
Checking Scheduling-induced Violations of
Control Safety Properties

Anand Yeolekar1, Ravindra Metta1, Clara Hobbs2, and Samarjit Chakraborty2

1 TCS Research, India & TUM Germany {anand.yeolekar,r.metta}@tcs.com
2 The University of North Carolina at Chapel Hill, USA

{cghobbs,samarjit}@cs.unc.edu

Abstract. Cyber-physical systems (CPS) are typically implemented as
a set of real-time control tasks with periodic activation. When a control
task misses it’s deadline, policies for handling deadline miss – e.g. de-
layed scheduling of the task instance – may still lead the CPS into an
unsafe or sub-optimal state. We present a technique for exact checking of
such control safety and reachability properties, for a class of CPS, under
common deadline miss handling and control update policies. In partic-
ular, we propose a joint encoding of control and scheduling behaviour
as a satisfiability-modulo-theory formulation and a novel abstraction-
refinement procedure with incremental solving to scale the analysis. Case
studies with realistic systems show the utility of our approach.

Keywords: control · scheduling · verification · abstraction · refinement

1 Introduction

CPS controllers are typically designed as a set of real-time tasks assuming ideal
conditions, such as all tasks meet their deadlines, for ease of design, by abstract-
ing away the implementation details. However, when the tasks are finally imple-
mented in software, the control performance might deviate from the expected
behaviour due to factors such as control task missing deadlines due to transient
overload on the processor. When a control task instance misses its deadline,
then depending on how the CPS is configured to handle deadline misses, the
corresponding control computation may be skipped or delayed causing a poten-
tial deviation from the expected behaviour. Such intermittent deviation from
expected behaviour, depending on when it occurs and by what amount, may in
turn lead to control safety or reachability violation.

For example, consider the F1Tenth car model [14], where the controller is
designed to steer the car along a predetermined path, without hitting an obstacle.
Only some deadline miss patterns, coupled with selected choice of initial state of
the car, will result into a collision (see Fig. 5). In this work, we focus on analysing
the interaction between control and scheduling leading to such violations.

Existing analysis techniques assume a simplified scheduling model, such as
bounding the maximum number of consecutive deadline misses [18, 10], or re-
strict the scheduling behaviour by not admitting non-determinism in task spec-
ification, or non-preemption of tasks. However, a precise bound accounting for



all feasible scheduling behaviours may not be easily identifiable for a given task
set implementing the CPS. As a result, these techniques tend to be pessimistic,
meaning the assumed worst-case deadline miss pattern, based on the bound,
might never occur for a real system. Further, bugs that occur based on the in-
teraction between control and scheduling layers are often subtle, near-impossible
to reproduce by analyzing separately control or scheduling.

Therefore, to establish system correctness with respect to control properties,
an analysis that precisely maps task runs containing all permitted sequences
of deadline misses to control behaviour is needed, especially if the control or task
specification admits non-determinism. Such an analysis helps CPS designers (i)
to gauge the impact of scheduling parameters on control performance, and (ii)
gain insight into the interplay of control evolution, scheduling policy, and strate-
gies for handling deadline misses. Towards this end, we propose an approach to
check scheduling-induced violations of control safety and reachability properties.

Summary of our approach: Given a (discrete) control system, a set of tasks
realizing the controller, and an analysis horizon h indicating length of control
evolution, we construct an abstract model of the system behaviour (control evo-
lution and runs of the tasks), which admits all feasible system behaviour as well
as some infeasible (spurious) behaviour. We check this model for violation of
specified control properties using a constraint solver, which reports a witness on
finding a violation. If the witness is spurious (an infeasible task run or control
trajectory), we iteratively refine the model to block the spurious witnesses, until
either a genuine witness is obtained or no more witnesses exist, proving that the
control property holds on the original system. Our main contributions are:

Encoding: we propose a Satisfiability-Modulo-Theory (SMT) encoding that
abstracts control and scheduling by relaxing certain constraints on their be-
haviour, which is then composed together with the property to be checked. Our
encoding admits non-determinism at the control layer (arbitrary initial states),
and scheduling layer such as delayed release (jitter) and variable execution times.

Refinement: we construct blocking implications from spurious witnesses to
refine the abstraction, and utilize the incremental analysis feature of SMT solvers
to efficiently analyze reasonably sized controllers and task sets.

Tool: we implemented the above abstraction and the refinement scheme
to check control property violations, supporting four common combinations of
deadline miss handling and control update strategies, and one static and one
dynamic non-preemptive scheduling policy.

Related work: Encoding of control and schedule to assess and correct impact of
scheduling anomalies on control performance has been studied [17] when a set of
periodic tasks with implicit deadlines is not schedulable, and to systematically
adjust the task periods to achieve schedulablity. [5] combines the control and
timing models as hybrid automata and verifies with Space Ex model checker [6].

The impact of timing uncertainty, such as deadline misses, on control has
been studied [18, 10, 12, 20], but broadly focused on analysis of control stability
i.e. whether control trajectories converge to an equilibrium point. However, as



Table 1: Symbolic variables used in the SMT encoding

Notation Type Description

xj,k Real j-th dimension of plant state at k-th time step
uk Real Control update value at k-th step

rik, s
i
k, e

i
k, d

i
k Int release, start, end, and deadline times of the k-th job of i-th task

observed in [1], a stable control system might still violate safety properties, hence
the need for an approach to check safety properties. [15] proposes a rich state-
based representation for capturing deadline misses and measure their impact
on control performance. [16] presents a static scheduling strategy that guaran-
tees control performance while smartly saving resources. Another approach of
automatically adapting the control system to deadline misses to guarantee per-
formance is proposed in [19], along with worst-case stability analysis. However,
these approaches need a bound to be specified on the number of consecutive
deadline misses possible.

The effect of control trajectories going outside safe regions in CPS has also
been studied and remedial actions were proposed [21, 4] for fixed priority schedul-
ing and controller co-design. [3] dynamically extends the period of control tasks,
based on historical measurements, to reduce power consumption and accommo-
date increased resource demands from other components.

In most works, a model of deadline misses needs to be provided by user,
which may sometimes help scale the analysis better than our approach. However
the main limitations of these approaches are: (i) extracting the assumed model
of deadline misses from the task specification, and (ii) unavoidable pessimism
due to worst case assumptions. In contrast, our approach faithfully models task
runs and control evolution, for precise analysis.

2 System model and encoding

2.1 Control system model and evolution

A discrete control system describing the plant model is defined as:

xk+1 = Axk +Buk uk = R−Kxk (1)

where x ∈ Rn×1 is the discrete state vector, n ≥ 1 is the control system dimen-
sion; k ∈ N denotes the discrete steps of evolution; A ∈ Rn×n and B ∈ Rn×1

are matrices specifying the discrete-time plant model with timestep δ. The con-
trol input u ∈ R is computed using a state feedback vector K ∈ R1×n, and an
optional reference value R ∈ R. The initial state x0 must lie in a user-specified
interval [X0, X0] along each dimension.

Our encoding approach unrolls the closed-loop discrete control system de-
scribed in Eqn. 1 up to the user-specified bound h. To unroll, we introduce



symbolic variables xj,k corresponding to the control states, and uk correspond-
ing to the control action update, where j ranges over the dimension of the control
system 1, 2, . . . , n, and k ranges over the discrete steps of evolution 0, 1, . . . , h.
We first construct the constraints on the initial plant state as:

ϕinit := ∀j : Xj,0 ≤ xj,0 ≤ Xj,0 (2)

Then, symbolically encoding the trajectories that could originate from any point
in the initial set, we construct constraints on the control state variables as:

ϕtraj :=

h∧
k=0

 n∧
i=1

xi,k+1 =

j∑
j′=1

Ai,j′xj′,k +Biuk

 (3)

We defer the explanation of the timing model and associated control update
modeling uk to Sec. 2.4. Given the analysis horizon h, the control safety and
reachability properties over the trajectories are:

ϕprop := Xj,h ≤ xj,h ≤ Xj,h (reachability)

ϕprop := Xj,k ≤ xj,k ≤ Xj,k , 0 ≤ k ≤ h (safety)
(4)

where [Xj,h, Xj,h], [Xj,k, Xj,k] denote the user-specified reach and safety inter-
vals (or safety pipes), respectively, for j-th dimension.

2.2 Task specification

The controller is realized in software via a set of tasks T that includes the con-
trol and auxiliary tasks e.g. loggers, communication, etc. We currently support
non-preemptive earliest-deadline-first (NP-EDF) representing dynamic priority
scheduling, and rate-monotonic (NP-RM), representing static priority schedul-
ing3, under unicore setting. A task τi ∈ T is defined as

(
O, J,E,E, P

)
, where

i is a unique task id, O is the task offset, J denotes release jitter faced by
task instances, E and E denote the best- and worst-case execution times of the
tasks respectively, and P denotes the period. We assume τ0 corresponds to the
controller task with period set to the discretization timestep: P 0 = δ.

We refer to task instances as jobs. Release time of the k-th job spawned
by τi is denoted by rik. Due to release jitter, the instant of job release lies in
the interval [kP i + Oi, kP i + Oi + J i]. We denote the start, end and deadline
time of the job as sik, e

i
k and dik. We assume task deadlines are implicit, thus

dik = Oi+(k+1)P i, and a deadline miss occurs when eik > dik. Under Continue
policy, jobs are eventually scheduled even if they miss deadline, and under Kill,
jobs are aborted in case of conservative deadline miss (i.e., a job is aborted if

its execution does not begin by dik − Ei). Under NP-RM, jobs of the same task
are scheduled in the order of release. Finally, jobs are released, scheduled and
terminate at discrete time points.

3 While our method can be adapted to handle preemptions, we focus on NP scheduling
for ease of presentation and leave the extension as future work.



Definition 1. A run of the task set is a timed sequence of jobs, ⟨. . . , (i, k, sik, eik), . . .⟩,
respecting the given scheduling policy and deadline miss strategy.

We assume the scheduling is work-conserving i.e. a ready job must be scheduled
as soon as the processor is available. Observe that multiple runs of the task
set are possible due to (i) release jitter experienced by each job, (ii) variable
execution budget leading to non-deterministic termination time for each job,
and (iii) arbitrary selection of equal-priority ready jobs. These runs can have
varying impact on the control performance and need to be analyzed rigorously.

2.3 An abstraction for task runs

We explain how to encode the set of runs of the task set. Our approach spawns
jobs of all tasks up to the time instant h×δ and we encode runs of the task set as
a logical formula. There is no explicit modeling of the scheduler; the operational
semantics of the scheduling process, e.g., the scheduler’s run queue, tasks moving
from sleep to ready state, etc. are modeled implicitly in the formula.

From the task specification (Sec. 2.2) we construct constraints on the sym-
bolic variables (Table 1) associated with each spawned job as:

ϕruns := ∀ (i, k) : rik ≤ sik ∧ kP i +Oi ≤ rik ≤ kP i +Oi + J i ∧ eik ≤ sik+1

∧ Ei ≤ eik − sik ≤ Ei (under Continue)

∧ (sik + Ei ≤ dik ⇒ Ei ≤ eik − sik ≤ Ei) ∧ (sik + Ei > dik ⇒ eik = sik) (under Kill)

(5)

These constraints restrict the release, start and end times of jobs as per the
task specification and deadline miss policy, however, they exclude the scheduling
policy and work conservation at this stage of modeling. While this helps to keep
the constraints concise and tractable, it introduces an abstraction with respect to
the set of valid runs of the task set (admits all valid runs as well as spurious ones)
as defined in Defn. 1. In Sec. 3, we will restore precision by using refinements to
prune away the spurious behaviour i.e invalid task runs.

2.4 Control action update modeling

We admit Zero andHold policies for control update u, where Zero signifies ap-
plying u = 0 when the corresponding control task instance misses deadline, and
Hold signifies applying the previous value. Fig. 1 illustrates the simplified logical
execution timing (LET) model assumed in this work and the associated control
action updates, under Hold semantics. Plant sensing and actuation happens
instantaneously at fixed discrete time points kδ, irrespective of the scheduling
of tasks4. As shown in the figure, job k− 1, spawned at time (k− 1)δ, reads the
plant state xk−1 at the beginning of its execution, processes the data, and writes

4 We assume a time-triggered hardware implementation of sensing/actuation, outside
the scheduling purview, with values stored in buffers accessed by the control task.



an actuation value at termination. This actuation value is applied to the plant at
the next time step kδ, and corresponds to the control action update uk. We as-
sume u0 = 0 (open loop for first step). On a deadline miss, e.g instance k missing
deadline, uk+1 is matched to uk (due to Hold). Observe that instance k, which
missed its deadline, is scheduled in the next slot [(k + 1)δ, (k + 2)δ), enabling
it to read the relatively fresher plant state xk+1. Instance k + 1 is scheduled in
its own slot [(k + 1)δ, (k + 2)δ) but misses its deadline, instance k + 2 meets its
deadline, and both write sequentially to the actuation buffer in the same time
slot, corresponding to control action update uk+3. In such a case, we assume the
actuation buffer is overwritten by the fresher value.

Updates are thus delayed when the controller is realized in software. We
model this by constructing conditional control update constraints as:

ϕu := ∀k : uk = 0, if k = 0

∧ e0k−1 ≤ d0k−1 ⇒ uk = R−
n∑

j=1

Kjxj,k−1 (under Continue)

∧ s0k−1 + E0 ≤ d0k−1 ⇒ uk = R−
n∑

j=1

Kjxj,k−1 (under Kill)

∧ s0k−1 + E0 > d0k−1 ⇒ uk = uk−1 (under Hold-Kill)

∧ s0k−1 + E0 > d0k−1 ⇒ uk = 0 (under Zero-Kill)

(6)

Notice that, under Continue policy, the above constraints enforce control
update computation when deadlines are met, but leaves the control update un-
constrained on a deadline miss. This introduces an abstraction with respect to
control updates. This is necessary at this stage of modeling, as we do not know
statically how many jobs could miss being consecutively scheduled all together in
any run of the given task set i.e. how much to “look back” from the current step
to pick the preceding control task instance execution, to use that value as the
freshest, when encoding the control update. Additionally, this helps in keeping
the control action constraints tractable and concise. In Sec. 3.4, we will restore
precision by refining control updates. Note that under Kill policy, control up-
dates are always precisely computed (there is no abstraction).

Definition 2 (Trajectory). A (discrete) trajectory of the control system is a
sequence of values of state variables

〈
. . . , (k, x1, . . . , xj), . . .

〉
, originating from

a valid initial state, ordered on the evolution step counter k, respecting the state
and control equations 1 and 6.

2.5 Composing control and scheduling models

From the encodings for the control trajectories from Eqns. 2 and 3, task runs
from Eqn. 5, control update from Eqn. 6, and the control property from Eqn. 4,
we construct the system composition as:

ϕsys := ϕinit ∧ ϕtraj ∧ ϕu ∧ ϕruns ∧ ¬ϕprop (7)



time

actuation

task release

sensing

control states

(k − 1)δ kδ (k + 1)δ (k + 2)δ (k + 3)δ

uk−1 uk uk+1 uk+2 uk+3

xk−1 xk xk+1 xk+2 xk+3

k − 1 k k + 1 k + 2

Fig. 1: Timing model illustrating sensing, task release and actuation, underHold

3 Refining the abstraction

Consider a solution to ϕsys reported by an SMT solver, that assigns concrete
values to all the symbolic variables in the formula. The solution is parsed to
extract (i) the run of the tasks consisting of a sequence of jobs, termed σrun,
and (ii) the control trajectory, sorted on the step counter k, termed σtraj. If σrun

satisfies Defn. 1, we have a run generated from the abstract ϕsys that precisely
maps to a concrete run of T . Similarly, if σtraj satisfies Defn. 2, we have a control
trajectory, generated from the abstract ϕsys, that precisely maps to a concrete
trajectory of the control system.

However, if either σrun or σtraj violate their respective definitions, we have
a spurious trace leading to property violation. To block such a trace from ϕsys,
we identify the causes of non-compliance within the definitions. For Defn. 1 the
causes can be overlapping jobs, scheduling policy violation, or work conservation
violation, and for Defn. 2, unconstrained control update due to deadline miss.

3.1 Overlapping jobs

Suppose job (i, j) overlaps with (i′, j′) in σrun, with sij ≤ si
′

j′ . This is possible
as the abstraction does not prevent overlaps upfront. Observe that though in
this trace (i, j) preceded (i′, j′), there can be a run of T with the precedence
reversed. Thus, to block this overlap as witnessed in this trace, we construct:

Bov := (sij ≤ si
′

j′ ∧ si
′

j′ < eij) ⇒ eij ≤ si
′

j′ (8)

This implication when conjuncted with ϕsys blocks this particular pair of jobs
from overlapping again in any trace, under the premise that (i, j) precedes (i′, j′).

3.2 Schedule violation

Suppose job (i, j) precedes (i′, j′) in σrun, but this precedence violates the
scheduling policy. Under NP-EDF, (i, j) can precede (i′, j′) if and only if the



deadline of (i, j) is no later than that of (i′, j′), or (i, j) is scheduled strictly
before (i′, j′) is released. Thus we construct the blocking implication5:

Bsv := sij < si
′

j′ ⇒ (dij ≤ di
′

j′ ∨ sij < ri
′

j′) (under NP-EDF) (9)

Conjuncting Bsv with ϕsys blocks the scheduling violation caused by this pair
of jobs in any trace, under the premise that (i, j) precedes (i′, j′).

3.3 Work conservation violation

Here, the processor cannot idle in the presence of a ready job. We assume that
σrun is free of overlapping jobs, easily achieved by repeatedly refining ϕsys with
Bov implications. There are two cases to analyze: (a) processor idling immedi-
ately after release of job (i, j), implying that sij = rij , and (b) idling post termi-
nation of some job (i′, j′) within the waiting time of (i, j), implying sij = ei

′

j′ .

Observe, however, there can be runs of T with different jobs preceding (i, j),
which raises the question: what is the set of jobs preceding (i, j) across all runs?
This set, denoted precij , is conservatively estimated as follows: Intuitively, jobs
released earlier and having higher priority will always precede (i, j) in all runs,
and vice versa. Importantly, this set of jobs can be identified statically based
on their period and deadline. Then, the complement of this set, characterized
by a lack of static precedence guarantee, forms precij . Formally, consider job

(i′, j′), i′ ̸= i. If di
′

j′ < dij ∧ j′P i′ +Oi′ + J i′ <= jP i +Oi (and vice-versa) does

not hold (under NP-EDF)6, then (i′, j′) ∈ precij . Observe that prec sets need to
be computed only once per job violating work conservation.

The concrete starting instant of the processor idle interval, which is rij in case

(a), serves to partition the set of jobs precij , as witnessed in σrun, into: (i) a prefix

subset of jobs scheduled prior to rij , and (ii) a suffix subset of jobs scheduled

post rij . Since there are no job overlaps in σrun, we are guaranteed that prefix
and suffix are mutually exclusive. Thus, we construct the blocking implication
for case (a) to preventing processor idling as:

Bwc a := ( rij < sij ∧
∧

(i′,j′)∈prefix

ei
′

j′ < rij ∧
∧

(i′,j′)∈suffix

si
′

j′ > rij ) ⇒ sij = rij (10)

Here, the antecedent captures the context witnessed in σrun that: (i) job (i, j) had
a non-zero waiting time, (ii) some jobs that could precede (i, j) were scheduled
prior to rij , (iii) the remaining jobs that could precede (i, j) were scheduled post

rij . Under these premises, the consequent enforces work conservation.

Similarly for case (b), ei
′

j′ partitions prec, changing the consequent to s
i
j = ei

′

j′ .

5 Under NP-RM, priority (period) must be higher (lower): Pi ≤ Pi′ ∨ sij < ri
′
j′

6 Under NP-RM, this is P i′ < P i



3.4 Unconstrained control updates

The basic idea for refining unconstrained control updates is to locate the latest
control job that was scheduled in σrun, compute the control update issued by
this job (if not already done), and use this as the freshest value. Observe that we
cannot always pick the control update issued by the preceding job: From Fig. 1,
job k + 1 missed its deadline, leading to an unconstrained uk+2. However, here,
we cannot pick uk+1 to match uk+2, as job k did get scheduled and successfully
terminated before the instant (k+ 2)δ, thereby issuing a fresher control update
that must be matched with uk+2. We discuss the various cases below.

Case 1: Suppose job (0, n) missed its deadline d0n in σrun, enabling a spu-
rious assignment to un+1 in σtraj. Then, suppose examining σrun leads us to a
job (0,m),m < n, as the closest control job that was scheduled (and thus ter-
minated) prior to the instant d0n. Then, un+1 should have matched um+1, based
on Hold. Now, if job (0,m) has met its deadline in σrun, then um+1 is already
computed (and the concrete value is reflected in σtraj). This allows us to build
the blocking implication for this first case as:

Buu a := ( e0n > d0n ∧ e0m ≤ d0m ∧ e0m+1 > d0n ) ⇒ un+1 = um+1 (11)

Here, the antecedent captures the context that (i) job (0, n) missed deadline,
(ii) job (0,m) is the closest preceding job to the time instant d0n (through
e0m+1 > d0n) and met deadline. This case is illustrated in Fig. 1 with job k
missing deadline and job k−1 meeting its deadline, enforcing uk+1 to match uk.

Case 2: Consider that the preceding job (0,m) too missed its deadline in
σrun, and hence um+1 is not computed, as defined in Eqn. 6. We have to locate
the “scheduling slot” in which (0,m) started execution, encode computation of
the the corresponding control update, and match with un+1. Recall that control
task instances read the control state at the beginning of their execution. Suppose,
by examining σrun, we observe that m

′P 0 ≤ s0m < (m′+1)P 0, with m ≤ m′ ≤ n.
In other words, job (0,m) was scheduled in a slot (interval of length P 0) that
begins at time m′P 0. Then, job (0,m) must have read the control state available
in this slot, which allows us to construct a blocking implication that computes
the correct control action as:

Buu b := ( e0n > d0n ∧ e0m > d0m ∧ e0m ≤ d0n ∧ e0m+1 > d0n

∧m′P 0 ≤ s0m < (m′ + 1)P 0 ) ⇒ un+1 = R−
j∑

j′=1

Kj′xj′,m′
(12)

Here, the antecedent captures the conditions that: (i) jobs (0, n) and (0,m)
missed their deadlines, (ii) job (0,m) is closest one to be scheduled prior to
the time instant d0n, and (iii) job (0,m) was scheduled in the slot beginning at
time m′P 0. The consequent constrains the control update to pick the control
state xj,m′ i.e. state at time m′P 0. This case is illustrated in Fig. 1, with jobs
k + 1 and k missing their respective deadlines. Job k, however, is scheduled in
the next slot post release (m′ = k + 1), and terminates before the time instant



(k + 2)δ, leading to uk+2 matching the control update issued by job k, albeit
reading the control state xk+1 instead of xk.

Case 3: The last special case that no preceding job is found (all preceding
jobs missed deadline) can be handled similarly by enforcing un+1 = u0.

3.5 Correctness of refinement

Theorem 1. Based on Eqns. 8–12, each refinement step removes only spurious
runs and/or trajectories from the set of solutions of ϕsys.

Proof (sketch). Bov (Eqn. 8) ensures that pairs of jobs do not overlap and does
not obstruct any run of T . Bsv (Eqn. 9) prevents incorrect scheduling of pairs
of jobs by blocking such spurious runs.

Bwc prevents processor idling in the presence of ready jobs, by “moving” the
waiting job appropriately, thus blocking the spurious run. Note that the prec
set (Sec. 3.3), by construction, soundly over-approximates the set of jobs that
could precede the violating job in all runs of T . Thus, the antecedent in Bwc

(Eqn. 10) is guaranteed to cover all possible spurious cases involving this job,
i.e., the refinement is complete with respect to work-conservation violation.

Buu prevents unconstrained control updates by processing the trace σrun to
locate the closest preceding job and computes the control update issued by this
job (if not already computed in σtraj). The cases presented in Eqns. 11 and 12
guarantee that the freshest update is identified within σtraj and matched to
restore precision. Thus in all cases, the refinement implications block spurious
behaviour or traces of ϕsys that do not constitute runs of T or C. These scenarios
are the only causes of spuriousness in ϕsys.

4 Tool design

Fig. 2 depicts our tool implementation of the abstraction (Sec. 2) and refinement
(Sec. 3) using Python 3.8 and Z3 4.8.12. The tool accepts (i) control specifica-
tion (A,B,K,X0), analysis horizon h, (ii) safety and reachability sets of plant
states, (iii) task specification, and scheduling policy. Jobs are spawned up to the
analysis horizon and symbolic variables (Table 1) are introduced for each job.
Formulas ϕtraj and ϕruns are constructed and conjuncted along with the control
property of interest. If Z3 reports unsatisfiability, the property holds.

If Z3 reports a witness, we parse it to extract assignments to the symbolic
variables and reconstruct the task run and control trajectory. Internally, Z3
tracks the set of formulas on symbolic variables using a context stack. Refine-
ment iterations incrementally add blocking clauses to the current context, lever-
aging the incremental analysis capability of Z3. The refinement loop is split into
two phases, catering to the two sources of abstraction, ϕtraj and ϕruns. During
experiments, we observed that a majority of the refinements were required for
pruning spurious task runs, as compared to spurious control trajectories. Hence,
we specifically built a separate loop for quickly refining ϕruns with the advantage



Compose

ϕtraj

ϕruns Z3 Spurious?

Z3

Safety

Spurious?
Error
trace

Control spec

Timing property

Task spec

Witness
Unsat

YesBlocking implications

Yes

Pop Z3
context

No

Yes

Refine control updates

No
Push Z3 context

Fig. 2: Tool design

that the composition of ϕtraj and ϕruns, which yields the larger formula ϕsys and
consequently larger state space to be explored, is built and analyzed only after
a valid task run is obtained, thus boosting Z3 performance.

Refinement loops interface using context pushing and popping API from
Z3. Just before the composition step, the context is pushed i.e. saved on Z3
stack. Constraints from ϕtraj are then added to the context, encoding the entire
system ϕsys. Spurious control updates are processed according to Sec. 3.4. While
refining ϕsys, if we obtain a spurious task run, it is likely that several iterations
of refinements over ϕruns will be needed (as evidenced during experiments). At
this point, the presence of constraints from ϕtraj in the solver context is an
unnecessary burden for the solver. Consequently, the saved context is popped
out, flushing out ϕtraj constraints and restoring ϕruns refined upto the last good
point, thereby boosting the solver performance.

5 Case study 1: DC motor control model

Consider a DC motor speed model adapted from [11], specified by the model:

xk+1 =

 0.9058 0.09617 0
0.01923 1.021 0

0 0 0

xk +

−0.009742
−0.2021

1

uk

uk =
[
−0.219719 −0.942677 0.184469

]
xk

This discrete-time model has a period of 100ms. We assume a synthetic task set,
consisting of 5 tasks, implementing the controller, described in Table 2. Task τ0
is the controller task, thus P 0 = 100ms. We considered the following properties:
Property 1: Safe angular velocity of motor: xideal

1 − 0.3 ≤ x1 ≤ xideal
1 + 0.3 i.e.

the angular velocity must not deviate by more than 0.3 units from the corre-
sponding ideal (i.e no deadline miss) control states, at each step of evolution.
Property 2: Safe current through armature: x2 ≤ xideal

2 + 0.5 i.e. the current
through armature must not rise by more than 0.5 units from the corresponding
ideal current values, at each step of evolution.



Table 2: Synthetic task set for DC
Motor controller

id offset period [bcet,wcet] jitter

τ0 0 100 [15, 30] 2
τ1 0 100 [15, 30] 2
τ2 0 100 [15, 30] 2
τ3 10 400 [15, 30] 2
τ4 10 500 [20, 40] 2

Table 3: Task set for RC Network
controller

id offset period [bcet, wcet] jitter

τ0 0 100 [6,13] 2
τ1 0 50 [6,16] 2
τ2 0 100 [15,30] 2
τ3 2 250 [8,16] 2
τ4 6 100 [15,30] 2
τ5 2 500 [5,15] 0

(a) Safety violation under Zero-Cont (b) Impact of deadline misses, NP-RM

Fig. 3: Analysis of DC Motor control system.

We applied the tool to check these safety properties over the DC motor
system. Analysis over 50 steps, under Zero-Continue strategy and NP-EDF
schedule, revealed violation of the properties. Fig. 3a shows the trajectory re-
ported by the tool, with Property 1 (angular velocity staying within specified
bounds) violated at steps 15 and 16. Property 2 (current through armature
within specified bounds) was reported violated at steps 9, 11 and 12. The task
set run corresponding to this trajectory had a total of 17 deadline misses of the
control task (τ0) spread over the 50 steps of evolution. The computation time
was approximately 1.5 minutes, requiring 65 refinements. All experiments were
executed on a laptop with Intel i5 processor, 16GB RAM and Ubuntu 20 OS.

Comparing tool precision. To illustrate improvement in precision in comput-
ing reach states using our tool (ConCh), we compared with a tool that computes
a sound over-approximation of the reachable set (Reach) [8]. Unlike our method,
this tool only explicitly models the control system, and over-approximates the
possible scheduling behaviors with a constraint on the maximum number of con-
secutive deadline misses. This provides a baseline against which ConCh tool
can be compared, illustrating the benefit of modeling the scheduling explicitly.
For better computational efficiency, the Reach tool also over-approximates the
reachable sets themselves, creating further pessimism that our method avoids.



Table 4: Reach upper bounds,
under Zero-Kill

var steps ideal Reach ConCh

x1 10 1.2724 1.9051 1.61
x2 10 0.2163 1.449 0.74
x1 20 0.4681 1.5075 0.81
x2 20 -0.0628 1.0539 0.28

Table 5: Tool performance for 60 steps,
NP-EDF schedule

Bov Bsc Bwc Buu R Miss Time

Zero-Kill 819 501 2531 NA 189 6 466
Hold-Kill 819 501 2531 NA 189 6 657
Hold-Cont 565 212 202 20 56 18 274
Zero-Cont 565 212 202 20 56 18 379

We performed this comparison under Zero-Kill strategy and NP-EDF
schedule, with initial control states set to the point x0 = (2, 2, 0). Observe that
under Kill and NP-EDF, this task set admits at most 2 consecutive deadline
misses for τ0, and so this constraint is applied for the Reach tool. ConCh dis-
covered the bounds by incrementing the ideal reach values in small steps and
checking if the revised bound is violated, until it hit a safe value. Table 4 shows
the safe reach upper bounds, for variables x1, x2, for 10 and 20 steps of evolu-
tion. Column “ideal” reports the value of states reached by the ideal trajectory
(no deadline misses.) The safety bounds computed by Reach, with at most 2
consecutive deadline misses, is significantly over-approximated due to assuming
a worst-case scheduling scenario of k-misses every k + 1 instances, which may
not occur in practice, as illustrated by this task set.

Illustrating deadline miss policies. Fig. 3b illustrates the impact of the
various deadline miss handling policies on control evolution, for this task set,
under NP-RM. For Kill policy, the jobs that missed deadline were 0,5,6, and
for Continue policy, jobs 1,2 and 6 missed deadline. The graph zooms on the
first 10 steps of control evolution, to illustrate the sets of control states (or
alternately, segments of control evolution) that are more sensitive to deadline
misses. Control behaviour under different strategies is impacted differently by
similar sequences of deadline misses. We believe this analysis can help the con-
trol designer in uncovering finer insights into the interplay of scheduling policy,
task parameters and strategies for deadline miss / control action update. Fur-
ther, observe that for both NP-RM (Fig. 3b) and NP-EDF (Fig. 3a) policies,
the maximum deviation from ideal behaviour generally occurs during the early
steps of system evolution. This highlights the need to rigorously analyze small,
transient segments of control evolution.

Tool performance and insights. Table 5 shows the scalability of the tool
for 60 steps and the five tasks, for a custom reachability property, under NP-
EDF schedule. The B columns list the number of blocking implications mined
across all iterations, column “R” lists refinements i.e. calls to the SMT solver
Z3 [2], column “Miss” lists deadline misses witnessed in the property violation
trace produced by the Z3. As seen from the table, tool performance is sensitive
to the task set and deadline miss policy; this task set was crafted to admit a



large number of runs arising from non-deterministic scheduling choices, jitter
and execution budget, in an attempt to showcase the tool’s capability.

6 Case study 2: RC network control model

Consider an RC network model, adapted from [7], specified as:

xk+1 =

 0.5495 0.0724 0.1616
0.01448 0.9332 0.02665

0 0 0

xk +

 0.2166
0.02569

1

uk

uk =
[
0.0977 0.2504 0.0781

]
xk

This discrete-time model has a period of 100ms. We assume that the con-
troller is implemented by a task set inspired from the real-life PapaBench [9]
task set for an unmanned aerial vehicle, adapted for our setting. The adapted
task set used for our experiment is described in Table 3.

For the RC network control system, we consider the safety property that
maximum voltage across both capacitors does not exceed the ideal voltage by
0.1 units: x1 ≤ xideal

1 + 0.1 ∧ x2 ≤ xideal
2 + 0.1. The scheduling policy is set to

NP-EDF and the strategy chosen is Zero-Continue.
Application of our tool for this system reveals property violation, shown in

Fig. 4. The control jobs that missed deadlines are 2, 6, 8, 10, 11, 12, 14, 15.
Variable x1 violates the safety property at steps 5 and 10 within the 20-step
analysis horizon. Notice that continuous deadline misses (e.g. jobs 10, 11, 12)
cause more deviation from the ideal behaviour than isolated incidents of deadline
miss. Depending on the control application, the deviation might be unacceptable,
and thus this requires a precise analysis of scheduling and its impact on control.

The Reach tool, under the above setting, reported an upper bound on the
deviation experienced by x1 as 0.2715, whereas our tool ConCh reported a
tighter bound of 0.15, which took 745 refinements and 150 seconds, and this safe
bound was arrived at by incrementing and checking in steps of 0.01 units.

For Hold-Continue strategy, the tool reported that x1 did not violate
the property i.e. the maximum voltage for capacitor 1 stays within the given
safe bounds over the analysis horizon. Proving safety took 579 refinements and
approximately 2.5 minutes.

For Kill strategy, no control job misses deadline (other task instances miss
deadline and are killed, allowing the control task to be always successfully sched-
uled within the analysis horizon). This again demonstrates that the task specifi-
cation in combination with the strategies for handling deadline miss and control
action updates can have significantly differing impact on control behaviour.

7 Case study 3: F1Tenth car model

Our final model captures the motion of an F1Tenth [14] model car, adapted
for our setting (linearized, x1 dimension dropped, discretized at 20ms), with



Fig. 4: Safety violating trajectory for
RC Network, Zero-Cont strategy

Fig. 5: Safety violation for F1Tenth car
model

controller adapted from [13], as:

xk+1 =

[
1 0.13
0 1

]
xk +

[
0.02559
0.3937

]
uk

uk =
[
0.2935 0.4403

]
xk−1

The task set is adapted from the synthetic example presented in Tab. 2, where
we drop task τ4, periods of tasks τ0 − τ2 are set to 20 and their execution times
are set to [4,6], period of τ3 is set to 40 and execution time is set to [5,10]. The
safety property of interest is that the steering angle should not deviate by more
than 0.2 units from the ideal behaviour: −0.2 ≤ x2 − xideal ≤ 0.2.

Under Zero-Continue strategy, ConCh reported property violation, as
shown in Fig. 5. The task set run had a total of 12 deadline misses for the
control task τ0, but Zero control update occurred only twice in this run (since
under Continue, these jobs were eventually scheduled). Observe that the con-
trol trajectory violated both the upper and lower safety threshold, at steps 8 and
16, respectively. Interestingly, under Kill strategy, the bound was not violated.
Proving property safety took 193 refinements and nearly 53 seconds.

8 Conclusions and Future Work

Our approach for exact checking of control properties, by jointly encoding con-
trol evolution and task scheduling under common deadline miss handling poli-
cies, could successfully check both safety and reachability properties that might
be impacted due to scheduling issues of controller tasks, within practically ac-
ceptable time limits. Additionally, our tool can provide useful insights to CPS
designers to: (i) Precisely compute control behaviour at step-wise granularity of
evolution, (ii) Explore the impact of design choices e.g. Zero-Cont vs. Hold-
Kill, and (iii) Explore the impact of task parameters on control e.g. release
jitter. We believe this can address a large variety of practical problems involving
control and scheduling interaction, which may be otherwise hard to reproduce



or debug. For future work, we plan to extend our encoding to model and analyze
distributed CPS with three components: control, scheduling and network.

Acknowledgement:Hobbs and Chakraborty were funded by NSF grant 2038960.

References

1. Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L., David, C., Kesseli, P., Kroening,
D., Polgreen, E.: Automated formal synthesis of digital controllers for state-space
physical plants. In: CAV (2017)

2. Bjørner, N., Phan, A., Fleckenstein, L.: νz - an optimizing smt solver. In: TACAS.
pp. 194–199 (2015)

3. Dai, X., Burns, A.: Period adaptation of real-time control tasks with fp scheduling
in cyber-physical systems. Journal of Sys. Arch. 103 (2020)

4. Dai, X., Zhao, S., Jiang, Y., Jiao, X., Hu, X.S., Chang, W.: Fixed-priority schedul-
ing and controller co-design for time-sensitive networks. In: CAV (2020)

5. Frehse, G., Hamann, A., Quinton, S., Woehrle, M.: Formal analysis of timing effects
on closed-loop properties of control software. In: RTSS. pp. 53–62 (2014)

6. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems.
In: CAV. LNCS 6806, Springer (2011)

7. Gabel, R.A., Roberts, R.A.: Signals and Linear Systems. John Wiley & Sons, 2nd
edn. (1980)

8. Hobbs, C., Ghosh, B., Xu, S., Duggirala, P.S., Chakraborty, S.: Safety analysis
of embedded controllers under implementation platform timing uncertainties. To
appear, IEEE TCAD (2022)

9. Lunniss, W., Altmeyer, S., Davis, R.: Comparing FP and EDF accounting for cache
related pre-emption delays. Leibniz Trans. on Emb. Sys. 1(1), 01–1–01:24 (2014)

10. Maggio, M., Hamann, A., Mayer-John, E., Ziegenbein, D.: Control system stability
under consecutive deadline misses. In: ECRTS. vol. 165, pp. 21:1–21:24 (2020)

11. Messner, W., Tilbury, D.: Control Tutorials for MATLAB and Simulink: A Web-
based Approach. Addison-Wesley (1999)

12. Minaeva, A., Roy, D., Akesson, B., Hanzálek, Z., Chakraborty, S.: Control perfor-
mance optimization for application integration. IEEE ToC. (2021)

13. Murphy, K.N.: In: Analysis of Robotic Vehicle Steering and Controller Delay (1994)
14. O’Kelly, M., Zheng, H., Karthik, D., Mangharam, R.: F1tenth: An evaluation en-

vironment for continuous control and reinforcement learning. In: NeurIPS (2019)
15. Pazzaglia, P., Pannocchi, L., Biondi, A., Natale, M.D.: Beyond the Weakly Hard

Model: Cost of Deadline Misses. In: ECRTS. vol. 106, pp. 10:1–10:22 (2018)
16. Roy, D., Ghosh, S., Zhu, Q., Caccamo, M., Chakraborty, S.: Goodspread:

Criticality-aware static sched. of CPS with multi-qos. In: RTSS. pp. 178–190 (2020)
17. Roy, D., Hobbs, C., Anderson, J.H., Caccamo, M., Chakraborty, S.: Timing de-

bugging for cyber-physical systems. In: DATE. pp. 1893–1898 (2021)
18. Vreman, N., Cervin, A., Maggio, M.: Stability and performance analysis of control

systems subject to deadline misses. In: ECRTS. vol. 196, pp. 15:1–15:23 (2021)
19. Vreman, N., Mandrioli, C., Anton, C.: Deadline-miss-adaptive controller imple-

mentation for real-time control systems. In: RTAS (2022)
20. Vreman, N., Mandrioli, C.: Evaluation of Burst Failure Robustness of Control

Systems in the Fog. In: Workshop on Fog-IoT. OASIcs, Schloss Dagstuhl (2020)
21. Zhang, L., Lu, P., Kong, F., Chen, X., Sokolsky, O., Lee, I.: Real-time attack-

recovery for CPS using linear-quadratic regulator. ACM TECS 20(5s) (2021)


