
1

UBAR: User and Battery Aware Resource Management for
Smartphones

ELHAM SHAMSA, University of Turku, Finland
ALMA PRÖBSTL, Technical University of Munich, Germany
NIMA TAHERINEJAD, TU Wien, Austria
ANIL KANDURI, University of Turku, Finland
SAMARJIT CHAKRABORTY, University of North Carolina at Chapel Hill, USA
AMIR M. RAHMANI, University of California, USA
PASI LILJEBERG, University of Turku, Finland

Smartphone users require high Battery Cycle Life (BCL) and high Quality of Experience (QoE) during their
usage. These two objectives can be conflicting based on the user preference at run-time. Finding the best
trade-off between QoE and BCL requires an intelligent resource management approach which considers and
learns user preference at run-time. Current approaches focus on one of these two objectives and neglect the
other, limiting their efficiency in meeting users’ needs. In this paper, we present UBAR, User- and Battery
Aware Resource management, which considers dynamic workload, user preference, and user plug-in/out
pattern at run-time to provide a suitable trade-off between BCL and QoE. UBAR personalizes this trade-off
by learning the user’s habits and using that to satisfy QoE, while considering battery temperature and State
of Charge (SOC) pattern to maximize BCL. The evaluation results show that UBAR achieves 10% to 40%
improvement compared to the existing state-of-the-art approaches.

CCS Concepts: •Computer systems organization→Embedded systems; Systemon a chip; •Hardware
→ On-chip resource management.

Additional Key Words and Phrases: On-chip Resource Management, Heterogeneous Multi-core Systems,
User-awareness, Battery Cycle Life, Quality of Experience

ACM Reference Format:
Elham Shamsa, Alma Pröbstl, Nima TaheriNejad, Anil Kanduri, Samarjit Chakraborty, Amir M. Rahmani,
and Pasi Liljeberg. 2021. UBAR: User and Battery Aware Resource Management for Smartphones. ACM Trans.
Embedd. Comput. Syst. 1, 1, Article 1 (January 2021), 25 pages. https://doi.org/10.1145/3441644

1 INTRODUCTION
Maximizing Quality of Experience (QoE) is a first order priority in interactive mobile devices such
as smartphones and tablets. Since these devices are largely powered by batteries, QoE is affected
by both performance and energy consumption of the device. Satisfying the conflicting objectives of
performance and energy consumption through a suitable trade-off space between these two factors

Authors’ addresses: Elham Shamsa, elsham@utu.fi, University of Turku, Turku, Finland; Alma Pröbstl, Technical University
of Munich, Munich, Germany, alma.proebstl@tum.de; Nima TaheriNejad, TU Wien, Vienna, Austria, nima.taherinejad@
tuwien.ac.at; Anil Kanduri, University of Turku, Turku, Finland, spakan@utu.fi; Samarjit Chakraborty, University of North
Carolina at Chapel Hill, Chapel Hill, USA, samarjit@cs.unc.edu; Amir M. Rahmani, University of California, Irvine, USA,
a.rahmani@uci.edu; Pasi Liljeberg, University of Turku, Turku, Finland, pakrli@utu.fi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1539-9087/2021/1-ART1 $15.00
https://doi.org/10.1145/3441644

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3441644
https://doi.org/10.1145/3441644
samarjit
Typewritten Text
To appear in ACM Transactions on Embedded Computer Systems, 2021

1:2 Elham Shamsa, et al.

Fig. 1. Hierarchical overview of the user and device interactions

can be challenging [40]. QoE can be expressed as a weighted combination of performance and
energy consumption, and the weight varies at run-time based on the user’s preferences [22, 48]. For
example, running intensive applications such as streaming, gaming etc. prompts a user’s preference
on performance, while other low intensive applications may alter the same to low power/energy
saving mode [39, 40]. The user’s preferences and plug-in/out behaviour affects battery aging which
is defined as the loss of usable capacity over time [6]. Battery aging depends on battery temperature,
and State of Charge (SOC), i.e., the amount of remaining battery charge at a given time [1, 34].
The above parameters are influenced by the usage of the battery and plug-in/out patterns. The
lower temperature and lower average SOC lead to lower battery aging which result in the higher
Battery Cycle Life (BCL), i.e., the number of charge/discharge cycles before the battery fails to
operate satisfactorily [6]. However, low average SOC may not be acceptable for the user, whom
requires high amount of battery charge, thus decreases the QoE. Therefore, maximizing BCL
and QoE leads to conflicting resource allocation decisions. Maximizing QoE may require higher
performance, increasing rate of discharge, and battery temperature which leads to decreasing BCL.
Figure 1 shows a hierarchical overview of user and device interactions, representing the system
wide dynamics of QoE and BCL. A typical user runs several applications with diverse requirements
on the mobile device and has a dynamically variable range of preferences in terms of performance
and energy saving. The underlying operating system manages resource allocation to satisfy the
user preferences within system constraints, which results in different levels of QoE. This eventually
drains the battery at a corresponding rate, while also affecting the BCL. An efficient resource
management approach can actuate power, performance, temperature, and battery through different
knobs by finding an appropriate trade-off between QoE and BCL.
Existing approaches [2, 17, 34] for maximizing BCL focus on the charging protocol to decrease

the average SOC and neglect the the discharging phase. However, the dynamic operation during the
discharging phase due to variable user behavior and workloads has a significant effect on battery
aging. While the value of the SOC is dynamic and dependent on the user’s device access patterns,
using a suitable learning method can actuate it to slow down the aging and increase the QoE. For
controlling the SOC value within the discharging phase, intelligent run-time resource management
which can predict the user behavior and select appropriate allocation policy is necessary. The plug-
in/out time, and usage pattern is variable and specific for an individual user which makes run-time
resource management challenging. Furthermore, QoE and BCL objectives may have conflicts within
run-time, whichmust be considered within resource management to make optimal decisions [39, 40].
For example, increasing QoE may require using a high performance policy for user satisfaction
which leads to quicker charge depletion and lower average SOC. Resource management approaches

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:3

Table 1. Pattern of applications’ execution

Day Day 1 Day 2 Day 3 Day 4
Time 10 AM 11 AM 10 AM 12 AM

Application dijkstra patricia rijndael rijndael

focusing exclusively on maximizing QoE [12, 47, 51], limit their efficiency in maximizing BCL.
Although these approaches work on maximizing QoE, they ignore the user-specific plug-in/out
pattern and battery profile and target a generic QoE model. Thus, for resolving the conflicts between
user requirements by considering individual user behavior, a comprehensive method is required
that monitors workload characteristics, SOC pattern, and user plug-in/out behavior, then selects a
suitable resource allocation strategy to maximize BCL and QoE. In this paper, we extend the state-
of-the-art by proposing such a comprehensive framework which specifically considers personalized
battery plug-in/out patterns and learns the best resource management policy for an individual user
to maximize their QoE and BCL. Our contributions in this work can be summarized as follows:

• Dynamic monitoring of the temperature of processors and battery, the performance of
applications, user preferences, battery aging, and power consumption of device at run-time
for guiding resource management.

• A resource management framework which determines knob settings to maximize BCL and
QoE simultaneously. To this end we use predictive user plug-in/out patterns, temperature
and power feedback, as well as battery model.

• A learning model for predicting plug-in and plug-out patterns of users based on real statistical
data of SOC and time-of-the-day.

• The integration of various battery models for having a unified model that considers charging
and discharging behavior, the thermal coupling of battery and CPU, and battery capacity
fading.

• Evaluation of the framework on a real heterogeneous embedded platform (Odroid XU3) using
various benchmarks and workloads.

The rest of this paper is organized as follows. Section 2 presents background and motivation of
the proposed method. Section 3 describes the proposed system model including, battery model,
temperature model, prediction model, resource management, and aging model. Section 4 presents
the experimental setup, workload, and baselines then discusses and analyzes the experimental
results. Finally, Section 5 concludes the paper.

2 BACKGROUND AND SIGNIFICANCE
2.1 Motivation
The user preference is specific for each user and depends on the plug-in/out pattern which is related
to i) the SOC at any given time, and ii) the probability of plugging in the device at the current
SOC and time of day. The probability of the plug-in event depends on the availability of the power
source and users’ interaction and access patterns. When users plug in the device, their preference
is likely to be altered from energy saving to (high) performance, given the power source. The same
can be said, in most cases, right after a charging event when the battery is full. Besides, the users’
usage of the battery and plug-in/out patterns affects the average SOC and BCL. For example, some
users charge their phones overnight, and the battery remains at 100% SOC before plug out, which
increases the average SOC.
Figure 2 shows the charging behavior of two users, with both running the same applications.

The blue line shows the SOC pattern of User1 who plugs-in the device over night, and the battery

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Elham Shamsa, et al.

Fig. 2. Various (dis)charging behaviors of two different users.

Fig. 3. SOC pattern of one user for 4 days for two various resource management policies. RM1= high
performance policy, RM2= Low power policy.

remains at 100% SOC. On the other hand, User2 plugs in the device at a higher initial SOC and plugs
out before reaching 100% SOC, which leads to lower average SOC and SOC swing and hence, lower
battery degradation [34]. A suitable charging policy [33, 34] may delay the charging overnight to
prevent the battery remaining at 100% SOC for longer than necessary and thus reduces the average
SOC. Furthermore, the user preference can be different based on their plug-in patterns. For example,
a user may prefer power saving mode of operation when 𝑆𝑂𝐶 = 30% while the other prefers high
performance at the same SOC because of the availability of a power source. Thus, learning user
behaviors and preferences at run-time can improve resource management and increase QoE and
BCL.

We present an example to demonstrate the significance of resource management policies on BCL.
We use an Odroid XU3 board for our experiment which has big and LITTLE clusters, operating
in two different ranges of frequencies [16]. We consider one specific smartphone user with an
individual plug-in, plug-out, and usage pattern. The user charges the smartphone usually in the
morning or any other time (when sleeping) when the SOC is lower than 30%. As a test case, we use
dijkstra, patricia, and rijndael applications from Mibench benchmark suite [15] which are
run as presented in Table 1. For illustration, we consider 4 cycles of charging and discharging for 4
days, using two resource management policies which are adapted from state-of-the-art approaches
[20] and [27], namely RM1 and RM2. RM1 is a high performance policy that maps the applications
to the big cores that operate on higher frequency compared to the LITTLE cores. RM2 is a low
power policy which provides lower energy consumption by using LITTLE cores.
Figure 3 shows the created SOC pattern during the experiment using RM1 and RM2. Although

the same user plug-in/out behavior is used for both scenarios in Figure 3, the SOC swing and
plug-in time is different due to different discharging rate. RM1 maps the running applications to

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:5

Fig. 4. Battery temperature using two various resource management policies. RM1= high performance policy,
RM2= low power policy.

the big cores which operate on high frequency and consume relatively more energy. Thus, RM1
leads to a higher discharging rate and more frequent plug-in events. In contrast, RM2 results in
a lower discharging rate by mapping the applications to the LITTLE cores and consuming less
energy. While RM1 provides high performance which may lead to higher QoE, the high discharging
rate causes a higher aging and low BCL. When the system uses RM1 (shown in red line), the user
plugs in the device at the end of Day 1 (at time = 22h , 10pm), when the battery charge is 29%
(lower than user’s expectation). However, By using RM2 (shown in blue line) the battery charge
is 35% at the same time of the day. Thus, the user postpones the plug-in event and charges the
device in the morning. Such a pattern repeats similarly for the next three days which causes two
different SOC patterns for the same user. As shown in Figure 3, the higher discharging rate resulting
from RM1 leads to higher SOC swing which increases aging. Similarly, the battery temperature is
different when the system uses RM1 and RM2, which is shown in Figure 4. When the system is in
idle mode, the temperature is similar, using both resource management policies. However, when an
application arrives (at time= 10 h, 35 h, 58 h, 84 h) the temperature increases in both scenarios, but it
is higher for RM1. The higher SOC swing, and battery temperature lead to increased battery aging
[2]. Using a battery aging model explained in Section 3.4, we compare the aging effect of these
two resource management policies. The results show that the low power policy (RM2) has 34.2%
lower aging effect and higher BCL compared to the high performance policy (RM1). Therefore,
by choosing a suitable resource management policy we can increase the BCL. Increasing BCL
may have a conflict with user requirements such as high performance mode of operation. In this
experiment, the calculated QoE based on the model presented in [48] shows RM1 leads to up to
32% higher QoE compared to RM2. Thus, RM1 provides higher QoE while decreasing the BCL. For
handling such conflicts, a suitable resource management policy is required which considers both
QoE and BCL at run-time, then selects the best action based on them. In this paper, we present
such a resource management, which monitors the system requirements at run-time and takes a
decision to maximize both QoE and BCL.

2.2 Related Work
2.2.1 QoE. There are several works [12, 47, 51] which quantify the QoE and consider it for max-
imizing Quality of Service (QoS) and energy saving. In [47], the QoE is quantified for low SOC
by collecting user experiences. The method presented in [51], considers energy consumption and
QoS as two factors which affect QoE and optimize the energy consumption under QoS constraints.
Similarly, the approach in [12] optimizes the energy consumption on the smartphone while guar-
anteeing a specified level of user satisfaction. These approaches, model the QoE by interviewing a
group of users, and they neglect the user activities, history of the battery usage, and charging and
discharging pattern at run-time. They do not consider individual user patterns to update resource
management at run-time and customize user-centric resource allocation. Although in [41] the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Elham Shamsa, et al.

resource allocation is customized for each user, the user and battery model are not comprehen-
sive enough. They neglect the plug-in time in a day for the user model, and the rate capacity
effect for the battery model, which is not realistic. In [48], a new definition of user satisfaction is
proposed, which considers user preference. We use this definition in our work to guide resource
management based on user preference andmaximize the QoE based on the requirements at run-time.

2.2.2 Battery Aging. The capacity of batteries decreases with usage over time due to the loss
of active materials, a phenomenon known as battery aging [17, 32, 50]. The works in [24, 29]
model battery aging by considering various factors that affect capacity degradation. These factors
are battery temperature, average SOC, SOC swing, and charge/discharge current. A lower value
for these factors leads to lower battery aging and higher BCL. The value of these quantities is
variable over charge and discharge phases. The charging rate and battery temperature are mostly
constant during the charge phase, whereas average SOC and discharge current should be managed
at run-time. Some previous works [2, 6, 34] proposed aging-aware charging to ideally predict the
plug-out events and manage the rate of charging to reach 𝑆𝑂𝐶 = 100% right before plug-out event,
thus decreasing the average SOC. The method in [23] decreases battery aging by using a minimum
charging current which ensures a fully charged battery before plug-out. While this work only
considers the charging current, the proposed method in [2] analyzes both charge current and
average SOC to mitigate the aging effect. Such existing approaches focus on the charging phase and
do not consider the discharging phase which affects average SOC and SOC swing, and consequently,
battery aging. However, controlling the SOC within the discharging phase has significant impacts
on aging degradation. In this work, we use an intelligent resource management framework that
minimizes the average SOC and SOC swing while considering battery temperature at run-time
to decrease the effect of aging. Furthermore, we use the smart charging policy proposed in [34]
to minimize aging in the charging phase. We use an aging model which is also used in recently
proposed methods [2, 6, 34] for evaluating the amount of battery degradation with and without
our proposed framework. The selected aging model [24] considers average SOC, SOC swing and
temperature as inputs and simulates the capacity degradation over time. Furthermore, there are
various battery models which are presented in different platforms such asWireless Sensor Networks
[38], electric vehicles [46], and smartphones [9, 45]. Some of the proposed models focus on Ni-MH
batteries [38] and the others models lithium-ion batteries. In this work, we combine the existing
lithium-ion battery models which are presented for smartphones and provide a comprehensive
battery behavior to evaluate our resource management framework.

2.2.3 Resource management. Several works have been proposed on run-time resource man-
agement to optimize performance and energy for multi-core systems [13, 20, 21, 35]. The proposed
approaches use control-based models [4], and online or offline machine learning techniques sepa-
rately or in a combined fashion [13, 14, 25]. These approaches focus on performance and energy
consumption and neglect user experience as a factor for the evaluation of resource management
decisions. On the other hand, QoE related works [12, 47, 51] do not consider user plug-in/out
patterns and battery usage to personalize the resource management techniques. In this work,
we adjust the resource management for an individual user to address the limitations of existing
resource management approaches that focus on only maximizing QoE. In addition, we consider the
aging effects in the resource management technique to increase the BCL while maximizing QoE.

3 PROPOSED METHOD
We propose a User and Battery Aware Resource management (UBAR) framework, which considers
a smartphone system, battery, applications, and user requirements, and then allocates the resources

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:7

Fig. 5. General overview of the UBAR framework

to maximize QoE and BCL. Figure 5 shows the general architecture of the proposed framework.
which is split into three phases as follows.

(1) Off-line training for SOC and user predictor,
(2) On-line inference for resource allocation decisions based on the trained predictor, and
(3) User and application interactions.

We first build analytical models for predicting the user’s plug-in/out pattern to calculate the
future SOC. Then, by considering such prediction, and monitoring of the power consumption,
battery status, and execution of various applications, we infer resource allocation decisions. We
periodically measure the power consumption of the system by using the available power sensors in
our platform and direct the resource allocation decisions based on that. The detailed illustration of
the UBAR framework is shown in Figure 6 and explained in the following subsections. We also
introduce UBAR+ framework in this section which has one extra control knob compared to the
UBAR framework for smart charging. UBAR+ considers smart charging, which may not adopt all
type of smart-phones in the near future. Hence, we distinguish between UBAR and UBAR+. The
next subsection is explained battery model which includes SOC predictor and Battery Temp. model
components in the Figure 6. The User predictor and Resource management blocks are also explained
in the remainder of this section.

3.1 Battery model
We use a battery model (4V, 2000mAh) which is the baseline in Samsung smartphones and allocates
an effective battery energy (28,800 J) to compare various approaches. We use several battery models
that consist of different aspects of battery behavior: i) charging behavior, ii) discharge behavior
[9], iii) thermal coupling of battery and CPU [45], iv) battery capacity fading [9], and v) aging
behaviour [24]. Our framework is designed in a modular way such that the interfaces allow for
easy exchange of the models. Although there are various battery models on different platforms, still
there is not a comprehensive one which combine all the above-mentioned aspects. The charging
and discharging model of this battery is explained in the following. The SOC predictor in Figure 6
uses this model to predict the SOC pattern.

3.1.1 SOC predictor. For predicting the SOC pattern, we consider charging and discharging
cycles and use the following models.
Charging. We use a charging model that we extracted from real battery data, using a linear
regression model. The SOC is calculated during the plug-in time using

𝑆𝑂𝐶𝑡 = 𝛾 × 𝑡 + 𝑆𝑂𝐶0, (1)
where 𝛾 is the regression coefficient presented in Table2, 𝑆𝑂𝐶0 is the initial value of the SOC
when the device is plugged in, and 𝑡 is the passed time after the plug-in (in seconds). In UBAR+

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Elham Shamsa, et al.

Fig. 6. Overview of UBAR and UBAR+ components

framework, for decreasing the aging effect we use a Smart Charging (SC) [34] as a control knob
which predicts plug-out event and delays the charging accordingly to minimize the SOC average.
SC leverages the observation that many smartphone users charge their phones overnight, thereby
keeping their phones at a detrimental high SOCs [10]. By delaying the charging process based
on alarm clock readings or intelligent predictors, the average SOC can be reduced and aging is
alleviated. Another significant battery health improvement is achieved by lowering the target SOC,
which further reduces the average SOC. By combining these two measures, the useful life of the
smartphone could be approximately doubled [34].
Discharging For estimating the remaining battery energy and SOC in smartphones during dis-
charging phase. we use an online discharging model [9]. The model considers the rate capacity
effect in batteries for an accurate estimation of available charge. The rate capacity effect of batteries
states that the charging and discharging efficiencies decrease with the increase of charging and
discharging currents [43]. We monitor the instantaneous power consumption of the device and
discharging current of the battery over a time period (Δ𝑡) and calculate the battery energy (𝐸) and
SOC using

𝑆𝑂𝐶 (𝑡 + Δ𝑡) = 𝐸 (𝑡 + Δ𝑡) × 100
𝐸𝑇

, (2)

where 𝐸𝑇 is the total energy of battery when it is fully charged (i.e., 28800 J), and 𝐸 (𝑡 + Δ𝑡) is
calculated by

𝐸 (𝑡 + Δ𝑡) = 𝐸 (𝑡) − 𝐸𝑐 , (3)
where 𝐸𝑐 , which is the energy consumption (J) over one cycle (Δ𝑡), is given by

𝐸𝑐 = Δ𝑡 × 𝑃𝑑𝑒𝑣𝑖𝑐𝑒 + 𝐸𝑙𝑜𝑠𝑠 , (4)

where Δ𝑡 denotes the time duration of each cycle (in second), 𝑃𝑑𝑒𝑣𝑖𝑐𝑒 is the total power consumption
(Watt) of the device during Δ𝑡 , and 𝐸𝑙𝑜𝑠𝑠 is the internal loss of the battery which is caused by rate
capacity effect and is calculated by

𝐸𝑙𝑜𝑠𝑠 = Δ𝑡 × (𝑖2
𝑏
𝑅𝑡𝑜𝑡𝑎𝑙 + 𝑖𝑏 .𝑣𝑂𝐶 .(1/𝜂 (𝑖𝑏) − 1)), (5)

where 𝑖𝑏 is the discharging current (amp) of the battery, 𝑅𝑡𝑜𝑡𝑎𝑙 is total internal resistance (ohm)
of the battery, 𝑣𝑂𝐶 is the open circuit terminal voltage (volt) of the battery, and 𝜂 (𝑖𝑏) denotes

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:9

Table 2. Used parameters for battery discharging[9] and thermal model[45]

Param. Value Param. value Param. Value
𝑏11 -0.265 𝑏12 -61.649 𝑏13 -2.039
𝑏14 5.276 𝑏15 -4.173 𝑏16 1.654
𝑏17 3.356 𝑏21 -0.043 𝑏22 -14.275
𝑏23 0.154 𝑘𝑑 0.019 𝛾 0.016

𝑅𝑐𝑝𝑢−𝑒𝑛𝑣 35.8 𝑅𝑏𝑎𝑡−𝑒𝑛𝑣 7.58 𝑅𝑐𝑝𝑢−𝑒𝑛𝑣 78.8

battery discharging efficiency which can be approximated as 1/((𝑖𝑏)𝑘𝑑), where 𝑘𝑑 is the extracted
parameter in the Odroid platform shown in Table2. 𝑅𝑡𝑜𝑡𝑎𝑙 and 𝑣𝑂𝐶 are calculated using

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑏21𝑒
𝑏22𝑣𝑆𝑂𝐶+𝑏23 , (6)

𝑣𝑂𝐶 = 𝑏11𝑒
𝑏12𝑣𝑠𝑜𝑐 + 𝑏13𝑣𝑠𝑜𝑐 4 + 𝑏14𝑣𝑠𝑜𝑐 3 + 𝑏15𝑣𝑠𝑜𝑐 2 + 𝑏16𝑣𝑠𝑜𝑐 + 𝑏17, (7)

where 𝑏𝑖 𝑗 are presented in Table 2, and 𝑣𝑆𝑂𝐶 is the voltage representation of the battery SOC, that
is,

𝑣𝑆𝑂𝐶 = 𝐶𝑏/𝐶𝑏,𝑓 𝑢𝑙𝑙 × 1𝑉 , (8)
where 𝐶𝑏 is the remaining charge in the battery, and 𝐶𝑏,𝑓 𝑢𝑙𝑙 is the battery charge when it is fully
charged. The numerical values of all of the parameters related to the battery, as we used them in
our experiments, are inserted in Table 2 (extracted from [9]).

3.1.2 Battery temperature model. In this paper, we use a battery thermal model for Google
Nexus S smartphones (which is produced by Samsung) as presented in [45]. This model considers
thermal coupling between the battery and the Central Processing Unit (CPU). Due to the small
physical space in smartphones, the thermal coupling effect between battery and CPU plays an
important role in determining the battery temperature. Therefore, the thermal behavior of one part
of a smartphone is not independent of the other part. Furthermore, thermal behavior of the CPU
heavily depends on the applications that run. We estimate the battery temperature in an indirect
manner, by measuring the power consumed by the CPU and plugging it in the following model
[45].

𝑇𝑏𝑎𝑡 = 𝑇𝑒𝑛𝑣 +
𝑅𝑐𝑝𝑢−𝑒𝑛𝑣𝑅𝑏𝑎𝑡−𝑒𝑛𝑣

𝑅𝑏𝑎𝑡−𝑒𝑛𝑣 + 𝑅𝑐𝑝𝑢−𝑏𝑎𝑡 + 𝑅𝑐𝑝𝑢−𝑒𝑛𝑣
.𝑃𝑐𝑝𝑢

+
𝑅𝑐𝑝𝑢−𝑒𝑛𝑣𝑅𝑏𝑎𝑡𝑒𝑛𝑣 + 𝑅𝑐𝑝𝑢−𝑏𝑎𝑡𝑅𝑏𝑎𝑡𝑒𝑛𝑣
𝑅𝑏𝑎𝑡−𝑒𝑛𝑣 + 𝑅𝑐𝑝𝑢−𝑏𝑎𝑡 + 𝑅𝑐𝑝𝑢−𝑒𝑛𝑣

.𝑃𝑏𝑎𝑡 ,

(9)

where 𝑇𝑏𝑎𝑡 and 𝑇𝑒𝑛𝑣 are battery and environment temperature, 𝑃𝑐𝑝𝑢 and 𝑃𝑏𝑎𝑡 are CPU and battery
power consumption, and 𝑅𝑖−𝑗 is the thermal resistance between 𝑖 and 𝑗 , where 𝑖 and 𝑗 can be CPU,
environment, and battery. The value for these resistances are presented in Table 2 (based on the
experiments in [45]). We consider the experiment environment in our platform to be the same as
the one presented in [45] to have realistic simulations. We measure 𝑃𝑐𝑝𝑢 with the available sensors
on the Odroid XU3 board, and calculate the 𝑃𝑏𝑎𝑡 based on that. To do so, we use the result of the
experiments in [3], according to which, the 𝑃𝑐𝑝𝑢 is on average 15% of 𝑃𝑏𝑎𝑡 .

The above thermal model can replace by any other models, as our framework is designed modular
and replaceable. The above model is used to estimate battery temperature for computing aging,
based on the average temperature during battery lifetime. Aging is a long-term process, thus a
high level of abstraction for designing the battery temperature is sufficient. On the other hand,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Elham Shamsa, et al.

for resource management which needs momentary temperature readings we can use the available
sensors in our platform which provides CPU temperatures.

3.2 User prediction model
In this work, we design a user prediction model based on real data that was collected. We collected
the data offline, then use a probabilistic algorithm to predict plug-in/out events, given current
SOC and time. By using such a model, we simulate the changes in the user charging behavior
due to resource management and charging strategies. The details of the user prediction model are
explained in the following.

3.2.1 Data collection. For the prediction of user actions (plug-in/out), we recorded smartphone
usage data for four users over various period from 1 month to 1 year using the Battery Log app
[19]. The gathered data contains timestamps, SOC level, battery temperature, battery voltage and
status (i.e., charging, full, plugged, and unplugged). Half of the collected data is used for training a
prediction model and the other half is used to evaluate the designed model. In the following, we
explain the plug-in/out prediction model which was trained using the gathered data.

3.2.2 Plug-in prediction. We build a model for prediction of a plug-in event, given the current
time and SOC. We use the model in [41] as a basic model for plug-in prediction, given the SOC
and upgrade it for our work. The model is trained offline using the collected data, and it is updated
during run-time based on new user data. We design a general probabilistic model, using the Naive
Bayes theorem [11]. Naive Bayes is a fast and reliable algorithm which has fast convergence for
on-line training. In the Naive Bayes algorithm, a set of probabilities is calculated, considering the
frequency of observing each value in a given data set. Based on the calculated probabilities, a
conditional probability can be calculated as follows [31].

𝑃 (𝐴|𝐵) = 𝑃 (𝐵 |𝐴) × 𝑃 (𝐴)
𝑃 (𝐵) (10)

where 𝑃 (𝐴|𝐵) is the probability of event 𝐴 occurring given that event 𝐵 has occurred. In this
work, for calculating the probability of a plug-in event given the SOC level or time, we consider
𝑃 (𝐴) = 𝑃 (Plug-in==true) and 𝑃 (𝐵) = 𝑃 (SOC=b) or 𝑃 (𝐵) = 𝑃 (time=t) , where 𝑏 is a specific SOC
level (from 0 to 100%, with step size of 10%) and 𝑡 is the time of day (from 0 to 23h, with step size of
1h). We generate two probabilities (𝑃𝐺𝑆𝑂𝐶 and 𝑃𝐺𝑡𝑖𝑚𝑒) for a plug-in event, using the Naive Bayes
theorem. These two probabilities are called general probabilities (𝑃𝐺) and they are trained based
on the collected data for an individual user.

To have a more accurate prediction, we also generate two special probabilities (𝑃𝑆) for each user.
The special probabilities are generated based on the 10 recent activities of the users. The higher
probabilities are assigned to the times and SOC levels during which the user plugs in the device
more often (during 10 recent activities). The time duration in which the user plugs in their device
more often is selected (e.g., 𝑡1), then the 𝑃𝑆𝑡1 is assigned 𝑃𝑚𝑎𝑥 (In this work, 𝑃𝑚𝑎𝑥 is experimentally
set to 0.7). Similarly, we generate the 𝑃𝑆𝑆𝑂𝐶 . At the final stage, we combine 𝑃𝐺 and 𝑃𝑆 to make a
final prediction. Figure 7 shows the flow-chart which is used in plug-in/out prediction to combine
𝑃𝐺 and 𝑃𝑆 . We consider 5 constraints which are 𝐿𝑖𝑚1, 𝐿𝑖𝑚2, 𝐿𝑖𝑚3, 𝐿𝑖𝑚4, and 𝐿𝑖𝑚5, and decide based
on these parameters. If 𝑃𝐺𝑆𝑂𝐶 > 𝐿𝑖𝑚1, we compare the 𝑃𝑆𝑆𝑂𝐶 with 𝐿𝑖𝑚2. If 𝑃𝑆𝑆𝑂𝐶 > 𝐿𝑖𝑚2, the
plug-in prediction is true; otherwise it is false. If 𝑃𝐺𝑆𝑂𝐶 < 𝐿𝑖𝑚1, we compare 𝑃𝑆𝑆𝑂𝐶 with 𝐿𝑖𝑚3,
and if it is greater than 𝐿𝑖𝑚3, the plug-in prediction is true; otherwise we compare 𝑃𝑆𝑆𝑂𝐶 with
𝐿𝑖𝑚4. If 𝑃𝑆𝑆𝑂𝐶 > 𝐿𝑖𝑚4 and 𝑃𝐺𝑆𝑂𝐶 > 𝐿𝑖𝑚5, the plug-in prediction is true; otherwise it is false.
The same procedure is used to combine 𝑃𝐺𝑡𝑖𝑚𝑒 and 𝑃𝑆𝑡𝑖𝑚𝑒 and predict plug-ins based on that.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:11

Fig. 7. Prediction flow-chart for plug-in and plug-out events

When both predictions based on time and SOC are true the final plug-in prediction is true. We set
𝐿𝑖𝑚1 = 0.5, 𝐿𝑖𝑚2 = 0.3, 𝐿𝑖𝑚3 = 0.5, 𝐿𝑖𝑚4 = 0.25, and 𝐿𝑖𝑚5 = 0.4, in our framework.

3.2.3 Plug-out prediction. For plug-out prediction, we similarly use a Naive Byes algorithm.
We calculate two probabilities for the plug-out event, given the SOC level, and plug-in duration.
We consider 𝑃 (𝐴) = 𝑃 (Plug-out=true) and 𝑃 (𝐵) = 𝑃 (SOC=b) or 𝑃 (𝐵) = 𝑃 (dur=td), where 𝑏 is the
SOC level within 0, 100 % and 𝑡𝑑 is the plug-in duration time. Based on the above probabilities the
𝑃𝐺𝑆𝑂𝐶 and 𝑃𝐺𝑑𝑢𝑟 for plug-out event are calculated. Then, we assign special probabilities, 𝑃𝑆𝑆𝑂𝐶

and 𝑃𝑆𝑑𝑢𝑟 , to justify the model for each user at run-time based on the 10 recent activities. The
𝑃𝑆𝑆𝑂𝐶 and 𝑃𝑆𝑑𝑢𝑟 are calculated similar to the special probabilities for plug-in. Finally, the plug-out
is predicted by combining the above probabilities based on the flow-chart in Figure 7. We similarly,
consider 𝐿𝑖𝑚1, 𝐿𝑖𝑚2, 𝐿𝑖𝑚3, 𝐿𝑖𝑚4, and 𝐿𝑖𝑚5, then use the same procedure to predict final plug-out.
The plug-out event is true when the probabilities for both 𝑆𝑂𝐶 and 𝑑𝑢𝑟 are true. The values for
𝐿𝑖𝑚1−5 are selected the same as the values for plug-in prediction.

3.3 Resource management
As shown in the overview of our framework in the Figure 6, the resource management framework
interacts with i) the oracle, ii) user and battery, and iii) Heterogeneous Multi-Processor (HMP). The
resource management is responsible for making decisions that minimize aging and maximize QoE.
These decisions are enforced by the respective settings of the control knobs. The knob settings
are guided by i) current and predicted status of the device (i.e., plugged, unplugged, charging), ii)
current and predicted SOC, iii) current set of applications running, iv) current power consumption,
and v) battery temperature. The Aging and QoE aware controller considers all the above parameters
and generates a set of knob settings which improves QoE and BCL.
The resource management is guided by a 𝜆 parameter which is generated based on the SOC

level and plug-in prediction at run-time. 𝜆 represents the user preference on high performance
mode versus energy saving mode which is used in the following equation to calculate the QoE (as
proposed in [48]).

𝑄𝑜𝐸 = 𝜆 × 𝑃𝑒𝑟 𝑓𝑁 + (1 − 𝜆) (1 − 𝑒𝑁). (11)
where 𝑃𝑒𝑟 𝑓𝑁 is the normalized average performance of the running applications, and 𝑒𝑁 is the
normalized energy consumption. The performance of applications is measured in terms of heartbeat
(explained in Section 4.1.2), which is issued periodically by each application. This model implicitly
corresponds to a higher QoE with higher performance and lower energy consumption. When the
device is charging, the user does not require to save energy, thus 𝜆 = 1, which leads to the highest
weight for performance. When the device is unplugged, 𝜆 changes based on the SOC variation
as presented in Equation 12. The higher SOC leads to relatively higher 𝜆, which shows a higher

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Elham Shamsa, et al.

Fig. 8. Work-flow of knob setting for resource management

preference for performance versus power saving [41].

𝜆 = 𝛼 × 𝑆𝑂𝐶

100 (12)

where 𝛼 is assigned based on the plug-in prediction at run-time. When there is no plug-in prediction,
𝛼 is set to 1. Conversely, when a plug-in event is predicted for the next cycle, 𝛼 increases (set to 1.6,
based on [41]) which corresponds to higher 𝜆. Thus, 𝛼 changes between two values which are 1
and 1.6 based on the plug-in prediction. Increasing 𝛼 leads to relatively higher 𝜆 which shows the
user prefers higher performance. Thus, when the power source is available and the plug-in event is
more probable 𝜆 increases.
For balancing BCL and QoE, we handle the knob settings dynamically at run-time based on

𝜆. 𝜆 guides resource management to change actions between i) decreasing power consumption
and SOC degradation, and ii) increasing the performance and user satisfaction. Decreasing power
consumption implicitly decreases temperature and SOC swing, leading to BCL increase.
Knob setting: We use a recent mobile platform, an Exynos5422 system-on-chip (as used in the
Samsung Galaxy S5) with four big (2GHz-800MHz) and four LITTLE (1.4GHz-600MHz) cores on
an ODROID-XU3 board. On this platform, Dynamic Voltage and Frequency Scaling (DVFS) and
task migration can be dynamically used to scale performance and energy consumption. We select a
proper set of cores and frequency at run-time based on the user preference (𝜆) to maximize QoE. In
addition, the controller relaxes the performance reference for reducing the parameters which affect
aging and BCL (temperature and average SOC).
Figure 8 shows the work-flow of the knob setting process. The performance is monitored as

heartbeat per epoch (Explained in Section 4.1) for each application, and the performance reference
is determined based on the user requirements for each application. When the smartphone is in
idle mode and there is no running application, the frequencies for big and LITTLE clusters are
set to the lowest frequency (i.e. 800MHz for the big cluster and 600MHz for the LITTLE cluster).
When the user runs a new application, the controller maps it to the big or LITTLE cluster based on
the user preference (𝜆). Equation 11 shows 𝜆 is a weight between performance and energy. The
lower 𝜆 shows higher weight for energy saving. For energy saving, we assign LITTLE cores to new
applications. We experimentally determine some thresholds for 𝜆 to guide the knob settings. The
thresholds are generic and can vary at design time. In this work, by running several experiments
with various applications, we find the following thresholds leading to the best balance for our
device.
When a new application arrives, if 𝜆 < 0.6, the application is mapped to LITTLE cores which

provides low power; otherwise it is mapped to big cores. For decreasing the aging effect, we
fine-tune the frequency to prevent excessive energy consumption and SOC swing. We relax the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:13

performance target of each application based on 𝜆. When 𝜆 > 0.7, which means a higher weight
for performance compared to saving energy, the performance target is set to the original value
(𝑃𝑒𝑟 𝑓𝑟𝑒 𝑓). If the measured performance of the application is lower than the target, the frequency
increases step by step (i.e. 100𝑀𝐻𝑧) until the highest value, and if the application is mapped to the
LITTLE core, the application migrates to big cores. When 0.5 < 𝜆 < 0.7, we set the performance
target to 0.8 × 𝑃𝑒𝑟 𝑓𝑟𝑒 𝑓 . Then, if the performance is lower than the new target, we increase the
frequency and migrate the application from the LITTLE core to the big core, if it is required. When
𝜆 < 0.5, which shows a higher weight for energy saving, we set the new performance target to
0.5 × 𝑃𝑒𝑟 𝑓𝑟𝑒 𝑓 and adjust the frequency and core based on that. When a suitable frequency and
core are selected, if the performance is higher than 1.1 × 𝑃𝑒𝑟 𝑓𝑟𝑒 𝑓 , the frequency decreases step
by step. When the system returns to idle mode without any running application, the resource
management sets the frequencies to the minimum values. Considering energy consumption in
resource management leads to lower temperature and SOC swing which implicitly decrease the
aging effect.

3.4 Aging model
For the simulation of the battery health degradation, we implement a widely-employed BCL model,
which describes the electrochemical aging processes by physical crack propagation mechanisms
over cycling and time [24]. The model has the typical aging parameters cell temperature 𝑇B, SOC
swing (𝜎) and average SOC (𝑆𝑂𝐶) as input parameters. The SOC swing (𝜎) and average SOC (𝑆𝑂𝐶)
over the time interval 𝑇m are equivalent representations for the charge and discharge currents,
which are often named as stress parameters. We combine this with the equivalent electrical circuit
model from [5] to account for short-term battery behaviors.

In the following, we reproduce the main equations presented in [24]. A cycle interval may have
arbitrary SOC states as start and end point. Therefore, the effective throughput cycles for time
intervals𝑇m, where𝑚 denotes the m-th time the cell is discharged and recharged between arbitrary
SOCs, need to be determined. They are calculated in dependency of the charge or discharge current,
𝑖 (𝑡), and the nominal amount of charge of the battery, 𝑄nom. That is,

𝑁 =

∫
𝑇m

|𝑖 (𝑡) |𝑑𝑡
2𝑄nom

. (13)

The degradation variable, 𝐷1, represents the damage in mid-centered cycles:

𝐷1 = 𝐾co𝑁 exp
(
(𝜎 − 1) 𝑇ref + 273

𝐾ex (𝑇B + 273)

)
+ 0.2

𝑡cycle

𝑡life
. (14)

The constant 𝐾co is a normalization coefficient for 𝑁 and 𝐾ex is a constant exponent for SOC swing.
The temperature 𝑇ref denotes the reference battery temperature of 25◦C. The duration of one cycle
is 𝑡cycle. The time 𝑡life is the shelf life at 25◦C and 50% SOC until End of Life (EOL). It is commonly
defined that the EOL is reached once the actual capacity of a battery has degraded to 80% of its
initial amount. The second degradation variable, 𝐷2, adjusts the damage to the average SOC:

𝐷2 = 𝐷1exp
(
4𝐾SOC (𝑆𝑂𝐶 − 0.5)

)
(1 − 𝐷 (𝑇m−1)) . (15)

The constant 𝐾SOC accounts for the average SOC. The overall degradation is recursively calculated
in 𝐷 (𝑇m)

𝐷 (𝑇m) = 𝐷2exp
(
𝐾t (𝑇B −𝑇ref)

𝑇ref + 273
𝑇B + 273

)
. (16)

The constant 𝐾t accounts for a doubling of the decay rate for each 10◦C rise in temperature. The
accumulated damage of each cycle results in the remaining battery life.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Elham Shamsa, et al.

Table 3. Summary of Mibench applications which are used in our experiments

Application Category Summary
Dijkstra Network Constructs a large graph and then calculates the shortest path between every pair of nodes
Patritia Network Creates data structure for representing routing tables in network applications
Sha Security Secure hash algorithm

Rijndael Security An advanced and standard encryption and decryption method
Qsort Automotive Control Sort a large array of strings into ascending

The remaining capacity is therefore calculated iteratively by summing up all damages done over
past cycles subtracting it from the initial capacity. The end of life of the battery is reached once the
remaining capacity has reached 80% of the initial capacity [34]. The BCL is calculated as the time
in years it takes to reach the end of life with a given usage pattern.

4 EVALUATION
In this section, we describe the details of the platform, workload scenario, evaluation metrics, and
baseline algorithms. Then, we demonstrate the effectiveness of our framework against state-of-the-
art algorithms in terms of QoE and BCL.

4.1 Experimental Setup
4.1.1 Platform. For evaluation purposes, we use an ODROID XU3 board, containing an HMP
which is used in Samsung Galaxy series smartphones. The multi-processor consists of four “LITTLE”
Cortex-A7 cores (operating in the frequency range of 200 to 1400 MHz) and four “big” Cortex-A15
cores (operating in the frequency range of 1400 to 2000 MHz). Such multi-processors are used
in most recent high-end smartphones such as Apple a13 bionic, Qualcomm Snapdragon 865, and
Samsung Exynos 990 [28] with different numbers of LITTLE and big cores for power saving and
high performance. The platform supports DVFS for each cluster using CPU-freq driver. Besides,
the board provides per cluster power monitor, using an INA231 sensor [14]. Application mapping,
thread-to-core binding, and task migration support are enabled through Linux system utilities. The
proposed resource management framework is implemented as a Linux user-space daemon and
invoked every parametrizable epoch. For experimentation purposes, we set the resource manage-
ment epoch to 0.5𝑠 , and for the plug-in/out prediction to 2𝑠 for high accuracy, however we can
increase the plug-in/out prediction period to decrease the overhead. We use a battery model (4V,
2000mAh) and allocate effective battery energy (28,800 J) to compare various approaches.

4.1.2 Workload. We select a set of applications from Mibench benchmark suites combining
with web surfing as well as playing audio and video which represent the behavior frequently
encountered in heterogeneous embedded systems, in particular smartphones [7, 8, 42]. For web
surfing we used x-www-browser and wget commands which are used in Linux command line
for opening a website in the default browser and downloading a file from a specified link. For
playing mp3 and mp4 files as audio and video in Linux command line we use play and mplayer
command respectively. We open several websites while the Mibench applications are running
and play 4-minutes audio and video files. The Mibench benchmark suites provide benchmarks in
various categories of standard applications ranging from sensor systems on simple microcontrollers
to smartphones and desktops [15]. We summarize the applications that we used from Mibench in
this work in Table 3. The applications that we use in this work are in the network and security
categories, both of which are relevant to and representative of the applications run on smartphones,
in addition to automotive control applications for a wider range of applications beyond current
usage in smartphones. To create a high intensive and real workload scenario, multiple applications

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:15

Table 4. Users’ cell phone models and battery capacity

User Smartphone model Battery capacity
User1,7 Samsung J7 3300 mAh
User2,4 Fairphone1 2000 mAh
User5 Samsung A70 4500mAh
User6 Samsung S8 3000mAh
User8 Sony Xperia XZs 2900mAh

from Table 3 run simultaneously while the user is web surfing, and video or audio are playing in the
background. The applications enter and leave the system dynamically and in an unknown sequence.
We enhance the applications, using a Heartbeat API [18] to monitor the performance at run-time.
This API provides an application-level performance metric in terms of heartbeat per epoch which
is used in several works for performance monitoring [25, 26, 39, 49]. Each application determines
one performance reference based on its requirements e.g., the required number of heartbeats per
second and issues a heartbeat after every full run.

4.1.3 Methodology. We run 8 different user event patterns which are extracted from real user
data patterns (collected using the Battery Log app [19]). The event patterns contain plug-in/out
events based on the time and SOC. The users used various models of cell phone with different
battery capacity which are listed in Table 4. Figure 9 shows the real SOC patterns of the 8 users
over a period of 4 months for 6 users and 2 weeks for 2 other users. The real SOC patterns of these
8 users are used for SOC pattern generation in this paper. Figure 9 shows different users can have
different habits in plug-in/out. For better demonstration, we zoomed in the SOC pattern of User1
and User2. The collected data for User5 and User6 represent a shorter period of time, i.e., 2 weeks,
compared to the others. This enables us to assess the effect of our method when little training data
is available. The evaluation results show that even with 2 weeks of data collection, our approach
can result in acceptable improvement in BCL and QoE.

We use the collected data to design a probabilistic model for each user. For evaluation purposes, we
generate SOC patterns by using the probabilistic model and the battery model which are described
in Section 3.1. The applications enter the system dynamically during a day. In our experiments, the
user and SOC patterns are generated for a period of 200 hours.

4.2 Comparison
4.2.1 Comparison Metrics. We compare the SOC pattern, temperature of the battery, BCL, and
QoE in our framework against the state-of-the-art approaches. We know that higher temperature,
average SOC, and SOC swing lead to a higher aging effect and lower BCL. For evaluation purposes,
we model the BCL (explained in Section 3.4) using battery temperature and SOC pattern, and we
compare the normalized BCL by using various frameworks and users. The BCL is normalized
to 1, using the approach with the highest BCL. For the evaluation of QoE, we measured power
consumption (for energy calculation), and performance of each running application. We compare
average power/average performance for each framework to evaluate which one performs better in
terms of power-performance. By using power and performance as explained in Equation 11, we
calculate the QoE.Higher QoE and BCL is better due to higher user satisfaction. However, these two
objectives are conflicting, and maximizing of one of them may lead to minimizing the other. Thus,
for evaluation, combination of QoE and BCL can be suitable as Figure of Merit (FoM). Although
QoE is a short term evaluation metric and BCL is a long term one, we consider the average of QoE

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Elham Shamsa, et al.

Fig. 9. Real SOC patterns of 8 users over various periods of time. We use them in this work for SOC pattern
generation.

Table 5. Summary of existing works against the proposed method

Technique Power Perf. Energy QoE Battery Plug-in/out pattern Rate capacity Temp. BCL
HP ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕

LP ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

SC[34] ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✓
Od ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕

DyPO[14] ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

BUQS[22] ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕

UC[41] ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕

Proposed method ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

in long term and propose FoM=QoE×BCL. Hence, the higher overall FoM shows relatively higher
QoE and BCL. Considering QoE and BCL are both normalized in range of 0 and 1, the maximum
value for FoM is also 1. In this paper, we set QoE and BCL to the same weight in the evaluation,
while in the future we can combine these two factors using different weights.

4.2.2 Existing Methods. In this paper, we compare our method against various resource manage-
ment approaches which focus on optimizing different objectives. Table 5 categorize the methods
based on the objectives that they consider for resource management. Our proposed approach in
the last line of Table 5 presents a more comprehensive method compared to the others, addressing
all the objectives which are mentioned in the table. In future work, we will compare our method
against the approaches focusing on optimizing BCL.
1. High performance (HP): This approach focuses on maximizing the performance of applications
and allocates the big cores with high frequency to the applications. This resource management
approach is implemented based on the Linux Performance governor which is available and used in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:17

off-the-shelf smartphones [36, 44].
2. Low power (LP): This approach focuses on low power consumption and allocates the LITTLE
cores with low frequency to the applications to save power. This resource management approach is
implemented based on the Linux Powersave governor which is available and used in off-the-shelf
smartphones [36, 44].
3. On-demand (Od): On-demand is a dynamic in-kernel cpufreq governor that scales the frequency
according to the current workload. This resource management approach is implemented based on
the Linux On-demand governor, which is available and used in off-the-shelf smartphones [36, 44].
4. Low energy (DyPO)[14]: This low energy approach measures the energy consumption of each
application for each resource management configuration, offline, then, allocates the configuration
with the lowest energy consumption to the applications.
5. QoE aware (BUQS)[22]: This method gradually decreases QoS, using DVFS and task migration
based on the difference between current battery state and a battery reference. When the SOC is
lower than the defined battery reference, the BUQS compromise QoS to achieve higher energy
saving. The battery reference is obtained from the energy usage history of each individual user. As
shown in Table 5, this method is more similar to our work compare to the others. This method uses
the Odroid XU3 platform for evaluation, which is also used in our work.
6. User-centric QoE aware (UC)[41]: This method considers user preference at run-time and sets
the frequency and core allocation based on the user preference to maximize QoE. The resource
management adjusts the actuation knobs for each individual user based on the plug-in prediction.
This method has the most similarity with our work, as shown in Table 5.
7. Aging aware (SC):[34] This approach focus on decreasing the aging of smartphones batteries
and does not use resource management. For decreasing the aging effect, they provide a smart
charging method to minimize the average SOC by considering the user’s plug-in duration and
plug-out event. In this method, two approaches are used for decreasing the average SOC. The first
one is delaying the charging based on plug-out prediction, and the other one is decreasing the
charging limit (e.g from 100% to 80%).

4.2.3 Summary of Proposed Methods. Here, to facilitate positioning our proposed methods com-
pared to existing ones, we present a summarized overview of the proposed methods.
UBAR is a User and Battery Aware Resource management approach which optimize both QoE and
BCL by considering all the objectives which are mentioned in Table 5. The rate capacity effect and
temperature evaluation are considered in our battery model for more accurate results.
UBAR+ is an improved version of our framework, which combines UBAR and smart charging (SC)
[34] to increase the BCL. UBAR+ set a limitation for charging (e.g. 80%) to decrease the average
SOC based on SC method.

4.3 Evaluation of Results
Figure 10 shows the created SOC patterns during 200 hours, using the 9 approaches which are
explained in Section 4.2. The calculated BCL and average QoE for each approach are mentioned in
the subplots. The BCL is normalized to 1, using the approach with the highest BCL (e.g. LP). Figure
10 shows the variation of SOC swing, average SOC, rate of discharge, and charging limit by using
different methods. The resource management approach which leads to the highest BCL, i.e., LP, has
a lower rate of discharging, SOC swing and average SOC. In contrast, the HP approach has the
highest rate of discharging among all the tested methods, which leads to the higher SOC swing and
lower BCL. Such a resource management technique has relatively higher QoE due to using high
frequencies to satisfy the user request on running applications. However, LP has the lowest QoE
because of saving power without considering performance requirements. The Od approach which

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Elham Shamsa, et al.

Fig. 10. 200 hours of SOC patterns using 9 different resource management approaches

considers workload scenario and scales frequency based on that has higher rate of discharging
compared to the LP and lower compared to the HP. The Od approach is a more balanced resource
management, which results in lower BCL and higher QoE than LP.

Dypo which considers both power and performance has an SOC pattern with higher SOC swing
compared to LP and lower swing compared to HP. Thus, the BCL for Dypo is higher than HP, and
the QoE is higher than LP. UC and BUQS are two approaches which focus on increasing QoE. UC
has relatively high QoE which leads to high SOC swing and low BCL. BUQS has lower SOC swing
compared to UC, thus the BCL for this approach is higher than UC. The SC focuses on decreasing
the aging effect during charging by delaying the charging process and setting a target charge limit,
however without using customized resource management, which consider both QoE and BCL, the
BCL is still relatively low. The resource management which is used for SC is the Linux default
resource management which results in relatively high QoE. In UBAR, we have suitable trade-off
between BCL and QoE, and in UBAR+, we find the best trade-off. The BCL for UBAR+ is higher
than the other approaches except LP (which has the lowest QoE), while the QoE is relatively high.
In summary, Figure 10 shows the approaches with higher SOC swing and rate of discharging

have lower BCL, and the approaches which use limited charging can improve the BCL. As shown
in Figure 9 the SOC pattern for each different user can be different. To show the impact of user
behavior on the effectiveness of the approaches, we compare various methods for 8 users in the
following. Figure 11, and Figure 12 show such comparison based on different metrics.
Figure 11 (a) shows the comparison of average power/average performance during the experi-

ments. The lower power/performance is relatively better because it shows higher performance
and lower power consumption. Figure 11 (a) shows that UBAR and UBAR+ have a relatively lower
power/performance for all 8 users. The LP approach has also low power/performance, however, this
method provides unacceptable absolute performance and QoE (as shown in Figure 12). UC, BUQS,
and HP have the highest power/performance due to the high power consumption of the systems
using such approaches. Figure 11 (a) shows the variation in user behavior does not affect the
power/performance metric dramatically, and the trend of various resource management approaches
for different users is similar. Figure 11 (b) shows the average battery temperature (over the whole
duration of the experiment) when using each approach by each user. UBAR and UBAR+ have a
relatively lower temperature, which leads to higher BCLs.
In Figure 12, we compare the (a) QoE, (b) normalized BCL, and (c) FoM=QoE×BCL for 8 users,

when using the 9 resource management approaches. As shown in the Figure 12, UBAR and UBAR+

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:19

Fig. 11. Comparison of a) Power/Performance and b) temperature for 9 different resource management
approaches (lower is better). Performance is measured in Heartbeat per second.

have relatively higher QoE for User2 and User6, and for the other users with a small difference
in QoE have significantly higher BCLs). The LP which has the highest BCL, has very low QoE
which is not acceptable for users. Figure 12 (c) presents multiplication of QoE and BCL, to show
which approach is better. The UBAR and UBAR+ have the highest value for FoM, which shows
these two methods find the best trade-off for QoE and BCL. As shown in Figure 12 (c), for some
users, i.e., User4, User6, and User7, the FoM of the other approaches may be similar to UBAR or
UBAR+, which shows the efficiency of the resource management approaches depend on users’
plug-in/out pattern. In the SOC pattern of User4 and User7 (shown in Figure 9), the pattern changes
significantly, which influences our prediction method. Similarly, the relatively lower amount of
collected data for User6 may decrease the accuracy of the prediction method and affect the efficiency
of the resource management. However, in User5, although the collected data is for 2 weeks, the
FoM of our approach is the highest, which shows the plug-in/out patterns for User5 are predictable
even by a small amount of data collection. Thus, if the user SOC pattern varies dramatically, the
UBAR and UBAR+ may lead to the same efficiency as other approaches. Moreover, this specific
instance shows that UBAR may result in a better value for FoM compared to UBAR+ based on the
user habits. As 12 (c) shows our method compared to the other methods is most reliable which
always providing the best FoM.

Figure 13 visualizes the trade-off between QoE and BCL and where each approach stands on this
trade-off. The ideal solution would be at the top right corner of these plots. Therefore, the closer
each approach to the top right corner, the better its overall utility. The approaches that come to
lie on the Pareto-front (blue line) form the set of Pareto-optimal solutions can be considered as
approaches to provide the best trade-off of QoE and BCL among the investigated strategies. The
black circle and blue cross show our proposed techniques, UBAR+ and UBAR. For all the users,
UBAR+ is part of the Pareto-front and UBAR is either on the Pareto front or very close. Figure 13
shows, that LP compromises QoE to have the highest BCL, while HP compromises BCL to have
high QoE. However, UBAR and UBAR+ result in a good trade-off with relatively high QoE as well
as high BCL. By considering the Pareto front, if the user requires high performance, SC and UC

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Elham Shamsa, et al.

Fig. 12. Comparison of a) QoE, b) BCL and c) FoM=BCL×QoE for 8 users, using 9 different resource manage-
ment approaches

Table 6. FoM improvement of UBAR and UBAR+ compared to other approached

Method HP UC Od LP SC BUQS DyPO
UBAR benefit (FoM) 40% 30% 28% 10% 19% 14% 7%
UBAR+ benefit (FoM) 50% 46% 39% 29% 24% 21% 17%

can be better solutions compared to HP. The other approaches may be in the Pareto front only for
some users. However, our approach shows a stable superiority for all users.

In this paper, we presented a resource management approach in combination with a new control
knob which is smart charging to increase the BCL, while satisfying user experience at the same
time. Table 6 shows the maximum improvements that can be achieved using UBAR and UBAR+
compared to other approaches. UBAR+ achieves the highest gains compared to the methods which
focus on performance improvement (e.g HP) and neglect improving BCL. Figure 11, 12, and 13
show same approaches and workload may lead to various improvements for different users. The
variation in user plug-in/out event causes such effects. For example, as shown in Figure 9, User 2
plugs-in the device when the SOC is more than 50%, and the SOC pattern is more predictable for
this user. However, the variation of SOC pattern is higher for User3 and User4. Thus, the advantage
of UBAR and UBAR+ is higher for User1 and User2.
We have also evaluated the stability of our framework through extensive testing. Our resource

management framework is evoked every cycle with a tunable length, which we set to 0.5s in our
experiment. The maximum clock cycle of the processor is 0.005𝜇𝑠 , thus, our resource management
cycle is at least 100 million times larger than the operating processor cycle. Given the large
differences in the two cycles, changes in the resource management scheme are considered to be
slow smooth changes and will not cause an instability problem. The stability of the system is an
important concern. While there are standard techniques known in dynamical systems theory to
establish such stability, but they require a formal model of the system. Deriving such a model in

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:21

Fig. 13. Comparison of various resource management approaches for 8 users in terms of QoE-BCL

our case is not possible, and so the stability can only be shown empirically. In the future, we plan
to not only rely on extensive testing of our algorithm but to formally prove stability.

4.4 Scalability, Accuracy and Overhead
In this section, we analyze the scalability of our framework with respect to the different system
parameters, and we report the overhead of UBAR and UBAR+.

4.4.1 Scalability. For analyzing the scalability of our framework we consider the following three
parameters which can vary in a processor:

• Number of cores:Although the number of cores in the currently best smartphone processors
is not higher than 8 [28], we analyze the complexity of our method with increasing number
of cores to show the scalability of our approach. By increasing the number of cores, the
complexity of our framework may increase in two ways. The first one is power measurement
and temperature estimation. In the systems with power or temperature sensors, the outputs
of these sensors are used directly in resource management and the models for estimation
are not required, thus, increasing the number of cores does not affect the complexity of our
method in such systems. The Odroid Xu3 that we use in this work contains sensors for the
CPU’s power and temperature measurement. For the devices without sensor, we can use
power models presented in [21, 30, 37]. The complexity of such power models increases
linearly by increasing the number of cores. The second issue for scalability is storing the
status of cores for resource management to find free cores when a new application arrives.
We require a data structure that shows which core is free and which one is busy at run-time.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Elham Shamsa, et al.

For each core, we require one bit, thus the memory space that we need increases linearly
with increasing the number of cores.

• Number of clusters in a processor: Our framework is designed for smartphones, and the
current best smartphone processors contain two clusters [28] which we consider in this work.
A higher number of clusters is not used in the current smartphones, thus this is out of the scope
of this work. However, by increasing the number of clusters, the actuation knobs increase
which is explained in the next paragraph. We evaluate our framework in a heterogeneous
processor with two clusters, but our framework is also suitable for homogeneous processors
with lower complexity and actuation knobs. In the processors with one type of core, the
flexibility and efficiency of run-time resource management generally decrease. Therefore,
most of the recent smartphones use heterogeneous processors to handle the complexity of
applications and user requirements.

• Number of actuation knobs. In this work, we consider two actuation knobs which are
DVFS and TM. In processors with one cluster, TM is not available, and the number of
actuation knobs decreases. Thus, while the efficiency of our framework may decrease because
of the nature of the considered processor, it is still a proper solution for such devices. By
increasing the number of actuation knobs, the decision making becomes more complex
and we need a learning model or another heuristic model for selecting the best action at
run-time. Furthermore, a system must at least have one of the above actuation knobs for
being compatible with our framework.

Considering the above parameters, our framework is scalable and compatible with available het-
erogeneous and homogeneous systems with the mentioned limitations. In a system with more
actuation knobs, we can still use just the two knobs proposed in this work, but for higher efficiency,
the new knobs should be added to the system, and a new decision making algorithmwhich considers
all the knobs needs to be found. While the prediction accuracy varies based on the users’ habits,
we try to increase the accuracy of our prediction by updating the model at run-time. We estimate
the accuracy of our plug-in/out prediction models by comparing the prediction result to the real
plug-in/out event for 100 cycles of charging and discharging for each user. We achieve up to 87%
accuracy for plug-in prediction and 88% for plug-out prediction. We also estimate the accuracy
of our temperature model by comparing it with the real temperature values which are collected
by Battery log app in real smartphones. The results show average and variance of temperature by
using our model are 28.7 and 14 while these two parameters are 29.8 and 11 in the real temperature
log. Thus the model error on average is 3.6% which is negligible in our use case.

4.4.2 Overhead. We estimate the overhead of our approach by monitoring the CPU and memory
usage with and without our framework, using the htop command in Linux. This command allows
to interactively monitor the system’s vital resources in real time. The CPU usage of UBAR is 2.6%
of one of the big cores from 4 big and 4 LITTLE cores in Odroid XU3. By considering the utilization
of LITTLE cores as half of one of the big cores, we can assume 2 big cores instead of 4 LITTLE
cores for overhead calculation. Thus, if our framework uses 2.6% of one of the big cores, it uses
0.43% of all the cores (assuming an equivalent of 6 big cores for the entire system). Therefore, the
CPU overhead of our framework is 0.43% of all the cores. The memory overhead which is also
monitored by htop is 0.3%. Thus, with negligible overhead, UBAR provides up to 40% (as presented
in Table 6) improvement compared to the state-of-the-art approaches.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

UBAR: User and Battery Aware Resource Management for Smartphones 1:23

5 CONCLUSIONS
In this paper, we presented a User and Battery Aware Resource management (UBAR) framework for
smartphones. UBAR considers the conflicts between power, performance, and battery temperature
and finds the best trade-off between QoE and BCL. The QoE is affected by user preference at run-
time which varies based on SOC level at any given time and plug-in/out event. An efficient resource
management approach must consider users’ preferences variation for QoE optimization, thus, UBAR
monitors the history of each user to predict SOC, plug-in/out patterns, and users’ preferences,
consequently. By using this information, UBAR improves the balance between performance and
power, and thus optimizes QoE and BCL. We compare the UBAR framework against 9 various
resource management approaches for 8 different users. The evaluation results show that UBAR
and UBAR+ provide up to 40% and 50% improvement compared to the existing state-of-the-art
approaches while creating a meager 0.43% CPU and 0.3% memory overhead, which is negligible
compared to the gained advantages. In the future, we will evaluate our approach by considering
more users and we will study different weights for QoE and BCL based on user preference, and
direct the resource management to maximize the weighted combination of QoE and BCL.

REFERENCES
[1] Saeid Bashash, Scott J Moura, Joel C Forman, and Hosam K Fathy. 2011. Plug-in hybrid electric vehicle charge pattern

optimization for energy cost and battery longevity. Journal of power sources 196, 1 (2011), 541–549.
[2] Alberto Bocca, Alessandro Sassone, Alberto Macii, Enrico Macii, and Massimo Poncino. 2015. An aging-aware battery

charge scheme for mobile devices exploiting plug-in time patterns. In 2015 33rd IEEE International Conference on
Computer Design (ICCD). IEEE, 407–410.

[3] Aaron Carroll, Gernot Heiser, et al. 2010. An analysis of power consumption in a smartphone.. In USENIX annual
technical conference, Vol. 14. Boston, MA, 21–21.

[4] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. 2011. Modeling program resource demand using inherent program
characteristics. ACM SIGMETRICS Performance Evaluation Review 39, 1 (2011), 1–12.

[5] Min Chen and Gabriel A Rincon-Mora. 2006. Accurate electrical battery model capable of predicting runtime and IV
performance. IEEE transactions on energy conversion 21, 2 (2006), 504–511.

[6] Yukai Chen, Alberto Bocca, Alberto Macii, Enrico Macii, and Massimo Poncino. 2016. A li-ion battery charge protocol
with optimal aging-quality of service trade-off. In Proceedings of the 2016 International Symposium on Low Power
Electronics and Design. 40–45.

[7] Alexei Colin, Arvind Kandhalu, and Ragunathan Rajkumar. 2014. Energy-efficient allocation of real-time applications
onto heterogeneous processors. In 2014 IEEE 20th International Conference on Embedded and Real-Time Computing
Systems and Applications. IEEE, 1–10.

[8] Sidartha Azevedo Lobo De Carvalho, Daniel Carvalho Da Cunha, and Abel Guilhermino Da Silva-Filho. 2017. Au-
tonomous power management for embedded systems using a non-linear power predictor. In 2017 Euromicro Conference
on Digital System Design (DSD). IEEE, 22–29.

[9] Shin Donghwa, Kitae Kim, Naehyuck Chang, Woojoo Lee, Yanzhi Wang, Qing Xie, and Massoud Pedram. 2013. Online
estimation of the remaining energy capacity in mobile systems considering system-wide power consumption and
battery characteristics. In 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 59–64.

[10] Denzil Ferreira, Anind K Dey, and Vassilis Kostakos. 2011. Understanding human-smartphone concerns: a study of
battery life. In International Conference on Pervasive Computing. Springer, 19–33.

[11] Eibe Frank, Mark Hall, and Bernhard Pfahringer. 2002. Locally weighted naive bayes. In Proceedings of the Nineteenth
conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 249–256.

[12] Benjamin Gaudette, Carole-Jean Wu, and Sarma Vrudhula. 2016. Improving smartphone user experience by balancing
performance and energy with probabilistic QoS guarantee. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 52–63.

[13] Ujjwal Gupta, Manoj Babu, Raid Ayoub, Michael Kishinevsky, Francesco Paterna, and Umit Y Ogras. 2018. STAFF:
online learning with stabilized adaptive forgetting factor and feature selection algorithm. In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[14] Ujjwal Gupta, Chetan Arvind Patil, Ganapati Bhat, Prabhat Mishra, and Umit Y Ogras. 2017. Dypo: Dynamic pareto-
optimal configuration selection for heterogeneous mpsocs. ACM Transactions on Embedded Computing Systems (TECS)
16, 5s (2017), 1–20.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Elham Shamsa, et al.

[15] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and Richard B Brown. 2001.
MiBench: A free, commercially representative embedded benchmark suite. In Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No. 01EX538). IEEE, 3–14.

[16] Hardkernel. 2019. ODROID-XU. https://www.hardkernel.com/
[17] Liang He, Eugene Kim, Kang G Shin, Guozhu Meng, and Tian He. 2017. Battery state-of-health estimation for mobile

devices. In Proceedings of the 8th International Conference on Cyber-Physical Systems. 51–60.
[18] Henry Hoffmann, Jonathan Eastep, Marco D Santambrogio, Jason E Miller, and Anant Agarwal. 2010. Application

heartbeats: a generic interface for specifying program performance and goals in autonomous computing environments.
In Proceedings of the 7th international conference on Autonomic computing. 79–88.

[19] Tae-Rok Hwang. 2013. Battery Log, Version 2.0.3. https://play.google.com.
[20] Anil Kanduri, Mohammad-Hashem Haghbayan, Amir M Rahmani, Pasi Liljeberg, Axel Jantsch, Nikil Dutt, and Hannu

Tenhunen. 2016. Approximation knob: Power capping meets energy efficiency. In 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 1–8.

[21] Anil Kanduri, Antonio Miele, Amir M Rahmani, Pasi Liljeberg, Cristiana Bolchini, and Nikil Dutt. 2018. Approximation-
aware coordinated power/performance management for heterogeneous multi-cores. In Proceedings of the 55th Annual
Design Automation Conference. 1–6.

[22] Wooseok Lee, Reena Panda, Dam Sunwoo, Jose Joao, Andreas Gerstlauer, and Lizy K John. 2018. BUQS: battery-and
user-aware QoS scaling for interactive mobile devices. In 2018 23rd Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 64–69.

[23] Naoki Matsumura, Nobuhiro Otani, and Kiyohiro Hamaji. 2009. Intelligent battery charging rate management. US
Patent App. 12/059,967.

[24] Alan Millner. 2010. Modeling lithium ion battery degradation in electric vehicles. In 2010 IEEE Conference on Innovative
Technologies for an Efficient and Reliable Electricity Supply. IEEE, 349–356.

[25] Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann. 2018. CALOREE: Learning control for predictable
latency and low energy. ACM SIGPLAN Notices 53, 2 (2018), 184–198.

[26] Nikita Mishra, Huazhe Zhang, John D Lafferty, and Henry Hoffmann. 2015. A probabilistic graphical model-based
approach for minimizing energy under performance constraints. ACM SIGARCH Computer Architecture News 43, 1
(2015), 267–281.

[27] Thannirmalai Somu Muthukaruppan, Mihai Pricopi, Vanchinathan Venkataramani, Tulika Mitra, and Sanjay Vishin.
2013. Hierarchical power management for asymmetric multi-core in dark silicon era. In 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 1–9.

[28] Myfixguide. 2020. Best Smartphone Processors Ranking. https://www.myfixguide.com/best-smartphone-processors-
ranking/

[29] Gang Ning and Branko N Popov. 2004. Cycle life modeling of lithium-ion batteries. Journal of The Electrochemical
Society 151, 10 (2004), A1584.

[30] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. 2014. Integrated CPU-GPU power management for 3D
mobile games. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[31] Tina R Patil. 2013. Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Journal
of Computer Science and Applications 6, 2 (2013).

[32] Matthew B Pinson and Martin Z Bazant. 2012. Theory of SEI formation in rechargeable batteries: capacity fade,
accelerated aging and lifetime prediction. Journal of the Electrochemical Society 160, 2 (2012), A243.

[33] Alma Pröbstl, Bashima Islam, Shahriar Nirjon, Naehyuck Chang, and Samarjit Chakraborty. 2020. Intelligent chargers
will make mobile devices live longer. IEEE Design & Test 37, 5 (2020), 42–49.

[34] Alma Pröbstl, Philipp Kindt, Emanuel Regnath, and Samarjit Chakraborty. 2015. Smart2: Smart charging for smart
phones. In 2015 IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications.
IEEE, 41–50.

[35] Amir-Mohammad Rahmani, Mohammad-Hashem Haghbayan, Anil Kanduri, Awet Yemane Weldezion, Pasi Liljeberg,
Juha Plosila, Axel Jantsch, and Hannu Tenhunen. 2015. Dynamic power management for many-core platforms in
the dark silicon era: A multi-objective control approach. In 2015 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED). IEEE, 219–224.

[36] Basireddy Karunakar Reddy, Geoff V Merrett, Bashir M Al-Hashimi, and Amit Kumar Singh. 2018. Online concurrent
workload classification for multi-core energy management. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 621–624.

[37] Hergys Rexha, Simon Holmbacka, and Sébastien Lafond. 2017. Core level utilization for achieving energy efficiency in
heterogeneous systems. In 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP). IEEE, 401–407.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.hardkernel.com/
https://play.google.com
https://www.myfixguide.com/best-smartphone-processors-ranking/
https://www.myfixguide.com/best-smartphone-processors-ranking/

UBAR: User and Battery Aware Resource Management for Smartphones 1:25

[38] Leonardo M Rodrigues, Carlos Montez, Ricardo Moraes, Paulo Portugal, and Francisco Vasques. 2017. A temperature-
dependent battery model for wireless sensor networks. Sensors 17, 2 (2017), 422.

[39] Elham Shamsa, Anil Kanduri, Amir M Rahmani, Pasi Liljeberg, Axel Jantsch, and Nikil Dutt. 2018. Goal Formulation:
Abstracting Dynamic Objectives for Efficient On-chip Resource Allocation. In 2018 IEEE Nordic Circuits and Systems
Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC).

[40] Elham Shamsa, Anil Kanduri, Amir M Rahmani, Pasi Liljeberg, Axel Jantsch, and Nikil Dutt. 2019. Goal-driven
autonomy for efficient on-chip resource management: Transforming objectives to goals. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 1397–1402.

[41] Elham Shamsa, Anil Kanduri, Nima TaheriNejad, Alma Pröbstl, Samarjit Chakraborty, Amir M Rahmani, and Pasi
Liljeberg. 2020. User-centric Resource Management for Embedded Multi-core Processors. In 2020 33rd International
Conference on VLSI Design and 2020 19th International Conference on Embedded Systems (VLSID). IEEE, 43–48.

[42] Shervin Sharifi, Dilip Krishnaswamy, and Tajana Šimunić Rosing. 2013. PROMETHEUS: A proactive method for
thermal management of heterogeneous MPSoCs. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 32, 7 (2013), 1110–1123.

[43] Yanzhi Wang, Xue Lin, Qing Xie, Naehyuck Chang, and Massoud Pedram. 2014. Minimizing state-of-health degradation
in hybrid electrical energy storage systems with arbitrary source and load profiles. In 2014 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1–4.

[44] XDA. 2015. XDA-developersforums. https://forum.xda-developers.com/general/general/ref-to-date-guide-cpu-
governors-o-t3048957

[45] Qing Xie, Jaemin Kim, Yanzhi Wang, Donghwa Shin, Naehyuck Chang, and Massoud Pedram. 2013. Dynamic thermal
management in mobile devices considering the thermal coupling between battery and application processor. In 2013
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 242–247.

[46] Rui Xiong, Jiayi Cao, Quanqing Yu, Hongwen He, and Fengchun Sun. 2017. Critical review on the battery state of
charge estimation methods for electric vehicles. Ieee Access 6 (2017), 1832–1843.

[47] Kaige Yan, Xingyao Zhang, and Xin Fu. 2015. Characterizing, modeling, and improving the QoE of mobile devices
with low battery level. In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
713–724.

[48] Kaige Yan, Xingyao Zhang, Jingweijia Tan, and Xin Fu. 2016. Redefining QoS and customizing the power management
policy to satisfy individual mobile users. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1–12.

[49] Huazhe Zhang and Henry Hoffmann. 2016. Maximizing performance under a power cap: A comparison of hardware,
software, and hybrid techniques. ACM SIGPLAN Notices 51, 4 (2016), 545–559.

[50] Yancheng Zhang and Chao-Yang Wang. 2009. Cycle-life characterization of automotive lithium-ion batteries with
LiNiO2 cathode. Journal of the Electrochemical Society 156, 7 (2009), A527.

[51] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi. 2015. Event-based scheduling for energy-efficient qos (eqos)
in mobile web applications. In 2015 IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 137–149.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://forum.xda-developers.com/general/general/ref-to-date-guide-cpu-governors-o-t3048957
https://forum.xda-developers.com/general/general/ref-to-date-guide-cpu-governors-o-t3048957

	Abstract
	1 Introduction
	2 Background and Significance
	2.1 Motivation
	2.2 Related Work

	3 Proposed method
	3.1 Battery model
	3.2 User prediction model
	3.3 Resource management
	3.4 Aging model

	4 Evaluation
	4.1 Experimental Setup
	4.2 Comparison
	4.3 Evaluation of Results
	4.4 Scalability, Accuracy and Overhead

	5 Conclusions
	References

