
Control Performance Optimization for Application
Integration on Automotive Architectures

Anna Minaeva1,2, Debayan Roy3, Benny Akesson4,5, Zdeněk Hanzálek1, Samarjit Chakraborty6
1Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague

2Faculty of Electrical Engineering, Czech Technical University in Prague
3Institute for Real-Time Computer Systems, Technical University of Munich, Germany

4ESI (TNO), Eindhoven, The Netherlands
5University of Amsterdam, The Netherlands

6Department of Computer Science, The University of North Carolina at Chapel Hill, USA

Abstract—Automotive software implements different function-
alities as multiple control applications sharing common platform
resources. Although such applications are often developed inde-
pendently, the control performance of the resulting system de-
pends on how these applications are integrated. A key integration
challenge is to efficiently schedule these applications on shared
resources with minimal control performance degradation. We
formulate this problem as that of scheduling multiple distributed
periodic control tasks that communicate via messages with
non-zero jitter. The optimization criterion used is a piecewise
linear representation of the control performance degradation as
a function of the end-to-end latency of the application. The
three main contributions of this article are: 1) a constraint
programming (CP) formulation to solve this integration problem
optimally on time-triggered architectures, 2) an efficient heuristic
called Flexi, and 3) an experimental evaluation of the scalability
and efficiency of the proposed approaches. In contrast to the
CP formulation, which for many real-life problems might have
unacceptably long running times, Flexi returns nearly optimal
results (0.5% loss in control performance compared to optimal)
for most problems with more acceptable running times.

I. INTRODUCTION

With increasing user demands, the complexity of modern
automotive systems is growing rapidly. These functionalities
are often implemented as subsystems from different suppliers,
which are integrated by the original equipment manufacturer
(OEM). Some of them are implemented as control appli-
cations, such as engine management systems, steer-by-wire,
autonomous cruise control, or pre-crash safety systems [20],
[21]. A control application typically involves a sequence
of sensing, computation, and actuation tasks, where sensor
values and control signals need to be transmitted over an in-
vehicle communication network comprising CAN, FlexRay and
Ethernet.

To reduce cost, automotive applications typically share
platform resources on which they are executed, e.g., ECUs
and network links [36]. Therefore, car manufacturers face the
problem of integrating subsystems from different suppliers
comprising one or multiple applications, such that their
control and timing requirements are guaranteed [22], [24],
[39]. The control performance of an application depends
strongly on the timing behavior of its implementation on the
shared platform [9], [10]. The relationship between control
performance and the timing behavior the control application
experiences heavily depends on the application [12]. This needs
to be accounted for during the application integration stage.

Towards this, the problem addressed in this article is to schedule
multiple control applications on a shared platform, while
minimizing the maximum control performance degradation
among them. This has to be done while satisfying hard real-time
constraints, such as deadlines, jitter, data dependencies, and end-
to-end latency constraints. For this purpose, we consider time-
triggered scheduling [18], in which distinct activities (viz., tasks
and messages) are executed at predefined times on different
resources. This problem turns out to be computationally
hard [7]. However, given its practical relevance, it is important
to get a good quality solution within a reasonable time. Efficient
solutions to this application integration problem will also have
use in setups where applications are dynamically downloaded
from the cloud and deployed at runtime [28], [38].

The three main contributions of this article are: 1) A con-
straint programming (CP) formulation that solves the problem
optimally and exploits properties of the problem to reduce the
computation time. 2) A heuristic called Flexi that first constructs
a schedule and then improves it via a large neighborhood search.
It reduces the problem complexity by introducing a coarser
scheduling granularity where possible. This approach provides
a reasonable trade-off between computation time and solution
quality compared to the optimal approach. 3) An experimental
evaluation of the proposed approaches on datasets generated
using a benchmark generation tool developed by Bosch [20].
The evaluation examines the scalability of the proposed
approaches and quantitatively compares the computation time,
control performance, and resource utilization of the heuristic
and the optimal CP formulation. While the CP formulation
would produce the optimal results if allowed to run sufficiently
long, for most real-life problems, the time required by CP
to generate all optimal schedules would be unacceptable. In
comparison, Flexi is able to produce valid schedules for many
problems within a small fraction of the time required by CP,
with only a small degradation in control performance. For
example, using the tool from Bosch, we generated 100 synthetic
benchmarks with parameters that represent realistic systems.
Each such benchmark involved 1000 tasks that were mapped
onto 16 ECUs. With a timeout set to 50 mins, Flexi produced
feasible schedules for 93 systems, whereas the CP formulation
could produce schedules only for 62 cases within that time.
Further, for the cases where both approaches were able to
produce a solution, Flexi could generate schedules 5× faster
(i.e., took less time) with only a 0.5% degradation in the control

Switch1 Switch2

Domain 2Domain 1

 2
 3

 6
 7

ECU2
 4

ECU3
 9 8

ECU4 ECU6ECU5 ECU7 5 1
ECU1

(a) Hardware platform with 2 applications from Figure 1(b) mapped
to ECUs and switched network links.

Application 2

=15, =30

 5

 5= 1
ECU1

= 2
 6

 6 = 3
 7

 7

 9

 9= 1
ECU3

 8

 8= 1
ECU3

Application 1

 1

1= 2
ECU1

 1 1

 2

2= 1 = 3 1
 3

 4

4= 2
ECU2

=5, =10 2 2

(b) Application models.

period

t0 5 10 15

98

7

=7

=92

98

7
 20 25 30

ECU1->S1

ECU1

ECU2

ECU3

S1->ECU2

S1->ECU3

(c) An example of a schedule with latency L1 = 7 for Application 1, and L2 = 9 for Application 2.

Fig. 1. Periodic scheduling problem description with an example solution. There are two applications with periods of 5 and 15 time units, respectively. The
first application involves task a1 sending a message to task a4 with messages a2 and a3 mapped to links between ECU1 → Switch1 and Switch1 → ECU2,
respectively. The second application comprises tasks a5, a8, and a9 and messages a6 and a7.

performance compared to the solutions returned by the CP
formulation.

The rest of this article is organized as follows: the platform,
application, and control models are presented in Section II,
followed by the problem formulation in Section III. Section IV
describes the CP formulation. Next, Section V introduces the
Flexi heuristic for scheduling periodic activities, and Section VI
presents the experimental evaluation. The related work is
discussed in Section VII, before concluding in Section VIII.

II. SYSTEM MODEL

This section introduces the platform, application, and control
models used in this article.

A. Platform Model
We consider a platform comprising multiple ECUs connected

by a switched network based on the time-triggered automotive
Ethernet with a tree topology, similar to the one in Figure 1(a).
Such a distributed architecture is commonly used for automotive
systems [21]. ECUs are typically grouped into multiple
domains, where the ECUs in a domain are interconnected
by links to a switch. The switches are connected in chains
by network links, e.g., Switch1 and Switch2 in Figure 1(a).
Thus, the number of resources m is computed as the sum of
the number of ECUs mE and the number of network links,
i.e., m = mE + (2 ·mE + 2 · (mD − 1)), where mD is the
number of domains.

B. Application Model
The system functionality is realized by a set of applications

App. Each application appw runs periodically with a certain
period pw. The application model is based on the characteristics
of realistic benchmarks of modern automotive software systems,
obtained using [20]. An application is composed of a set of
tasks T that communicate via a set of messages transmitted over
the switched network. Note that a data transmission between a
pair of tasks is realized using more than one message depending
on the number of links between the ECUs hosting the tasks.

For the example in Figure 1(a), there are two messages, a2
and a3, representing a data transmission from task a1 to task
a4. The set of all messages is denoted by M while the set of
all tasks is represented by T . The set of activities is, therefore,
given by A = T ∪M .

Each activity ai ∈ A is characterized by the tuple
{mapi, pi, ei, predi, succi} representing its mapping to the
resource, period, processing time (either execution or trans-
mission time), the set of direct predecessors and the set of
direct successors, respectively. The mapping for each activity
is given as mapi : A→ {1, 2, · · · ,m}. Whereas the mapping
of tasks is given by application developers, the mapping of
messages is straightforwardly derived from the task mapping
for the tree topology of the switched network. There is only
one path between each pair of ECUs in this topology.

We assume that time is discretized with sufficient precision.
The applications are heterogeneous with respect to the volumes
of data they transfer over the network, which is common in
modern automotive systems. For instance, an engine man-
agement system transfers sensor values, and the autonomous
driving system transfers video or lidar data. Thus, network
traffic comprising both small- and large-sized data packets is
present in the system.

Considering that the bandwidth of the network links is
provided, the transmission time for each message ai ∈ M
is calculated as ei = szi

bnd + ovr. Here, szi is the size of the
transmitted data as given in the application specification, bnd is
the bandwidth of the network link, and ovr is its communication
overhead given by the platform specification. Note that the
proposed model can also be used when the bandwidth on
different network links is not the same. In that case, we obtain
different transmission times ei for the same data in different
network links.

Activities in an application are data-dependent with the
dependencies represented using a general directed acyclic graph
(DAG) of precedence relations. We show examples of such
graphs for a set of two applications in Figure 1(b). Note that
we do not make any assumption on the structure of the DAGs.

Precedence relations apply only to activities with the same
period, which is common in the automotive domain [11], [14].

Control performance of an application typically degrades
with sampling and actuation jitters [8]. Sampling and actuation
are performed by certain application tasks and we implement
these tasks with zero jitter. We also extend the zero-jitter
restriction to other tasks to reduce the number of design
variables in the schedule optimization problem. Communication
is often the bottleneck in automotive systems, as demonstrated
in the experiments in Section VI. We hence relax the jitter
constraints for message transmissions on the network links to
obtain a higher utilization of the communication resources, as
shown in [27]. When the time difference between the executions
of a data-dependent pair of tasks is larger than the time required
to send the data over the network links, it provides flexibility
to schedule the intermediate messages with bounded jitter. For
the example in Figure 1(c), tasks a1 and a4 are scheduled with
a time difference of 3, whereas it takes 2 time units in total to
transmit messages a2 and a3. This enables us to schedule a2
and a3 with jitters that can add up to 1.

We define the end-to-end latency Lw of an application appw
as the time from the start of the first activity until the completion
of the last activity in an application. Note that the end-to-end
latency of a control application is also equal to the sensing-
to-actuation delay in the control loop. Considering that the
control performance typically degrades with an increase in
sensing-to-actuation delay, the maximum possible latency for
application appw, denoted as L̂w, is determined based on the
minimum performance requirement and it is assumed to be
provided by the application developer.

An example is shown in Figure 1. In Figure 1(b), two
applications with periods 5 and 15 respectively comprise tasks
a1, a4, a5, a8 and a9 that are mapped on to ECUs 1, 2, and 3.
The tasks communicate via messages a2, a3, a6, and a7 over
the links of a switched time-triggered network [36]. As shown
in Figure 1(c), the tasks executing on the ECUs are scheduled
with zero jitter, whereas the messages on the network links
have non-zero jitter. For example, activity a2 is scheduled at
times 2, 6, and 11, i.e., not always with the same time offset
relative to its period of 5. Furthermore, the end-to-end latency
L2 of Application 2 in this schedule is 9, where the first activity
a5 starts at time 1, while the last activity a9 finishes at time 10.

C. Control Model
It is common practice in the automotive domain that the

application period is given [23], [37] and is equal to the
sampling period of the controller. The control performance
may degrade with sampling and actuation jitters. In this article,
we consider a zero-jitter implementation of a controller and
schedule the sensing and actuation tasks accordingly. We
furthermore consider physical plants that are controlled by
software applications. Here, we only study linear time-invariant
(LTI) systems, as they are common in practice. For LTI plants,
the continuous-time mathematical model can be written as

ẋ(t) = A · x(t) +B · u(t),

y(t) = C · x(t),

where x(t), u(t), and y(t) represent the system states, control
input and system output, respectively. A, B, and C are constant
system matrices.

0

4

4

=

Fig. 2. Piecewise linear control performance function for appw .

Traditionally, a software-based implementation of a controller
for an appw considers a constant sampling period pw. That
is, the sensing task of a control application reads the system
state x(t) at time instants t0, t1, · · · , tn, where the sampling
period is given by pw = tk+1 − tk. We further assume that
the control applications are implemented based on the Logical
Execution Time (LET) paradigm [1]. The LET implementation
paradigm provides a fixed sensing-to-actuation delay to realize
a more predictable control [30]. Corresponding to the end-to-
end latency Lw of the application appw, the control input u[k]
calculated based on the state x[k], i.e., x(tk) sensed at time
tk, is applied at time tk + Lw.

With the above considerations, the equivalent sampled-data
model is derived in [4] and can be written as

x[k + 1] = φ · x[k] + Γ0 · u

[
k −

⌊
Lw

pw

⌋]
+Γ1 · u

[
k −

⌈
Lw

pw

⌉]
,

y[k] = C · x[k],
(1)

where φ, Γ0 and Γ1 for τ = Lw −
⌊
Lw

pw

⌋
are given by

φ = eA·pw , Γ0 = B ·
∫ pw−τ

0

eAtdt, Γ1 = B ·
∫ pw

pw−τ
eAtdt.

It is assumed that the control input u[k] in Equation (1) is
computed according to the feedback control law [3] given by

u[k] = K · x[k] + F · r, (2)

where r is the reference input and K and F are feedback
and feedforward gains, respectively. These gains are designed
by control engineers to satisfy certain control performance
requirements assuming ideal implementation conditions, such
as zero delay.

In this work, we consider the settling time as the performance
metric for an application. It is defined as the time taken by
the closed-loop system to reach and stay within a threshold
of the reference input. Given the control law, continuous-time
system matrices, sampling period and end-to-end latency, the
closed-loop system can be simulated according to Equations (1)
and (2), and the settling time can be calculated. Note that in
most cases, the settling time is expected to increase with an
increase in end-to-end latency.

Now, we compute the minimum possible end-to-end latency
δw1 for an application appw based on the precedence relations
between its constituent tasks and messages. We further compute
the maximum possible value of the end-to-end latency δwN for
which the settling time requirement is met. In addition, we
consider N − 2 discrete values of end-to-end latency between

δw1 and δwN to obtain a set {δw1 , δw2 , · · · , δwd , · · · , δwN} such that
δwd+1 − δwd =

δwN−δ
w
1

N−1 . We construct a look-up table for each
application that contains the values of the settling time ξwd for
each discrete value of end-to-end latency δwd . Such a look-up
table can be represented as LUTw = {(δwd , ξwd)|d = 1, · · · , N}.
Here, ξwd ≤ ξwd+1 for δwd < δwd+1. LUTw defines the control
performance of an application appw as a piecewise linear
function of the end-to-end latency, as shown in Figure 2. Here,
for the range of end-to-end latencies [δw1 , δ

w
N], the designed

controller is stable and satisfies the worst-case performance
requirement.

Note that when an application appw has exclusive access
to resources, it is possible to achieve the lowest settling time
ξw1 corresponding to the implementation with the minimum
possible end-to-end latency δw1 . However, when multiple
applications are sharing the resources, it may not be possible
to implement all of them with their respective minimum end-
to-end latencies. Here, the settling times of certain applications
may be higher than the minimum. Our goal is to minimize such
performance degradation while scheduling the applications. The
table LUTw is, hence, used to formulate the objective function
for the scheduling problem. Note that this technique elevates
scheduling to consider the real application performance, which
is a novelty of this work.

III. PROBLEM FORMULATION

We study the non-preemptive scheduling problem on dedi-
cated resources. The aim is to find a schedule with a hyper-
period H = lcm(pi ∈ P), where lcm is the least common
multiple function and P is a set of distinct values of activity pe-
riods. The schedule is defined by the start times sji ∈ Z of each
activity ai ∈ A for every occurrence j = 1, 2, · · · , ni within
a hyperperiod, where ni = H

pi
. The schedule must consider

the periodicity and the jitter limitation of each activity, while
satisfying the precedence relations and the end-to-end latency
constraint for each application. Moreover, it minimizes the
control performance degradation. The periodic monoprocessor
scheduling without jitter and precedence constraints is proven to
be NP-hard by reduction from the 3-Partition problem in [16].
As the schedule optimization problem under consideration
comprises the problem considered in [16] as a sub-problem,
we conclude that it is also NP-hard.

A. Scheduling Constraints

The solution space is defined by four sets of constraints.
We first consider a set of jitter constraints that requires each
task to have zero jitter while running on ECUs. This is given
by Equation (3). Note that there are no jitter constraints for
messages, as previously explained in Section II-B.

sji = s1i + (j − 1) · pi,
ai ∈ T, j = 1, · · · , ni.

(3)

The second set of constraints defines the precedence relations
that ensure that all data dependencies are respected, as shown
in Equation (4).

sji − s
j
k ≥ ek,

ai, ak ∈ A : ak ∈ predi, j = 1, · · · , ni.
(4)

We further consider a set of resource constraints that prevents
simultaneous scheduling (or collision) of two activities on a
resource, as given by Equation (5). Such a constraint must be
considered for each pair of occurrences within a hyperperiod
for two different activities. Here, either occurrence j of activity
i is executed after occurrence l of activity k or vice versa.

sji − s
l
k ≥ ek XOR slk − s

j
i ≥ ei,

{ai, ak} ∈ A : mapi = mapk,

j = 1, · · · , ni, l = 1, · · · , nk.
(5)

We also consider a set of end-to-end latency constraints, as
given by Equation (6). The end-to-end latency of an application
is the maximum time duration between the start of a root
activity and the completion of a leaf activity in the application.
Note that a root activity has no predecessor while a leaf activity
has no successor.

sji + ei − sjk ≤ Lw, (6)
ai, ak ∈ appw : succi = ∅, predk = ∅,

j = 1, · · · , ni, appw ∈ App,

Note that Lw ∈ Z is a variable determined by the start times
of activities. Equation (7) further constrains the end-to-end
latency based on the maximum permissible value L̂w.

Lw ≤ L̂w, appw ∈ App. (7)

B. Minimizing Control Performance Degradation
To compare the performance degradation of different control

applications in response to scheduling decisions, we normalize
the performance (i.e., the settling time of the closed-loop
system) through division by the best possible value. For
example, if the settling time of an application corresponding to
the obtained schedule is 3 s and the minimum possible settling
time is 2 s, the normalized settling time is 1.5. Now, consider
another application that has the minimum possible settling time
of 100 ms while the obtained settling time is 150 ms. Here, the
normalized settling time is also 1.5. Thus, for both applications
the performance degradation is the same, i.e., 50 % higher than
the minimum possible value. Note that the higher the value
of the normalized settling time is, the worse is the control
performance.

We can update the look-up table LUTw, defined in Sec-
tion II-C, based on the normalization technique to obtain
LUTw = {(δwd , ξ

w

d) | d = 1, · · · , N}, where ξ
w

d =
ξwd
ξw1

. Here,

ξ
w

d is the normalized settling time obtained with an end-to-
end latency of δwd . The normalized settling time Jw can be
represented as a piecewise linear function of the end-to-end
latency Lw as follows:

Jw =

F
(
(ξ

w

1 , δ
w
1), (ξ

w

2 , δ
w
2), Lw

)
, if δw1 ≤ Lw ≤ δw2 ;

F
(
(ξ

w

2 , δ
w
2), (ξ

w

3 , δ
w
3), Lw

)
, if δw2 ≤ Lw ≤ δw3 ;

...

F (
(
ξ
w

N−1, δ
w
N−1), (ξ

w

N , δ
w
N), Lw

)
, if δwN−1 ≤ Lw ≤ δwN .

(8)
Here, F ((x1, y1), (x2, y2), x3) is the functional value at x3 ∈
[x1, x2] where F (·) is a line passing through the points (x1, y1)
and (x2, y2). The piecewise linear function is thus similar to

the one shown in Figure 2. However, we plot the normalized
settling time instead of the absolute value on the y-axis. This
piecewise linearization allows us to implement the application
for any end-to-end latency in the interval [δw1 , δ

w
N]. Thus, we are

not restricted to the N end-to-end latency values for which we
simulate the closed-loop system. This enhances the feasibility
of the scheduling problem. Furthermore, note that the settling
time is given by N − 1 component functions. With a higher
value of N , the scheduling problem becomes more complex,
while with a lower value, the accuracy in the computation of
settling time is compromised.

In this article, we define the objective function for the
scheduling problem as follows:

Minimize: max
appw∈App

Jw. (9)

That is, we minimize the maximum normalized settling
time among all the control applications. This is equivalent to
minimizing the maximum performance degradation, since the
best normalized performance is unity for each application. The
optimization approaches proposed in this article also work for
other objective functions, such as min

∑
appw∈App Jw (see [25]

for details and results).

IV. CONSTRAINT PROGRAMMING FORMULATION

We have studied both Constraint Programming (CP) and
Integer Linear Programming (ILP) formulations of our schedul-
ing problem. Since the CP formulation outperforms the ILP
formulation, we discuss only former and refer the reader to [25]
for details on the ILP formulation.

A. Decision Variables
The start time of occurrence j of activity ai is denoted

by sji , which is a decision variable of the CP problem. Here,
we assume that the j-th period of an application appw spans
from time (j − 1) · pw to time j · pw. Accordingly, we allow
the activities of an application to span over several periods
in the resulting schedule, as in the case of Application 1 in
Figure 1(c). Hence, we constrain start time variables as in
Constraint (10), and we call them time window constraints.

LBji = (j− 1) · pi ≤ sji ≤ j · pi− 1 + L̂w− ei = UBji . (10)

To explain the intuition behind the upper bound computation,
let us state two considerations: 1) Root activities (without
predecessors) in the application are always zero-jitter (ZJ) tasks,
i.e., they are scheduled at the same time in each period. 2) For
ZJ tasks, the schedule with start time s1i = pi is equivalent
to the schedule with s1i = 0. From these considerations, the
j-th occurrence of the root activity ai starts at the latest before
the end of the corresponding period, i.e., at time j · pi −
1. Therefore, the last activity in the j-th occurrence of the
application must finish before j · pi − 1 + L̂w such that the
maximum permissible value of end-to-end latency L̂w is not
exceeded. We further tighten the bounds on the start time
variables using the knowledge about the precedence relations
as described in [25].

As per Constraint (10), we might schedule an occurrence
of an activity beyond the hyperperiod H . However, note that
if we schedule an activity at time t then it repeats at time
t+H . And therefore, we cannot schedule another activity at

TABLE I
FUNCTIONS USED TO FORMULATE THE MODEL IN CP OPTIMIZER.

Constraint Reference Function

Jitter (3) startAtStart(sji ,s1i ,(j − 1) · pi)

Time window (10) setStartMin(sji , LBj
i)

setEndMax(sji , UBj
i)

Precedence (4), (12), (13) endBeforeStart(sji , s
j
k)

Resource (11) noOverlap(Ar), Ar = {ai : mapi = r}
startAtStart(sj+f·ni

i , sji , H)

Latency (6) span(Lw, Aw), Aw = {ai ∈ appw}
(7) setLengthMax(Lw , L̂w)

time t + H on the same resource. Accordingly, we update
Constraint (5) to prevent collisions of activities in a resource
as in Constraint (11).

(sji + f ·H)− (slk + h ·H) ≥ ek
XOR (slk + h ·H)− (sji + f ·H) ≥ ei,

f, h ∈ {1, 2, · · · , nmaxH }, nmaxH =

⌈
maxai∈A UBni

i

H

⌉
.

(11)

Furthermore, we must also consider constraints to ensure that
occurrences of the same activity with non-zero jitter (i.e., a
message) do not collide. Thus, we introduce Constraint (12)
to guarantee the precedence relation between each pair of
consecutive occurrences of an activity. In addition, we need to
consider a constraint between the first and the last occurrences
as in Constraint (13). This constraint also reduces symmetry
in the solution space by preventing permutations of the start
time of different occurrences of one activity.

sji + ei ≤ sj+1
i , (12)

sni
i + ei ≤ s1i +H, (13)

ai ∈M, j = 1, · · · , ni − 1.

B. Model Formulation
According to the experimental results, using solver-specific

constraint prototypes to formulate the CP problem reduces
the computation time significantly. In this section, we provide
guidelines to formulate the schedule optimization problem
under study in CP optimizer [15] using Java for interfacing.
Decision variables sji and Lw are implemented as interval vari-
ables, as they are typically well-suited to formulate scheduling
problems. We further implement all constraints using specific
functions available for interval variables as listed in Table I.

In our formulation, Constraint (11), i.e., the set of resource
constraints, influences the computation time the most. This
is because of (i) the large number of constraints and (ii) the
non-convex nature of the constraints. Note that for a resource
where nr occurrences of activities need to be scheduled, the
number of constraints that must be formulated is given by
nr·(nr−1)

2 . Experimental evaluations have demonstrated that
the most efficient formulation of these constraints uses the
noOverlap(Ar) function. Here, Ar is the set of activities
mapped on resource r and is given by Ar = {ai ∈ A : mapi =
r} for r = 1, 2, · · · ,m. Towards formulating Constraint (11),
we consider a set of variables {sji |j = 0, · · · , nmaxH ·ni} for an

activity ai. We further relate variables in the first hyperperiod
with the variables in the subsequent hyperperiods using the
function startAtStart(sj+f ·ni

i , sji , H), where the third parameter
is the difference between the first two parameters. We use the
same constraint prototype to formulate zero-jitter constraints (3)
for the tasks. Note that the CP formulation in this section can
be easily adapted for any combination of zero-jitter and non-
zero jitter activities, i.e., it is not limited to zero-jitter tasks on
ECUs (or any processing units) and non-zero jitter messages
on networks.

We formulate the objective function using a built-in function
piecewiseLinearFunction. To further reduce the computation
time of the solver, we set the parameter Workers of the CP
optimizer solver to 1. This implies that we do not want parallel
threads for the computation. This setting has experimentally
shown significant reduction in the computation time. From our
experience, in the current version of CP optimizer (IBM ILOG
CPLEX Optimization Studio 12.8), computation using only
one thread is typically faster. The source codes for the problem
formulation can be found in [26].

V. HEURISTIC APPROACH

This section introduces a heuristic approach called Flexi that
first constructs a feasible solution and then optimizes it. Here,
we also prove the property that we employ in the heuristic for
a faster and near-optimal solution.

A. Overall Approach

Flexi comprises two stages, namely, the feasibility and
the optimization stages, respectively. The feasibility stage is
illustrated in Figure 3. In the internal loop (Steps 2 and 3),
it constructs a schedule by inserting elements (activities or
activity occurrences) one-by-one. The construction is based
on an ordered set that is referred to as the priority queue
Q. If a feasible schedule is obtained, this stage is complete.
However, when an element εi cannot be scheduled, it is split
into occurrences if it is a message and some occurrences can be
scheduled (Step 5). Then, the set of elements D preventing εi
from being scheduled, is found (Step 6). Note that the elements
of D are already in the schedule, whereas εi is not. Finally,
the problematic occurrences of εi with its predecessors are put
before all elements of D in Q (Step 7). We refer to Steps (2-8)
as the external loop of our algorithm. The feasibility stage
stops when all occurrences are scheduled, an infinite loop is
detected, or an iteration budget is exhausted.

Note that the proposed feasibility stage is an improvement
over the 3-LS heuristic presented in [27], where a schedule is
also constructed by assigning start times to activities. Among
other differences, the 3-LS heuristic considers only a single
granularity level, i.e., scheduling and removing activities only.
In contrast, Flexi adjusts the granularity of the elements in
the priority queue. In the beginning, elements are activities.
However, the message is split into occurrences if only some
occurrences fail to be scheduled. Note that tasks on ECUs
are always scheduled as one entity because they are assumed
to be zero-jitter activities. According to Constraint (3), the
schedule for all their occurrences can be derived from the first
one straightforwardly. Considering that we do not increase the
number of scheduling entities when it is not necessary, we

Internal loop.
Schedule construction.

Generate priority queue , = 1

2 Schedule and remove the first element in

Yes

No

 fully scheduled?

 Changing .

Stopping condition
met?

Return FAIL

Yes

No

7

6

Move before in ,

Find delaying elements set in delay graph

 partially
scheduled?

Yes

No

5 Split into occurrences in if possible

3

4

8

External loop.

‘

εi

εi

εi

εi

GdD

=‘εi D

‘

Fig. 3. Outline of the feasibility stage of Flexi.

ensure the coarsest possible level of scheduling granularity at
each phase of the algorithm.

Finally, when the feasibility stage finds a solution, the
optimization stage iteratively applies a Large Neighborhood
Search technique [29] to improve the solution. In each iteration,
Large Neighborhood Search solves the optimization problem
described in Section III for a chosen set of applications (called
a neighborhood), while fixing the schedule for the rest of
the applications to the best one found thus far. Therefore, it
looks locally in the neighborhood defined by the chosen set
of applications for a better solution. This strategy reduces the
computation time by limiting the search space and considering
only a subset of the decision variables. The optimization stage
uses the CP (or the ILP) problem formulation from Section IV
(or [25]).

B. Feasibility Stage
Here, we first explain the concept of a delay graph. This

graph is used to find the set of prescheduled elements that
prevent the current element from being scheduled. We also
formulate and prove a necessary and sufficient condition for
scheduling a zero-jitter activity given a set of prescheduled
activities that we exploit to accelerate the search for a solution.
We further outline the sub-problem that schedules a single
element, respecting a partial schedule of the higher priority
elements. Finally, we present the algorithm implementing the
feasibility stage.

1) Delay Graph to Modify Priority Queue: A delay graph
is used to find a set of elements D that prevents the current
element εi from being scheduled. A delay graph Gd is an
acyclic directed graph constructed using the current element
εi and the existing schedule. Nodes of Gd are elements, while
edges directed from one node to another indicate that the
former node prevents the latter node from starting earlier
due to the resource or precedence constraints. Note that

3 3
3
3 9

3

23

st

ndrd
precedence relations

resource constraints

Fig. 4. Example of a delay graph with the coarsest level of granularity for
the applications in Figure 1(b) that are scheduled as in Figure 1(c). Elements
on different delay levels for a9 are marked using gray ovals.

nodes corresponding to non-zero jitter messages can be split
into occurrences during the algorithm run, whereas nodes
corresponding to zero-jitter tasks cannot.

To make the scheduling process more straightforward, we do
not allow an element to be considered by the scheduler before
its predecessors predi in the priority queue Q. Therefore, the
earliest time ši for the start time of εi is the maximum of the
completion times of its predecessors, as in Equation (14).

ši = max
εk∈predi

(sjk + ek) (14)

If no activity prevents εi from being scheduled directly after
the latest predecessor(s) (i.e., at time ši), we add edge(s) from
its latest predecessor(s) to εi. Thus, we can only have an edge
from an element on another resource if it is a predecessor.
If an element cannot be scheduled at ši due to the resource
constraints, the element that causes the delay is always found.
In this case, the conflicting element is mapped on the same
resource as εi.

Figure 4 shows a delay graph for the applications in
Figure 1(b) that are scheduled as in Figure 1(c). Here, the
priority queue is set as Q = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.
For all the elements except a5, a6, and a9, a corresponding
parent is its predecessor. Observe that the activity a5 has
no predecessor, and thus, can start at time 0. However, it is
scheduled at time 1 because a1 is scheduled on the same
resource at time 0. Therefore, we draw an edge from a1 to a5.
The same reason holds for the pairs {a32, a16} and {a8, a9}. Note
that the DAG of precedence relations only slightly influences
the complexity of the delay graph. Considering that we target
problem instances with reasonably high utilization, delaying
elements for most of the activities are not their predecessors,
but conflicting activities on the same resource.

An element εk on delay level ld for the element εi in Gd has
the shortest distance (in terms of the number of edges) equal
to ld, i.e., dist(εi, εk, Gd) = ld. Note that we count only edges
between elements that are not predecessors of εi because no
element in the priority queue can be before its predecessors.
For the simple example in Figure 4, the element on the 1st
delay level for the activity a9 is a8, on the second level is a32,
and on the third level is a1.

2) Computation Time Improvement: Here, we formulate and
prove the necessary and sufficient condition for schedulability
of two zero-jitter tasks. We use this result to reduce the
computation time of Flexi.

We first provide the necessary background for, and the
intuition behind, the formulation. As stated in Equation (5) in
Section III, two activities do not collide when the difference
between their start times is larger than or equal to the processing
time of the activity that is scheduled earlier, i.e., if sji ≥ slk,

period

t0 3 6 9 12 15 18

minimum distance after

Fig. 5. A schedule of two ZJ tasks a1 and a2 with periods p1 = 6 and
p2 = 9 with the minimum start-to-start interoccurrence distance 1 from a2
to a1 and 2 from a1 to a2. Dotted lines are the ZJ tasks a1′ and a2′ with
p1′ = p2′ = gcd(p1, p2) = 3 from Property 1.

Equation (15) holds:

sji − s
l
k ≥ ek. (15)

For two zero-jitter tasks, possibly with different periods, we
are interested in all the differences given by:

sji − s
l
k = (s1i + (j − 1) · pi)− (s1k + (l − 1) · pk) =

= (s1i − s1k) + ((j − 1) · pi − (l − 1) · pk), j, l ∈ Z+,
(16)

according to Equation (3). We derive the minimum among
these differences using the Bezout identity [6]. It states that
if pi and pk are integers with greatest common divisor gi,k =
gcd(pk, pi), then the integers of the form j · pi + l · pk is a
multiple of gi,k. Then, in Equation (16), we can substitute
integers j and l for a variable zi,k ∈ Z for each ordered pair of
tasks and it can be rewritten as s1i−s1k+zi,k ·gi,k. The minimum
value of the difference is, therefore, (s1i − s1k) mod gi,k over
all possible values of zi,k. Thus, the resource constraints (5)
for a pair of zero-jitter tasks on an ECU can be formulated as
in Equation (17). Note that the modulo operator is defined as
a mod c = a + q · c with q ∈ Z such that 0 ≤ a + q · c < c,
which makes these constraints work with arbitrary order of s1i
and s1k, i.e., with a negative value of a.

(s1i − s1k) mod gi,k ≥ ek,
(s1k − s1i) mod gi,k ≥ ei,

(17)

This result also implies that a necessary condition for schedu-
lability of two ZJ tasks is ei + ek ≤ gi,k, as proven in [19].

The example in Figure 5 presents a schedule of two ZJ tasks
a1 and a2 with periods p1 = 6 and p2 = 9, respectively. We
can see that the value (s11−s12) mod g1,2 = (1−6) mod 3 = 1
is the minimum distance among all occurrences j and l when
aj2 is before al1 in time, whereas it is (s12 − s11) mod g1,2 =
(6− 1) mod 3 = 2 when aj2 is after al1.

Next, we present the necessary and sufficient condition for
schedulability of two zero-jitter tasks.

Property 1 (Schedulability of two ZJ tasks): Let ai′ and
ak′ are tasks with processing times ei′ = ei and ek′ = ek, and
periods pi′ = pk′ = gi,k. Then, two ZJ tasks ai and ak can be
scheduled without collisions if and only if tasks ai′ and ak′
can be scheduled without collisions.

Proof: Let the original tasks ai and ak be schedulable.
Then, Equations (17) hold for some s1i and s1k. We set
s1i′ = s1i mod gi,k and s1k′ = s1k mod gi,k. Due to the
additive property of modular arithmetic, (s1i′−s1k′) mod gi,k =
(s1i mod gi,k − s1k mod gi,k) mod gi,k = (s1i − s1k) mod gi,k,
Equations (17) also hold for s1i′ and s1k′ .

In the other direction, let Equations (17) hold for ai′ and
ak′ for some s1i′ and s1k′ . Then, we set s1i = s1i′ and s1k = s1k′ .
Then, Equations (17) trivially hold for s1i and s1k.

RECU1

tECU1
0 3 6 9 12 15

0

1. no 2. yes

Fig. 6. Example of a RECU1 set for the given schedule on ECU1 before
scheduling new activity a110.

Thus, we can find non-conflicting si and sk for two ZJ tasks
with arbitrary periods if and only if we can find si′ and sk′
for two ZJ tasks with an identical period equal to the greatest
common divisor of pi and pk and with initial processing times.

In the insert element procedure described next, we only need
to go over time intervals for the first task occurrence instead of
looking at time intervals for all occurrences for ZJ tasks using
this property. It results in significantly reduced computation
time since there are many ZJ tasks with distinct periods.

3) Insert Element Procedure: The insert element procedure
takes the current element that needs to be scheduled and
the resource on which it is mapped. Using the precedence
relation and the end-to-end latency constraint, it determines the
minimum and the maximum permissible values for the start
time of the current element. It also finds the time intervals for
which the resource is occupied, and therefore, it computes the
earliest possible start time for the element.

Algorithm 1 implements the procedure. As inputs, it takes
(i) the element εi to be scheduled; (ii) ši and ŝi, the earliest
and the latest possible start times of this element based on
the precedence relation and the end-to-end latency constraint,
computed according to Equations (14) and (18), respectively.
We compute ŝi in Equation (18) as the maximum of three
values: 1) its lower bound LBji defined by Equation (10), i.e.,
start of the corresponding period; 2) completion time of the
previous element occurrence if it is a message and j > 1; and
3) start time of the earliest activity in the application plus the
end-to-end latency bound L̂w minus processing time of the
element ei to satisfy end-to-end latency constraints.

ŝji = max(LBji , s
j−1
i + ei, min

ak∈appw
(sjk) + L̂w − ek) (18)

Finally, the algorithm also considers the set of predecessor
elements predi finishing at ši, and the set of time intervals
where resource r is occupied, Rr, which is the union of time
intervals in which prescheduled occurrences are running on
resource r = mapi.

The set Rr is a union of time intervals, for which resource
r is occupied by already scheduled activities. For the example
in Figure 6, RECU1

= {[0, 2], [4, 6], [9, 11], [14, 15]}. It is
introduced to reduce the computation time of the procedure.
This is achieved by iterating over intervals in Rr, instead of
going over all scheduled elements and checking that no element
is already scheduled at a given time. Formally, Rr is a union
of nonintersecting intervals, sorted in ascending order, i.e.,
Rr =

⋃nint

b=1 [lb, ub] with lb, ub ∈ N due to discrete-time and
integer processing times and lb < ub < lb+1.

To schedule ZJ task ai, we use Property 1 as follows. For
each prescheduled task ak on the same ECU, we add processing
time intervals of task ak′ with the same processing time, but
with a period equal to pk′ = gi,k to Rr (Line 7). The main
loop of the insert element procedure iterates over intervals in

Input: εi, ši, ŝi, predi, Rr

1 if εi ∈ T then // Consider ZJ tasks
2 for εk ∈ T : mapk = mapi do
3 s1k′ = sk mod gi,k;
4 j = 2;
5 while sk′ ≤ min{ŝi, H} do
6 sjk′ = s1k′ + (j − 1) · gi,k;
7 Rr .add([sjk′ , s

j
k′ + ek]);

8 j = j + 1;
9 end

10 end
11 end
12 for b = 1 to nint do // Main loop to find earliest si
13 if min(lb, ŝi)−max(ub−1, ši) ≥ ei then
14 si = max(ub, ši);
15 if si = ši then // Construct delay graph

16 D = predi;
17 else
18 D = {εk ∈ A : sk ≤ ši < sk + ek};
19 end
20 end
21 end
22 if εi is not scheduled then
23 D = {εk ∈ A : sk < ši +ei, sk +ek > ši,mapi = mapk};
24 end

Output: si, D
Algorithm 1: Insert element procedure

Rr until it finds free space in the schedule after ši. Then, if
there is a free time interval of length ei starting at ši, we set
the parents in the delay graph to elements in predi (i.e., to the
predecessors finishing at ši) (Line 16). Otherwise, the delaying
element is the element scheduled at the earliest possible start
time ši (Line 18). Finally, if εi was not scheduled, we define
the set of parents D in the delay graph Gd for εi. This set
is defined as the elements scheduled on the same resource
that start before the earliest possible completion due to the
precedence constraints ši and end after its earliest possible start
time (Line 23). In other words, the elements that are scheduled
in the time interval [ši, ši + ei).

The insert procedure always schedules an element as soon
as possible. The motivation is twofold: first, it produces
schedules with smaller fragmentation in each iteration. This
is an especially sensitive issue, since we have both small
(control) and large (video traffic) transmission times of frames
on the network. Thus, frames with large transmission times
have higher risk of not being scheduled given a schedule with
high fragmentation, whereas frames with small transmission
times can heavily fragment the schedule. The second reason is
that this strategy results in a solution with lower end-to-end
latency of the applications and, therefore, potentially a better
objective value, i.e., lower control performance degradation.

It may be necessary to go beyond one hyperperiod because
the start time variables can be larger than one H as per
Equation (10). For this purpose, we look at Rr in the
hyperperiods, to which the interval [šji , ŝ

j
i] belongs. Due to

the periodicity of the schedule, we just add the corresponding
number of hyperperiods to the interval bounds lb and ub. This
is not included in Algorithm 1 for better readability.

4) Feasibility Stage Algorithm: The feasibility stage of Flexi
is implemented by Algorithm 2. The inputs are the set of
activities A, the rule to set the priority queue Prfeas, and the
iteration budget of the feasibility stage itmax. After populating

Input: A,Prfeas, itmax

1 Q = sort(A, Prfeas);
2 ld = 1, it = 0;
3 while it < itmax and Q 6∈ Qprev and S not found do

// External loop. Changing Q
4 Q′ = Q;
5 Qprev.add(Q);
6 while Q′ 6= ∅ and εi is scheduled do // Internal loop
7 εi = Q′.pop();
8 sji , D = InsertElement(εi, šji , ŝji , pred

j

i , Rr);
9 end

10 if εi is not scheduled then
11 D = {εk ∈ A : dist(εi, εk, Gd) = ld};
12 if (εi, D) 6= (εprevi , Dprev) then
13 ld = ld + 1;
14 D = {εk ∈ A : dist(εi, εk, Gd) = ld};
15 else
16 ld = 1;
17 end
18 Q.splitAndPutBefore({εi, all predi}, D);
19 Dprev = D, εprevi = εi;
20 end
21 it = it+ 1;
22 end

Output: S
Algorithm 2: Feasibility stage of Flexi

the priority queue Q (Line 1), the algorithm iterates over the
external loop, where it adjusts the priority queue according to
the feedback it gets from the internal loop. If some element εi
failed to be scheduled by the insert element procedure (Line 10),
we first find the set of delaying elements D (Line 11) on the
current delay level ld, as described in the previous subsection.

If both the problematic element εi and its set of parents Gd
in the delay graph are the same as in the previous iteration
(Line 12), we increase the delay level by one and assign
the new delaying elements set (Line 14). In contrast, when
either εi or D have changed, i.e., when either the problematic
element εi from the previous iteration has been successfully
scheduled or we have a different set of the delaying elements,
the delay level is reset to 1 (Line 16). Finally, the current
problematic element is split if necessary, and is promoted in Q
with all predecessors to be immediately before all elements in
D. This strategy prevents us from getting stuck with the same
problematic element again. Moreover, this strategy aims not
to disturb the prescheduled elements, rescheduling them only
if necessary. The algorithm is terminated in three cases: 1) a
complete solution is found, 2) an infinite loop over iterations
of the external loop is detected, or 3) the iteration budget for
the external loop is exhausted. Considering that both internal
and external loops are deterministic, we identify an infinite
loop when we encounter the same priority queue Q for the
second time. However, we additionally set the iteration budget
for the external loop because we aim for problem instances
with more than 100,000 occurrences.

As the feasibility stage takes only a short time to run, we
employ two different strategies to set priorities Prfeas as
follows:

1) in increasing order of the slack values UBi − LBi,
2) in decreasing order of potential to improve the objective

value (normalized settling time), i.e., ξ
w

Nw − ξ
w

1 .
We then choose the solution with the best objective value. This

strategy has paid off, since for problem instances with high
utilization we need to target feasibility with Strategy 1. On
the other hand, for less-utilized systems, it is beneficial to use
Strategy 2 to get a better criterion value.

The asymptotic complexity of the feasibility stage is
O(nel · H

2 · it
max), where nel is the maximum number of

elements to schedule (equal to the sum of number of tasks
and number of message occurrences), and H

2 is the maximum
number of intervals to explore in Rr for any resource r. This
is the worst case that happens when the schedule consists of
activities with a unit processing time scheduled with a gap of
one time unit.

C. Optimization Stage

In the optimization stage, an iterative search is performed
in the neighborhood of solution Sbest with the best objective
value Φbest found so far. The neighborhood is given by the
solutions with different start times of activities in only a subset
of applications.

Algorithm 3 implements the optimization stage of Flexi,
where the input values are: the schedule obtained by the
feasibility stage S with objective value ΦS , the number of
applications considered in the neighborhood Napps, the number
of solutions (neighbors) to consider Nsol, the improvement
tolerance τopt to stop the search, the priority rule Propt to
choose the neighborhood, and the maximum computation time
toptmax for one run of the optimal model, which is used to
evaluate a neighbor.

Start times of activities of applications that are not in the
current neighborhood are fixed to the corresponding values in
Sbest, whereas start times of activities of applications chosen
to be in the neighborhood can be changed. For each iteration of
the inner loop, the neighborhood set Sneigh ∈ App consisting
of Nsol solutions, is generated (Line 7). Then, the resulting
problem is solved by the CP formulation from Section IV
or the ILP formulation from [25] (Line 8). The computation
time is limited by toptmax to address the time complexity of the
optimal approach.

While looking at the neighbors of the current solution, the
neighbor with the best objective value is stored (Line 9). After
evaluating all neighbors, Sbest is updated (Line 11). Neighbors
of the new solution are generated in the next iteration if the
improvement over the previous iteration was larger than τopt.
Otherwise, the search process is discontinued, and the best
solution is returned.

Input: S, Napps, Nsol, τopt, Propt, toptmax

1 Φbest = ΦS ;
2 Φcur = Φbest + τopt;
3 Sbest = S;
4 while Φcur − Φbest > τopt do
5 Φcur .initialize();
6 for b = 1 to Nsol do
7 Sneigh = App.getApps(Napps, Nsol, Propt);
8 S = solve(Sbest, Sneigh, toptmax);
9 Φcur .update(), Scur .update();

10 end
11 Φbest.update(), Sbest.update();
12 end

Output: Sbest

Algorithm 3: Optimization stage of Flexi

TABLE II
PLATFORM-GENERATION PARAMETERS.

Set P [ms] nT ne mE Umin

1 1, 2, 5, 10 30 15 2 0.5

2 1, 2, 5, 10, 20, 50, 100 50 30 2 0.6

3 1, 2, 5, 10, 20, 50, 100 100 30 3 0.65

4 1, 2, 5, 10, 20, 50, 100 500 50 8 0.7

5 1, 2, 5, 10, 20, 50, 100 1000 100 16 0.7

The priority rule Propt to set applications in neighborhood
is based on the application’s potential for improvement, which
is defined as the difference between the current control
performance value and the best value that can be obtained
for the application, i.e., Jw − ξ

w

1 . The applications with
the maximum difference (potential) are chosen. We have
experimentally compared different Propt in [25], and this
strategy has shown the best results since it exhibits a reasonable
trade-off between computation time and solution quality.

Considering that the optimization stage uses a CP solver or
an ILP solver, its worst-case asymptotic time complexity is
not polynomial.

VI. EXPERIMENTAL RESULTS

We quantify the trade-off between the computation time
and the quality of the solution for the proposed Flexi and CP
approaches, and the existing 3-LS heuristic and ILP approaches.

A. Experimental Setup
Experiments are performed on problem instances generated

by a tool developed by Bosch [20]. The applications are
assumed to be executed on a platform similar to the one in
Figure 1(a), i.e., the ECUs are connected by a time-triggered
network with a tree-based topology, as previously described
in Section II. Moreover, we synthetically generate control
performance degradation values by simulating realistic control
applications. There are five sets, each comprising 100 problem
instances of different sizes (accessed at [26]). The generation
parameters for each set are presented in Table II, and the
granularity of the timer is set to be 1 µs. Each generated set of
problem instances comprises a given number of tasks nT , and
we set the expected number of tasks executed on one ECU to
ne. We compute the number of ECUs as mE = dnT

ne
e.

The mapping of tasks to ECUs is done in the following
way. The probability of interdomain communication is set
to 0.2, i.e., 20% of communicating tasks are situated on
ECUs in different domains. Note that setting this parameter
too high results in unschedulable instances with overloaded
links between switches. The mapping of tasks to ECUs is
performed such that the load is balanced across the ECUs,
i.e., the resulting mapping utilizes all ECUs approximately
equally. The mapping of messages to the links, on the other
hand, follows straightforwardly from the platform topology
and the task mapping, as there is always exactly one route
between each pair of ECUs.

Each application represents a control function for which
the plant model is derived from the automotive domain.
These plants represent DC motor speed control [32], DC
motor position control [31], car suspension [32] and cruise
control systems [32]. Given a sampling period (equal to the

application task and message repetition periods), we design a
controller assuming a specific delay. Now, for given maximum
and minimum possible delay values and the granularity of
discretization, we compute a set of delay values. For each
delay value δwd and the given sampling period pw, we simulate
the closed-loop system (i.e., the controller and the plant) for
step response, according to Equations (1) and (2), to analyze
the settling time ξwd . Thus, for each application, we compute a
table showing the variation in the settling time with the delay.

We assume a time-triggered Ethernet with a bandwidth of
100 Mbps [36]. For messages that transmit video content, we
set a maximum desirable utilization of one video message in
its period to 0.1 to still be schedulable, while reflecting typical
message sizes. This corresponds to one message transmitting
maximally 10 Mb per second, which is a realistic assumption
since data that exceed this value are typically split into multiple
messages due to decreasing reliability of the transmission with
increasing message sizes.

While generating a problem instance, if the utilization of
one of the resources is greater than 100%, or the utilization
of each resource is less than Umin given in Table II, the
problem instance is discarded and generated again. The
resulting problem instances on average contain 82, 168, 421
and 6,276 and 12,552 activities (tasks and messages) for Sets 1-
5, respectively. We set the latency bound for each application
to twice its period, i.e., L̂w = 2 · pw, as it allows for some
flexibility of the solution while not jeopardizing its control
performance [35]. For each application, we have assumed
N = 20. Thus, for 20 equally spaced discrete values of
latency within the bound, we perform closed-loop simulations
and note the settling times. Moreover, the parameters for
the optimization stage of the Flexi are set in the follow-
ing manner: Napps = (2, 2, 2, 3, 3), Nsol = (3, 3, 3, 2, 2),
τopt = 10−2, itmax = (100, 300, 500, 1000, 3000), toptmax =
(10, 20, 30, 300, 600) seconds given for Sets 1 to 5. These
values have experimentally demonstrated reasonable results in
terms of computation time, feasibility, and solution quality.

We performed the experiments on a server equipped with a
2x Intel Xeon E5-2690 v4 CPU, 3 Cores/CPU processor, and
64 GB memory. The ILP and CP models were implemented in
IBM ILOG CPLEX Optimization Studio 12.8 and solved with
the CPLEX and CP optimizer solvers using concert technology.
The ILP, CP, and heuristic approaches were implemented in
the Java programming language.

B. Results

The experiments compare the ability of the proposed
Flexi CP (Flexi with CP model used in the optimization stage),
Flexi ILP (Flexi with ILP model used in the optimization stage),
Optimal CP, Optimal ILP, and the 3-LS heuristic from [27]
to find a feasible solution to the generated sets of problem
instances. Moreover, the trade-off between the computation
time and the solution quality is evaluated.

We set a time limit of 3,000 seconds per problem instance
to obtain the results in a reasonable time, and we use the best
solution found thus far if the time limit is hit. Note that the
optimal approach can stop either when an optimal solution
is found or the time limit is reached. In the latter case, the
optimal approach has either found a feasible solution or not.

TABLE III
THE NUMBER OF PROBLEM INSTANCES WHERE THE APPROACHES FAILED
TO FIND A FEASIBLE SOLUTION WITHIN A TIME-LIMIT OF 3,000 SECONDS.

THE NUMBER OF TIME OUTS IS AFTER THE SLASH.

Approach Set 1 Set 2 Set 3 Set 4 Set 5

3-LS 7 58 71 44 68

Flexi 1 9 8 6 7

Optimal CP 0/7 2/22 0/50 13/100 38/100

Optimal ILP 0/13 78/100 - - -

Flexi finishes either when it is not able to find a feasible
solution during the feasibility stage or when it is done with
the optimality stage, in which case we have a solution. Note
that the experimental results are dependent on the value of
the time limit used for the optimal approaches, as it affects
the computation time as well as the quality of the obtained
solution.

Figures in this section show the distribution in the form of
box plots, indicating the first quartile, median, and third quartile
together with outliers (diamonds) [17]. Outliers are numbers
that lie outside 1.5×the interquartile range (third quartile value
minus first quartile value) away from the top or bottom of
the box that are represented by the top and bottom whiskers,
respectively. Note that all outliers were also successfully solved
within the time limit.

The only existing approach solving the schedule optimization
problem under consideration or its generalization is the 3-LS
heuristic [27]. The main reason is the difference in the jitter
constraints on the ECUs (zero-jitter) and on the network links
(non-zero jitter) that we consider in this article. Therefore, in
the following section, we compare Flexi and the 3-LS heuristic
approaches to show that the strategies to improve flexibility,
described in Section V, have resulted in better efficiency of
Flexi.

1) Feasibility Evaluation: Table III presents the number of
problem instances for which the 3-LS heuristic, Flexi, and the
optimal approaches were unable to find a feasible solution
within the given time limit of 3,000 seconds. It also presents
the number of instances, for which the two optimal approaches
failed to prove the optimality of the solution (after the slash),
both out of 100 instances. The results show that Flexi is
significantly more successful in finding feasible solutions for
our problem than the 3-LS heuristic and that it shows non-
decreasing quality with increasing problem size, unlike CP.

Regarding the optimal approaches, Optimal CP significantly
outperforms Optimal ILP: ILP fails to find a solution for more
than three-quarters of problem instances already for Set 2,
whereas CP finds solutions for most of the instances in the
largest Set 5. Thus, whereas Optimal ILP is only suitable for
small-sized problems with hundreds of activities, Optimal CP
handles medium-sized problems with thousands of activities
well. Finally, Flexi finds feasible solutions for more problem
instances in the largest problems with tens of thousands
of activities.

2) Trade-Off between Computation Time and Solution Qual-
ity: Figure 7 shows the computation time comparison for the
problem instances from Sets 1 to 5, for which all approaches
were able to find a feasible solution. The results of Optimal ILP
are not shown for Sets 2-5, as already for Set 2 there are only

Set 1 Set 2 Set 3 Set 4 Set 5

102

103

104

105

106

Co
m

pu
ta

tio
n

tim
e

(m
s)

time limit
Optimal ILP
Optimal CP

Flexi CP
Flexi ILP

Fig. 7. Computation time (in a logarithmic scale) of the Optimal CP,
Optimal ILP, Flexi CP, and Flexi ILP for Sets 1-5.

22 instances for which all approaches found a solution and
Optimal ILP times out in all cases.

The computation time of all approaches increases expo-
nentially with increasing problem size. This tendency is less
visible for Optimal CP due to the growing number of time
outs with increasing problem size. Furthermore, the optimality
stage of Flexi using both ILP (Flexi ILP) and CP (Flexi CP)
was not run on Set 5, since it did not result in significant
criterion improvement for the smaller Set 4. Thus, only the
computation time of the feasibility stage is shown in Figure 7
for Set 5. Note that for Flexi ILP this happens already for Set 4,
where it cannot find any solution within the given time limit of
300 seconds per one neighbor for all problem instances. Flexi
exhibits significantly lower computation times than Optimal CP,
on average: 3, 2.5, 5, 3 and 5× less for Flexi ILP and 60,
39, 20, 7, 5× less for Flexi CP for Sets 1 to 5, respectively.
The difference does not decrease monotonically due to 1) the
optimality stage not running on instances of Set 5 (decreasing
its computation time) and 2) Set 2 containing instances of
lower scheduling complexity.

To justify that the long computation time for ILP is not
a result of an inefficient solver, we also implemented the
Optimal ILP model using Gurobi Optimizer 8.0 [13], and it
failed to find a feasible solution for 39 instances out of 100 in
Set 2 within the time limit. This is better than the results of
CPLEX stated in Table III, but still not as good as Optimal CP.
The reason is a large number of resource constraints given
by Equation (5). In particular, Optimal ILP has as many con-
straints as there are pairs of message occurrences. In contrast,
Optimal CP uses a single built-in constraint noOverlap for
one resource in CP Optimizer. This tremendously reduces the
computation time due to the elaborate constraint propagation
techniques in the solver. It finds a solution even for Set 5 (for
62 instances out of 100), with up to 25,000 activities within the
given time limit, although failing to prove an optimal solution
for all 100 problem instances, as shown in Table III. Due to
the significantly better results, only Optimal CP is used for
further comparison with Flexi.

Figure 8 shows the relative difference in the objective values
of Flexi ILP, Flexi CP, and Optimal CP approaches for problem
instances where all approaches were able to solve within the
time limit. Note that there are certain instances where the
objective value obtained using Flexi can be as high as a few
hundred percent compared to the Optimal CP formulation. This
can be attributed to a few physical plant models (considered
in the experiments) that are very sensitive to the end-to-end

latency. For the most latency-sensitive plant, the settling time
varies between 0.1988 s to 8.8374 s for a latency variation from
5 ms till 100 ms, i.e., the normalized settling time varies from
1 till 44.45. As we are trying to minimize the maximum among
all the normalized settling times, even an end-to-end latency
slightly higher than the minimum for such latency-sensitive
applications can lead to a very high objective value. For several
highly constrained problem instances, Flexi may not be able
to find a solution where all such applications are implemented
using a very short end-to-end latency. Therefore, we get a
few outliers in Figure 8. Nevertheless, the median values for
Flexi CP for all sets range from 0.5% for Set 5 to 38% for
Set 3. We can see that Flexi CP slightly outperforms Flexi ILP
in terms of the objective value. Thus, Flexi CP is more efficient
than Flexi ILP, as it shows better results faster.

Additionally, whereas for smaller Sets 1, 2, and 3 the average
relative difference grows, for larger Sets 4 and 5, it decreases.
For these sets, Optimal CP starts performing poorly, which
is demonstrated by the presence of negative difference values.
This is because it hits the time out and has to use a sub-optimal
solution.

Set 1 Set 2 Set 3 Set 4 Set 5

0

200

400

600

R
el

at
iv

e
di

ffe
re

nc
e

(%
)

Flexi ILP w.r.t. Optimal CP
Flexi CP w.r.t. Optimal CP

Fig. 8. The relative difference in objective values of Flexi CP and Flexi ILP
compared to Optimal CP on Sets 1-5 with a time limit of 3,000 seconds.
Higher values mean that Optimal CP is better.

Optimal CP shows the best objective value when there is
no restriction on time. However, since some outliers can take
weeks to solve till optimality, one needs to set a time limit. In
reality, other parts of the development team may be dependent
on the schedule, and it may have to be recomputed several
times as requirements change, as they always do. The limit
hence cannot be too high. A low limit may also be needed to
explore many potential system configurations during design-
space exploration.

To justify the independence of the results on the time limit,
we run Optimal CP and Flexi for Set 5 until the first feasible
solution is found, which takes on average 1,533 and 330
seconds, respectively. Flexi results in on average 14% better
objective value than Optimal CP. This demonstrates the clear
advantage of Flexi CP over Optimal CP for larger problem
instances. Moreover, we run Optimal CP on Set 5 with a time
limit of 12 hours, which resulted in an insignificant change
in the objective value relative to the value found after 3,000
seconds (less than 5% on average).

Finally, we conclude that the CP formulation scales signifi-
cantly better than the ILP formulation, both for optimal and
heuristic solutions. Additionally, Flexi runs many times faster
than Optimal CP, while obtaining solutions with reasonable

Set 1 Set 2 Set 3 Set 4 Set 5
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 u
til

iza
tio

n

Optimal CP
Flexi CP

Fig. 9. Maximally achievable utilization obtained via Optimal CP and Flexi CP
for Sets 1-5.

control performance degradation. However, we leave the explo-
ration of how alternative application and network topologies
influence the results of optimal and heuristic approaches as
future work.

3) Comparison of Maximum Achievable Utilization: To
show that the proposed approaches can handle non-trivial
problem instances with high utilization, we evaluate their
ability to find a feasible solution with growing maximum
resource utilization among all resources. We also compare
the Flexi CP and Optimal CP approaches. The metric is the
maximum utilization for which the problem instance is still
schedulable. The experimental settings are described in [25].

Figure 9 shows the distribution of the maximum utilization
values for Optimal CP and Flexi CP that were cut off
after the time limit of 3,000 seconds. The difference in the
maximum utilization is on average 9, 7, 10, 12, and -1% for
problem instances from Sets 1 to 5, respectively. Note that
for Sets 3, 4, and 5, there are certain instances for which
Flexi could find a feasible solution while Optimal CP failed to
determine the feasibility within the time limit. Due to the time
limit, the heuristic yields the maximum achievable utilization
1% better than Optimal CP for the largest set of instances.

Thus, Flexi exhibits a small degradation in the maximum
achievable utilization compared to the Optimal CP formulation
for smaller sets, whereas for the largest set, it achieves better
utilization than the Optimal CP formulation with the given
time limit.

C. Engine Management System Case Study

We proceed by demonstrating the practical applicability of
our proposed heuristic and optimal approaches on an Engine
Management System (EMS). This system is responsible for
controlling the time and amount of air and fuel injected by
the engine, and it is one of the most sophisticated units in
a car. It comprises thousands of tasks interacting over tens
of thousands of variables. A detailed description of such an
application is presented by Bosch in [20], along with a problem
instance generator that creates input EMS models according
to the characterization.

We assume an automotive architecture similar to the one
in Figure 1(a) and the time granularity is 1 µs. Moreover, we
consider ECUs to be similar to an Infineon AURIX Family
TC27xT with a processor frequency of 125 MHz and time-
triggered Ethernet with a bandwidth of 1 Gb/s. Finally, the
control performance values for the applications are obtained
by simulating the control dynamics of a given application in
MATLAB, i.e., in the same way as reported previously in this
section for the synthetic problem instances.

We consider such a generated EMS problem instance with
17 applications comprising 2,000 tasks with periods 1, 2, 5,
10, 20, 50, 100, 200 and 1,000 ms and 33,693 messages, for a
total of 348,458 occurrences. The target platform consists of 20
ECUs connected by 3 switches, in total 64 resources, whereas
the resulting utilization ranges from 14 to 91% with an average
utilization around 40%. We run the proposed approaches on the
considered scheduling problem. Here, due to the significantly
higher complexity of the problem instance, ILP failed to even
generate the model with the available 128 GB of memory. In
contrast, Flexi CP found a solution in 2 hours with a criterion
of 1.6. Optimal CP obtained the first feasible solution with
criterion 2.1 after 6 hours, and had found a solution with the
criterion value 1.99 when the time-out was triggered after 2
days. This reduction of time from 2 days to 2 hours can be
useful during design-space exploration phase when multiple
designs can be evaluated in a more reasonable fashion.

Thus, the experimental results on the EMS case study shows
that on large problem instances Flexi can be significantly more
efficient than Optimal CP as it finds a solution of better quality
faster. Finally, the ILP formulation is significantly less efficient
than the CP formulation both in terms of computation time
and criterion value on problem instances of all sizes and need
not be considered further.

VII. RELATED WORK

Scheduling of control applications with the goal of control
performance optimization has drawn significant attention in
recent times [2], [31], [32].

To guarantee the required performance using time-triggered
scheduling of control applications, zero jitter and fixed end-to-
end latency have been the typical assumptions [32]. Moreover,
zero-jitter scheduling and bounded end-to-end latency are also
considered for real-time applications in, e.g., [23] and [34].
In [27], jitter-constrained scheduling has been considered and
it has been shown that strict jitter requirements may result in
a significant underutilization of system resources.

The schedule integration problem has been also studied in
the literature, in which multiple applications sharing resources
are integrated into one system after being developed separately.
In [33], Sagstetter et al. have proposed to integrate schedules
of applications while keeping the end-to-end latency of the
applications unchanged. In [5], new applications are integrated
considering a set of preconfigured applications on the resources.
Here, the new applications are scheduled with bounded end-
to-end latency, while the schedules of existing applications are
fixed. These approaches do not consider control applications
and the impact of schedule integration on control performance.
If they are applied to integrate control applications, the
control performance might not deviate a lot, however, the
integration problem might become infeasible for resource-
constrained systems owing to inflexible end-to-end latency
of the applications.

Furthermore, there have been works that address the
co-scheduling of tasks and messages in TTEthernet-based
distributed systems. Whereas Craciunas and Oliver in [11]
minimize the end-to-end latency of applications, Zhang et
al. in [37] propose multi-objective optimization minimizing
the end-to-end latencies and response times of applications.

Note that unlike our work, they do not consider control
performance optimization. To the best of our knowledge, this is
the first article that addresses control performance optimization
during time-triggered scheduling of tasks and messages while
considering different sensitivity of applications to their end-to-
end latencies and relaxing jitter constraints on messages.

VIII. CONCLUSION

This article presents two approaches to determine a feasible
time-triggered schedule configuration for control applications.
The proposed approaches aim to minimize the control perfor-
mance degradation of the applications due to resource sharing.
In this context, we studied how control performance varied
with varying end-to-end latency of an application.

We first proposed a constraint programming (CP) formulation.
Further, we devised a two-stage heuristic approach called Flexi
to solve larger problem instances faster than the CP approach.

To demonstrate the practical relevance of our techniques, we
applied the proposed approaches to a case study involving an
automotive engine management system. The schedule obtained
by Flexi within 6 hours results in a 20% better control
performance when compared to the schedule synthesized by
the CP solver after running for 48 hours. Thus, it supports
the conclusion that over limited time horizons, Flexi shows
better results than the optimal CP approach on larger problem
instances.

ACKNOWLEDGMENTS

This work was supported by the European Regional De-
velopment Fund under the project AI&Reasoning (reg. no.
CZ.02.1.01/0.0/0.0/15 003/0000466) and by the Netherlands
Organisation for Applied Scientific Research TNO.

REFERENCES

[1] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered
language for embedded programming. Proceedings of the IEEE, 91(1):84–
99, 2003.

[2] A. Aminifar, S. Samii, P. Eles, Z. Peng, and A. Cervin. Designing
high-quality embedded control systems with guaranteed stability. In
Real-Time Systems Symposium (RTSS), 2012.

[3] K. J. Åström and B. Wittenmark. Computer-controlled systems: theory
and design. Courier Corporation, 2013.

[4] M. Balszun, D. Roy, L. Zhang, W. Chang, and S. Chakraborty. Effectively
utilizing elastic resources in networked control systems. In International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2017.

[5] S. Beji, A. Gherbi, J. Mullins, and P.-E. Hladik. Model-driven approach
to the optimal configuration of time-triggered flows in a TTEthernet
network. In International Conference on System Analysis and Modeling
(SAM), 2016.

[6] M. Bullynck. Modular arithmetic before CF Gauss: Systematizations and
discussions on remainder problems in 18th-century Germany. Historia
Mathematica, 36(1):48–72, 2009.

[7] Y. Cai and M. Kong. Nonpreemptive scheduling of periodic tasks in
uni-and multiprocessor systems. Algorithmica, (15):572–599, 1996.

[8] A. Cervin. Stability and worst-case performance analysis of sampled-
data control systems with input and output jitter. In American Control
Conference (ACC), 2012.

[9] S. Chakraborty, M. A. A. Faruque, W. Chang, D. Goswami, M. Wolf,
and Q. Zhu. Automotive cyber-physical systems: A tutorial introduction.
IEEE Design and Test, 33(4):92–108, 2016.

[10] S. Chakraborty, M. D. Natale, H. Falk, M. Lukasiewycz, and F. Slomka.
Timing and schedulability analysis for distributed automotive control
applications. In International Conference on Embedded Software
(EMSOFT), 2011.

[11] S. S. Craciunas and R. S. Oliver. Combined task- and network-level
scheduling for distributed time-triggered systems. Real-Time Systems,
52(2):1–40, 2015.

[12] D. Goswami, R. Schneider, A. Masrur, M. Lukasiewycz, S. Chakraborty,
H. Voit, and A. Annaswamy. Challenges in automotive cyber-physical
systems design. In International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), 2012.

[13] Gurobi Optimization. Gurobi optimizer reference manual, 2018.
[14] M. Hu, J. Luo, Y. Wang, and B. Veeravalli. Scheduling periodic task

graphs for safety-critical time-triggered avionic systems. Transactions
on Aerospace and Electronic Systems, 51(3):2294–2304, 2015.

[15] IBM ILOG CPLEX. 12.2 user manual. 2010.
[16] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling

of periodic and sporadic tasks. In Real-Time Systems Symposium, 1991.
[17] P. Kampstra et al. Beanplot: A boxplot alternative for visual comparison

of distributions. Journal of Statistical Sftware, 28(1):1–9, 2008.
[18] H. Kopetz. Time-triggered real-time computing. Annual Reviews in

Control, 27(1):3–13, 2003.
[19] J. Korst, E. Aarts, J. Lenstra, and J. Wessels. Periodic multiprocessor

scheduling. In Parallel Architectures and Languages Europe, volume
505. 1991.

[20] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmark for free. In International Workshop on Analysis Tools and
Methodologies for Embedded and Real-Time Systems, 2015.

[21] H.-T. Lim, L. Völker, and D. Herrscher. Challenges in a future IP/Ethernet-
based in-car network for real-time applications. In Design Automation
Conference (DAC), 2011.

[22] M. Lukasiewycz, M. Glaß, J. Teich, and S. Chakraborty. Exploration
of distributed automotive systems using compositional timing analy-
sis. In Embedded Systems Development, From Functional Models to
Implementations, pages 189–204. Springer, 2014.

[23] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty. Mod-
ular scheduling of distributed heterogeneous time-triggered automotive
systems. In Asia and South Pacific Design Automation Conference, 2012.

[24] M. Lunt. E/E-architecture in a connected world. https:
//www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=
148b5052945a466cacfe8f31c44eb22509d5aad1, 2017.

[25] A. Minaeva. Scalable Scheduling Algorithms for Embedded Systems
with Real-Time Requirements. PhD thesis, Czech Technical University
in Prague, 2019.

[26] A. Minaeva. Source codes for Periodic Scheduling with Control
Performance. https://github.com/CTU-IIG/PSCP, 2020.

[27] A. Minaeva, B. Akesson, Z. Hanzlek, and D. Dasari. Time-triggered co-
scheduling of computation and communication with jitter requirements.
IEEE Transactions on Computers, 67(1):115–129, 2018.

[28] P. Mundhenk, G. Tibba, L. Zhang, F. Reimann, D. Roy, and
S. Chakraborty. Dynamic platforms for uncertainty management in
future automotive E/E architectures. In Design Automation Conference
(DAC), 2017.

[29] A. Novak, Z. Hanzalek, and P. Sucha. Scheduling of safety-critical time-
constrained traffic with F-shaped messages. In International Workshop
on Factory Communication Systems (WFCS), 2017.

[30] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale. Beyond the
weakly hard model: Measuring the performance cost of deadline misses.
In Euromicro Conference on Real-Time Systems (ECRTS), 2018.

[31] D. Roy, W. Chang, S. K. Mitter, and S. Chakraborty. Tighter dimen-
sioning of heterogeneous multi-resource autonomous CPS with control
performance guarantees. In Design Automation Conference (DAC), 2019.

[32] D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty. Multi-
objective co-optimization of FlexRay-based distributed control systems.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2016.

[33] F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Stähle,
S. Chakraborty, and A. Knoll. Schedule integration framework for
time-triggered automotive architectures. Design Automation Conference,
2014.

[34] K. Schild and J. Würtz. Scheduling of time-triggered real-time systems.
Constraints, 5(4):335–357, 2000.

[35] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl. ILP-based joint routing and scheduling for time-triggered
networks. In International Conference on Real-Time Networks and
Systems (RTNS), 2017.

[36] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch. Time-triggered Ethernet.
In Time-Triggered Communication, pages 209–248. CRC Press, 2011.

[37] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty. Task- and
network-level schedule co-synthesis of Ethernet-based time-triggered
systems. Asia and South Pacific Design Automation Conference, 2014.

[38] L. Zhang, D. Roy, P. Mundhenk, and S. Chakraborty. Schedule
management framework for cloud-based future automotive software
systems. In International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2016.

[39] L. Zhang, R. Schneider, A. Masrur, M. Becker, M. Geier, and
S. Chakraborty. Timing challenges in automotive software architectures.
In International Conference on Software Engineering (ICSE), 2014.

https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://github.com/CTU-IIG/PSCP

	Introduction
	System Model
	Platform Model
	Application Model
	Control Model

	Problem Formulation
	Scheduling Constraints
	Minimizing Control Performance Degradation

	Constraint Programming Formulation
	Decision Variables
	Model Formulation

	Heuristic Approach
	Overall Approach
	Feasibility Stage
	Delay Graph to Modify Priority Queue
	Computation Time Improvement
	Insert Element Procedure
	Feasibility Stage Algorithm

	Optimization Stage

	Experimental Results
	Experimental Setup
	Results
	Feasibility Evaluation
	Trade-Off between Computation Time and Solution Quality
	Comparison of Maximum Achievable Utilization

	Engine Management System Case Study

	Related Work
	Conclusion
	References

