually or using some COTS tools. For example, the controller can be designed with a
MATLAB/Simulink model of the plant using a closed-loop simulation of the plant and the controller.
Here, control gains can be manually tuned, and the ones corresponding to which the closed-loop
system meets performance requirements, are chosen as design parameters. On the other hand,
the schedule synthesis problem can be formulated manually as a constraint satisfaction problem
(CSP) [52] with schedulability constraints, data dependencies, and assumptions made on the values
of sampling periods and delays for the controller design. The CSP is then solved using a solver like
Gurobi or Z3. In case no feasible schedule configuration exists, the design steps are reiterated. Note
that for such an iterative development process, it is very time-consuming to explore the trade-offs
between different objectives. (ii) In the implementation phase, the application model is manually
developed in Simulink including the details of sensing, control and actuation. The control gains
and sampling periods computed in the design phase will be used here. Simultaneously, SIMTOOLS
is used to manually specify the platform architecture, how the application tasks are partitioned
and mapped on the ECUs, and the schedules of tasks and messages.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Roy et al.

Proposed design flow: To address the shortcomings of the conventional flow, in this paper
we introduce a toolbox Co-Flex based on MATLAB/Simuink and SIMTOOLS/SIMTARGET. Co-
Flex will assist software developers by bridging the gap between the aforementioned COTS tools,
automating most of the manual steps, while offering more design freedom. Towards reducing
manual intervention, Co-Flex offers (i) template blocks that can be conveniently used to model
automotive control applications through easy parametrization, and (ii) specific tools that automate
the flow between different design phases, e.g., specification extraction from template models,
configuration of the control models with the obtained values of control parameters, and synthesizing
the implementation model with correct platform parameters (i.e., the task and message schedules).
In addition, Co-Flex employs a co-design technique for simultaneously synthesizing the control and
the platform parameters by accounting for different trade-offs between QoC and resource usage,
thereby offering more design choices.
With Co-Flex, the first two phases in the conventional design flow can be replaced by a spec-

ification modeling phase and a design and implementation phase, as shown in Fig. 1. This is
done to reduce the manual effort in the design and implementation phases of a conventional
flow. In the specification modeling phase, Co-Flex: Model blocksets can be used together with
Simulink/SIMTOOLS/SIMTARGET to develop a template software model that is configured accord-
ing to a design specification, i.e., controlled plant models, architecture model, and performance
requirements. Subsequently, the design and implementation phase is composed of five stages, as
shown in Fig. 1.

In the first stage, i.e., Specification Extraction, the Co-Flex: Parse tool can be used to automatically
extract the specification from the template model. Stages 2 and 3, called Prospective Control Design
and Co-Optimization respectively, implement the co-design technique in [36]. Such a partition
is necessary to reduce the problem complexity by dividing the whole design space into smaller
subspaces while considering all feasible regions in the design space. Here, the partitioning is
possible because in a FlexRay-based distributed implementation, only a set of predetermined
sampling periods are allowed for a control application. Moreover, only the sampling period and
not the control gains influences the choice of platform parameters. Thus, in the prospective control
design stage, the Co-Flex: Control tool is invoked for each application that synthesizes an optimal
controller at each possible sampling period. This is done by using a pole placement controller design
method and exploring the design space of possible pole values using an exhaustive search with a
certain granularity. By designing the prospective controllers first, we avoid unnecessary schedule
synthesis for sub-optimal or unstable controllers. In the co-optimization stage, the Co-Flex: Opti
tool formulates a bi-objective optimization problem according to the extracted specification and the
obtained prospective controllers from Stages 1 and 2 respectively. It employs a hybrid optimization
technique to generate sets of feasible design parameters, where each set represents a Pareto point
reflecting the trade-off between the objectives of QoC and resource usage. Here, the resource usage
can only take a finite number of discrete values. Exploiting this fact, the bi-objective optimization
problem is transformed into a finite series of single-objective optimization problems, where in
each problem, the QoC needs to be optimized for a given resource usage. To solve each problem, a
nested two-layer technique is used. This technique exploits the fact that only the choice of sampling
periods will influence the QoC and, thus, solves the optimization problem in two nested layers. The
outer layer finds the set of sampling periods that optimizes the QoC, whereas the inner layer finds
a corresponding set of feasible task and message schedules. In both layers, linear programming
problems are solved. It is to be noted here that the co-design uses standard techniques, i.e., the pole
placement for controller design and linear programming for time-triggered scheduling, however,
the main novelty lies in determining the glue between these techniques.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:5

Subsequently, the developer can select a parameter set corresponding to a Pareto point on
the Pareto front according to existing design requirements. Based on the developer’s choice, in
the Parameter Writeback stage, Co-Flex: Writeback tool can automatically interpret the synthesis
results obtained from the prospective control design and the co-optimization stages respectively and
configure the softwaremodel with the appropriate values of control and platform parameters. Finally,
in the Application Software Modeling stage, the Co-Flex: Dissemble tool gets rid of the specification
models that were required only for the design and need not be a part of the implementation. In
addition, the developer can manually add some application-specific details to the model, if required.
Note that the underlying mathematical framework for the co-design of controllers and their

platform implementations was originally published in [36]. The main contribution of this paper
is a toolchain that implements this co-design framework and integrates it with a combination of
industry-strength tools used in real-life design. To the best of our knowledge, Co-Flex is the first
published co-design toolchain. We believe that it will motivate the adoption of co-design schemes
in the industry, which is crucial for safety-critical and resource-constrained systems.

Contributions: In summary, this paper makes the following contributions:

• We propose a design flow for FlexRay-based distributed control systems that relies on control-
platform co-design. In this flow, we start with a specification and first create a partial model of
the system. Using this partial model, we synthesize the design parameters that are then used to
model the remaining parts of the system. Software code generated from the developed model
can be directly used to flash the ECUs.

• We have developed a toolchain to automate the software development for FlexRay-based dis-
tributed control systems using the above design flow. This toolchain enables automated modeling
of distributed control systems through easy parametrization. It comprises tools implementing
control-platform co-design [36], using which a set of Pareto-optimal design options is gener-
ated. The toolchain integrates industrial-strength development tools, i.e., MATLAB/Simulink for
the modeling and analysis of control systems, with SIMTOOLS/SIMTARGET for the platform
modeling and configuration.

• We present a case study comprising five control applications mapped on to three different
ECUs communicating over a FlexRay bus. The model-in-the-loop simulation that is offered by
SIMTOOLS validates the control and platform parameters synthesized using our co-design scheme.
Further, we built a setup comprising three Elektrobit ECUs connected by cables (unshielded
twisted pair) and D-SUB9 connectors. We flashed the software binaries on the three ECUs without
any errors, implying that the configuration of the design parameters was correct.

Paper organization: In the next section, we explain the feedback control system model and
the FlexRay-based ECU network architecture. Further, we describe how feedback controllers are
conventionally designed and implemented on such distributed platforms. In Sec. 3, we describe
of our design flow along with the proposed toolchain. Next, in Sec. 4, the results based on a case
study are presented. Finally, Sec. 5 discusses related work, before concluding in Sec. 6.

2 PRELIMINARIES
We consider a distributed platform comprising a set of ECUs, denoted by E = {𝐸1, 𝐸2, · · · }. These
ECUs are connected by a communication bus. A number of control applications, C = {𝐶1,𝐶2, · · · },
run on such a platform. Each application is implemented using several software tasks performing
functions like sensing, computation, and actuation. When these tasks are mapped on physically
distributed ECUs, data between them are transferred on the bus. In this work, we study the
implementation of feedback control on a FlexRay-based ECU network. In this context, this section

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Roy et al.

Bus

sensor-to-actuator delay

sampling period

Fig. 2. Distributed embedded control application.

first discusses feedback control systems and the platform architecture under study. Further, we
outline the methodology that is commonly followed for developing distributed control software.

2.1 Feedback Control Systems
Plant model: We study linear and time-invariant (LTI) single-input single-output (SISO) systems
for which the continuous-time mathematical model can be written as follows:

¤𝑥 (𝑡) = 𝐴𝑐𝑥 (𝑡) + 𝐵𝑐𝑢 (𝑡), 𝑦 (𝑡) = 𝐶𝑐𝑥 (𝑡). (1)
Here, 𝑥 (𝑡), 𝑦 (𝑡), and 𝑢 (𝑡) denote respectively the state, the output, and the control input of the
system, and 𝐴𝑐 , 𝐵𝑐 , and𝐶𝑐 denote respectively the state, the input, and the output matrices. For the
digital implementation of controllers, we use the zero-order-hold (ZOH) sampling [32, 33]. That is,
the system state 𝑥 [𝑘] is read and the control input 𝑢 [𝑘] is computed every ℎ time units. Thus, the
control input, once computed, is applied to the system for ℎ time units. While there are different
techniques available for discretizing a continuous-time signal, ZOH is the most appropriate for
studying controller implementations on embedded platforms. Assuming a zero delay between the
sampling and the actuation, we can write the sampled-data model of a system as follows:

𝑥 [𝑘 + 1] = 𝐴𝑑𝑥 [𝑘] + 𝐵𝑑𝑢 [𝑘], 𝑦 [𝑘] = 𝐶𝑑𝑥 [𝑘], (2)
where 𝑥 [𝑘], 𝑦 [𝑘], and 𝑢 [𝑘] denote the state, the output, and the control input respectively at the
𝑘-th sampling instant (𝑘 ∈ Z∗). The discrete-time system matrices are derived as follows:

𝐴𝑑 = 𝑒𝐴
𝑐ℎ, 𝐵𝑑 =

∫ ℎ

0
(𝑒𝐴𝑐𝑡𝑑𝑡) · 𝐵𝑐 , 𝐶𝑑 = 𝐶𝑐 . (3)

Controller implementation: In this work, we assume that a control application, 𝐶𝑖 , comprises
three sequential software tasks: (i) Sensor task, 𝜏𝑠,𝑖 , measures the state (using sensors) of the physical
system. (ii) Control task, 𝜏𝑐,𝑖 , computes the control input based on the system state. (iii) Actuator
task, 𝜏𝑎,𝑖 , applies the control input (using an actuator) to the physical system. These tasks are
often mapped on different ECUs due to a physically distributed topology of sensors and actuators.
Without loss of generality, we assume that three tasks are mapped on different ECUs. The sensor
values measured by 𝜏𝑠,𝑖 are sent on the bus via a message𝑚𝑠,𝑖 and the control input is sent as a
message𝑚𝑐,𝑖 . The time between the start of the sensor task and the completion of the actuator task
is defined as the sensor-to-actuator delay, denoted by 𝑑 . As shown in Fig. 2, this delay depends on
the interplay between the task and message schedules.

Controller design: In this paper, we use the controller model from [19] where the control input
u[k] is calculated based on the state at the (𝑘 −

⌊
𝑑
ℎ

⌋
)-th sampling instant. The mathematical model

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:7

for the discrete-time delayed system can be written as follows:
𝑥 [𝑘 + 1] = 𝐴𝑑𝑥 [𝑘] + 𝐵𝑑,0𝑢 [𝑘] + 𝐵𝑑,1𝑢 [𝑘 − 1], 𝑦 [𝑘] = 𝐶𝑥 [𝑘],

where: 𝐵𝑑,0 =

∫ ℎ−𝑑′

0
(𝑒𝐴𝑐𝑡𝑑𝑡) · 𝐵, 𝐵𝑑,1 =

∫ ℎ

ℎ−𝑑′
(𝑒𝐴𝑐𝑡𝑑𝑡) · 𝐵.

(4)

Here, 𝑑 ′ = 𝑑 −
⌊
𝑑
ℎ

⌋
· ℎ. Furthermore, we consider the case where the task and message schedules

lead to one sampling period sensor-to-actuator delay, i.e., 𝑑 = ℎ, as shown in Fig. 2. Thus, Eq. (4)
can be rewritten as follows:

𝑥 [𝑘 + 1] = 𝐴𝑑𝑥 [𝑘] + 𝐵𝑑,0𝑢 [𝑘], where: 𝐵𝑑,0 =
∫ ℎ

0
(𝑒𝐴𝑐𝑡𝑑𝑡) · 𝐵. (5)

For our assumption of 𝑑 = ℎ, we consider that the control input 𝑢 [𝑘] is given by:
𝑢 [𝑘] = 𝐾𝑥 [𝑘 − 1] + 𝐹𝑟, (6)

where 𝐾 and 𝐹 are the feedback and the feedforward gains respectively, and 𝑟 represents the
reference value that 𝑦 [𝑘] should eventually reach. The design of a feedback controller involves
finding the values for feedback and feedforward gains for a given value of sampling period such
that the closed-loop system is stable and the control performance is optimal. Here, we consider a
state-feedback controller and we assume that we have the full state information, i.e., the system is
fully observable. However, the co-design technique studied in this paper can be trivially extended to
output-feedback controllers, e.g., proportional-integral-derivative (PID) controllers, by employing
an appropriate control design technique.
Control performance: There are different metrics to measure the closed-loop performance of a
controller. Here, we consider two common metrics to measure the control performance 𝐽 . (i) We
study a quadratic cost function [39] for which the control performance 𝐽 can be written as follows:

𝐽 =

𝑛=
𝑇𝐺
ℎ∑

𝑘=0

(
𝜆𝑢 [𝑘]2 + (1 − 𝜆)𝜎 [𝑘]2

)
· ℎ, (7)

where 𝜆 is a weight taking the value between 0 and 1,𝑢 [𝑘] is the control input and 𝜎 [𝑘] = |𝑟 −𝑦 [𝑘] |
is the tracking error. Note that we can also add other cost functions, e.g., 𝐽 =

∫ 𝑇𝐺

0

[
𝜆𝑢 (𝑡)2 + (1 −

𝜆)𝜎 (𝑡)2
]
𝑑𝑡 in the poposed toolchain. The co-design approach used in the toolchain is independent

of the choice of the cost function. In Eq. (7), the value of 𝜆 should be chosen based on the design
requirement. For example, if we want the system output to stabilize at the reference value quickly
by spending more energy, we will choose a lower value of 𝜆. Here, we multiply the cost for each
discrete step by the sampling period ℎ which is different from the quadratic cost usually considered
in the literature. This is required because we want to compare controllers designed for different
sampling periods based on this metric. Therefore, we calculate the quadratic cost until a certain
given time𝑇𝐺 from which the number of samples 𝑛 for a given sampling period ℎ can be calculated
as𝑇𝐺/ℎ. (ii) We also consider the settling time to evaluate the control performance, i.e., 𝐽 = 𝜉 , where
𝜉 denotes the time necessary for the system to reach and remain within 1% of the reference value.

For both metrics, we assume that the initial condition and the reference input are in the design
specification. It is challenging to design a controller that gives optimal performance for different
combinations of these values, and hence, it is reasonable to assume that these values are selected as
per requirements. Note that we evaluate the control performance considering a negligible system
noise. Depending on the control requirements, one of the aforementioned performance metrics
can be used. For both metrics, a smaller value of 𝐽 implies a better control performance. Each
application 𝐶𝑖 with a control performance 𝐽𝑖 must satisfy a certain requirement 𝐽 𝑟𝑖 (i.e., 𝐽𝑖 ≤ 𝐽 𝑟𝑖)
as given in the design specification. In a system consisting of multiple control applications with

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Roy et al.

1 2 3 4 5 N-1 N N+1…

… …

… …

… …

… …

… …

0

1

2

3

63

…

Communication Cycle

Static Segment Dynamic Segment

Fig. 3. An example of FlexRay schedules.

different plant models and performance metrics, we need to normalize the control performance in
order to compare and combine them. Here, we normalize the control performance as follows:

𝐽𝑛𝑖 =
100% · 𝐽𝑖

𝐽 𝑟
𝑖

. (8)

Thus, the overall QoC for a set of control applications C can be represented as a weighted sum of
the normalized values as follows:

𝐽𝑜 =
∑
𝐶𝑖 ∈C

𝑤𝑖 𝐽
𝑛
𝑖 , (9)

where𝑤𝑖 implies the relative importance of each control application and
∑
𝑤𝑖 = 1. For example, if

it is equally important to optimize the control performance of each application, 𝐶𝑖 ∈ C, we get the
weights as𝑤𝑖 =

1
|C | .

2.2 FlexRay-Based ECU Networks
ECU taskmodel:We consider that the real-time operating system on an ECU runs a time-triggered
non-preemptive scheduling scheme. On an ECU 𝐸𝑘 , a set of periodic tasks, denoted by T𝐸𝑘 , are
mapped. The schedule for a task 𝜏𝑥,𝑖 can be defined by a tuple {𝑝𝑥,𝑖 , 𝑜𝑥,𝑖 , 𝑒𝑥,𝑖 }, where 𝑝𝑥,𝑖 , 𝑜𝑥,𝑖 and
𝑒𝑥,𝑖 denote respectively the period, the offset and the worst-case execution time (WCET) of the
task. Note that 𝑥 ∈ {𝑠, 𝑐, 𝑎} denotes the type of task, i.e., sensor, control or actuator task. We denote
𝑡 (𝜏𝑥,𝑖 , 𝑘) and 𝑡 (𝜏𝑥,𝑖 , 𝑘) as the starting and the latest completion time of the 𝑘-th (𝑘 ∈ Z∗) instance of
a task 𝜏𝑥,𝑖 , which are given by:

𝑡 (𝜏𝑥,𝑖 , 𝑘) = 𝑜𝑥,𝑖 + 𝑘𝑝𝑥,𝑖 , 𝑡 (𝜏𝑥,𝑖 , 𝑘) = 𝑜𝑥,𝑖 + 𝑘𝑝𝑥,𝑖 + 𝑒𝑥,𝑖 . (10)
We also consider a set of communication tasks besides the application tasks. The communication

task on the sending ECU writes the data produced by the application task into the corresponding
transmit buffer of the communication controller, and on the receiving ECU, it reads the data
from the corresponding receiver buffer and forwards them to the application task. The nature of
these communication tasks depends on the specific implementation. Here, we consider that the
execution time of all communication tasks is upper-bounded by 𝜖 . We schedule communication
tasks immediately (i) after a task that sends data and (ii) before a task that receives data.
Communication model: FlexRay [14] is an automotive communication protocol usually used
by safety-critical applications. It allows both time-triggered (TT) and event-triggered (ET) com-
munication. FlexRay communication is organized as a series of cycles where each cycle has a
length denoted as 𝑇𝑏𝑢𝑠 . Each communication cycle contains mainly: the static segment (ST) and
the dynamic segment (DYN), where TDMA and Flexible TDMA (FTDMA) communication services
are implemented respectively. In this work, we study transmission of messages only on the static
segment of FlexRay. The static segment is split into a number of static slots of equal length Δ. Here,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:9

we represent the slots on the static segment as S = {1, 2, ..., 𝑁 }. Once a static slot is assigned, if no
data is sent in a specific communication cycle, the static slot will still be occupied.
We consider the case where a sequence of 64 cycles repeats infinitely. In a sequence, each

communication cycle is indexed by a cycle counter that counts from 0 to 63 and is then reset to 0.
The schedule of a FlexRay frameΘ𝑖 can be defined by a tuple (𝑆𝑖 , 𝐵𝑖 , 𝑅𝑖), where 𝑆𝑖 represents the slot
number, 𝐵𝑖 represents the base cycle, and 𝑅𝑖 is the repetition rate. The repetition rate is the number
of communication cycles that elapse between two consecutive transmissions of the same frame and
takes the value 𝑅𝑖 ∈ {2𝑛 |𝑛 ∈ {0, ..., 6}}. The base cycle is the offset of the cycle counter, i.e., it is the
cycle where the frame is scheduled for the first time. The sequence of 64 communication cycles and
a few examples of FlexRay schedules are shown in Fig. 3. In the context of this work, we consider
the FlexRay versions 2.1 and 3.0.1. In the later version, slot multiplexing amongst different ECUs
is allowed, i.e., a particular slot 𝑆𝑖 can be assigned to different ECUs in different communication
cycles. However, this is not allowed in the former version. We further assume that each FlexRay
frame, Θ𝑖 , is packed with only one message,𝑚𝑖 . The start and the completion time of the 𝑘-th
instance (𝑘 ∈ Z∗) of a FlexRay frame (Θ𝑖) transmission, which are denoted respectively as 𝑡 (Θ𝑖 , 𝑘)
and 𝑡 (Θ𝑖 , 𝑘), can be written as follows:

𝑡 (Θ𝑖 , 𝑘) = 𝐵𝑖𝑇𝑏𝑢𝑠 + 𝑘𝑅𝑖𝑇𝑏𝑢𝑠 + (𝑆𝑖 − 1)Δ, 𝑡 (Θ𝑖 , 𝑘) = 𝐵𝑖𝑇𝑏𝑢𝑠 + 𝑘𝑅𝑖𝑇𝑏𝑢𝑠 + 𝑆𝑖Δ. (11)
In this paper, we consider the bus resource usage as the fraction of bandwidth in the static

segment that is allocated to the control applications. This can be translated into the percentage
of static slots assigned in every sequence of 64 communication cycles. Let Γ denote the set of all
FlexRay frames that will be sent on the static segment, where Θ𝑖 ∈ Γ, then the resource usage 𝑈
can be written as follows:

𝑈 =
100%
64𝑁

∑
Θ𝑖 ∈Γ

64
𝑅𝑖

=
100%
𝑁

∑
Θ𝑖 ∈Γ

1
𝑅𝑖
, (12)

where, the smaller the value of 𝑈 is, the better is the resource usage, i.e., more bandwidth can be
assigned to non-control applications.𝑈 can take only a finite number of discrete values because
the number of static slots used by the control applications is a natural number less than or equal to
64𝑁 . We can further constrain the value of𝑈 using the requirements on the control performance
that we will see in Sec. 3.2.3.

2.3 Conventional Design Flow
Typically, for the setting under study, the conventional design methodology only synthesizes the
control and platform parameters while respecting the system constraints, e.g., performance and
schedulability constraints. For a systemwith a set of control applications, C, the parameter synthesis
boils down to finding for each control application, 𝐶𝑖 , (i) the control parameters (including control
gains and sampling period) and (ii) the platform parameters (including task and message schedules).
The set of design parameters for 𝐶𝑖 is denoted by 𝑝𝑎𝑟𝑖 = 𝑝𝑎𝑟𝑠𝑖 ∪ 𝑝𝑎𝑟𝑐𝑖 , where 𝑝𝑎𝑟𝑐𝑖 = {ℎ𝑖 , 𝐾𝑖 , 𝐹𝑖 }
represents the control parameters and 𝑝𝑎𝑟𝑠𝑖 = {𝑜𝑠,𝑖 , 𝑝𝑠,𝑖 , 𝑜𝑐,𝑖 , 𝑝𝑐,𝑖 , 𝑜𝑎,𝑖 , 𝑝𝑎,𝑖 , 𝑆𝑠,𝑖 , 𝐵𝑠,𝑖 , 𝑅𝑠,𝑖 , 𝑆𝑐,𝑖 , 𝐵𝑐,𝑖 , 𝑅𝑐,𝑖 }
captures the platform parameters. Note that the WCETs of the tasks are assumed to be known. The
set of design parameters for the whole system is denoted by P, where P =

⋃
𝐶𝑖 ∈C 𝑝𝑎𝑟𝑖 .

To develop the software for a set of distributed control applications implemented over a FlexRay-
based ECU network, the systems and the control engineers usually start with a system specification.
On the platform side, these include: (i) ECUs and their hardware and operating system character-
istics; (ii) the basic parameters of the FlexRay cluster, e.g., the length of a communication cycle
(𝑇𝑏𝑢𝑠), the length (Δ) and the number (𝑁) of static slots; and (iii) the task partitions (𝜏𝑠,𝑖 , 𝜏𝑐,𝑖 , 𝜏𝑎,𝑖)
and their mapping T𝐸𝑘 . On the control side, for each application 𝐶𝑖 , the plant model ({𝐴𝑐

𝑖 , 𝐵
𝑐
𝑖 ,𝐶

𝑐
𝑖 })

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Roy et al.

and the performance requirement (𝐽 𝑟𝑖) need to be specified. Based on the specification, engineers
can design and implement the system in the following three phases.

Design phase: In this phase, system parameters are synthesized and validated based upon some
theoretical model of the underlying system. As a first step, the control and the systems engineers
negotiate and agree on certain constraints on fundamental parameters like sampling periods and
sensor-to-actuator delays for the control applications depending on the platform architecture.
For example, ECUs running OSEK/VDX operating system offer only a predefined set of sampling
periods. Similarly, the sensor-to-actuator delay of a controller is constrained by the non-negligible
time taken by the software tasks running on ECUs and data transmitted over the communication
bus which, in turn, depends on the processor speed and memory architecture of the ECUs and the
communication protocol and bandwidth of the bus.
Now, the control engineer tries to determine the control gains, sampling period and sensor-

to-actuator delay for each application separately based on the plant model and satisfying the
constraints on the sampling period and sensor-to-actuator delay. For a state-feedback controller,
given a sampling period, the control engineer can use the standard pole-placement technique to
calculate the values of control gains that will guarantee the stability of the system [13]. Modeling
and simulation tools like Simulink might be used to develop the plant and the controller models
for an application. To evaluate the quality of control (e.g., settling time, overshoot, and robustness
to noise), closed-loop simulations of the controller and the plant are performed. It might be also
required to search the design space for closed-loop poles, sampling period, and sensing-to-actuation
delay to ensure that the designed controller meets the control requirements (e.g., quadratic cost
and settling time). Finally, the parameter values that meet the control requirement are chosen as
the design configuration.

Next, the systems engineer partitions the model of each controller into several software tasks and
map those tasks onto ECUs depending on the layout of the physical system, e.g., the placement of
the sensors and actuators [43, 48]. Based on the task partitioning and mapping, the requirement on
the platform side is to generate valid schedules for the tasks as well as the messages between com-
municating tasks. This schedule synthesis problem can be formulated as a CSP while considering
constraints on designed values of sampling periods and delays, data dependencies, non-overlapping
tasks and messages, and other architectural constraints. Mathematical formulations of these con-
straints are provided in Sec. 3.2.3. The CSP, thus formulated, can be solved using a commercial solver
like Gurobi, CPLEX, or Z3. In case no feasible schedule exists, the systems engineer may inform the
control engineer to re-design the controllers with re-negotiated constraints on sampling periods
and delays. As a result, this conventional design paradigm can be iterative and time-consuming.
Moreover, in order to save time, if the engineers on either side make conservative assumptions
(e.g., use more ECUs) then the design becomes resource-inefficient which may not be sustainable
in the cost-sensitive automotive domain [17, 25]. Furthermore, this conventional design involves
significant manual intervention, and therefore, can be error-prone and tedious.

Software implementation phase: In this phase, the complete system software is modeled. The
Simulink models of the controllers, as developed by the control engineer in the design phase are
combined to form the software model. Subsequently, keeping the control laws intact, this model
is further manually modified to incorporate: (i) the architecture model, i.e., ECU and FlexRay
parameters; (ii) implementation-specific details like task partitioning and mapping, data mapping
and frame packing; and (iii) application-specific details, e.g., depending on the type of speed encoder
(i.e., absolute or incremental), the sensor task needs to be modeled differently. This updated system
software is then manually configured according to the task and message schedules obtained from
the design phase. Here, SIMTOOLS provides specific blocksets that enable modeling of the FlexRay

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:11

network and ECUs, partitioning and mapping of tasks, packing of data or signals into frames, and
configuration of task and message schedules. After the software implementation, simulations are
typically run to validate the correctness of the implemented models. For example, SIMTOOLS offers
a simulation option to validate both functionality and timing correctness.

Code generation and hardware implementation phase: In this phase, the binary file for each
ECU is generated from the software model and then flashed. First, the complete model developed so
far is split into separate models where each represents the software that will run on an ECU. Next, C-
code and, subsequently, the binary file are generated for each ECU from the corresponding software
model. Here, for example, SIMTOOLS offers a function Split and Build that automates the software
partitioning where the software is developed in Simulink using SIMTOOLS/SIMTARGET toolboxes.
It is then possible to generate C-code and the binary file for each ECU by invoking Simulink
Real-Time Workshop (RTW) together with SIMTARGET. Simulink RTW facilitates code generation
for Simulink blocks while SIMTARGET generates codes for SIMTOOLS/SIMTARGET blocks. The
binary files, thus generated, are then used to flash the ECUs for further hardware-in-the-loop (HIL)
testing.

The aforementioned development process has several disadvantages:

• Developers need to model the system from scratch, which is time-consuming.
• Developers manually formulate the control and the platform design problems from the system
specification.

• In the software implementation phase, the model is manually configured with the values of
the platform parameters that are obtained from the design phase, which is error-prone, time-
consuming and cumbersome.

• The final implementation might not be efficient with respect to (i) the QoC of the applications
and (ii) the amount of computation and communication resources that are allocated to them.

3 PROPOSED DESIGN FLOW AND TOOLCHAIN
In this paper, we propose a new design flow for distributed embedded controllers as shown in Fig. 4.
We have also used it for developing FlexRay-based automotive control software. We have further
developed a toolchain, named Co-Flex, to support software development based on the proposed
methodology in MATLAB/Simulink environment in conjunction with SIMTOOLS/SIMTARGET
toolboxes. Using the SIMTOOLS and SIMTAGET toolboxes require a license that is only available
in an USB stick (i.e., they are in the form of license dongles). Without these toolboxes, Co-Flex
cannot be instantiated. This, unfortunately, restricts the use of our toolbox in the public domain
because of the dependency on the commercial SIMTOOLS and SIMTAGET toolboxes. Hence, we
are not making our toolbox publicly available. This shortcoming is inherent in any toolchain that
is targeted towards industrial use and relies on commercially-available design tools. For the future,
we plan to build a similar toolchain using public domain software tools and make it available
for the academic community. But even without it, we believe that this paper – describing how
industry-strength tools can be combined for the purpose of control-platform co-design – is useful
for the academic community too.

The proposed design flow alongwith Co-Flex can overcome the disadvantages of the conventional
approach in the following ways.

• Co-Flex provides a library that assists developers to conveniently model a controller with
implementation-specific details like task partitioning and mapping, task schedules, data mapping,
and frame packing. Thus, it is not required to develop the software model from scratch and,
instead, Co-Flex blocks can be used and parameterized according to the specification.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Roy et al.

CSV files representing
1. Frame name, constituent data and size.
2. ECU names and the corresponding controller
3. Plant, performance metric and requirement
4. WCET of each tasks
5. FlexRay parameters like Tbus, N, ∆
6. Task mappings onto ECUs

System Specification

Specification Modeling

Simulink SIMTOOLS/
SIMTARGET

Co-Flex

Platform
configuration

Co-Flex:
Model

Co-Flex:
Parse

Co-Flex:
Control

Co-Flex:
Opti

Co-Flex:
Write-back

FIBEX export

Connecting lines

Partially Specified Model

Specification Extraction

ECU
Attr2 AppX

3 Task
WCET4

Task
Map6

Bus
Param5

Frame
Attr1 AppX

3
AppX

3

Prosp. Controller Design

LUTxLUTxLUTx

Co-optimization

User Selection and Parameter Writeback

Fully Specified Model

Simulation

Application Software Modeling

Pareto front

Simulation Results

Software Implementation

Code Generation

C codes and Binary files

Platform
configuration,

Schedule import

Simulation
ConfigurationSources and Sinks

Simulink libraries Co-Flex:
Dissemble

Split and Build,
SIMTARGET

Simulink
Real-time
Workshop

Hardware
interfaces

Componenet Description

Plant models, types of controllers, task
partitioning and mapping, data mapping and
frame packing, and bus parameters.

A plot representing the Pareto front and a
solution matrix consisting of the Pareto
optimal design configurations.

Each look-up table corresponds to one
application representing the control gains
and control performance at each possible
sampling periods.

C codes and binary files corresponding to
each ECU. The binary files can be directly
flashed onto the ECUs.

C codes and Binary filesC codes and Binary files

Software model with complete application-
and platform-specific details. Codes can be
generated from this model.

Graphs and tables verifying functional and
timing correctness of the synthesized
parameters.

Software model partially configured with
the specification and can be further
configured with the synthesis results.

Fully configured software model but with
incomplete models for sensor and actuator
tasks. Moreover, it also contains the plant
models which is not a part of
implementation.

Fig. 4. The Proposed Design and Implementation Flow and The Toolchain Support.

• Co-Flex offers a toolbox that automates most of the manual parts in the conventional design
flow, e.g., specification extraction, problem formulation, and configuration of design parameters.

• Co-Flex enables automated parameter synthesis. It employs a co-design technique that simultane-
ously synthesizes the controllers and the platform parameters and, in the process, co-optimizes
the overall QoC and the bus resource usage. This technique ensures design optimality and also
allows developers to make a trade-off between the two design objectives.

The proposed design flow consists of three phases. In phase (1), i.e., the specification modeling
phase, the developer creates a model according to the system specification. This model comprises,
for each application, the controller template with application-level details (i.e., of the controlled
plant and the performance requirement) and implementation-specific information (i.e., about task
partitioning and mapping, data mapping, and frame packing). In phase (2), i.e., the design and
software implementation phase, the parameter synthesis problem is first formulated based on the
specification model from phase (1), and the problem is then solved to synthesize the control and
platform parameters. Further, the specification model is configured with the synthesized parameter
values and more application-specific details are added to obtain the complete software model.
Phase (3) or the code generation phase is exactly the same as in the case of the conventional design
flow where C-code and binary files are generated from the software model to be used to flash the
ECUs. Note that we have only replaced the first two phases of the conventional design flow with

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:13

Fig. 5. Specification modeling. (From left to right) Top: (i) task mappings and signals (ii) plant models
(iii) control specification (iv) signal description. Bottom: (v) FlexRay configuration (vi) data mapping and
frame packing.

the specification modeling phase and the design and implementation phase respectively. In this
section, we will explain these two phases in detail together with the tools offered by Co-Flex.

3.1 Specification Modeling
In contrast to the conventional design flow where the modeling of the application software starts
only after the synthesis of design parameters, the proposed approach starts with adding the
specification details into a software model. For the problem setting described in Sec. 2.1 and Sec. 2.2
respectively, the system specification typically includes (i) plant models, (ii) type of controllers to
be used, (iii) task partitioning and mapping, (iv) data mapping and frame packing, and (v) FlexRay
bus parameters. We assume that the mathematical models of the physical plants are available and
they are controlled using state-feedback controllers.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Roy et al.

Fig. 6. Partially specified model. (i) (left top) Closed-loop systemmodel (ii) (left bottom) Plant model (iii) (right)
Distributed controller implementation.

For task partitioning and mapping, we assume the following to be given: (i) the physical system
layout, i.e., the physical distribution of sensors, actuators, and ECUs; and (ii) the network topology,
i.e., how the sensors, actuators, ECUs, and FlexRay bus are connected. With this assumption, task
partitioning and mapping is partially fixed, e.g., if a sensor is connected to an ECU then it makes
sense to map the sensor task on the corresponding ECU. However, the rest can be synthesized by
employing any well-established task partitioning and mapping algorithms [23, 40].
Furthermore, from task partitioning and mapping, data dependencies can be derived. The data

that needs to be transmitted as messages over the communication bus can be identified. We assume
that each frame is packed with only one message. We do not consider frame packing in the co-
optimization. We understand that packing a frame with more than one message can result in a more
efficient design, however, to ensure the scalability of the co-design scheme, we do not consider
this. To the best of our knowledge, existing works on FlexRay frame packing do not consider task
and message co-scheduling [26]. Nevertheless, the co-design technique used in this paper can
consider the case where it is known apriori how the messages sent from an ECU will be packed
into frames. In the future, we can trivially add a rule-based frame packing scheme in Co-Flex. We
further assume that FlexRay network parameters like bus cycle time 𝑇𝑏𝑢𝑠 , clock period, number of
static slots 𝑁 , and the size of each slot Δ are fixed based on requirements, e.g., the size of a static
slot is determined based on the largest frame in the system.

Now, given the specification, the developer can model a partially configured application software
in the Simulink environment using Co-Flex:Model library and SIMTOOLS/SIMTARGET. Fig. 5 shows
several snapshots on how the specification is modeled using our proposed toolchain conveniently
by configuring several block parameters.

Co-Flex: Model – It is a library comprising template blocks that aid the modeling of FlexRay-based
control software. For the time being, the library supports modeling of state-feedback controllers
only, however, it can be extended in the future for PID, model predictive, and adaptive controllers.
The library mainly consists of two template blocks as follows:

• FeedbackController: This block accelerates the modeling of a feedback control application that
will run on a distributed FlexRay platform. The left block in the top-left snapshot of Fig. 6 is a
FeedbackController. The parameters to this block include (i) sensor and control message names,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:15

(ii) sensor, control, and actuator task mappings and schedules, (iii) sampling period, (iv) control
gains (vii) control performance metric, and (viii) performance requirement. A newly added block
basically represents a skeleton implementation of a distributed control application with empty
sensor, control, and actuator task models. After parameterizing the block, developers can push a
button create (provided in the mask) to automatically configure the underlying model to represent
a distributed embedded control application as shown in the right snapshot in Fig. 6. Besides, the
block is reconfigurable, i.e., developers can use the same block to model a different controller
in case of a change in the specification. However, if the order of the corresponding controlled
plant is different then developers must first push the button clear to go back to the skeleton
implementation. Furthermore, a push button verify is provided in this block in order to check
data consistency between this block and the SIMTOOLS platform configuration block. The inputs
of this block are the system states 𝑥 and the output is the control input 𝑢.

• Plant: The right block in the top-left snapshot of Fig. 6 is a Plant. Developers can specify the
plant model by parameterizing this block. It can represent a controlled plant of any order. The
parameters to this block include (i) the system order, (ii) the state matrix 𝐴𝑐 , (iii) the input matrix
𝐵𝑐 , and (iv) the output matrix 𝐶𝑐 . After parameterizing the block, developers can push a button
create to automatically build an underlying plant model as shown in the bottom-left diagram in
Fig. 6. This block is also reconfigurable and developers can use the push button clear to delete the
underlying model. The input of this block is the control input 𝑢 and the outputs are the system
states 𝑥 and the system output 𝑦. Closed-loop system model can be obtained by connecting (i) the
outputs 𝑥 of this block to the inputs of the FeedbackController block and (ii) the output 𝑢 of the
FeedbackController block to the input of this block. The purpose of this block is twofold: (i) The
plant specification can be read from this block to design the controller. (ii) The underlying plant
model can be used for closed-loop simulations to validate the designed control and platform
parameters before the hardware implementation.

Now, using Co-Flex:Model and SIMTOOLS/SIMTARGET, the specification modeling is carried out
as follows: (i) For each control application, insert a FeedbackController block and a Plant block and
parameterize them according to the specification. Then, create the models for the plant and the
partially-specified controller respectively and connect them as shown in the top-left snapshot in
Fig. 6. (ii) Insert a Database File Block provided by SIMTOOLS that allows to specify the complete
platform configuration. (iii) In the Database File Block, configure the message signals, the ECUs,
and the FlexRay network according to the specification. (iv) In the Database File Block, use Import
constraints from model feature so that the task and message mappings are read automatically from
the model. (v) Configure frames and assign messages to frames such that for each control application
there are two FlexRay frames, i.e., a sensor signal frame and a control signal frame respectively.
(vi) Finally, the modeling correctness can be verified by pushing the button verify in each of the
FeedbackController blocks.
The output of this phase is a partially-specified software model, as mentioned in Fig. 4. The

control and schedule parameters must be written to this model and more application-level details
are added to synthesize the complete software model.

3.2 Design and Software Implementation
This phase starts with the extraction of relevant information from the specification model which
is required to formulate the parameter synthesis problem. Based on the extracted information, a
co-optimization problem is formulated. Here, the co-optimization problem can be defined as to find
the set of parameters 𝑝𝑎𝑟𝑖 for each control application, where 𝑝𝑎𝑟𝑖 ∈ P, while optimizing the total
FlexRay bus resource usage as in Eq. (12) and the overall QoC as in Eq. (9).

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Roy et al.

Generate
Pareto Point Candicate

IF all values of
U exploredYES

YES

Optimize
Control Performance

IF feasible, not
dominated

Find
Feasible Schedules

IF feasible

Valid Pareto Point
Add to Pareto Front

NO

NO
YES

Not Valid Pareto Point

NO

Return Pareto Front

Layer 2

Layer 1

Prospective
Controller Design

Co-Optimization

User Selection

Constraints,
Plant Models,
Objectives

Pareto Front

Stage 1

Stage 2

Control Performance
Look-up Table

Control and Platform
Parameters

Fig. 7. The co-optimization approach.

In this work, we implement a hybrid optimization approach [36], as shown in Fig. 7, that can
efficiently solve the co-design problem. The optimization comprises two stages. In the first stage,
for each control application, prospective controllers are synthesized that optimize the control
performance at different sampling periods and the results are recorded in a look-up table. In this
stage, we employ the pole placement design method and search the pole space for the optimal
controller at each possible sampling period. In the second stage, the co-optimization stage, we
synthesize both control and the platform parameters based on the system constraints, objectives
and the look-up tables obtained in the first stage. Here, we formulate a bi-objective optimization
problem and use a customized approach to generate a Pareto front considering the two objectives.
Based on the obtained Pareto front, the developer can select one of the Pareto points that is

the most suitable for the overall design requirements. The parameter values corresponding to the
selected Pareto point are then written back into the software model. The software is modeled
further to incorporate application-specific details, i.e., the models for sensor and actuator tasks. The
software model thus obtained can be simulated using the plant models from the previous phase.
Finally, the plant models can be removed and then binary and C-code files can be generated to be
used to flash the ECUs.

This phase is essentially divided into five stages, as shown in Fig. 4, that are discussed in detail
in the rest of this section.

3.2.1 Specification Extraction.

This is the first stage of the design and software implementation phase and is necessary for the
automated formulation of the co-optimization problem. In this stage, developers first export the
platform configuration from the specification model as a Field Bus Exchange Format (FIBEX) file.
For this, developers use the Export as FIBEX feature that is provided in the SIMTOOLS Database
File Block. FIBEX is a standard format used by the automotive industry to exchange data. A FIBEX
file is an Extensible Markup Language (XML) document with a standard XML Schema Definition
(XSD). It can be read by any standard parsing tool to extract important information. The exported

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:17

Fig. 8. Co-Flex: Control tool. Fig. 9. Parse, Opti, Writeback, Dissemble tools.

FIBEX contains dummy values for task and message schedules as they are not yet calculated. For
the design, the relevant information in the FIBEX file includes: (i) the FlexRay parameters like
the bus cycle time (𝑇𝑏𝑢𝑠), the number of static slots (𝑁), and the length of a static slot (Δ); (ii) the
ECU attributes like the names of the ECUs and the corresponding FlexRay controllers; (iii) the
task attributes like the task names, WCETs and mappings; and (iv) the FlexRay frame attributes
like the names, the data mapping, and the size of the constituent data. However, note that the
information is not complete. The obtained FIBEX does not contain any information about the plant
model, the performance metric or the performance requirement for an application, while they are
necessary to design the controller. Co-Flex toolbox offers a tool, Parse, that helps to extract the
relevant information from the specification model and store it in a systematic manner.

Co-Flex: Parse – This tool can be invoked from the Co-Flex Toolbox block, as shown in Fig. 9, by
checking the corresponding checkbox. It basically helps in specification extraction and systematic
storage. It parses the specification model as well as the exported FIBEX from the model. This tool
uses common MATLAB semantics (e.g., find_system and get_param) to parse the software model
and the MATLAB Document Object Model (DOM) parser to parse the FIBEX file. All the required
details can be extracted using this tool. Further, this tool organizes the extracted information,
as given in Fig. 4, into several easy-to-access csv files, i.e., BusParam.csv, ECUAttr.csv,WCET.csv,
TaskMap.csv, FrameData.csv, and AppX.csv (for application X). These files can then be accessed
by the following stages for the problem formulation as well as when writing back the parameter
values into the software model.

3.2.2 Prospective Controller Design.

The control performance 𝐽𝑖 of an application𝐶𝑖 depends mainly on three factors: (i) the sampling
period ℎ𝑖 , (ii) the sensor-to-actuator delay 𝑑𝑖 , and (iii) the control gains 𝐾𝑖 and 𝐹𝑖 . However, we
consider that for each application, the task and message schedules lead to the case where the
delay is equal to the sampling period, i.e., 𝑑𝑖 = ℎ𝑖 . This is a reasonable consideration because the

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Roy et al.

impact of the delay on the control performance is insignificant compared to that of the sampling
period [28]. Also, this offers more flexibility in scheduling the tasks and messages. This would
reduce the dimensions of the design space from all three factors (i) - (iii) to only (i) and (iii), thus
reducing the problem complexity. The co-design approach under study can also be applied to other
cases, e.g., a constant delay or a delay value proportional to the sampling period.

With the assumption𝑑𝑖 = ℎ𝑖 , the purpose of the prospective controller design stage is to determine
for each application the control gains that optimize the control performance at each possible value
of the sampling period. Here, we make use of the fact that the sampling period can only take a finite
number of values to prune the design space further. Considering that each control application 𝐶𝑖 is
implemented by the tasks 𝜏𝑠,𝑖 , 𝜏𝑐,𝑖 , 𝜏𝑎,𝑖 and messages𝑚𝑠,𝑖 ,𝑚𝑐,𝑖 , there is a dependency between the
sampling period ℎ𝑖 and the repetition rate of the messages 𝑅𝑠,𝑖 , 𝑅𝑐,𝑖 . This is represented as follows:

ℎ𝑖 = 𝑅𝑠,𝑖𝑇𝑏𝑢𝑠 = 𝑅𝑐,𝑖𝑇𝑏𝑢𝑠 . (13)
Due to the fact that 𝑅𝑠,𝑖 and 𝑅𝑐,𝑖 can only take values in {2𝑘 |𝑘 ∈ {0, ..., 6}}, the choice of ℎ𝑖 becomes
constrained accordingly. In this stage, Co-Flex offers a tool Control that can be invoked for each
application to design prospective optimal controller at each possible sampling period.

Co-Flex: Control – This tool can be invoked from the FeedbackController block by checking a
checkbox indicated by an arrow in Fig. 8. In order to design prospective controllers for application
𝑋 , this tool uses AppX.csv to fetch the plant model, the control performance metric, and the
performance requirement. It also reads BusParam.csv to obtain the length of a bus cycle 𝑇𝑏𝑢𝑠 that
is required to determine the possible values of the sampling period. With 𝑑𝑖 = ℎ𝑖 , the closed-loop
system experiences one sampling period delay. We use the pole placement method reported in [19]
for such a delayed system. This method is applied on the equivalent discrete-time system model.
It enables to find the control gains for a set of stable poles and, hence, ensures the stability of
the closed-loop system. For the optimal pole placement, to the best of our knowledge, there is no
closed-form analytical framework. In this work, we search the design space for poles, although it
can be computationally expensive. Note that there exists an optimal control technique [12], i.e., the
linear quadratic regulator (LQR), when the control performance is computed using a quadratic cost
function. It cannot be directly applied when we want to optimize the settling time. Nevertheless,
we can easily add the LQR control design technique to the tool.

For 𝑑𝑖 = ℎ𝑖 , the control performance can be written as 𝐽𝑖 = 𝑓 (ℎ𝑖 , 𝐾𝑖 , 𝐹𝑖), i.e., it is a function
of the sampling period and the control gains. When the plant model {𝐴𝑐

𝑖 , 𝐵
𝑐
𝑖 ,𝐶

𝑐
𝑖 }, the sampling

period ℎ𝑖 , and the control gains {𝐾𝑖 , 𝐹𝑖 } are known, the control performance is determined via
the closed-loop simulation of the plant and the controller as per Eq. (5) and Eq. (6) respectively.
The control performance at each feasible value of the sampling period, i.e., ℎ𝑘𝑖 = 2𝑘𝑇𝑏𝑢𝑠 , can also
be written as 𝐽𝑘𝑖 = 𝑔(𝐾𝑘

𝑖 , 𝐹
𝑘
𝑖), i.e., it is a function of control gains only. The control gains can be

uniquely computed based on a chosen set of poles, thus, we can write 𝐽𝑘𝑖 = 𝑔′(𝜌𝑘𝑖), where 𝜌𝑘𝑖
denotes the set of poles. The Control tool searches for the set of poles that optimizes the control
performance. Using the method in [19], stable controllers can only be designed for a restricted
set of poles. We prune the design space accordingly. Note that the search is carried out with a
specific granularity in the restricted pole space. Considering that this search discretizes the pole
space, it does not guarantee to obtain the optimal controller. However, the smaller the search
granularity is, the better are the chances of getting a controller closer to the optimum. We denote
that, corresponding to a sampling period ℎ𝑘𝑖 , the Control tool synthesizes the control gains 𝐾

𝑘∗
𝑖

and 𝐹𝑘∗𝑖 that optimize the control performance to a value 𝐽𝑘∗𝑖 . Interested readers are encouraged to
read [36] for the detailed implementation of the search algorithm to design an optimal controller
for a given sampling period.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:19

The Control tool further formulates a look-up table (LUT) for each control application𝐶𝑖 , as stated
in Fig. 4. The LUT stores, for each possible sampling period ℎ𝑘𝑖 , the optimal control performance
𝐽𝑘∗𝑖 and the corresponding control gains 𝐾𝑘∗

𝑖 and 𝐹𝑘∗𝑖 . In the co-optimization stage, the sampling
periods of the control applications will be used as variables during the problem formulation. The
objective of the overall QoC can, therefore, be formulated as a discrete function of the sampling
periods. Corresponding to the values of the sampling periods, the control laws can be selected by
referring to these LUTs. Therefore, the sampling periods here serve as the main interface between
the prospective controller design stage and the co-optimization stage.

3.2.3 Co-Optimization.

With the results from the prospective controller design stage, the co-optimization problem can
be formulated as a constrained programming model. The parameters to be synthesized include
(i) the sampling periods of the control applications, (ii) the task schedules, and (iii) the message
schedules. We consider the platform constraints and the control performance constraint that are
formulated as follows:

∀𝐶𝑖 ∈ C, 𝑥 ∈ {𝑠, 𝑐, 𝑎}, 𝑦 ∈ {𝑠, 𝑐}, 𝑝𝑥,𝑖 = 𝑅𝑦,𝑖𝑇𝑏𝑢𝑠 = ℎ𝑖 . (14)
∀𝐶𝑖 ∈ C, 𝑥 ∈ {𝑐, 𝑎}, 𝑦 ∈ {𝑠, 𝑐}, 𝛼𝑥,𝑖 , 𝛽𝑦,𝑖 ∈ {0, 1}. (15)

∀𝐶𝑖 ∈ C, 𝑜𝑠,𝑖 + 𝑒𝑠,𝑖 + 𝜖 < (𝐵𝑠,𝑖 + 𝛽𝑠,𝑖𝑅𝑠,𝑖)𝑇𝑏𝑢𝑠 + (𝑆𝑠,𝑖 − 1)Δ. (16)
∀𝐶𝑖 ∈ C, (𝐵𝑠,𝑖 + 𝛽𝑠,𝑖𝑅𝑠,𝑖)𝑇𝑏𝑢𝑠 + 𝑆𝑠,𝑖Δ < 𝑜𝑐,𝑖 + 𝛼𝑐,𝑖𝑝𝑐,𝑖 − 𝜖. (17)

∀𝐶𝑖 ∈ C, 𝑜𝑐,𝑖 + 𝛼𝑐,𝑖𝑝𝑐,𝑖 + 𝑒𝑐,𝑖 + 𝜖 < (𝐵𝑐,𝑖 + 𝛽𝑐,𝑖𝑅𝑐,𝑖)𝑇𝑏𝑢𝑠 + (𝑆𝑐,𝑖 − 1)Δ. (18)
∀𝐶𝑖 ∈ C, (𝐵𝑐,𝑖 + 𝛽𝑐,𝑖𝑅𝑐,𝑖)𝑇𝑏𝑢𝑠 + 𝑆𝑐,𝑖Δ < 𝑜𝑎,𝑖 + 𝛼𝑎,𝑖𝑝𝑎,𝑖 − 𝜖. (19)

∀𝐶𝑖 ∈ C, (𝑜𝑎,𝑖 + 𝛼𝑎,𝑖𝑝𝑎,𝑖 + 𝑒𝑎,𝑖) − 𝑜𝑠,𝑖 = ℎ𝑖 . (20)

∀ 𝐶𝑖 ,𝐶 𝑗 ∈ C, 𝑥,𝑦 ∈ {𝑠, 𝑐, 𝑎}, 𝐸𝑘 ∈ E
∀ {𝑚 ∈ Z∗ |0 ≤ 𝑚 ≤𝑙𝑐𝑚(𝑝𝑥,𝑖 , 𝑝𝑦,𝑗)/𝑝𝑥,𝑖 } , {𝑛 ∈ Z∗ |0 ≤ 𝑛 ≤ 𝑙𝑐𝑚(𝑝𝑥,𝑖 , 𝑝𝑦,𝑗)/𝑝𝑦,𝑗 }

if (𝜏𝑥,𝑖 ≠ 𝜏𝑦,𝑗) ∧ (𝜏𝑥,𝑖 , 𝜏𝑦,𝑗 ∈ T𝐸𝑘) then[
𝑡 (𝜏𝑥,𝑖 ,𝑚) + 𝜖 · 1(𝑥 ∈ {𝑠, 𝑐}) < 𝑡 (𝜏𝑦,𝑗 , 𝑛) − 𝜖 · 1(𝑦 ∈ {𝑐, 𝑎})

or 𝑡 (𝜏𝑦,𝑗 , 𝑛) + 𝜖 · 1(𝑦 ∈ {𝑠, 𝑐}) < 𝑡 (𝜏𝑥,𝑖 ,𝑚) − 𝜖 · 1(𝑥 ∈ {𝑐, 𝑎})
]
.1

(21)

∀ 𝐶𝑖 ,𝐶 𝑗 ∈ C, 𝑥,𝑦 ∈ {𝑠, 𝑐}
∀ {𝑛 ∈ Z∗ |0 ≤ 𝑛 < 𝑚𝑎𝑥 (𝑅𝑥,𝑖 ,𝑅𝑦,𝑗)/𝑅𝑥,𝑖 } , {𝑚 ∈ Z∗ |0 ≤ 𝑚 < 𝑚𝑎𝑥 (𝑅𝑥,𝑖 , 𝑅𝑦,𝑗)/𝑅𝑦,𝑗 }

if (Θ𝑥,𝑖 ≠ Θ𝑦,𝑗) ∧ (𝑆𝑥,𝑖 = 𝑆𝑦,𝑗) then 𝐵𝑥,𝑖 + 𝑛𝑅𝑥,𝑖 ≠ 𝐵𝑦,𝑗 +𝑚𝑅𝑦,𝑗 .
(22)

∀ 𝐶𝑖 ∈ C, 𝑥 ∈ {𝑠, 𝑐}, 1 ≤ 𝑆𝑥,𝑖 ≤ 𝑁 . (23)
∀ 𝐶𝑖 ∈ C, 𝑥 ∈ {𝑠, 𝑐}, 0 ≤ 𝐵𝑥,𝑖 < 𝑅𝑥,𝑖 . (24)
∀ 𝐶𝑖 ∈ C, 𝑥 ∈ {𝑠, 𝑐, 𝑎}, 0 ≤ 𝑜𝑥,𝑖 < 𝑝𝑥,𝑖 . (25)

∀𝑘 ∈ {0, 1, ...6}, 𝐽𝑘∗𝑖 ≤ 𝐽 𝑟𝑖 ⇐⇒ ℎ𝑘𝑖 ∈ 𝑑𝑜𝑚[ℎ𝑖] and ℎ𝑖 == 2𝑘𝑇𝑏𝑢𝑠 ⇐⇒ 𝐽𝑖 == 𝐽
𝑘∗
𝑖 . (26)

Constraint (14) implies that the sampling period of an application must be equal to the period
of repetition of the component tasks and messages. Constraints (15) to (19) state that in a control
application all task executions and message transmissions have to be carried out in the correct
1
1(.) takes the value of 1 if the input is true and 0 if otherwise.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Roy et al.

temporal order, i.e., certain precedence relations must be followed. Constraint (20) is due to the
assumption of one sampling period sensor-to-actuator delay. Constraints (21) and (22) lay down
respectively that no two tasks or two messages mapped on the same resource must overlap in
time. Constraints (23) and (24) state the permissible values of slot ids and base cycles respectively.
Constraint (25) asserts that each time window of duration equal to the task period must have at
least one task instance. Constraint (26) implies that the sampling period of an application can attain
only those values corresponding to which the designed optimal controller from the previous stage
satisfies the performance requirement. Furthermore, in case of FlexRay 2.1, an additional constraint
must be considered as slot multiplexing between different ECUs is not allowed. This is given by:

∀ 𝐶𝑖 ,𝐶 𝑗 ∈ C, 𝑥,𝑦 ∈ {𝑠, 𝑐}, ∃𝐸𝑘 ∈ E,
if (Θ𝑥,𝑖 ≠ Θ𝑦,𝑗) ∧ (𝜏𝑥,𝑖 ∈ T𝐸𝑘) ∧ (𝜏𝑦,𝑗 ∉ T𝐸𝑘) then 𝑆𝑥,𝑖 ≠ 𝑆𝑦,𝑗 .

(27)

Moreover, the optimization objectives of bus resource usage and overall QoC can be formulated
respectively as follows:

𝑈 =
100%
64𝑁

∑
𝐶𝑖 ∈C

(64
𝑅𝑠,𝑖

+ 64
𝑅𝑐,𝑖

) = 100%
64𝑁

∑
𝐶𝑖 ∈C

128𝑇𝑏𝑢𝑠
ℎ𝑖

. (28)

𝐽𝑜 =
∑
𝐶𝑖 ∈C

𝑤𝑖 𝐽
𝑛
𝑖 =

∑
𝐶𝑖 ∈C

𝑤𝑖

∑
𝑘

𝜇𝑖,𝑘 𝐽
𝑘∗(𝑛)
𝑖

, where
∑
𝑘

𝜇𝑖,𝑘 = 1 and 𝐽𝑘∗(𝑛)
𝑖

=
100𝐽𝑘∗𝑖

𝐽 𝑟
𝑖

. (29)

As formulated above, the control-platform co-design for the setting under study can be modeled
as a constrained optimization problem with two objectives. There exist several methods dealing
with multi-objective optimization. A simple way is to convert the multiple objectives into one
single objective with scalarization. However, the problems using this method here are as follows:
(i) The two objectives are completely different in nature and it is challenging to combine them as a
single metric. (ii) It would not be possible for developers to understand the design trade-off, which
is necessary because the two objectives are noticed to be often conflicting. In this case, a more
informative and developer-friendly approach is to first generate the Pareto front and let developers
explore the trade-off between the two objectives according to their customized preference. Co-
Flex toolbox comprises a tool named Opti that can be used to automate the formulation of the
co-optimization problem and, thereafter, for finding the Pareto-optimal solutions to the problem.
Co-Flex: Opti – This tool can be invoked from the Co-Flex Toolbox block, as shown in Fig. 9, by
checking the corresponding checkbox. It can automatically formulate the problem according to the
constraints and objectives in Eqs. (14) – (29) by referring to the files generated in the specification
extraction stage and the look-up tables from the prospective controller design stage. In order to solve
the problem and obtain the desired Pareto front, the tool uses a customized optimization approach.
Considering that the resource usage𝑈 only takes a limited number of values, it first computes the
maximum and the minimum possible values of the resource usage𝑈 + and𝑈 − as follows:

𝑈 + =
100
64𝑁

∑
𝐶𝑖 ∈C

128𝑇𝑏𝑢𝑠
max

ℎ𝑖 ∈𝑑𝑜𝑚 [ℎ𝑖]
(ℎ𝑖)

, 𝑈 − =
100
64𝑁

∑
𝐶𝑖 ∈C

128𝑇𝑏𝑢𝑠
min

ℎ𝑖 ∈𝑑𝑜𝑚 [ℎ𝑖]
(ℎ𝑖)

. (30)

For each possible value of 𝑈 from 𝑈 − to 𝑈 +, i.e., given the equality constraint on 𝑈 , it solves
the optimization problem with 𝐽𝑜 as the single objective and obtain a solution. The additional
constraint is that 𝐽𝑜 of this solution has to be better than 𝐽𝑜 of the last solution, in order to ensure
that all solutions are non-dominated. The co-optimization problem with two objectives is, thus,
turned into a series of single-objective optimization problems, where each may generate a Pareto
point. Here, popular approaches like Mixed Integer Linear Programming (MILP) or meta-heuristic
methods cannot be applied directly to solve each of the single-objective optimization problems.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:21

Fig. 10. Writing back the gains (left) and the frame schedules (right).

Considering that some decision variables only appear in the constraints, but are not related to
the objectives, a nested two-layer technique, as depicted in Fig. 7, is employed to solve each of the
problems. In Layer 1, the outer layer, Opti considers only Constraint (26) and an equality constraint
on bus usage 𝑈 derived from Constraint (28). It optimizes the overall QoC as given in Eq. (29).
Decision variables related to the objectives, i.e., the sampling periods, are determined in this layer
by solving an integer linear programming problem.
In Layer 2, the inner layer, the remaining decision variables are synthesized satisfying the

constraints in Eqs. (14) – (25) while substituting the values of sampling periods based on the results
of Layer 1. Here, an MILP model is developed for the time-triggered scheduling problem similar
to [51]. This process is iterative, i.e., if the synthesis fails in Layer 2, the algorithm goes back to
Layer 1 for the next best solution until the Pareto criterion is satisfied. This optimization technique
ensures optimality and is also efficient. Details of the optimization technique can be found in [36].

3.2.4 Parameter Writeback.

The Pareto front, that is obtained from the co-optimization stage, consists of a number of Pareto
points where each represents a feasible Pareto-optimal solution of the co-optimization problem.
The developer can choose one of them for the implementation based on the design requirements.
The solution corresponding to the selected Pareto point must be interpreted correctly to represent
a valid design configuration. Accordingly, the specification model must be then parameterized. To
facilitate convenient write back of the synthesized parameter values in the software model, Co-flex
offers a tool Writeback.
Co-Flex: Writeback – This tool can be invoked from the Co-Flex Toolbox block, as shown in Fig. 9,
by checking the corresponding checkbox. It automates (i) completely the result interpretation
and (ii) partially the result write back. The solution to the co-optimization problem is stored as
a matrix where each row represents a Pareto point. Therefore, if the developer selects the 𝑛-th
Pareto point then theWriteback tool will extract row 𝑛 from the solution matrix. Thereafter, the
task and message schedules can be calculated by this tool through correct interpretation of the
elements of the extracted row. The interpretation is done by exploiting the knowledge of problem
formulation from the previous stage. That is, if a design parameter is represented by the decision

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Roy et al.

variable 𝑖 then the synthesized value of the parameter is given by element 𝑖 in the extracted row.
Furthermore, as depicted in Fig. 4, the values of the control gains can be obtained by this tool from
the LUTs generated in the prospective controller design stage according to the synthesized values
of the sampling periods.
Following result interpretation, developers need to configure the software model with the

obtained parameter values. Towards this, theWriteback tool can directly write the control gains (as
shown by the pointers in Fig. 10) and the application task schedules in the model automatically.
However, for the FlexRay frame schedules, the tool generates a csv file in a format that can be directly
imported in SIMTOOLS Database File Block, as shown in Fig. 10. The format also includes other
attributes of the frames like the transmitting and receiving FlexRay controller, frame size, among
others. These details can be obtained by referring to FrameData.csv generated in the specification
extraction stage. Similarly, for the communication tasks, schedules are generated and stored in a
format in which it needs to be entered in SIMTOOLS Database File Block. However, SIMTOOLS does
not allow importing communication task schedules, and therefore, they are manually entered by
the developer according to the generated file. In our opinion, this process can be made completely
automated by collaborating with tool suppliers.

Following the parameter write back, the developed software model can be tested using the plant
models via closed-loop simulations. SIMTOOLS offers a Simulation Configuration Block that enables
validation of timing behavior in addition to functional correctness.

3.2.5 Application Software Modeling.

The model developed so far contains details of the controlled plants that will not be in the final
software implementation. Moreover, SIMTOOLS Split and Build function does not look inside a
subsystem block. Therefore, the controller implementations – that lie inside the FeedbackController
blocks – must be brought to the first level for generating codes and binaries correctly in the next
phase. Co-Flex comprises a tool Dissemble that automates the above two processes.
Co-Flex: Dissemble – This tool can be invoked from the Co-Flex Toolbox block, as shown in Fig. 9,
by checking the corresponding checkbox. It takes the development closer to the implementation
by (i) deleting the plant models and (ii) expanding subsystem blocks that represent the controller
implementations. However, it might be required to reuse the model developed so far partially or
completely for a different car with different requirements. Therefore, it makes sense to not modify
the model developed so far and, instead, create a new model by copying only the parts that will be
in the implementation. Dissemble tool automatically copies the controller implementations and
the platform configuration block into a new Simulink model while adding new blocks for clock
synchronization. This can be achieved by using the MATLAB function add_block.
Furthermore, the model so far may not contain the details of sensor and actuator tasks. They

depend on the type of sensors and actuators used. For example, in case of an adaptive cruise control
application, the sensor can be a camera and the sensor task requires video processing to detect a
slowdown of the vehicle in front. Therefore, in this stage, developers need to manually incorporate
such details about sensing and actuation into the software model. In future, standard task models
can also be added to Co-Flex: Model library to further reduce manual interventions. This final
software model with every detail of the applications is then used in the next phase for the code
generation and the hardware implementation, respectively.

4 A CASE STUDY
We consider a system motivated by software applications in the automotive domain. Due to
confidentiality issues, it is difficult to find a case study that represents a real industrial system and

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:23

obtain all the details including the mathematical model of the plants. Therefore, we use a synthetic
case study, consisting of a FlexRay-based ECU network implementing 5 control applications that
are typically found in the automotive domain.

Plant models: We study a set of 5 control applications denoted by C = {𝐶1,𝐶2,𝐶3,𝐶4,𝐶5}. 𝐶1
to 𝐶5 represent respectively a DC motor speed control (DCM), a car suspension system (CSS),
an electronic wedge brake (EWB), and two variants of cruise control (CC1) and (CC2). In this
work, we have studied only linear plant models, however, in real-world scenarios, we might have
piecewise-linear or nonlinear plants. It is to be investigated in the future how to extend the co-
design technique, discussed in this paper, to such scenarios. The plants2 under consideration are
described as follows:

(𝐶1) The DC motor speed control application (DCM) has state variables 𝑥 = [𝑥1 𝑥2]𝑇 representing
respectively the rotational speed of the motor shaft and the armature current. The control input 𝑢
is the motor terminal voltage. This application can, for example, represent a wheel speed control in
an electric vehicle. The system matrices for this plant are given as follows:

𝐴𝑐 =

[
−10 1
−0.02 −2

]
, 𝐵𝑐 =

[
0
2

]
, 𝐶𝑐 =

[
1 0

]
. (31)

For this plant, we consider that the control objective is to have a value of the cost function, given
by Eq. (7), lower than 0.7 in a unit step response. Here, we assume that the value of 𝜆 is 0.001.

(𝐶2) The car suspension system (CSS) has the state variables 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4], where 𝑥1 and
𝑥2 represent the position and velocity of the car, and 𝑥3 and 𝑥4 are the position and velocity of
the mass of the suspension system. The control input 𝑢 is the force applied to the body by the
suspension system. The system matrices are given as follows:

𝐴𝑐 =

0 1 0 0
−8 −4 8 4
0 0 0 1
80 40 −160 −60

 , 𝐵𝑐 =

0
80
20

−1120

 , 𝐶𝑐 =
[
1 0 0 0

]
. (32)

The control objective is to have a unit impulse response with a settling time 𝜉 lower than 1 s.

(𝐶3) We study a simplified version of an electronic wedge brake (EWB). Two state variables
𝑥 = [𝑥1 𝑥2] are the position and the velocity of the braking wedge, respectively. For a simplified
DC motor model, the control input 𝑢 is the force exerted by the motor. The plant model is given by:

𝐴𝑐 =

[
0 1

8395.1 0

]
, 𝐵𝑐 =

[
0

4.0451

]
, 𝐶𝑐 =

[
7992 0

]
. (33)

The control objective is to have a unit step response with a settling time 𝜉 lower than 0.2 s.

(𝐶4) CC1 is a simplified version of a cruise control system, i.e., neglecting the dynamics of the
powertrain and tires. Here, the state variable 𝑥 represents the speed of a vehicle and the control
input 𝑢 is the force exerted on the vehicle. The plant model is given by:

𝐴𝑐 = −0.05, 𝐵𝑐 = 0.001, 𝐶𝑐 = 1. (34)
The control objective is to have a unit step response with a settling time 𝜉 lower than 0.5 s.

(𝐶5) CC2 is a more detailed version of a cruise control system. It regulates the vehicle speed
in order to follow the driver’s command. The state space representation of this system can be

2The references are mentioned in [36].

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Roy et al.

Table 1. Task mapping

𝐸𝑖 Tasks
𝐸1 𝜏𝑠,1, 𝜏𝑐,2, 𝜏𝑎,3,

𝜏𝑎,4, 𝜏𝑐,5.
𝐸2 𝜏𝑎,1, 𝜏𝑠,2, 𝜏𝑐,3,

𝜏𝑠,4, 𝜏𝑠,5.
𝐸3 𝜏𝑐,1, 𝜏𝑎,2, 𝜏𝑠,3,

𝜏𝑐,4, 𝜏𝑎,5.

Table 2. FlexRay Bus Configuration

Parameters Values

Bus Speed 10 Mbps
𝑇𝑏𝑢𝑠 5ms
MacroTick 1 µs
𝑁 25
Δ 100 µs

Table 3. Task WCETs

𝐶𝑖 WCET in µs
𝜏𝑠,𝑖 𝜏𝑐,𝑖 𝜏𝑎,𝑖

𝐶1 200 300 100
𝐶2 400 600 100
𝐶3 200 300 100
𝐶4 100 150 100
𝐶5 300 450 100

ECU1 ECU2 ECU3

FlexRay

Fig. 11. Platform architecture for the case study.

5 10 20 40 80 160 320

Sampling Period in log
10

 scale [ms]

10

100

1000

N
or

m
al

iz
ed

 C
on

tr
ol

 P
er

fo
rm

an
ce

 J
in

in
 lo

g
10

 s
ca

le
 [%

]

CSS
CC1
CC2
DCM
EWB

J
i
r,n

Fig. 12. Prospective Optimal Control Design.

described as follows:

𝐴𝑐 =

0 1 0
0 0 1

−6.0476 −5.2856 −0.238

 , 𝐵𝑐 =

0
0

2.4767

 , 𝐶𝑐 =
[
1 0 0

]
. (35)

The control objective is to have a unit step response with a settling time 𝜉 lower than 0.5 s.

Platform architecture: In this case study, we use a hardware platform, as shown in Fig.11, that
consists of three ECUs connected by FlexRay in a bus topology. For the experiments, we have
considered FlexRay 2.1 because SIMTOOLS 𝑉 5.2.0, which we have used to develop the software, is
not compatible with FlexRay 3.0.1. Table 1 shows the tasks mapped on the ECUs. Table 2 shows the
bus parameters that we have taken from a related work [39]. Table 3 shows the assumed values
of WCETs for all the tasks. We have further assumed that the WCET of a communication tasks
is 𝜖 = 300 µs. The bus topology is a common one in the automotive domain, as seen in related
works [16, 19, 39]. The number of ECUs, the number of control applications, and the task attributes
are chosen for the ease of demonstration. The applicability of the proposed methods, however, is
not limited to this setup. In [36], a scalability analysis of the co-design scheme is provided where
several different setups with varying system sizes and task mappings are considered.

Controller design: Fig. 12 depicts the variation of optimal normalized control performance with
sampling period for each control application. Except for EWB, where controllers stabilizing the
plant can only be found for a sampling period of 5ms, stable controllers can be designed for each
application at all possible sampling periods including 5ms, 10ms, 20ms, 40ms, 80ms, 160ms,
and 320ms. The red dashed line in the plot shows the normalized required performance for all
applications (i.e., 100%). Only the points on or below the red line meet the performance requirements
and only these points will be considered in the co-optimization stage.

In this stage, for each application and at each possible sampling period, a search of poles for the
equivalent discrete-time closed-loop system is carried out. Fig. 13 illustrates the influence of the
granularity of a pole search. As we can observe in the figure, the finer the granularity is, the more

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:25

Pole Search Granularity
0 0.05 0.1 0.15 0.2N

or
m

al
iz

ed
 C

on
tr

ol
 P

er
fo

rm
an

ce

80

100

160

Se
ar

ch
 T

im
e

[s
]

100

101

102

control performance
search time

Fig. 13. Granularity of pole search for DCM.

P1

P21

P10

Fig. 14. Pareto front.

time it requires to search the pole space, and controllers with better control performance can be
found. The designed controllers, hence, might be sub-optimal. By tuning the control gains, it might
be possible to design a better controller at the cost of more manual efforts. It should be noted that
the order of a system also influences the search time. With the same granularity, the higher the
system order is, the longer it would take to search the pole space. A second-order plant (i.e., DCM)
is studied to obtain the results shown in Fig. 13.
Co-optimization: Fig. 14 shows the Pareto front that we have obtained in the co-optimization
stage. It can be observed that 21 reasonably well-distributed Pareto points are generated. Each
point represents a design option that offers a certain trade-off between the bus resource usage and
the overall QoC. The developer can choose a design option according to the requirements. On the
other hand, using the conventional approach as discussed in Sec. 2.3, the developer, in the best case,
might come up with a design configuration equivalent to 𝑃1 (when optimizing the resource usage)
or 𝑃21 (when optimizing the control performance). Hence, Co-Flex offers more design freedom
compared to the conventional approach.
The values of bus resource usage – percentage of static slots used – range from 14% to 32%.

The values of overall QoC – average control performance – vary from 45.82% to 80.14%. Note that
for the performance measures considered in this paper, the smaller the value is, the better is the
performance. If using less resources is the top design priority, the engineer can only use 14% of the
bus bandwidth in the static segment to achieve stable control. If a performance-optimal design is
desired, a much better performance (average improvement of 45.82%) can be achieved at the cost of
an extra 18% of the bandwidth. The Pareto points can be explored to obtain a design that is the
most suitable according to the requirements. For a relatively small system size, there is already a
considerable design freedom available. For larger systems, developers may have more choices for
the trade-off between the design objectives.

Furthermore, it can be observed that for all values of𝑈 , we do not get a Pareto point. The reason
for this could be that for a value of resource usage, either (i) a feasible parameter set could not be
obtained, or (ii) the optimal solution is dominated by other points.
For our case study, the co-optimization stage took 3.56s on a desktop computer with an AMD

Athlon (tm) II X2 245e processor of 2.90GHz and 4GB RAM. The optimizer is implemented in
Matlab. We use Gurobi [22] in the inner optimization layer and CPLEX [24] in the outer layer. In
the outer layer, we need all optimal solutions and CPLEX provides a feature called solution pool for
that, while Gurobi is more efficient in the inner layer than CPLEX.
Software development: In [36], we presented the same case study as here, where different steps of
software development were manually implemented. Here, we use the proposed toolchain to develop
the distributed control software in an automated fashion. This basically reduces the development

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Roy et al.

0 0.5 1
t[s]

0

0.2

0.4

0.6

0.8

1

y(
t)

DCM (80)

CSS (80)

EWB (5)

CC1 (40)

CC2 (10)

0 0.5 1
t[s]

0

0.2

0.4

0.6

0.8

1

y(
t)

DCM (80)

CSS (40)

EWB (5)

CC1 (20)

CC2 (5)

0 0.5 1
t[s]

0

0.2

0.4

0.6

0.8

1

y(
t)

DCM (10)

CSS (10)

EWB (5)

CC1 (5)

CC2 (5)

P
1 P

21P
10

Fig. 15. Control responses using the Pareto points 𝑃1, 𝑃10 and 𝑃21 (Sampling periods [in𝑚𝑠] are given in brackets).
time from 5 hours to less than 20 minutes for this case study. For industrial-sized systems, the
software development time can be reduced from several days to a few hours. Note that the maximum
time is invested in modeling the specification (i.e., in parameterizing the template blocks). In the
future, we can also automate the development of specification models using information contained
in excel sheets.

Based on themethodology proposed in Sec. 3, we have designed and implemented the software for
the system under study. We have first developed the specification model including the plant models
using SIMTOOLS and Co-Flex in the Simulink environment as discussed in Sec. 3.1. Subsequently,
all relevant information is extracted (Sec. 3.2.1) and the proposed co-optimization approach is
applied (Sec. 3.2.2 and Sec. 3.2.3). From the obtained Pareto front, we have selected 3 well-spaced
Pareto points, i.e., 𝑃1, 𝑃10 and 𝑃21 as marked in Fig. 14. The systemmodel – comprising the controller
templates and the controlled plants – is configured successively with parameters corresponding
to these Pareto points, as described in Sec. 3.2.4, and tested for plausibility. The fully specified
models corresponding to the 3 Pareto points are successively simulated according to the 4𝑡ℎ level of
simulation available in SIMTOOLS, where the ECUs and the communication system are simulated
based on the timings of application tasks, communication tasks and bus schedules.
The system responses are recorded for each of the simulation runs and are shown in Fig. 15.

Here, the control systems 𝐶1, 𝐶3, 𝐶4, and 𝐶5 are applied unit step references while the system 𝐶2
is applied an unit impulse reference. It may be observed in the figure that in the case of CC2, the
system response corresponding to 𝑃1 is different from the responses (identical) corresponding to
𝑃10 and 𝑃21 respectively. This is because the synthesized sampling period of CC2 corresponding
to 𝑃10 and 𝑃21 is the same and is equal to 5ms while the sampling period value corresponding to
𝑃1 is 10ms. The responses of CC2 are identical for 𝑃10 and 𝑃21 despite different task and message
schedules. This verifies our assumption in the co-optimization stage that the control performance
depends only on the sampling period of the control application. Furthermore, we can observe
that the settling times in the system responses of CC1 are respectively 52ms, 212ms, and 413ms
corresponding to the sampling periods of 5ms, 20ms, and 40ms and are approximately in the ratio
1:4:8. This can be also verified from the control performance curve shown in Fig. 12. Similarly, for
all applications, control performances are verified against the values obtained in the prospective
controller design stage.

After the simulations, we have used the tool Dissemble to automatically remove the plant models
and expand the subsystem blocks, as described in Sec. 3.2.5. Further, we have generated C-code and
binary files successfully using SIMTOOLS Split and Build, Simulink RTW, and SIMTARGET. The
binaries files thus obtained are then used to flash three Elektrobit (i.e., EB 6120) ECUs. These ECUs are
connected over a FlexRay bus (i.e., using unshielded twisted pair cables and D-SUB9 connectors).We
have not encountered any error, which implies that the parameters have been correctly configured.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:27

5 RELATEDWORK
Towards meeting the high performance and low cost requirements for embedded control systems,
co-design of control algorithms and their platform implementations – often referred to as a cyber-
physical systems design approach – is the key [6, 7, 17, 37, 53]. Such co-design also helps reduce
testing and integration efforts when implementing control algorithms. While co-synthesis has
already been studied in the general embedded systems context [50], several control/architecture
co-design methods have recently been proposed [16, 36, 38]. [38] has proposed a method that
integrates controller design with task and message scheduling while optimizing the overall control
performance. Later, [16] has put forward a co-design problem formulation for FlexRay-based control
systems also with control performance as the only optimization objective. This work considers both
sampling period and delay as variables during the controller design. Note that [16, 38] have not
considered the trade-off between multiple optimization objectives. Also, some existing approaches
appear difficult to scale. For example, in [16], it already takes more than one hour to synthesize a
system of 5 applications, amongst which 3 are control applications. In our proposed toolchain, we
have implemented the co-design approach from [36]. It scales to industrial-sized systems (e.g., a
bus cluster) and co-optimizes overall QoC and resource usage, respectively. Note that none of these
works have extended a co-design framework into a full-fledged toolchain support compatible with
COTS software development tools.

For this work, we have reviewed existing industrial toolchains for automotive software develop-
ment. Major Tier 2 automotive suppliers include Vector, dSPACE, Elektrobit, and Siemens Industry
Software (formerly known as Mentor Graphics). Vector offers PREEvision [45], where a software
architecture and a mapping of software components to ECUs can be specified and an in-vehicle net-
work can be configured. Specification for each ECU can be extracted from PREEvision and imported
into DaVinci Configurator Pro [44], where it is integrated with a basic software and the codes for
software components generated from model-based design tools like Simulink. Developers need to
configure the runtime environment for ECUs in DaVinci Configurator Pro [44] and then binary
files can be generated that will be used to flash the ECUs. A similar tool flow is offered by Siemens
Industry Software where Capital [30] allows architecture and network design while Volcano Vehicle
System Builder [31] enables software integration for ECUs. In the same vein, dSPACE provides
SystemDesk [9] for architecture design and TargetLink [10] for functionality development and
code generation. In this work, we have studied software development for FlexRay-based distributed
control systems using MATLAB/Simulink and SIMTOOLS/ SIMTARGET [4, 41, 42], as discussed in
Sec. 2.3. Using the aforementioned toolchains, controllers are designed in model-based design tools
while the schedule configuration for ECUs (e.g., in DaVinci Configurator Pro and Volcano Vehicle
System Builder) and communication buses (e.g., in PREEvision and Capital) are realized in different
tools. Unlike these toolchains, Co-Flex offers to co-design control and platform parameters.

In the context of hardware/software co-design, there also exists academic tools like Metropolis [2],
Metro II [8], Ptolemy II [11], andMetronomy [21] that allowmodeling of heterogeneous components
and their co-simulation, thereby enabling a design space exploration for heterogeneous systems.
Metropolis offers a unified language for capturing different models of computation like dataflow,
state machine, and discrete time. Later, Metropolis was extended to Metro II that also allows
different specification language for different components. For example, in the case of a building
design automation, a controller can be specified as a Simulink model, the specification for a
physical building can be in Modelica, while an architecture can be modeled in Metro II [49]. The
controller and the building models can be co-simulated with the computing platform in Metro II.
Both Metropolis and Metro II use a SystemC based engine for the simulation [1]. Ptolemy II can
also be used to model functions and architecture in an integrated framework, however, it is more

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Roy et al.

focused on functional modeling allowing several models of computation including process networks,
synchronous reactive and continuous time. Metronomy combines the advantages of Ptolemy II
and Metro II respectively and allows to model functions in Ptolemy and architectures in Metro II.
Besides these tools, TrueTime [5] is a MATLAB/Simulink toolbox that enables to simulate embedded
control systems. Also, Blech [20], an imperative synchronous programming language, can be used
to develop safety-critical embedded control software that can be verified for different functional
and timing properties. None of the aforementioned tools offer to co-design controllers and their
platform implementations. Moreover, Metropolis, Metro II, Ptolemy II, and Metronomy are based on
the principle of separation of concerns. We believe that the co-design technique presented in [36]
can be integrated into these tools. However, the above tools do not have in-built models for the
target platform under study and the corresponding basic software. Hence, we have considered a
commercial toolchain that can be used to develop the software for a distributed platform comprising
EB 6120 ECUs connected over a FlexRay bus.

6 CONCLUDING REMARKS
In this paper, we have introduced a software development process for FlexRay-based distributed
control systems. It enables correct-by-construction and convenient design and implementation of
such systems. We have also developed an integrated toolchain that automates the development
process to a large extent. It integrates a recently proposed control and platform co-design scheme
into available COTS development tools for control systems and embedded software. Therefore, it
reduces manual effort and improves design optimality.
Our proposed toolchain is only a preliminary one, showing that such an integrated design

and implementation of distributed embedded controllers is possible in an automotive setting. We
would like to extend the toolchain to address a more comprehensive design problem that includes
frame packing, task partitioning and mapping. Moreover, the toolchain, in its current state, only
considers LTI feedback control systems. In the future, we can consider nonlinear systems and
control techniques like model predictive control (MPC), gain scheduling and adaptive control. For
complex controllers, e.g., an MPC, the WCET of a controller might be different for each sampling
period. Note that the co-design technique used in Co-Flex can easily accommodate the scenario
where a WCET is a function of the sampling period. This is because in the inner layer, the sampling
period is known, and therefore, the corresponding WCET can be used for scheduling. In this work,
we have considered that the WCET of a task is given, however, an automated toolchain would need
a WCET estimator.

In industrial systems, a controller might switch between multiple operational modes depending
on the changes in the physical system (e.g., plant dynamics might change based on environmental
factors like temperature and wind speed) or in the cyber system (e.g., overloads in ECUs and
communication buses). While [3] has considered integrated modeling and verification of such
control loops using the theory of hybrid automata, [18, 34, 35] have shown how to optimally
dimension communication resources shared by such multi-mode controllers. An optimal co-design
of control and platform parameters considering multi-mode controllers can be studied in the future.

While we have studied SIMTOOLS and SIMTARGET for the design of FlexRay-based systems, we
may investigate how our proposed development process extends to other communication systems
like CAN and time-triggered Ethernet. We may also study a more complex tool flow for software
synthesis of distributed control systems on platforms comprising multiple different communication
buses and allowing different ECU scheduling policies. We hope that this work motivates further
research on closing the gap between the state of the art and the state of practice in designing
distributed embedded controllers.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Tool Integration for Automated Synthesis of Distributed Embedded Controllers 1:29

Acknowledgements: This work was supported by: (i) the NSF Award #2038960 “CPS: Medium: GOALI:
Design Automation for Automotive Cyber-Physical Systems”, (ii) the AvH Foundation through the Chair for
Cyber-Physical Systems in Production Engineering at TUM, and partially by (iii) the DFG project SFB 768.

REFERENCES
[1] F. Balarin et al. 2002. Concurrent execution semantics and sequential simulation algorithms for the Metropolis

meta-model. In International Symposium on Hardware/Software Codesign (CODES).
[2] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli. 2003. Metropolis: An

integrated electronic system design environment. Computer 36, 4 (2003), 45–52.
[3] M. Bitzer, M. Herrmann, and E. Mayer-John. 2020. System Co-Design (SCODE): Methodology for the analysis of hybrid

systems - A systematics for complexity reduction of control software in embedded systems. Automatisierungstechnik
68, 6 (2020), 488–499.

[4] C. Phagoo ang G. Freiberger and D. Millinger. 2009. System design validation using Matlab/Simulink and EB Simtools
at Ford Motor Company. White Paper. https://www.all-electronics.de/wp-content/uploads/migrated/article-pdf/
84620/532ag1109.pdf

[5] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén. 2003. How does control timing affect performance?
Analysis and simulation of timing using Jitterbug and TrueTime. IEEE Control Systems Magazine 23, 3 (2003), 16 – 30.

[6] S. Chakraborty, M. A. Al Faruque, W. Chang, D. Goswami, M. Wolf, and Q. Zhu. 2016. Automotive Cyber-Physical
Systems: A Tutorial Introduction. IEEE Des. Test 33, 4 (2016), 92–108.

[7] W. Chang, L. Zhang, D. Roy, and S. Chakraborty. 2017. Control/architecture codesign for cyber-physical systems. Springer.
[8] A. Davare et al. 2013. MetroII: A design environment for cyber-physical systems. Transactions on Embedded Computing

Systems 12, 1s, Article 49 (2013), 31 pages.
[9] dSpace. 2021. SystemDesk: Modeling system architecture and generating virtual ECUs. Online. https://www.dspace.

com/en/ltd/home/products/sw/system_architecture_software/systemdesk.cfm#143_25611.
[10] dSpace. 2021. TargetLink: Production code generation for the highest demands. Online. https://www.dspace.com/en/

inc/home/products/sw/pcgs/targetli.cfm.
[11] J. Eker et al. 2003. Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91, 1 (2003), 127–144.
[12] D. Eller, J. Aggarwal, and H. Banks. 1969. Optimal control of linear time-delay systems. IEEE Trans. Automat. Control

14, 6 (1969), 678–687.
[13] M. S. Fadali and A. Visioli. 2009. Chapter 9 - State feedback control. In Digital Control Engineering, M. S. Fadali and

A. Visioli (Eds.). Academic Press, Boston, 335–378.
[14] FlexRay Consortium. 2010. The FlexRay communications system protocol specification, Version 3.0.1. Retrieved

December 23, 2016 from https://svn.ipd.kit.edu/nlrp/public/FlexRay/
[15] M. Gaid, A. Cela, , and Y. Hamam. 2006. Optimal integrated control and scheduling of networked control systems with

communication constraints: application to a car suspension system. IEEE Transactions on Control System Technology
14, 4 (2006), 776 – 787.

[16] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. 2012. Time-triggered implementations of mixed-
criticality automtoive software. In Design, Automation & Test in Europe Conference & Exhibition (DATE).

[17] D. Goswami, R. Schneider, and S. Chakraborty. 2011. Co-design of cyber-physical systems via controllers with flexible
delay constraints. In 16th Asia South Pacific Design Automation Conference (ASP-DAC).

[18] D. Goswami, R. Schneider, and S. Chakraborty. 2011. Re-engineering cyber-physical control applications for hybrid
communication protocols. In Design, Automation and Test in Europe (DATE).

[19] D. Goswami, R. Schneider, and S. Chakraborty. 2014. Relaxing signal delay constraints in distributed embedded
controllers. IEEE Transactions on Control Systems Technology 22, 6 (2014), 2337 – 2345.

[20] F. Gretz and F.-J. Grosch. 2018. Blech, imperative synchronous programming!. In Forum on Specification and Design
Languages (FDL).

[21] L. Guo, Q. Zhu, P. Nuzzo, R. Passerone, A. Sangiovanni-Vincentelli, and E. A. Lee. 2014. Metronomy: A function-
architecture co-simulation framework for timing verification of cyber-physical systems. In International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS).

[22] Gurobi Optimization. 2014. Gurobi Optimizer V6.0. Retrieved Dec. 23, 2016 from www.gurobi.com
[23] J. Hou and W. Wolf. 1996. Process partitioning for distributed embedded systems. In International Workshop on

Hardware/Software Co-Design (Codes/CASHE).
[24] IBM. 2014. IBM ILOG CPLEX Optimizer V12.6.2. Retrieved Jan. 16, 2017 from www.ibm.com
[25] M. Lukasiewycz et al. 2013. System architecture and software design for electric vehicles. In 50th Annual Design

Automation Conference (DAC).
[26] M. Lukasiewycz, M. Glaß, P. Milbredt, and J. Teich. 2009. FlexRay schedule optimization of the static segment. In

International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.all-electronics.de/wp-content/uploads/migrated/article-pdf/84620/532ag1109.pdf
https://www.all-electronics.de/wp-content/uploads/migrated/article-pdf/84620/532ag1109.pdf
https://www.dspace.com/en/ltd/home/products/sw/system_architecture_software/systemdesk.cfm#143_25611
https://www.dspace.com/en/ltd/home/products/sw/system_architecture_software/systemdesk.cfm#143_25611
https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm
https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm
https://svn.ipd.kit.edu/nlrp/public/FlexRay/
www.gurobi.com
www.ibm.com

1:30 Roy et al.

[27] L. Ma, F. Xia, and Z. Peng. 2008. Integrated design and implementation of embedded control systems with Scilab.
Sensors 8, 9 (2008), 5501 – 5515.

[28] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham. 2002. Improving quality-of-control using flexible timing
constraints: metric and scheduling. In IEEE Real-Time Systems Symposium (RTSS) 2002.

[29] P. Marti, R. Villa, J. M. Fuertes, and G. Fohler. 2001. On real-time control tasks schedulability. In European Control
Conference (ECC).

[30] Mentor, A Siemens Business. 2021. Capital: Enabling the electrical model based enterprise. Online. https://www.
mentor.com/products/electrical-design-software/capital/.

[31] Mentor, A Siemens Business. 2021. VSTAR tools. Online. https://www.mentor.com/embedded-software/autosar/tools.
[32] K. J. Åström and R. M. Murray. 2008. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University

Press, USA.
[33] K. J. Åström and B. Wittenmark. 1997. Computer-Controlled Systems (3rd Ed.). Prentice-Hall, Inc., USA.
[34] D. Roy, W. Chang, S. K. Mitter, and S. Chakraborty. 2019. Tighter dimensioning of heterogeneous multi-resource

autonomous CPS with control performance guarantees. In ACM/IEEE Design Automation Conference (DAC).
[35] D. Roy, S. Ghosh, Q. Zhu, M. Caccamo, and S. Chakraborty. 2020. GoodSpread: Criticality-aware static scheduling of

CPS with multi-QoS resources. In IEEE Real-Time Systems Symposium (RTSS).
[36] D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty. 2016. Multi-objective co-optimization of FlexRay-based

distributed control systems. In Real-Time and Embedded Technology and Applications Symposium (RTAS).
[37] D. Roy, L. Zhang, W. Chang, S. Mitter, and S. Chakraborty. 2017. Semantics-preserving cosynthesis of cyber-physical

systems. Proceeding of the IEEE 106, 1 (2017), 171 – 200.
[38] S. Samii, A. Cervin, P. Eles, and Z. Peng. 2009. Integrated scheduling and synthesis of control applications on distributed

embedded systems. In Design, Automation & Test in Europe Conference & Exhibition (DATE).
[39] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and S. Chakraborty. 2011. Constraint-driven synthesis and

tool-support for FlexRay-based automotive control systems. In International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS).

[40] C. Shen and W. Tsai. 1985. A graph matching approach to optimal task assignment in distributed computing systems
using a minimax criterion. IEEE Trans. Comput. C-34, 3 (1985), 197 – 203.

[41] SIMTOOLS GmbH. 2010. SIMTARGET V5.0.1: C code generation from SIMTOOLS models for CAN, FlexRay, and
I/O. Retrieved Oct. 17, 2020 from https://nanopdf.com/download/simtools-blocksets-for-the-matlab-simulink-design-
environment_pdf

[42] SIMTOOLS GmbH. 2012. SIMTOOLS V5.2.0: Model-based design tools for FlexRay-based applications. Retrieved Oct.
17, 2020 from https://nanopdf.com/download/simtools-blocksets-for-the-matlab-simulink-design-environment_pdf

[43] T. H. Summers and J. Lygeros. 2014. Optimal sensor and actuator placement in complex dynamical networks. IFAC
Proceedings Volumes 47, 3 (2014), 3784 – 3789. 19th IFAC World Congress.

[44] Vector. 2021. DaVinci Configurator Pro Version 5.23: Configure, validate and generate AUTOSAR basic software.
Online. https://www.vector.com/de/en/products/products-a-z/software/davinci-configurator-pro/.

[45] Vector. 2021. PREEvision Version 10.0: Model-based electric/electronic development. Online. https://www.vector.com/
de/en/products/products-a-z/software/preevision/.

[46] B. Vogel-Heuser et al. 2020. BPMN+I to support decision making in innovation management for automated production
systems including technological, multi team and organizational aspects. In IFAC World Congress.

[47] B. Vogel-Heuser et al. 2020. Interdisciplinary engineering of cyber physical production systems: Highlighting the
benefits of a combined interdisciplinary modelling approach on the basis of an industrial case. Design Science 6, 5
(2020), 1 – 36.

[48] N. Xue and C. Yuan. 2019. Sensor and actuator placement for large-scale systems: A projection-based formulation. In
American Control Conference (ACC).

[49] Y. Yang, A. Pinto, A. Sangiovanni-Vincentelli, and Q. Zhu. 2010. A design flow for building automation and control
systems. In Real-Time Systems Symposium (RTSS).

[50] Licong Zhang, Dip Goswami, Reinhard Schneider, and Samarjit Chakraborty. 2014. Task- and network-level schedule
co-synthesis of Ethernet-based time-triggered systems. In 19th Asia and South Pacific Design Automation Conference
(ASP-DAC).

[51] L. Zhang, D. Roy, P. Mundhenk, and S. Chakraborty. 2016. Schedule management framework for cloud-based future
automotive software systems. In Embedded and Real-Time Computing Systems and Applications (RTCSA).

[52] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli. 2005. Extensible and scalable time triggered
scheduling. In International Conference on Application of Concurrency to System Design (ACSD).

[53] Q. Zhu and A. Sangiovanni-Vincentelli. 2018. Codesign methodologies and tools for cyber-physical systems. Proc.
IEEE 106, 9 (2018), 1484–1500.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.mentor.com/products/electrical-design-software/capital/
https://www.mentor.com/products/electrical-design-software/capital/
https://www.mentor.com/embedded-software/autosar/tools
https://nanopdf.com/download/simtools-blocksets-for-the-matlab-simulink-design-environment_pdf
https://nanopdf.com/download/simtools-blocksets-for-the-matlab-simulink-design-environment_pdf
https://nanopdf.com/download/simtools-blocksets-for-the-matlab-simulink-design-environment_pdf
https://www.vector.com/de/en/products/products-a-z/software/davinci-configurator-pro/
https://www.vector.com/de/en/products/products-a-z/software/preevision/
https://www.vector.com/de/en/products/products-a-z/software/preevision/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Feedback Control Systems
	2.2 FlexRay-Based ECU Networks
	2.3 Conventional Design Flow

	3 Proposed Design Flow and Toolchain
	3.1 Specification Modeling
	3.2 Design and Software Implementation

	4 A Case Study
	5 Related Work
	6 Concluding Remarks
	References

