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Abstract—In this perspective cum case-study paper, we ar-
gue the need for designing timing-predictable vision process-
ing algorithms for autonomous systems. Many core functions
in systems like autonomous vehicles involve computer vision
within a control loop. Designing such closed-loop controllers and
guaranteeing their performance requires the vision processing
to be predictable. But this is challenging given the multitude of
choices when implementing vision processing algorithms, and the
heterogeneity of the architectures (involving GPUs and FPGAs)
on which such algorithms are implemented. Towards this, we
report a tracing and measurement infrastructure we have been
building and illustrate its potential utility using a case study.

I. INTRODUCTION AND RELATED WORK

Vision is an integral part of many autonomous systems,
ranging from autonomous cars, to robots and industrial au-
tomation systems. Autonomous cars are today equipped with
multiple cameras, sometimes lidars, and otherwise radar sen-
sors. Data from these devices are processed to estimate the dis-
tance of cars and other obstacles in the vicinity and also their
speed and direction of motion. These estimates are then fed
into control applications, that determine control inputs which
in turn determine the speed, braking and driving direction of
the autonomous car.

Given the safety-critical nature of the various controllers in
autonomous cars, it is imperative that their real-time behavior
is crucial for their correct functioning. In particular, both their
design, and also their testing, certification, and debugging
relies on their end-to-end timing behavior from sensing to
actuation.
Timing analysis of embedded systems: There is a large
volume of literature on various aspects of timing analysis
of distributed embedded systems. The most basic, yet still
a very difficult problem, is that of estimating the worst-case
execution time (WCET) of a piece of code running on a
processor. This problem involves a static analysis of the code
along with modeling the microarchitecture of the processor on
which the code is running, and is referred to as the WCET
analysis problem. There is a long history of work on software
timing analysis, including WCET analysis [1], [2], [3], [4], [5],
[6], [7] and commercial WCET analyzers such as those from
AbsInt GmbH [8] and Rapita Systems [9] are now routinely
used in the automotive industry.

Building on the WCET analysis of individual code blocks,
system-level timing analysis aims to determine the overall
or end-to-end timing behavior of a full system or a large
sub-system [10], [11]. There have been multiple studies fo-
cusing on system-level timing analysis of automotive hard-
ware/software architectures [12] and system-level timing anal-
ysis tools such as those from Inchron [13] and SymtaVision
(now Luxoft) [14] are now routinely used by automotive
OEMs and suppliers for both timing-aware design and also
verification of timing constraints.

The timing analysis problem for automotive architectures,
in-vehicle communication buses and protocols [15] and
automotive software [16], [17], [18], [19] has received
considerable attention both because of its complexity and also
its practical/industrial relevance. While the need for timing
guarantees stemming from the safety-critical nature of the
automotive domain is obvious, it is complicated by the highly
cost-sensitive nature of the domain which necessitates tight
resource-dimensioning. The cost-sensitivity also rejects any
pessimism in the timing analysis results. This makes many of
the static timing analysis techniques difficult to apply in the
automotive domain, although they might be usable in other
domains like avionics which are less cost sensitive.
Beyond static analysis, relying on measurements: Hence,
in spite of this large volume of work on timing analysis
techniques and tools, including those specifically targeting
automotive architectures and software, there are still a number
of pending technical challenges that need to be overcome. The
first is the scope of commonly used task models that can be
analyzed using techniques from Real-time Systems (RTSs).
In order to keep the analysis tractable, the models need
sacrifice some of their expressibility thereby limiting their
use in real-life applications. To address this, there have been
efforts to use more generic verification techniques such as
model checking [20], but they suffer from limited scalability.
A more pragmatic approach, which while widely followed
in practice, has more recently also attracted considerable
academic interest, and is referred to as measurement-based
timing analysis [2], [21], [22], [23], [24]. It collects a
large number of execution times of smaller code blocks,
program paths, or program instructions. This is done using
measurements that compared with static analysis circumvents
the challenges associated with accounting for the effects of
the microarchitectural features of processors on execution
time, albeit while losing some accuracy. These results are then
combined using static analysis and probabilistic methods to
estimate higher-level timing properties, which could be worst-
case execution times of code or system-level timing properties.
Timing analysis of computer vision algorithms: Timing
analysis of automotive control applications has been studied
over the past couple of years [25], [26], [27], [28], includ-
ing how the control signal delays influenced by scheduling
algorithms might impact control performance. However, the
assumption in all of these studies has been that the timing
behavior can be estimated or measured. How to do this
estimation has not been the focus of these studies.

While significant advancements have lately been made in
designing autonomous systems, a major roadblock in their
widespread deployment lies in verifying their correctness, or in
other words certifying that they would work correctly under
all possible scenarios. In fact verifying timing correctness



is considered to be one of the major challenges to
be overcome in autonomous driving [29]. In addition to
the timing analysis challenges already outlined above, this
problem is exacerbated by the heavy reliance on computer
vision processing in autonomous systems, and in particular in
autonomous vehicles. Whereas the need for designing timing
predictable embedded systems [30] is well understood, the
concept of timing predictability is virtually unknown in the
domain of computer vision. The goal has always been to
process as “fast as possible”, instead of guaranteeing any
timing bounds, of the form that are required when such vision
processing is on the path of a feedback control loop. In
addition to the algorithmic complexities of computer vision
algorithms and their reliance on libraries such as OpenCV,
which have not been designed with timing predictability in
mind, a further layer of complexity in terms of timing analysis
is added by hardware accelerators like GPUs and FPGAs,
which vision processing algorithms often rely on.

Given the high workloads associated with vision processing
and often also the high frame rates required by visual servoing
(vision-based control) applications, purely software solutions
are mostly not feasible. Hence, architectures of autonomous
cars already today and also in the foreseeable future will
be heterogeneous and will heavily rely on GPUs [31], [32]
and FPGAs [33], [34]. Currently, there are no known static
analysis techniques for estimating the timing behavior of
either of these two classes of accelerators, and this situation is
likely to remain so in the future. Hence, measurement-based
techniques constitute the only potential solutions for both
timing analysis and also timing debugging of vision-based
control applications for autonomous systems.
Infrastructure for timing measurements for FPGA-based
vision processing: Very recently, there have been efforts to
provide timing guarantees for computer vision algorithms on
GPUs relying on OpenVX [35]. Along similar lines, running
convolution neural network-based computer vision algorithms
on GPUs with the aim of timing predictability has also been
investigated [36].
In this paper, we report our efforts to build a measurement in-
frastructure that can provide end-to-end timing measurements
for FPGA-accelerated real-time systems. In particular, we de-
scribe a case study of a visual servoing system that implements
a multi-camera-based real-time control application that can
serve as a surrogate for a vision-based control application in an
autonomous car. Our measurement infrastructure can provide
detailed traces of events in the system, that can help in timing,
and timing-assisted functional debugging.

We argue that timing measurements using such an
infrastructure can be used to certify the functionality of
control algorithms that rely on cameras and vision-based
processing. The complexity and the black box nature of
vision processing algorithms and the hardware they rely on,
make it very difficult to extract timing guarantees otherwise.
Our infrastructure provides detailed insights into the different
processing stages in such a system, which is helpful for timing
debugging and the selection of appropriate parameters of
controllers lying at the core of any autonomous functionality.
Summary and outline: The main contribution of this paper
lies in highlighting the challenges associated in estimating
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Fig. 1. Physical Plant with Sensors/Actuators (top) and Processing (bottom)

the timing behavior of vision processing algorithms that lie
at the heart of many autonomous systems, and especially
autonomous vehicles. In particular, we describe the various de-
sign choices that vision processing involves and what workload
and timing impacts they might have (Sec. II). Next, we outline
a measurement infrastructure that we have been developing for
timing analysis and debugging of vision processing algorithms
running on FPGA-based heterogeneous architectures (Sec. III).
Finally, in Sec. IV we illustrate the utility of this infrastructure
towards designing timing-predictable vision processing sys-
tems, using a case study that is representative of vision-based
closed-loop control applications found in many autonomous
systems.

II. DESIGN AND ANALYSIS CHALLENGES FOR
VISION-BASED CONTROL SYSTEMS

The processing and bandwidth demands of vision-based
applications are generally much higher than that of classic
closed-loop control systems. For example, the necessary
calculations for a simple control law or the filtering of
low-dimensional Inertial Measurement Unit (IMU) data are
negligible in comparison to the computations necessary for
running a simple convolutional filter over a single full HD
image with 2 million pixels. In addition, the processing
pipeline of a visual servoing application (VSA) is usually
much deeper and more complex and involves a multitude
of different hardware and software systems (Fig. 1 gives an
overview of a typical pipeline) and as a final challenge for
timing analysis techniques, the run times of many involved
algorithms are inherently dependent on the data. At the same
time, most of the tasks based on such vision data – from lane
control and path planning (including overtake maneuvers)
to emergency breaking in a vehicle – usually impose hard
limits on the acceptable worst-case response time (WCRT)
and the design needs to ensure that they are satisfied for
all relevant operating conditions. In the remainder of this
section, we provide a brief overview over the different stages
typically involved in a VSA. We also discuss the impact
that various possible vision processing design choices have
on the temporal characteristics of the data stream and the
predictability of the end-to-end latency in the system, as it



impacts the performance of the closed-loop control system.
Image capture: This is the process of transforming light
falling onto the camera sensor into a sequence of individual
frames. In most cases, camera systems in the automotive
domain can be assumed to run at a fixed frame rate, as
opposed to being triggered by events as is common in some
manufacturing scenarios (e.g. quality control, or sorting). Still,
depending on the camera technology and configuration, the
output can have different temporal properties in terms of how
the image data is streamed and the temporal coherency of the
image data itself: If the camera works in rolling shutter mode
(common e.g. in classic CCTV cameras), the image data of
different pixels in a single frame (usually grouped by lines)
corresponds to a different point in time during the frame
period, whereas in global shutter mode, all pixels represent
the same moment in time. From a classic timing analysis
perspective the temporal coherency of the data in a frame
itself may not be important as long as the stream properties at
the camera interface are known, however, a proper end-to-end
timing analysis and control logic may need to take this effect
into account. A rolling shutter design usually also implies a
continuous stream of pixel data whereas global shutter mode
creates bursts of data packages.
Encoding and Compression: For cameras that are not directly
attached to an Electronic Control Unit (ECU) but are rather
connected via one of the vehicle’s bus systems (see next
paragraph), there is no question that some degree of video
compression is needed. For example, a single full-HD video
stream at 60 frames per second with a naive 8 bit RGB
encoding would already by far exceed the bandwidth of a
Gigabit Ethernet link (60 fps times 1920 x 1080 pixels/frame
times 24 bits/pixel ≈ 3Gbit/s). Video and image encoding
has been a field of intensive research for decades and there
exists a huge variety of different encodings for video data that
often build on top of each other. Starting from classic per-
pixel encodings in different color spaces like RGB or HSV
to spatial sub-sampling schemes and compression algorithms
for single images (e.g., JPEG) and finally to modern video
compression schemes like the ubiquitous H.264/AVC and the
more modern H.265/HEVC standards. Unfortunately, virtually
any non-trivial video compression algorithm will introduce
non-determinism in one dimension or another: Compression
ratio, run time and image quality are the three most important
metrics and not all three can be kept constant on a per-
frame basis. E.g. lossless compression schemes like Huffman
or Arithmetic Encoding – which are also an important post-
processing step in most lossy compression schemes – provide a
constant quality but varying compression ratios and differences
in run time. For maximal compression efficiency, most lossy
video encoding schemes have usually even more unpredictable
run time behavior, but at the same time provide many config-
uration options that allow the development of encoders that
produce constant or quasi constant data rates (constant bit
rate (CBR) and average bit rate (ABR) rate control modes)
at the cost of having a high variability in the image quality
– in particular if the encoder has to work a single pass mode
which is desirable in low latency systems.

Another important aspect to consider is the use of
intra-frame prediction. Video encoding schemes usually use

information from the previous frame to more efficiently
encode the next frame, where frames that can be decoded
independently are called I-frames (Intra-coded frame) and
those that depend on previous image data P-frames (Predicted
picture). On the one hand this can greatly reduce average data
rate but on the other it does not help with the worst-case data
rate and it also poses questions related to reliability – if an
I-frame gets corrupted or lost, all consecutive P-frames can no
longer be decoded. For those reasons, most implementations
for hard RTSs only use intra-frame prediction techniques.

Data transmission: While Low-Voltage Differential Signaling
(LDVS) cables are still a common method to connect cameras
directly with the Advanced Driver-Assistance Systems
(ADAS) ECUs in current generation cars, there is a clear
trend to use Ethernet-based bus protocols like Time-Triggered
Ethernet (TTE) and Audio Video Bridging (AVB) for the
transportation of video and other high bandwidth data streams
from different places in the chassis to the central processing
units [37]. Both protocols provide the ability to allocate fixed
time slots for time critical data such as a video streams.
Consequently, similar timing analysis techniques can be
applied as in other cases of time triggered bus systems.
However, the main difference when transmitting digital
video data compared to data from other sensors is that the
bandwidth requirements are generally very high and – as just
discussed – the amount of data to be transmitted may vary
between individual samples. As a single image will usually
not fit into a single Ethernet frame, multiple time slots have
to be allocated for each image. As a result the transmission
might get interleaved with other high priority data streams,
which increases the transmission latency of a single frame.
At the same time this interleaving of different data streams
also offers an opportunity for the use of P-frames: If two data
streams A and B that have to share a common bus connection
can be synchronized, those streams can be interleaved in such
a way, that every time stream A sends an I-frame, stream
B sends a P-frame and vice versa. This way, the combined
bandwidth requirement would remain relatively constant and
still be lower compared to a scenario where both streams only
use I-frames. In any case, the migration to an Ethernet-based
infrastructure with IP-based protocols, like GigE Vision [38],
used on top introduces further overhead in the pipeline, and
complexity in the timing analysis.

Decoding: Whatever choices are made on the encoding side
of course also effects the decoding side. However, generally
decoding is a lot less problematic. Among other reasons,
the decoder does not have to analyze the data and/or make
ad-hoc decisions on what quality level and meta-parameters
to use for encoding, but can simply follow. Furthermore there
is much more compute power available on modern ECU for
autonomous cars – in particular in form of special circuitry,
GPUs and FPGAs that can be used to accelerate the decoding
process. As a result, variations in the decoding time – if any
– tend to be negligible.

Image Processing: Once the image data arrives at the ECU,
the actual process of analyzing the image content starts. The
end goal is usually the detection and classification of various
objects and features. That information is then – usually after



various coordinate transformations – either forwarded to a
higher level control intelligence for building maps and a
general awareness of the environment or directly fed into spe-
cific control algorithms for e.g. lane control. Even more than
the specific field of video compression, image processing in
general is a wide research area that lately has been dominated
by machine-learning-based approaches – at least for object
detection and classification. Discussing all common image
processing algorithms that find application in autonomous cars
is outside the scope of this paper, but we will point out some
properties important for timing analysis and along which the
various algorithms from different domains can be classified:

• Streamability: While some algorithms require access to
the whole image before processing can start, many classic
image processing algorithms like encoding or convo-
lutional algorithms (including the individual layers of
Convolutional Neural Networks (CNNs)) can directly
operate on individual pixels or at least sub-region of a
single frame.

• Parallelizability: Can the algorithm run in parallel on
multiple compute nodes and if so, up to what granularity.
Parallelizability usually implies Streamability, but the
converse is not true, as a streamable algorithm might need
information that as been extracted from a previous chunk.

• Content-dependent run time: The run time of many al-
gorithms (as e.g. the previously mentioned CNN) only
depends on the size of the input image and hyper-
parameters of the algorithm itself, which are fixed at
design time. On the other hand, the run time of other
algorithms like the detection and aggregation of contours
[39]. If the number of iterations an algorithm has to
perform is in principle unbounded, some upper limit
has to be hard coded – either in form of the number
of iteration steps or in terms of run time, but a timing
analysis still has to be performed in order to determine
what those limits should be.

• Whole image vs. region of interest (ROI): This is less
a property of the algorithm itself and more about its
application and implementation: Some operations need
only be performed on one or multiple subregions of the
image defined by an ROI value. The source of the ROI
can either be a previous algorithm that ran over the same
image, the result from the processing of a previous frame
or from an external source (e.g. a completely different
sensor or even the environment). The size, shape and
number of ROIs in a given image are usually content-
dependent, but contrary to the previous dimension, they
are known before the algorithm is applied. So, if we e.g.
run a simple CNN over a set of subareas of the image,
the number of operations is known in advance, contrary
to a contour detection algorithm.

• Suitability for processing on HW accelerators or even
dedicated hardware circuitry: The computational demands
of many computer vision algorithms by far exceed the
capability of embedded CPUs and in many cases even
those of high-performance desktop CPUs. For that reason,
modern ECUs may be augmented by GPUs and other
hardware accelerators like FPGAs. The latter can perform
typical image processing operations like matrix multi-

plications much more efficiently due to their massively-
parallel and highly configurable logic resources (Sec. III).
On the one hand, this can significantly speed up the image
processing and many algorithms based on (convolutional)
neural networks in particular, but the additional transfers
between different compute architectures poses new chal-
lenges for the design, traceability and formal analysis.

Composition of the individual stages: A recurring property
across all stages is the question of streamability. I.e. can a
particular stage work on individual chunks of an image one
after the other or does it need access to the full image first and
if it works on individual chunks at a time, what size and form
do they have (e.g. compression algorithms usually operate on
quadratic blocks of pixels, whereas a camera in rolling shutter
mode would usually stream the data line by line). This can
have a significant impact on end-to-end latency: In the worst
case, where each stage starts operating only once the full
image is available, the end-to-end delay from the start of the
image acquisition to the end of the image processing pipeline
is the sum over the full processing delays of the individual
stages. It also means that between each stage there needs to
be a big enough buffer to store the full image data. On the
other hand, in the ideal pipeline case, where each stage can
operate on chunks of the same size and the delays are the
same, the total delay is only the sum over the stage delays for
a single chunk plus the full processing time of the last stage. In
practice, it is unlikely that each stage in the pipeline can really
operate at the same rate, chunk size and chunk shape, which
makes the calculation more complex. This is even more true,
when processing delay and/or the amount of data produced by
a stage depends on the image content (e.g. transmission delay
depends on the outcome of the previous compression stage).
This is further aggravated by the fact that the individual stages
often need to share access to the underlying hardware resource
with other tasks. This adds scheduling effects to the situation,
making a perfect match of two adjacent stages even less likely.

All those effects make exploring, analyzing and, in partic-
ular, validating the different design possibilities a challenging
task. Thus, detailed insights into the behavior under realistic
work loads are required.

III. PROCESSING PLATFORM AND MEASUREMENT SETUP

With today’s complex real-time application pipelines relying
on a combination of various parallel and sequential subtasks to
reach the performance goals, traditional CPU-only systems are
often no longer sufficient. Instead, massively-parallel platforms
such as GPUs and FPGAs are increasingly utilized, albeit with
vastly different design and integration principles. Whilst GPUs
by current design are traditional hardware accelerators relying
on CPUs to offload individual subtasks and handle I/O, FPGAs
can integrate the entire real-time pipeline from data acquisition
via processing to signal transmission. On the other hand, GPUs
are programmed on a (relatively) high level of abstraction, e.g.,
via NVIDIA’s CUDA or tools above – whereas FPGAs require
a design flow close to that of an Application-specific Integrated
Circuit (ASIC). Although this yields fine-grained (i.e., register-
level) control over the resulting hardware pipeline – in contrast
to mostly black-boxed GPUs – and its timing, the development
effort/time for FPGA-accelerated RTSs is significantly higher.



Even though not required from an operational point of view,
i.e., to execute proprietary vendor drivers as in case of a GPU-
accelerated system, most FPGA-based RTSs still incorporate at
least one CPU for the sequential parts of the real-time process-
ing pipeline and/or other application software. Often, this also
includes a Real-time Operating System (RTOS) to manage the
multitude of software tasks, whilst ensuring that lower-priority
(e.g., management) functions do not interfere with the timing-
critical subtasks of the processing pipeline mapped to software.
Traditionally, such CPUs were implemented on FPGAs like all
the Intellectual Property (IP) cores that comprise the hardware
pipeline – i.e., by mapping them to the device’s reconfigurable
fabric. Whilst such softcore CPUs both are readily available in
all major FPGA design tools and can flexibly be configured to
match the application scenario at hand, using the fabric comes
at a cost. Firstly, complex CPU-driven System-on-Chip (SoC)
structures can require a significant amount of FPGA resources
(e.g., logic blocks or memories), which then are unavailable to
the real-time pipeline. Secondly, even a modern FPGA fabric is
still considerably less efficient in terms of integration densities
and energy consumption compared to a functionally equivalent
ASIC implementation. In other words, mapping a fully-fledged
SoC – with the same CPUs, memory controllers, interconnects
and I/O peripherals – to an FPGA requires a larger device and
results in higher energy consumption than an equivalent ASIC.

To combine the efficiency of ASICs with the flexibility of an
FPGA, its vendors offer a range of heterogeneous devices that
integrate a fixed-function SoC with one or multiple CPUs and
a flexible FPGA fabric. Such Programmable SoCs (pSoCs) are
readily available from all major FPGA vendors and range from
small single-core to (mixed-architecture) many-core SoCs that
are tightly coupled to FPGA fabrics of varying complexity and
size – enabling the system designer to select the most suitable
combination for the RTS in question. We thus introduce Xil-
inx’ Zynq pSoC as a representative of such devices, followed
by both concepts and details of our measurement methodology
to capture various temporal and functional aspects of the RTS.

Based thereon, Sec. IV presents and analyzes the distributed,
mixed-hardware/software processing pipeline that implements
a high-speed VSA with two cameras, one heterogeneous Zynq
pSoC and a traditional CPU-only node, all networked together.
As our measurement infrastructure precisely covers the FPGA-
accelerated RTS and its interactions over the network, both the
temporal and functional implications of changes in parameters
and/or vision algorithms on the control loop can be measured.

A. Current FPGA/pSoC Platforms for Real-time – Xilinx Zynq

As indicated in Fig. 2, Xilinx Zynq pSoCs comprise a fixed-
function Processing System (PS) and an FPGA-equivalent Pro-
grammable Logic (PL). The PS (dark gray) features a SoC-like
architecture with two ARM Cortex-A9 CPUs sharing their L2
cache, a high-speed On-Chip Memory (OCM) with 256 kByte,
several bus interconnects and a variety of peripheral controllers
for, e.g., DDR memory or Gigabit Ethernet (GigE). In contrast
to previous heterogeneous FPGA architectures (such as Xilinx’
Virtex-4 FX series), Zynq devices are far more software-driven
and can boot without enabling the reconfigurable portion of the
device (light gray), i.e., the Programmable Logic (PL), at first.
Like within comparable parts from Intel (i.e., those with HPS),

Fig. 2. Zynq pSoC: PS (left) & PL (light gray) with Image Processing Pipeline

several AXI bus ports facilitate high-speed data transfers from
the PS to the PL, or vice versa. Four General-Purpose (GP), an
Accelerator Coherency Port (ACP) and four High-Performance
(HP) ports with integrated clock domain crossing (CDC) logic
are available – although only the two Master (M) GP interfaces
carry transfers from PS to PL. The remaining HP, ACP and the
two Slave (S) GP ports enable custom IP cores in the PL to use
the highly efficient PS components, e.g., for external storage to
large DDR memories, or I/O via the PS’s two GigE controllers.

The PL contains configurable logic blocks (CLBs) with flip-
flops and look-up tables, BlockRAM (BRAM) and DSP slices
to implement arbitrary digital functions from various types of
design sources (e.g., a hardware description language, netlists
or prepackaged IP cores). A programmable signal interconnect
links the individual fabric blocks to each other, and to the I/O
pins at the edge of the device. The clock signals to drive flip-
flops, BRAMs and the other synchronous blocks, however, are
distributed independently by means of global, regional and I/O
clock trees. In, e.g., autonomous systems using many external
sensors with high data rates, careful I/O assignment is crucial
to avoid congested or unrouteable designs because of clocking.

The tight coupling between PS and PL not only enables the
realization of complex heterogeneous (i.e., hardware/software)
real-time pipelines, but also opens opportunities for novel data
acquisition solutions for networked high-speed VSSs (Sec. IV)
and our temporal-functional measurement method (Sec. III-B).

B. Hybrid Power/State-Tracing: Capture Timing and Function
Even for measurement-based analysis/verification, the com-

plexities of the heterogeneous hardware architectures (Sec. I)
and processing pipelines (Sec. II) required in, e.g., autonomous
systems pose a number of challenges. Apart from synchroniza-
tion to gain a holistic view of the temporal behavior across the
distributed processing nodes, precise measurements on a single
node are crucial for both verification and optimization. Due to
their increasing heterogeneity, however, existing software-only
solutions are even less sufficient, as their reach intrinsically is
limited to CPUs and software. With more and more processing
steps being mapped to hardware such as GPUs or FPGAs, their
temporal-functional behavior has to be acquired together with
that of the software system, necessitating a new methodology.

For FPGA-accelerated systems like the one used in our case
study (Sec. IV), we thus deploy our hybrid power/state-tracing
methodology introduced in [40]. Aiming at monitoring on the
application-level (in contrast to, e.g., single CPU instructions),
it combines the following concepts to enable unified temporal,
functional and (if required) energy measurements on FPGA- or



pSoC-based RTSs. Firstly, the device-under-test (DUT) at hand
is instrumented to capture various temporal and functional data
points whilst the real-time pipeline is running. On the software
side acquired via insertion of lightweight memory-mapped I/O
(MMIO) accesses, this includes, e.g., application information
(such as timestamps of individual processing steps, frame IDs,
or control or actuation data), CPU load or scheduling statistics.
On the hardware (i.e., PL) side, sequence counters, IDs, state-
machine transitions or interrupt request (IRQ) information has
already been used successfully. The instrumentation is realized
by means of a highly resource-efficient Trace IP Core that will
be instantiated in the PL, as shown in Fig. 2 (bottom right). It
not only receives a variety of state signals from the hardware
processing pipeline in the PL (e.g., Gauss and Canny filtering
stages) or the IRQ line of, e.g., a direct memory access (DMA)
controller, but also features an optional bus interface. The latter
enables low-overhead instrumentation of software applications
and/or RTOS via uncached MMIO writes to the core’s internal
logging registers. The Trace Core then converts captured state
information from the PL state probes (light blue in Fig. 2) and
the software instrumentation into a serial data stream, which is
then sent to an External Measurement System (EMS) attached
to the DUT using a three-wire serial peripheral interface (SPI).

Apart from precisely timestamping and storing the incoming
state stream, the EMS may also capture voltages and currents
on the supply rails of DUT and external I/O components such
as GigE PHYs. Based thereon, the tracing coverage can further
be increased to timing-relevant I/O events (detected via current
changes on selected I/O rails) and to DUT Energy Monitoring.
Even though commercial data acquisition (DAQ) systems such
as National Instruments’s PXI series can be used as EMS, care
has to be taken during generation of the state timestamps (due
to the jitter of their often software-based SPI implementations).
For our evaluations, however, we rely on a purpose-built EMS
implementation that features an FPGA Mezzanine Card (FMC)
interface to connect to the DUT. Apart from two GigE PHYs,
our FMC-sized EMS primarily integrates an 18-channel analog
DAQ subsystem with a resolution of 16 bits and sampling rates
beyond 200 kSPS (kilo-samples per second) for analog and, at
the moment, 25 kSPS for states [41]. The ratio between analog
and state samples can be adjusted, although the current choice
of 8:1 turned out to be adequate for all measurement scenarios
we encountered so far. A timer with sub-µs resolution is used
to generate a hybrid power/state trace that is eventually stored
on a µSD card, enabling acquisition durations of over an hour.

Benefits of Hybrid Tracing: Based on all the voltage, current
and state information contained in the hybrid traces, numerous
crucial temporal, functional and energy-related characteristics
of an FPGA-accelerated RTS can be extracted. A Python-based
measurement tool first reads analog and state samples – relying
on the precise timestamps captured for each data point. Based
on the application (i.e., PS/PL) information stored in the state
trace, functional RTS characteristics such as application states,
adaptive control gains or the sequence number of the currently
processed image frame are then found. As state changes often
correlate with crucial temporal application events such as the
start of a new iteration, the DUT-internal timing is accurately
reproduced. Together with additional events from monitoring
of I/O components, the end-to-end processing latencies – from
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Fig. 3. Case Study: Vision-based control

reception of a sensor signal to transmission of a corresponding
actuation value – are also covered. Jointly, the temporal events
enable an identification of individual processing phases within
the application that, once combined with fine-granular energy
readings (generated by integration via the precise timestamps),
yield per-phase/component energy values helpful for optimiza-
tion of the RTS. In case the DUT is communicating with other
nodes over the network, even inter-node (e.g., sensor) latencies
can be captured, as demonstrated by our case study in Sec. IV.

IV. CASE STUDY

To demonstrate the capabilities of our proposed RTS tracing
infrastructure, we extended the Visual Servoing System (VSS)
originally presented in [42] towards a representative workload
for distributed autonomous systems with multiple cameras. It
combines a heterogeneous Zynq-based RTS (implementing the
main control pipeline) with a software-only secondary node,
each driven by a GigE Vision camera over a shared network.
This setup serves as a surrogate for an autonomous vehicle,
where the camera data is used in closed-loop real-time control.

A. VSS Application Scenario
A hollow steel hemisphere is kept afloat in a variable

magnetic field generated by a current-controlled coil. The
position of the hemisphere is continuously captured by a
GigE Vision camera that sends the video stream via UDP over
an Ethernet link to our instrumented Zynq-based processing
node (Sec. III-A). It processes the individual camera frames
in a multistage pipeline, which is implemented partially
in the Programmable Logic (PL) and partially running in
software on the Processing System (PS), and has both
convolutional and iterative stages. The output of the pipeline
is the hemisphere’s estimated position, which is then fed into
a standard PID controller that calculates the required current
in the coil and sends that value – again via UDP – to the
control circuit of the electromagnet. The main difference to
the setup in [42] is that we now have a second camera that
also tracks the hemisphere, albeit at a lower resolution and
its processing is happening on a separate compute node. The
feature data from this secondary node are also transmitted
to the processing node (PN) and used to cut out an ROI for
the software steps in the primary image processing pipeline.
While this exact scenario might not have a direct equivalence
with applications in current autonomous cars, we believe the
workload to be comparable to many common tasks in the



Fig. 4. Hybrid Power/State Trace of mixed-hardware/software VSS on Zynq

ADAS domain, such as lane assists and object detection.
Here, the second stream of data could, for example, represent
sensor information that is provided by the car in front, which
can provide the trailing car with a ”glimpse into the future”
or just film the same object from a different perspective.
As is to be expected from externally provided sensor data in
the real world, the two cameras are not synchronized, may
run at different frequencies and the second compute node is
not a real-time system, which adds jitter to the ROI stream.
Consequently, the ROI data can be of varying timeliness and,
hence, accuracy with respect to the frame currently processed
on the primary system. The main control pipeline accounts for
that by adapting the size of the ROI window depending on the
age of the ROI data (based on the time stamps taken by the
application logic at (α), (β) and (γ) in Fig. 3 which are). The
time stamp (α) is propagated along the ROI data packet, (β) is
taken when that package arrives (for instrumentation purposes)
and (γ) is taken every time that information is actually used
to cut out an ROI from an incoming frame.

B. Captured Trace Data
For this case study, we instrumented various events on the

main node, marked (1) to (6) in Fig. 3. At (1), we monitor the
PHY’s power draw that directly correlates with the incoming
camera Ethernet frames. At (2), (3) and (4), we generate events
(in software or hardware) when one stage of the processing
pipeline is complete and the data are handed over to the next.
(5) traces the arrival of new ROI data and (6) the moment
that ROI data get actually used in the image pipeline. In
addition to generating an event, (5) and (6) also embed the
ROI’s age as estimated by the application (β − α and γ − α,
respectively) in the trace. A short excerpt of such a trace is
shown in Fig. 4. The blue curve in the background shows
the current on the PHY’s I/O rail, identifying the incoming
Ethernet frames (56 per camera frame). The first label (ROI-
RX) corresponds to an incoming ROI packet (5), the next
three events (PL-IRQ (2), ROI-Use (6) and PS Start (3)) are
generated almost simultaneously when the processing on the
PL is finished and the PS starts to work on the ROI subarea.
In this particular scenario, the ROI data are only transmitted
at 60 Hz. When work begins on the first frame shown (#93),
the ROI information is fresh, and, thus, the processing time on
the PS (PS Start to PS Stop) is very short. For the next frames,
however, the ROI information is getting older and, hence, the
ROI gets expanded, in turn causing longer processing times.

There are a number of methods and tools for formal
modeling and analysis of control algorithms, both at design

Fig. 5. PS Processing Time vs. ROI Age (γ − α) for individual Frames

and at run time. However, all of these tools need timing-
annotated models. Getting accurate timing annotations, when
complex vision processing is a part of the control loop is
difficult, and this is one of the several ways in which our
tracing and measurement infrastructure can be useful. The
timing-annotated events in Fig. 3 can decorate formal models,
e.g., to ensure that certain invariants are satisfied.

Fig. 5 shows a scatter plot of the recorded processing
latencies against the respective ROI age for two configurations
of the system. Scenario A is the same that Fig. 4 was generated
from, with an ROI update rate of 60 Hz. In scenario B, the
ROI data were updated at 160 Hz (and thus approaching
the frequency of the main control loop running at 178 fps).
We clearly see how the processing latency increases with the
age of the ROI. The clustering in the y dimension happens
because the algorithm computing the size of the ROI operates
at a millisecond resolution, while the tracing tool and the age
computation work at a much higher resolution. The maximum
observed execution time of about 4 ms is reached when the
ROI extents to the whole image. As expected, this happens
much more rarely in the 160 Hz case, but surprisingly, we can
also see that for the same ROI age there are more incidents of
higher processing times. This is indicated by several orange
clusters residing above their 60 Hz blue counterparts in Fig. 5.
Such non-intuitive observations provided by our tracing and
measurement infrastructure will be useful for design and
verification, and would be difficult to obtain otherwise.

In summary, we get detailed quantitative insights into the
sequence of steps contributing to the overall image processing
latency and how they are coupled to external influences and
with each other. This data can either be used for directly
debugging and evaluating a given design or as a basis for
statistical models in temporal verification tools, which signif-
icantly helps to overcome the challenges outlined in Sec. II.

V. CONCLUSION

Response times of autonomous systems are highly depen-
dent on the time for acquisition, transmission, processing and
interpretation of high-resolution video data streams. Not only
pose many of those steps difficult problems for formal timing
analysis techniques in isolation, their interdependent and data-
dependent run times make tight estimates on the WCRT next
to impossible. We believe that in order to fully understand
emergent temporal properties, possible design trade-offs and
optimization opportunities, coherent measurement and tracing
facilities are necessary to enable an easy correlation of events



across various software and hardware components. In this pa-
per, we presented a low-overhead tracing solution for FPGA-
accelerated RTSs and demonstrated how it can be used to
analyze and correlate the events on a VSS’s main control
node. An interesting next step in this work will be the efficient
and effective combination of trace data from multiple different
instrumented nodes across a distributed systems.
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