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Abstract—The core idea of flexible manufacturing is adapting
to changes. In this domain, the machine is not confined to
a single fixed type of process but can perform different jobs
(e.g., cutting, drilling) in different ways (e.g., varying speed,
tool, power consumption). This adaptability should be enabled
by a detailed view of how the machines work. The idea is
to perform machine scheduling by exploiting the dynamical
models—expressed as differential equations—of manufacturing
processes, i.e., both machines and production items. The main
innovation in this paper is the ability to compute a machine’s
schedule where the state of the product does not linearly evolve
in time but is determined by the set of differential equations
instead. Finding the schedule is defined as a multi-objective
optimization problem—manufacturers may seek a trade-off be-
tween processing time, energy consumption, and other cost
functions. The proposed optimization is evaluated using accurate
process models, exemplifying how it works and harnesses the
expressiveness of differential equations.

Index Terms—Flexible manufacturing, scheduling, multi-
objective optimization, particle swarm optimization

I. INTRODUCTION

Industry 4.0 is poised to bring massive upheaval in the field
of manufacturing. Thanks to smart sensors and Internet of
Things devices, all levels of the manufacturing process are now
interconnected, sharing data between production machines and
analytics systems. This increased flow of data enables a fine-
grained view of machines in a manufacturing process. Thus, as
requirements change, it is now possible to automatically and
better adapt processes to address these changes. In many cases,
these changes come from new jobs to perform or completion
of old ones. The production can accommodate these changes
by creating a schedule of the operations to be performed for
each job. The literature is rich in papers about how to schedule
operations, even in an optimal way.

Unfortunately, much of the prior work on scheduling con-
siders each operation as atomic, without considering variations
that may be possible while a machine is operating on a part.
For instance, a machine may have several different modes
in which it can perform a given step (see Figure 1), each
with different characteristics. Also, different machines might
be able to perform different types of manipulations, and
there might be a precedence constraint on the order of the
manipulations. Carefully determining which mode to use at
what times could increase the efficiency of the manufacturing
process. Thus, the lack of modeling richness is a liability for
Industry 4.0, where far more data on manufacturing processes
are available than in the past.

Figure 1. Flexible manufacturing multi-machine scenario

We propose a cyber-physical systems approach to manu-
facturing job scheduling to address this restriction. In this
approach, we exploit the dynamics of the physical process, i.e.,
how the machine and the part evolve in an operational mode.
Such physical dynamics can often be described mathematically
using differential equations. This modeling is assumed to be
done by domain experts and is outside the scope of this work.
Given the mathematical models describing each mode, we
intend to determine a time schedule for the machine to operate
on the part in different modes.

To obtain this schedule, we formulate a multi-objective
optimization problem—the factory may seek a trade-off be-
tween processing time, energy consumption, and other cost
functions. In this work, we propose a two-stage approach
to solve the problem. In the first stage, we discretize the
physical dynamics according to a certain time granularity.
Then, we perform a Breadth-First Search (BFS) to obtain
the mode to be used in each discrete time step. We use an
iterative refinement approach, progressively reducing the time
step to determine the best time granularity, i.e., resulting in
a reasonable search time. Overall, we derive a sequence of
modes from the first stage, and a courser estimate of mode
switching times. We further tune the switching times in the
second stage, keeping the mode sequence unchanged and
checking for better solutions. We have shown how Particle
Swarm Optimization (PSO) can be applied for this fine-tuning.

A. Related work

Efficient machine scheduling is central to flexible manufac-
turing and has, therefore, attracted significant research atten-



tion in recent years. For instance, [1] discusses several schedul-
ing techniques for Hybrid Flow Shop (HFS) problems, where
a manufacturing process comprises a sequence of fixed jobs,
with a set of identical machines capable of accomplishing each
job. In such problems, a possible constraint is that the process
cannot wait between two jobs, e.g., after a metal plate has
been heated in a furnace, it shall be rolled without any delay.
A machine schedule must respect such “no-wait” constraints
while being deadlock-free [2] in cases when multiple processes
use a pair of machines in different orders. Besides safety
properties, machine breakdown and scheduled maintenance
have been considered in such scheduling problems [3].

Towards modeling flexible manufacturing setups, a class
of timed Petri nets has been investigated, where each job
is modeled using a pair of “transitions” and a “place” [4].
Further, [5] formulates a weighted-sum multi-objective opti-
mization model with precedence constraints between jobs. A
real-time simulation model is presented in [6] that can assist
in evaluating online decisions quickly in the event of a change
(e.g., when high-priority jobs have arrived).

Social- and stochastic-based optimization techniques have
been employed to solve the manufacturing job scheduling
problem. In [7], for example, a multi-objective grey wolf opti-
mizer is proposed to solve job shop scheduling problems while
considering energy consumption and tardiness. Further, [8]
uses a multi-objective PSO approach to determine the on-off
times of a Computerized Numerical Control (CNC) machine.
These approaches provide Pareto-optimal schedules, enabling
a trade-off between energy consumption and production time.

All aforementioned works consider a job to take a fixed
amount of time and may model the cost of switching between
different types of tasks by a machine. However, unlike this
paper, they do not consider that (i) a job can be carried
out by a machine in different modes (equivalent to machines
with different capabilities), (ii) the process dynamics evolve
differently in each mode in continuous time, and (iii) the
total time to accomplish a job will depend on the order of
and the times spent on the selected modes. We note that [9]
uses a hybrid model to capture flexible manufacturing systems.
However, in that case, differential equations model how parts
flow through the factory, while in this paper, we use them to
model each job in a manufacturing process.

The scheduling problems in flexible manufacturing have
mostly escaped the attention of the Real-Time Systems (RTSs)
community, whose primary focus has been to study scheduling
of software tasks and data frames on processors and commu-
nication buses, respectively. For example, [10] addresses how
software tasks can be dynamically scheduled under real-time
constraints and [11] considers multiprocessor scheduling of
dynamic task graphs. The RTSs community has also investi-
gated the interplay between task/message scheduling and phys-
ical dynamics in the context of cyber-physical systems [12].
Also, software task scheduling in a smart manufacturing setup
has been considered in [13]. Furthermore, the RTSs com-
munity has investigated multi-mode system scheduling [14],
[15]—where a processor switches between modes with dif-

ferent scheduling requirements—which has similarities to our
problem setup. We note that in the aforementioned problems,
only the order of tasks/messages must be determined and not
their time duration, unlike in the problem under study.

We also point out that in control theory, switching between
controllers has been considered, which leads to different
continuous-time physical dynamics [16]. However, the main
goal in such problems is to establish the stability of the system
when arbitrary switching is allowed, while we are interested
in determining switching instants so that production objectives
are optimized.

Finally, we discuss a similar optimization problem in [17].
But instead of the two-stage approach as presented in this
paper, [17] focuses on algorithmic improvements in the first
stage. Additionally, in this paper we explore a more elaborate
process model involving both switching times and cost

B. Contributions

This paper has the following main contributions:
• We call attention to a relevant yet unexplored scheduling

problem in flexible manufacturing, namely, how a man-
ufacturing step can be optimized by switching between
different machine modes. To solve such a problem, we
highlight that it is necessary to study the detailed process
dynamics in each mode and the impact of switching
between modes.

• A two-stage Pareto optimization technique is proposed.
In the first stage, we use BFS to compute a sequence of
machine modes and estimate time instants for switching
between them. In the second step, we further fine-tune
the switching instants using PSO.

• We evaluate our proposed approach for the well-known
manufacturing step of drilling. Our experiments confirm
that mode switching exposes significant optimization
potential compared to a naïve single-mode solution.

C. Organization

The remainder of the paper is organized as follows. We
first introduce our system model in Sec. II. Our two-stage
optimization technique is detailed in Sec. III. Following this,
we present an example of a process model in Sec. IV-A.
We explain how the experiments are set up to evaluate the
proposed technique in Sec. IV-B, and provide an analysis of
the results in Sec. IV-C. Finally, Sec. V concludes the paper.

II. SYSTEM MODELING

Typically, in a manufacturing process, raw materials are
presented as input, and are then processed by one or more
machines to be transformed into finished products (or goods)
as output. As this is a physical process, the state of the
production item continuously changes in each manufacturing
step. Also, this state change strongly depends on the dynamics
of the machine being used for the process. At the same time,
how the machine changes its state will depend on the state
of the production item. Hence, the mathematical model of a



production process must be formulated by considering both
the dynamics of the item and machine in tandem.

Let us denote a time-varying vector x(t) as the state of the
production process (i.e., the machine and the production item).
For a manufacturing step using a single machine, we can write
that the process state evolves according to the equation

ẋ(t) = A(x(t)), (1)
where A(·) can be a linear or a nonlinear function of x(t).

A typical production line consists of several machines to
process materials, and a transport system. Not all machines
can perform the same task, and among those that perform the
same task, their characteristics may be different, e.g., energy
usage or work speed. In our problem setting, we consider that a
production process (or a part of the whole process) is equipped
with a set of n machines, denoted M = {m1, . . . ,mn}. When
machine mi is used to do the job, the process dynamics change
according to a state-transition function Ai(·), as in Eq. (1). The
goal in this paper is to optimally select a machine (among the
available ones) at each time t according to certain production
objectives (e.g., minimize the production time and/or energy).
Here, we denote the choice of machine mi at time t using a
function σ(t) = i. Hence, we can describe a manufacturing
process (except during the transition between machines) as
a switched dynamical system by combining Eq. (1) and the
function σ(t), leading to the form:

ẋ(t) = Aσ(t) (x(t)) . (2)
We note here that transitions might not be possible between

all machines in a realistic setup. This leads to a set of allowed
transitions P between machines, each denoted by an ordered
pair (i, j). Such a pair means that the system can switch from
machine mi to machine mj .

As Figure 1 shows, the time to move an unfinished piece
from one machine to another may be non-negligible. The
switching might involve moving between machines, or staying
on the same machine but changing the tool or mode of opera-
tion. Regardless the nature of the switch, this operation takes
time, has a cost, and might have repercussions on the process
state. Let us denote t+k and t−k+1 as the instants where the k-th
mode (or machine) transition started and finished, respectively.
The time for the k-th mode transition is, therefore, given by
∆tk = t−k+1 − t+k . During this transition, the state changes
according to the equation

x(t−k+1) = x(t+k ) + S
(
x(t+k ), σ(t

+
k ), σ(t

−
k+1)

)
= x(t+k ) + Si,j

(
x(t+k )

)
s.t.

(
i, j

)
∈ P

with i = σ(t+k ) and j = σ(t−k+1)

(3)

where S(·) is a function of the current state x(t+k ), the
current machine σ(t+k ), and the next machine σ(t−k+1) to
which we are going to switch. So the process state evolves in
continuous-time, while the process control software can cause
discrete transitions between dynamical laws by changing the
operational machine. This naturally leads to the question of
how to schedule such transitions optimally.

Our process starts from an initial state xini , and must

reach a target region Xtar in the state space. In addition to
manufacturing tolerances, Xtar is a region and not just a point
because we usually only care about the exact value of some
dimensions in the x vector (e.g., the dimensions representing
properties of the item being manufactured) and less about
others (e.g., the state of the machines). We can then combine
Eq. (2) and Eq. (3) to obtain the following constraint:

xini +

Ks+1∑
k=1

∫ t+k

t−k

Aσ(t) (x(t)) dt

+

Ks∑
k=1

S(x(t+k ), σ(t
+
k ), σ(t

−
k+1)) ∈ Xtar .

(4)

Here, Ks is the total number of times machines are switched
during the manufacturing process. Let us define σk = σ(t)
where t−k ≤ t ≤ t+k . The scheduling problem in hand,
therefore, is to determine, for 1 ≤ k ≤ Ks + 1, (i) the
sequence of σk and (ii) the corresponding switching time
instants (t−k , t

+
k ). Note that t−1 = 0 and t+Ks+1 = T , where T

is the total production time, i.e., the time between the start
and the completion of the process. One of our objectives is to
minimize T .

In addition to time, there are usually other cost factors, such
as the energy needed by the process. Similarly to Eq. (1), we
model the cost evolution as a (potentially nonlinear) function
of the state:

ė(t) = C(x(t)) (5)
Note that this is not a differential equation itself. However, one
could define a combined system ˙̃x = [x c]T and x̃ = Ã(x̃)
that treats the cost as part of the system state. In the interest
of clarity, we will treat cost and state separately in this paper.
Whether it is more efficient to model state and cost separately
or combined in the implementation depends on the specific
structure of A and C.

Just as with the state, we do not model the cost evolution
during a transition in a continuous manner but treat it as an
atomic change represented by E(·), i.e.,

e(t−k+1) = e(t+k ) + E
(
x(t+k ), σ(t

+
k ), σ(t

−
k+1)

)
= e(t+k ) + Eij

(
x(t+k )

)
with i = σ(t+k ) and j = σ(t−k+1).

(6)

III. PROPOSED OPTIMIZATION STRATEGY

We propose a two-phase optimization strategy—outlined
in Alg. 1—as a solution to the presented problem. In the
first phase, we discretize the model and perform an exhaus-
tive search across all possible mode sequences (lines 3–7
in Alg. 1). In the second phase, we use Particle Swarm
Optimization to further optimize the exact switching times
(lines 8–12 in Alg. 1).

A. Stage 1: Discrete search

In the first phase, we model the processing as a sequence
of processing steps of a fixed length h, with optional machine
switches in between. Each solution can be represented as a
sequence of machines I = [m1,m2, . . . ,mn], where each mk



Algorithm 1: High-level overview of the proposed
two-stage optimization strategy

Input : The set of machines M
Output: The set of Pareto-optimal solutions Ω

/* Initialization */
1 ωtriv = find_trivial_solution()
2 h = ωtriv.time
/* Stage 1: Discrete search */

3 Ωd = {ωtriv}
4 while h ≥ hmin ∧ not Timeout do
5 h = h/2
6 M = c2d(M, h)
7 Ωd = discrete_search(M,Ωd)

/* Stage 2: Refinement */
8 Ωpso = {}
9 forall ωbase : Ωd do

10 ω = pso(ωbase)
11 Ωpso = Ωpso ∪ {ω}
12 Ω = ensure_pareto_property(Ωpso)

corresponds to “applying” machine mk for one full interval
of length h, with machine switches in between. As long as
mk = mk−1 (i.e., the machine stays the same), the state and
cost change can be computed recursively as:

xk = Fmk
(xk−1)

ek = Emk
(xk−1) + ek−1

(7)

If mi ̸= mi−1 we also have to consider the effects that
switching has on the system state and cost. Thus, we generalize
Eq. (7) to:

xq = Smk−1,mk
(xk−1) + xk−1

xk = Fmk
(xq)

ek = Emk
(xq) + Emk−1,mk

(xk−1) + ek−1

(8)

where Si,i(x) and Ei,i(x) are always 0. For notational conve-
nience, we will write this as:

xk = ϕk (xk−1)

ek = ck (xk−1) + ek−1

(9)

Starting with the given initial state xini = x0, we now
perform a BFS to find all the optimal sequences I. Those
sequences are part of what is called the Pareto-optimal set of
solutions. Each such solution represents a trade-off between all
the optimization dimensions, i.e., it might favor one dimension
with a relative worsening of one or more of the others. Each
node ωa in the search tree consists of

1) the sequence of selected branches (selected machines)
Ia = [m1,m2, . . . ,mk] leading to the current node;

2) the state xa = ϕk (ϕk−1(. . . (ϕ1(x0))) we get after
applying the sequence of state transformations;

3) the accumulated cost of those transitions
ea =

∑n
i=0 ci(xi).

If xa ̸∈ Xtar , we have not yet found a complete solution,
and we expand the node further. For that, we create a new
node ωb for each possible machine mi that can be selected

next (including the current one), with Ib = [Ia mi] and xb

and eb computed using Eq. (9). Otherwise, we have found a
complete solution. The node does not expand further because
the monotonically increasing cost functions mean we will
never find a better solution by expanding an existing node
further. As the state and cost can be computed starting from
a sequence I, storing those values as part of the node is
not strictly necessary. However, when we expand new nodes
during the search, we need the previous state and cost; thus,
it is more efficient to cache those values in the nodes.

We want to point out that for the final evaluation of a
complete solution ωa, we do not just use ea directly, as we only
calculate ea in discrete steps. However, the system will have
reached the target area sometime between the final step ka and
the previous one ka− 1. Thus, ea will overestimate the actual
cost to reach Xtar with the given machine sequence. As there
is usually no closed-form solution to calculate the exact time
where the system reached the desired target state, we decided
to rely on linear interpolation to estimate the exact costs. For
that, we perform a linear interpolation of the state evolution
between xk−1 and xk, calculate the fraction of h the system
spends in Xtar and subtract that fraction from the last cost
increment.

1) Discretization: In the most general case, F and E can be
implemented by numerically solving the differential equation
Eq. (1). Various algorithms for this exist, most notably the
family of Runge–Kutta methods (see [18]). However, for
many real-world problems, the differential equations can be
discretized at the start of the algorithm, such that evaluation
of F and E only requires a few matrices multiplications and
additions. For instance, with linear systems where A is defined
as ẋ(t) = Aix(t) +Biui, F becomes:

x[k] = Φix[k − 1] + Γiui,

Φi = eAih

Γi =

∫ h

0

eAisBi ds = A−1
i (eAih − I)Bi.

(10)

Where Φi and Γi need only be computed once at startup. Dis-
cretizing common cost functions, which are often quadratic,
can be more complex. However, while the state change in a
particular step depends on the previous step, the cost increment
does not depend on the accumulated cost so far. As a result,
errors that are introduced due to using some easier-to-compute
interpolation have a much smaller total effect.

2) Selecting h through iterative refinement: The depth of
the search tree corresponds to the number of steps the system
needs to reach the target region. Moreover, because—in the
worst case—the number of nodes grows exponentially with the
depth of the search tree, choosing an appropriate discretization
time is of utmost importance for the efficiency of this first
phase. The general trade-off here is that a shorter discretization
time means (in the worst case exponentially) longer algorithm
run-time T and memory requirement. Conversely, a longer
discretization time might mean we entirely miss advantageous
machine sequences as we do not consider a switch at the
necessary time. Different heuristics can be applied depending



on the exact process when choosing a step length. For instance,
h should be short enough to capture the system dynamics,
and if we have an initial solution, we can also estimate
the tree depth for a given h. However, instead of predicting
and balancing accuracy vs run-time, we propose an iterative
refinement approach as outlined in lines 4–7 of Alg. 1. Here,
we first run the search with a high h and then repeat it with
a consecutively finer h until one of the following termination
criteria is fulfilled:

• h reaches a predefined minimum hmin

• T or memory requirement reaches an upper bound
• The algorithm converges, and new iterations do not bring

significantly better solutions
Repeatedly running the algorithm might seem wasteful at
first. However, because—in the worst case—the number of
possibilities to explore grows exponentially with the inverse
of the length of the discretization interval, the run-time of the
previous runs can usually be neglected compared to the final
run. Also, the solutions found in one run can be used to prune
the search tree in the subsequent runs and can thus even be a
net win.

3) Transition constraints: The system is not necessarily
allowed to transition from one machine to any other. This may
be because it is physically impossible, or because we already
know from a previous analysis step that specific orders of
machines will not be worth considering. Algorithmically, such
constraints can be taken into account in one of two ways:

• when expanding new nodes, the algorithm will not con-
sider certain machines at all;

• encoding them inside the switching cost by setting the
cost of these switches to infinite; as a result, the new
partial solution will be pruned in the next iteration
because any existing solution strictly dominates it.

4) Stability concerns: We are essentially describing a
switched system. In control theory, an essential concern in
dealing with such systems has been establishing stability
when the system can arbitrarily switch between different
dynamics. However, we have a different scenario here. We
determine a fixed switching sequence that the process will
follow and explicitly track the process state over time for
the sequence. Hence, if the process diverges from the target
state or oscillates around any intermediate state then such
sequences will be pruned from the design space during the
search. Also, we note that if the process is not stable when
switching between two machine modes—as identified using
control-theoretic techniques like common quadratic Lyapunov
functions [19]—we can consider a transition constraint by
leveraging our rich modeling approach.

5) Optimizations: Depending on the specific manufacturing
setup, various optimization opportunities may exist in the
first stage. For instance, one may employ heuristics to prune
partial solutions that are unlikely to result in a Pareto-optimal
solution. Alternatively, one could try performing an A*-search
instead of the simple BFS if a suitable function to calculate
a lower bound on the remaining cost can be found. Also, any

restrictions on the possible machine transitions can be highly
beneficial for reducing the overall execution time. For instance,
if the transition graph contains no (directed) cycles, the worst-
case complexity of the search algorithm is no longer expo-
nential, but only polynomial. In general, however, there will
be many situations where the h cannot be sufficiently small
to realize the full potential of this new problem formulation.
Therefore, we propose to further optimize the results from this
first stage with a second stage that focuses on optimizing the
switching times while leaving the order of machines unaltered.

B. Stage 2: Refinement via PSO

For the second stage in of the schedule optimization, we no
longer define a solution via the sequence of discrete steps I,
but via the length of each segment (i.e. the time between
two switches) Ts = [st1, st2, st3, . . .]. Each of these segment
times, except the last one, maps to a dimension in the solution
space, which can then be explored by a multidimensional
optimization algorithm—in our case, Particle Swarm Opti-
mization. The last segment time is then determined by how
long the system needs to reach Xtar . Note that Ts is only
meaningful when accompanied by the selected machine, but
since we optimize each point of the Pareto front separately
(lines 10–11 in Alg. 1), the machine sequence is the same
for all solutions evaluated during the refinement process of an
individual schedule. In future work, we plan to investigate the
use of multi-objective PSO algorithms that could optimize the
whole Pareto front simultaneously. The main challenge is that
each element of the Pareto front may have a different number
of switches and a different sequence of machines, requiring a
different solution space than that used here.

We use a standard PSO algorithm [20], onto which we map
our problem as follows:

• To evaluate the fitness of a particular solution, we sim-
ulate the system according to the equations described in
Sec. II until the target region is reached.

• When comparing the fitness of two solutions, one solu-
tion A is considered better than another B if and only
if eB is worse in at least one dimension than eA and
at most as good in all others. Here we make use of the
fact that PSO only requires partial ordering between the
design points and not a scalar metric.

• To initialize the PSO, we uniformly distribute the parti-
cles around the initial solution from the discrete search
and add one particle at the initial Ts.

• For lower and upper bounds, we allow a deviation of
±2h from the base solution by default. The expectation
is that if a dominant solution exists outside that range, the
discrete search has produced another Pareto point closer
to it anyway. Clearly, this property is not guaranteed
but is an effective heuristic to limit the search space.
Additionally, sti ≥ 0 must be enforced.

After running the PSO-based refinement for each of the
Pareto points, we finally combine the individually optimized
solution to a new Pareto front which is the final result from our
proposed optimization scheme. Note that this new Pareto front
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Figure 2. Schematic of the DC motor powering the drill.

may contain fewer solutions than after the discrete search,
because an optimized solution might now dominate another
one (line 12 in Alg. 1).

IV. CASE STUDY

This section is organized as follows. First, it introduces
a case study. Then, it explains how the case study is used
to evaluate the proposed methodology. Finally, it provides
insights on the experimental results.

A. System Model

Let us now introduce an example process consisting of a
CNC drilling machine with a Direct Current (DC) variable-
speed motor that will be useful for evaluating our proposed
technique. Speed variation is obtained by a set of gears and
controlled by a computer. Changing the gear setting changes
the output angular speed and torque, thereby changing the
machine’s dynamics.

A DC motor can be described at different levels of detail;
here, we rely upon the differential equations governing the
motor, assuming a homogeneous magnetic field [21]. These
equations can be extended to encompass several aspects of the
process being modeled. For instance, as the depth of the drilled
section increases, so does the friction exerted on the drill
bit. Alternatively, a prolonged processing time influences the
motor temperature that impacts on specific motor parameters
(e.g., winding resistance, the flux density of the permanent
magnets). We consider the voltage applied to the armature
winding as the input provided to the system.

The overall system is shown in Figure 2, and can be decom-
posed into an electro-mechanical and a rotational mechanical
side. In this figure, everything on the left-hand side of the
gears is the electro-mechanical side, while everything on the
right-hand side of (and including) the gears is the rotational
mechanical side. On the electro-mechanical side, resistance R
models how the armature limits the motor’s maximum current
alongside the back-EMF voltage Vemf , while the inductance L
models how it limits the current over time. On the rotational
mechanical side, we have motor shaft connected to n input
gears. Each input gear i has n

(i)
in teeth. The rotation is

transmitted to an output gear with nout teeth. Given the input
gear n(i)

in , the gear ratio is computed as G
(i)
r = n

(i)
in /nout . For

a given G
(i)
r , the drilling process dynamics are governed by

the state-space model:

ẋ(t)i =


Kt

J -Kd

J -Fd G(i)
r

J

-RL -Ke

L 0

0
Ts G(i)

r

2π 0

x(t) +


0 -G

(i)
r

J

1
L 0

0 0

u, (11)

where the state vector x = [ia ω d]T and the constant input
vector u = [va Fs]

T , and the variables va(t), ω(t), ia(t),
and d(t) represent the input voltage, the angular speed, the ar-
mature’s current, and the depth of the drill. The constants Ke,
Kt, Kd, Fd, and Fs denote the back-EMF, motor torque,
damping, dynamic hole friction, and static hole friction, re-
spectively. The constant J gives the rotational inertia. The
upper-right-most entry FdG

(i)
r /J in Eq. (11) accounts for the

frictional force that depends on the drill’s depth. The depth d
is computed based on the linear relation between a single
complete spindle rotation and the thread slope Ts, measured
in millimeters per revolution. For G

(i)
r , the relation can be

captured by using the element TsG
(i)
r /(2π) in Eq. (11).

We obtain different process dynamics for each gear ra-
tio G

(i)
r . For n different input gears, the process can switch

between n different dynamics. At time t, the process dynamics
are given by A(x(t))σ(t) = ẋ(t)i where σ(t) ∈ {1, 2, . . . , n}.
As explained in Section II, our main objective is to find an
optimal way to switch between these different dynamics.

We choose a two-dimensional metric for the switching cost
where the first dimension corresponds to the processing time
and the second to the used energy computed as the integral
over va · ia(t). For the switching of gears, we use fixed, state
independent values:

Ċ(x) =

[
0 0 0
va 0 0

]
x+

[
1
0

]
Eij(x) =

[
St Se

]T (12)

At the start of the discrete search phase, we discretized the
model from Eq. (11) according to Eq. (10). Inserting the solu-
tion for x(t) into the energy cost function Ċe(x) = [va 0 0] ·x
and integrating from 0 to h also yields an closed form solution
for the discrete energy cost function for a processing step E:

Ee(xk) = xT
k−1Nhu+ uTRhu

Nh =
(
A−1

(
eAh − I

))T
N

with Rh =
(
A−2

(
eAh − I −Ah

)
B
)T

N

N =

[
1 0 0
0 0 0

]T (13)

For efficiency reasons, Ee(xk) does not include the time
dimension of the cost which is trivially h. Also note that Nhu
and uTRhu need only be computed once at startup, just as
Φi and Γi in Eq. (10).

B. Experimental setup

We applied the two-stage optimization to the motivational
example presented in Sec. IV-A. We implemented the whole
methodological flow in C++.



Table I
PARAMETERS SWEEPS FOR THE DRILLING CASE STUDY

Parameter Symbol Values

Armature Voltage va {10, 20}
Dynamic Hole Friction Fd {0.05, 0.15, 0.5}
Static Hole Friction Fs {0.01, 0.20, 1}

Number of Gears n {3, 4, 5}
Minimum Gear Factor Gmin {0.1, 0.5, 2}
Gear Range Grange {1, 4, 10}

Fixed Switch Duration St {0, 1, 5}
Fixed Switch Energy Se {0, 100, 500}

Figure 3. Pareto fronts from (i) using the same machine during the whole
process (single), (ii) generated after the discrete search (base), and (iii)
complete algorithm (two-stage)

Each parameter of the drilling process can influence the
results and runtime of the proposed technique. In order to
extensively evaluate its performance, we need to vary the
process parameters. Another dimension to consider is the
number of machines (or gear ratios) between which the process
can switch. Each parameter configuration is an experiment,
while a set of gear ratios are the number of machines available
for that experiment identified by n.

We swept some of the process parameters through a range of
values, reported in Table I. We varied the armature voltage and
the two types of friction, i.e., dynamic and static. Further, we
considered different combinations of gear ratios, specifically
by changing the number of gears n to choose from, the
minimum gear factor Gmin , and the gear range Grange . Given
these three variables, gear ratios were generated as n linearly
spaced points between Gmin and Gmin + Grange . Finally,
we considered different switching durations St and costs Se .
For our experiments, we kept them constant for all pairs of
machines. The total number of combinations of parameters
(i.e., experiments) resulting from this sweep is 4374.

C. Results investigation

We evaluate our proposed technique in different aspects.
All comparisons are done in terms of cost and time. For the
remainder of the section, we refer to the BFS algorithm as
base, while we call two-stage the search algorithm plus the
PSO. Finally, the naïve approach that uses the same machine
is called single.

1) Pareto front: As an example, Fig. 3 shows the Pareto
fronts at the different stages of the algorithm for a single ex-

Figure 4. This histogram shows the distribution of the improvements achieved
by the two-stage algorithm compared to the single machine solution.

periment. The one labeled single shows all possible solutions
if we only allow drilling with a fixed gear ratio. This roughly
corresponds to the situation in classic job scheduling, where
tasks are distributed to different machines as atomic jobs.
Pareto fronts base and two-stage correspond to the solution
sets Ωd and Ωpso from Alg. 1, respectively.

As we can see, allowing mode switches has multiple advan-
tages: (i) We can find solutions that perform the task faster and
with less energy cost than possible when only using a single
mode. (ii) We can extend the range of possible trade-offs as
we get more intermediate solutions to choose from.

2) Comparison between single and two-stage solutions:
Comparing Pareto fronts in an aggregated manner is difficult
and many different metrics have been proposed. To give an
idea of the overall potential, we compare the single machine
Pareto fronts with the final Pareto front after the PSO using the
binary ϵ-indicator [22]. Given two Pareto fronts Ω1 and Ω2,
the binary ϵ-indicator is given by

Iϵ(Ω1,Ω2) = max
ω2∈Ω2

min
ω1∈Ω1

max
i∈{1,2}

ω1(i)

ω2(i)
. (14)

Intuitively, the value Iϵ(Ω1,Ω2) is the smallest factor by
which Ω2 may be scaled down, such that it is still completely
dominated by Ω1.

Fig. 4 shows in a histogram the distributions of the epsilon
indicators. We use a logarithmic scale for the y axis of
the histogram. There are about 2000 experiments where the
epsilon indicator is in the neighbors of 1. However, a value of
1 does not mean that Ω1 and Ω2 are identical. Instead, the two
fronts could share one or more points while all other points
from Ω2 are dominated by Ω1. Similarly, a value greater than
1 would not necessarily mean that Ω1 is worse than Ω2. It
means that at least one point in Ω1 is dominated by Ω2, while
all others could still be non-dominated.

3) Comparison between base vs two-stage solutions: Fi-
nally, Fig. 5 shows the improvement that the two-stage algo-
rithm could achieve over the base one. Here, we can perform
a one-to-one comparison between the elements of Ωd and
Ωpso. Individual Pareto points get often shared between the
two and, hence, we do not use the epsilon indicators. Instead,
we calculate how much the two-stage improves an individual
Pareto point in terms of cost or time separately. Note the log
scale of the histogram again.

In general, we see improvements that range from 0% to



Figure 5. This histogram shows the distribution of the improvements achieved
in the second stage compared to the first.

Figure 6. Scatter plot correlating the percentage of improvement achieved
by the two-stage in terms of cost (x-axis) with the discretization step length
(y-axis).

10%. However, in the best case we see improvements that
are around 75% for cost, and 57% for time. Further analysis
shows that these significant improvements correlate with the
discrete search’s high final h (see Fig. 6). This indicates that
the PSO stage complements the first stage very well because it
handles the pathological cases, where the exponential runtime
of the first algorithm prevents a detailed search for the optimal
switching point.

V. CONCLUDING REMARKS

This paper proposes a cyber-physical systems approach to
manufacturing job scheduling, which models process dynam-
ics by using differential equations. The machine scheduling is
formulated as a multi-objective optimization problem which
explores different trade-offs, e.g., processing time, energy
consumption, and other cost functions. It combines in a two-
stage optimization flow, a BFS to find which machines should
be used and their order, followed by PSO to pinpoint the
optimal hand-over time between them.
As next steps, we are particularly interested in applying our
techniques to more complicated problems. Specifically, we
want to integrate the results of this single-item scheduling with
larger job-scheduling problems and investigate extensions or
alternatives to PSO that optimize the selected machines and
not only the segment durations.
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