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ABSTRACT

The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity,
optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult.
The most common approach is to use the Extended Kalman Filter (EKF) which simply linearises all nonlinear
models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a
widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the
tracking and control community that it is difficult to implement, difficult to tune, and only reliable for systems
which are almost linear on the time scale of the update intervals.

In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely
sampled points can be used to parameterise mean and covariance, the estimator yields performance equivalent to
the KF for linear systems yet generalises elegantly to nonlinear systems without the linearisation steps required
by the EKF. We show analytically that the expected performance of the new approach is superior to that of the
EKF and, in fact, is directly comparable to that of the second order Gauss filter. The method is not restricted
to assuming that the distributions of noise sources are Gaussian. We argue that the ease of implementation and
more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.
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1 INTRODUCTION

Filtering and estimation are two of the most pervasive tools of engineering. Whenever the state of a system
must be estimated from noisy sensor information, some kind of state estimator is employed to fuse the data from
different sensors together to produce an accurate estimate of the true system state. When the system dynamics
and observation models are linear, the minimum mean squared error (MMSE) estimate may be computed using
the Kalman filter. However, in most applications of interest the system dynamics and observation equations are
nonlinear and suitable extensions to the Kalman filter have been sought. It is well-known that the optimal solution
to the nonlinear filtering problem requires that a complete description of the conditional probability density is
maintained14. Unfortunately this exact description requires a potentially unbounded number of parameters and
a number of suboptimal approximations have been proposed6−8, 13, 16, 21.



Probably the most widely used estimator for nonlinear systems is the extended Kalman filter (EKF)20, 22.
The EKF applies the Kalman filter to nonlinear systems by simply linearising all the nonlinear models so that
the traditional linear Kalman filter equations can be applied. However, in practice, the use of the EKF has two
well-known drawbacks:

1. Linearisation can produce highly unstable filters if the assumptions of local linearity is violated.

2. The derivation of the Jacobian matrices are nontrivial in most applications and often lead to significant
implementation difficulties.

In this paper we derive a new linear estimator which yields performance equivalent to the Kalman filter for
linear systems, yet generalises elegantly to nonlinear systems without the linearisation steps required by the
EKF. The fundamental component of this filter is the unscented transformation which uses a set of appropriately
chosen weighted points to parameterise the means and covariances of probability distributions. We argue that
the expected performance of the new approach is superior to that of the EKF and, in fact, is directly comparable
to that of the second order Gauss filter. Further, the nature of the transform is such that the process and
observation models can be treated as “black boxes”. It is not necessary to calculate Jacobians and so the
algorithm has superior implementation properties to the EKF. We demonstrate the differences in performance in
an example application, and we argue that the ease of implementation and more accurate estimation features of
the new filter recommend its use over the EKF in virtually all applications.

The structure of this paper is as follows. In Section 2 we describe the problem statement for applying a
Kalman filter to nonlinear systems. We argue that the principle problem is the ability to predict the state of
the system. Section 3 introduces the unscented transformation. Its properties are analysed and a full filtering
algorithm, which includes the effects of process noise, is developed. In Section 4 an example is presented. Using
realistic data, the comparison of the unscented filter and EKF for the tracking of a reentry body is considered.
Conclusions are drawn in Section 5. A companion paper10, extends the basic method and shows that judiciously
selecting additional points can lead to any desired level of accuracy for any given prior distribution.

2 ESTIMATION IN NONLINEAR SYSTEMS

2.1 Problem Statement

We wish to apply a Kalman filter to a nonlinear discrete time system of the form

x (k + 1) = f [x (k) ,u (k) ,v(k), k] , (1)

z (k) = h [x (k) ,u (k) , k] +w(k), (2)

where x (k) is the n-dimensional state of the system at timestep k, u (k) is the input vector, v(k) is the q-
dimensional state noise process vector due to disturbances and modelling errors, z (k) is the observation vector
and w(k) is the measurement noise. It is assumed that the noise vectors v(k) and w(k), are zero-mean and

E
[

v(i)vT (j)
]

= δijQ (i) , E
[

w(i)wT (j)
]

= δijR (i) , E
[

v(i)wT (j)
]

= 0, ∀i, j.

The Kalman filter propagates the first two moments of the distribution of x (k) recursively and has a distinctive
“predictor-corrector” structure. Let x̂ (i | j) be the estimate of x (i) using the observation information information
up to and including time j, Zj = [z (1) , . . . , z (j)]. The covariance of this estimate is P (i | j). Given an estimate
x̂ (k | k), the filter first predicts what the future state of the system will be using the process model. Ideally, the
predicted quantities are given by the expectations

x̂ (k + 1 | k) = E
[

f [x (k) ,u (k) ,v(k), k] |Zk
]

(3)

P (k + 1 | k) = E
[

{x (k + 1)− x̂ (k + 1 | k)} {x (k + 1)− x̂ (k + 1 | k)}
T
|Zk
]

. (4)



When f [·] and h [·] are nonlinear, the precise values of these statistics can only be calculated if the distribution
of x (k), condition on Zk, is known. However, this distribution has no general form and a potentially unbounded
number of parameters are required. In many applications, the distribution of x (k) is approximated so that only a
finite and tractable number of parameters need be propagated. It is conventionally assumed that the distribution
of x (k) is Gaussian for two reasons. First, the distribution is completely parameterised by just the mean and
covariance. Second, given that only the first two moments are known, the Gaussian distribution is the least
informative3.

The estimate x̂ (k + 1 | k + 1) is given by updating the prediction with the current sensor measurement. In
the Kalman filter a linear update rule is specified and the weights are chosen to minimise the mean squared error
of the estimate. The update rule is

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) +W (k + 1) ν (k + 1) ,

P (k + 1 | k + 1) = P (k + 1 | k)−W (k + 1)Pνν (k + 1 | k)WT (k + 1)

ν (k + 1) = z (k + 1)− ẑ (k + 1 | k)

W (k + 1) = Pxν (k + 1 | k)P−1
νν (k + 1 | k) .

It is important to note that these equations are only a function of the predicted values of the first two moments
of x (k) and z (k). Therefore, the problem of applying the Kalman filter to a nonlinear system is the ability to
predict the first two moments of x (k) and z (k). This problem is a specific case of a general problem — to be
able to calculate the statistics of a random variable which has undergone a nonlinear transformation.

2.2 The Transformation of Uncertainty

The problem of predicting the future state or observation of the system can be expressed in the following
form. Suppose that x is a random variable with mean x̄ and covariance Pxx. A second random variable, y is
related to x through the nonlinear function

y = f [x] . (5)

We wish to calculate the mean ȳ and covariance Pyy of y.

The statistics of y are calculated by (i) determining the density function of the transformed distribution and
(ii) evaluating the statistics from that distribution. In some special cases (for example when f [·] is linear) exact,
closed form solutions exist. However, such solutions do not exist in general and approximate methods must be
used. In this paper we advocate that the method should yield consistent statistics. Ideally, these should be
efficient and unbiased.

The transformed statistics are consistent if the inequality

Pyy − E
[

{y − ȳ} {y − ȳ}
T
]

≥ 0 (6)

holds. This condition is extremely important for the validity of the transformation method. If the statistics are
not consistent, the value of Pyy is under -estimated. If a Kalman filter uses the inconsistent set of statistics, it
will place too much weight on the information and under estimate the covariance, raising the possibility that the
filter will diverge. By ensuring that the transformation is consistent, the filter is guaranteed to be consistent as
well. However, consistency does not necessary imply usefulness because the calculated value of Pyy might be
greatly in excess of the actual mean squared error. It is desirable that the transformation is efficient — the value
of the left hand side of Equation 6 should be minimised. Finally, it is desirable that the estimate is unbiased or
ȳ ≈ E [y].

The problem of developing a consistent, efficient and unbiased transformation procedure can be examined by
considering the Taylor series expansion of Equation 5 about x̄. This series can be expressed (using rather informal



notation) as:

f [x] = f [x̄+ δδδx]

= f [x̄] +∇∇∇fδδδx +
1

2
∇∇∇2fδδδx2 +

1

3!
∇∇∇3fδδδx3 +

1

4!
∇∇∇4fδδδx4 + · · ·

(7)

where δδδx is a zero mean Gaussian variable with covariance Pxx, and ∇∇∇
nfδδδxn is the appropriate nth order term

in the multidimensional Taylor Series. Taking expectations, it can be shown that the transformed mean and
covariance are

ȳ = f [x̄] +
1

2
∇∇∇2f Pxx +

1

2
∇∇∇4f E

[

δδδx4
]

+ · · · (8)

Pyy =∇∇∇f Pxx(∇∇∇f)
T +

1

2× 4!
∇∇∇2f

(

E
[

δδδx4
]

− E
[

δδδx2Pyy

]

− E
[

Pyyδδδx
2
]

+P2
yy

)

(∇∇∇2f)T +

1

3!
∇∇∇3fE

[

δδδx4
]

(∇∇∇f)
T
+ · · · . (9)

In other words, the nth order term in the series for x̄ is a function of the nth order moments of x multiplied by
the nth order derivatives of f [·] evaluated at x = x̄. If the moments and derivatives can be evaluated correctly
up to the nth order, the mean is correct up to the nth order as well. Similar comments hold for the covariance
equation as well, although the structure of each term is more complicated. Since each term in the series is scaled
by a progressively smaller and smaller term, the lowest order terms in the series are likely to have the greatest
impact. Therefore, the prediction procedure should be concentrated on evaluating the lower order terms.

Linearisation assumes that the second and higher order terms of δδδx in Equation 7 can be neglected. Under
this assumption,

ȳ = f [x̄] , (10)

Pyy =∇∇∇f Pxx (∇∇∇f)
T
. (11)

Comparing these expressions with Equations 8 and 9, it is clear that these approximations are accurate only if
the second and higher order terms in the mean and fourth and higher order terms in the covariance are negligible.
However, in many practical situations linearisation introduces significant biases or errors. An extremely common
and important problem is the transformation of information between polar and Cartesian coordinate systems10, 15.
This is demonstrated by the simple example given in the next subsection.

2.3 Example

Suppose a mobile robot detects beacons in its environment using a range-optimised sonar sensor. The sensor
returns polar information (range r and bearing θ) and this is to be converted to estimate to Cartesian coordinates.
The transformation is:

(

x
y

)

=

(

r cos θ
r sin θ

)

with ∇∇∇f =

[

cos θ −r sin θ
sin θ r cos θ

]

.

The real location of the target is (0, 1). The difficulty with this transformation arises from the physical properties
of the sonar. Fairly good range accuracy (with 2cm standard deviation) is traded off to give a very poor bearing
measurement (standard deviation of 15◦). The large bearing uncertainty causes the assumption of local linearity
to be violated.
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Figure 1: The mean and standard deviation el-

lipses for the actual and linearised form of the

transformation. The true mean is at × and the

uncertainty ellipse is solid. Linearisation calcu-

lates the mean at ◦ and the uncertainty ellipse is

dashed.

To appreciate the errors which can be caused by lin-
earisation, its values of the statistics of (x, y) were com-
pared with those calculated by the true statistics which
are calculated by Monte Carlo simulation. Due to the
slow convergence of random sampling methods, an ex-
tremely large number of samples (3.5× 106) were used
to ensure that accurate estimates of the true statistics
were obtained. The results are shown in Figure 1. This
figure shows the mean and 1σ contours for which are
calculated by each method. The 1σ contour is the locus
of points {y : (y− ȳ)P−1

y (y− ȳ) = 1} and is a graph-
ical representation of the size and orientation of Pyy.
As can be seen, the linearised transformation is bi-
ased and inconsistent. This is most pronounced in the
range direction, where linearisation estimates that the
position is 1m whereas in reality it is 96.7cm. This is
extremely substantial. Linearisation errors effectively
introduce an error which is over 1.5 times the standard
deviation of the range measurement. Since it is a bias
which arises from the transformation process itself, the
same error with the same sign will be committed each
time a coordinate transformation takes place. Even if
there were no bias, the transformation is inconsistent.
Its ellipse is not long enough in the r direction. In fact, the nature of the inconsistency compounds the problem of
the biased-ness: not only is the estimate or r in error, but also its estimated mean squared error is much smaller
than the true value.

In practice the inconsistency can be resolved by introducing additional stabilising noise which increases the
size of the transformed covariance. This is one possible of why EKFs are so difficult to tune — sufficient noise
must be introduced to offset the defects of linearisation. However, introducing stabilising noise is an undesirable
solution since the estimate remains biased and there is no general guarantee that the transformed estimate remains
consistent or efficient. A more accurate prediction algorithm is required.

3 THE UNSCENTED TRANSFORM

3.1 The Basic Idea

Transformation
Nonlinear 

Figure 2: The principle of the unscented trans-

form.

The unscented transformation is a new, novel
method for calculating the statistics of a random vari-
able which undergoes a nonlinear transformation. It
is founded on the intuition that it is easier to approx-
imate a Gaussian distribution than it is to approxi-

mate an arbitrary nonlinear function or transforma-

tion23. The approach is illustrated in Figure 2. A set
of points (or sigma points) are chosen so that their
sample mean and sample covariance are x̄ and Pxx.
The nonlinear function is applied to each point in turn
to yield a cloud of transformed points and ȳ and Pyy

are the statistics of the transformed points. Although
this method bares a superficial resemblance to Monte



Carlo-type methods, there is an extremely important and fundamental difference. The samples are not drawn at
random but rather according to a specific, deterministic algorithm. Since the problems of statistical convergence
are not an issue, high order information about the distribution can be captured using only a very small number
of points.

The n-dimensional random variable x with mean x̄ and covariance Pxx is approximated by 2n + 1 weighted
points given by

X 0 = x̄ W0 = κ/(n+ κ)

X i = x̄+
(

√

(n+ κ)Pxx

)

i
Wi = 1/2(n+ κ)

X i+n = x̄−
(

√

(n+ κ)Pxx

)

i
Wi+n = 1/2(n+ κ)

(12)

where κ ∈ <,
(

√

(n+ κ)Pxx

)

i
is the ith row or column of the matrix square root of (n + κ)Pxx and Wi is the

weight which is associated with the ith point. The transformation procedure is as follows:

1. Instantiate each point through the function to yield the set of transformed sigma points,

Y i = f [X i] .

2. The mean is given by the weighted average of the transformed points,

ȳ =

2n
∑

i=0

WiY i. (13)

3. The covariance is the weighted outer product of the transformed points,

Pyy =

2n
∑

i=0

Wi {Y i − ȳ} {Y i − ȳ}
T
. (14)

The properties of this algorithm have been studied in detail elsewhere9, 12 and we present a summary of the
results here:

1. Since the mean and covariance of x are captured precisely up to the second order, the calculated values
of the mean and covariance of y are correct to the second order as well. This means that the mean is
calculated to a higher order of accuracy than the EKF, whereas the covariance is calculated to the same
order of accuracy. However, there are further performance benefits. Since the distribution of x is being
approximated rather than f [·], its series expansion is not truncated at a particular order. It can be shown
that the unscented algorithm is able to partially incorporate information from the higher orders, leading to
even greater accuracy.

2. The sigma points capture the same mean and covariance irrespective of the choice of matrix square root
which is used. Numerically efficient and stable methods such as the Cholesky decomposition18 can be used.

3. The mean and covariance are calculated using standard vector and matrix operations. This means that the
algorithm is suitable for any choice of process model, and implementation is extremely rapid because it is
not necessary to evaluate the Jacobians which are needed in an EKF.

4. κ provides an extra degree of freedom to “fine tune” the higher order moments of the approximation, and
can be used to reduce the overall prediction errors. When x (k) is assumed Gaussian, a useful heuristic is
to select n + κ = 3. If a different distribution is assumed for x (k) then a different choice of κ might be
more appropriate.



5. Although κ can be positive or negative, a negative choice of κ can lead to a non-positive semidefinite
estimate of Pyy. This problem is not uncommon for methods which approximate higher order moments
or probability density distributions8, 16, 21. In this situation, it is possible to use a modified form of the
prediction algorithm. The mean is still calculated as before, but the “covariance” is evaluated about
X 0 (k + 1 | k) . It can be shown that the modified form ensures positive semi-definiteness and, in the limit
as (n+ κ)→ 0,

lim
(n+κ)→0

ȳ = f [x̄] +
1

2
∇∇∇2f Pxx, lim

(n+κ)→0
Pyy =∇∇∇f Pxx (∇∇∇f)

T
.

In other words, the algorithm can be made to perform exactly like the second Order Gauss Filter, but
without the need to calculate Jacobians or Hessians.
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Figure 3: The unscented transform as applied to

the measurement example.

The performance benefits of using the unscented
transform can be seen in Figure 3 which shows the
means and 1σ contours determined by the different
methods. The true mean lies at× with a dotted covari-
ance contour. The position of the unscented mean is
indicated by a ? and its contour is solid. The linearised
mean is at ◦ and used a dashed contour. As can be
seen the unscented mean value is the same as the true
value — on the scale of the graph, the two points lie on
top of one another. Further, the unscented transform
is consistent — in fact, its contour is slightly larger
than the true contour in the r direction.

Given its properties of superior estimation accuracy
and ease of implementation, the unscented transform
is better suited than linearisation for filtering applica-
tions. Indeed, since it can predict the mean and co-
variance with second order accuracy, any filter which
uses the unscented transform will have the same per-
formance as the Truncated Second Order Gauss Filter1

but does not require the derivation of Jacobians or Hes-
sians. The next subsection examines the application of
the unscented transform to the filtering problem and develops the unscented filter.

3.2 The Unscented Filter

The transformation processes which occur in a Kalman filter consist of the following steps:

• Predict the new state of the system x̂ (k + 1 | k) and its associated covariance P (k + 1 | k). This prediction
must take account of the effects of process noise.

• Predict the expected observation ẑ (k + 1 | k) and the innovation covariance Pνν (k + 1 | k). This prediction
should include the effects of observation noise.

• Finally, predict the cross-correlation matrix Pxz (k + 1 | k) .

These steps can be easily accommodated by slightly restructuring the state vector and process and observation
models. First, the state vector is augmented with the process and noise terms to give an na = n+ q dimensional



1. The set of sigma points are created by applying Equation 12 to the augmented system given by Equa-
tion 15.

2. The transformed set is given by instantiating each point through the process model,

X i (k + 1 | k) = f [X a

i (k | k) ,u (k) , k] .

3. The predicted mean is computed as

x̂ (k + 1 | k) =
2n

a

X

i=0

WiX
a

i (k + 1 | k) .

4. And the predicted covariance is computed as

P (k + 1 | k)
2n

a

X

i=0

Wi {X i (k + 1 | k)− x̂ (k + 1 | k)} {X i (k + 1 | k)− x̂ (k + 1 | k)}T

5. Instantiate each of the prediction points through the observation model,

Zi (k + 1 | k) = h [X i (k + 1 | k) ,u (k) , k]

6. The predicted observation is calculated by

ẑ (k + 1 | k) =

2n
a

X

i=1

WiZi (k + 1 | k) .

7. Since the observation noise is additive and independent, the innovation covariance is

Pνν (k + 1 | k) = R (k + 1) +

2n
a

X

i=0

Wi {Zi (k | k − 1)− ẑ (k + 1 | k)} {Z i (k | k − 1)− ẑ (k + 1 | k)}T

8. Finally the cross correlation matrix is determined by

Pxz (k + 1 | k) =

2n
a

X

i=0

Wi {X i (k | k − 1)− x̂ (k + 1 | k)} {Zi (k | k − 1)− ẑ (k + 1 | k)}T

Box 3.1: The prediction algorithm using the unscented transform.

vector,

xa (k) =

[

x (k)
v(k)

]

.

The process model is rewritten as a function of xa (k),

x (k + 1) = f [xa (k) ,u (k) , k]

and the unscented transform uses 2na + 1 sigma points which are drawn from

x̂a (k | k) =

(

x̂ (k | k)
0q×1

)

and Pa (k | k) =

[

P (k | k) Pxv (k | k)
Pxv (k | k) Q (k)

]

. (15)

The matrices on the leading diagonal are the covariances and off-diagonal sub-blocks are the correlations
between the state errors and the process noises. Although this method requires the use of additional sigma
points, it means that the effects of the process noise (in terms of its impact on the mean and covariance) are



introduced with the same order of accuracy as the uncertainty in the state. The formulation also means that
correlated noise sources (which can arise in Schmidt-Kalman filters19) can be implemented extremely easily. The
expression for the unscented transform is given by the equations in Box 3.1.

Various extensions and modifications can be made to this basic method to take account of specific details of
a given application. For example, if the observation noise is introduced in a nonlinear fashion, or is correlated
with process and/or observation noise, then the augmented vector is expanded to include the observation terms.

This section has developed the unscented transform so that it can be used in filtering and tracking applications.
The next section demonstrates its benefits over the EKF for a sample application.

4 EXAMPLE APPLICATION
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Figure 4: The reentry problem. The dashed line

is the sample vehicle trajectory and the solid line

is a portion of the Earth’s surface. The position

of the radar is marked by a ◦.

In this section we consider the problem which is il-
lustrated in Figure 4: a vehicle enters the atmosphere
at high altitude and at a very high speed. The position
of the body is to be tracked by a radar which accurately
measures range and bearing. This type of problem has
been identified by a number of authors1, 2, 5, 17 as being
particularly stressful for filters and trackers because of
the strong nonlinearities exhibited by the forces which
act on the vehicle. There are three types of forces
which act. The most dominant is aerodynamic drag,
which is a function of vehicle speed and has a substan-
tial nonlinear variation in altitude. The second type of
force is gravity which accelerates the vehicle towards
the centre of the earth. The final forces are random
buffeting terms. The effect of these forces gives a tra-
jectory of the form shown in Figure 4: initially the
trajectory is almost ballistic but as the density of the
atmosphere increases, drag effects become important
and the vehicle rapidly decelerates until its motion is
almost vertical. The tracking problem is made more
difficult by the fact that the drag properties of the ve-
hicle might be only very crudely known.

In summary, the tracking system should be able to
track an object which experiences a set of complicated, highly nonlinear forces. These depend on the current
position and velocity of the vehicle as well as on certain characteristics which are not known precisely. The filter’s
state space consists of the position of the body (x1 and x2), its velocity (x3 and x4) and a parameter of its
aerodynamic properties (x5). The vehicle state dynamics are

ẋ1(k) = x3(k)

ẋ2(k) = x4(k)

ẋ3(k) = D(k)x3(k) +G(k)x1(k) + v1(k)

ẋ4(k) = D(k)x4(k) +G(k)x2(k) + v2(k)

ẋ5(k) = v3(k)

(16)

where D(k) is the drag-related force term, G(k) is the gravity-related force term and v·(k) are the process noise
terms. Defining R(k) =

√

x2
1(k) + x2

2(k) as the distance from the centre of the Earth and V (k) =
√

x2
3(k) + x2

4(k)



as absolute vehicle speed then the drag and gravitational terms are

D(k) = −β(k) exp

{

[R0 −R(k)]

H0

}

V (k), G(k) = −
Gm0

r3(k)

and β(k) = β0 expx5(k).

For this example the parameter values are β0 = −0.59783, H0 = 13.406, Gm0 = 3.9860× 105 and R0 = 6374 and
reflect typical environmental and vehicle characteristics2. The parameterisation of the ballistic coefficient, β(k),
reflects the uncertainty in vehicle characteristics5. β0 is the ballistic coefficient of a “typical vehicle” and it is
scaled by expx5(k) to ensure that its value is always positive. This is vital for filter stability.

The motion of the vehicle is measured by a radar which is located at (xr, yr). It is able to measure range r
and bearing θ at a frequency of 10Hz, where

rr(k) =
√

(x1(k)− xr)2 + (x2(k)− yr)2 + w1(k)

θ(k) = tan−1

(

x2(k)− yr
x1(k)− xr

)

+ w2(k)

w1(k) and w2(k) are zero mean uncorrelated noise processes with variances of 1m and 17mrad respectively4. The
high update rate and extreme accuracy of the sensor means that a large quantity of extremely high quality data is
available for the filter. The bearing uncertainty is sufficiently that the EKF is able to predict the sensor readings
accurately with very little bias.

The true initial conditions for the vehicle are

x (0) =













6500.4
349.14
−1.8093
−6.7967
0.6932













and P (0) =













10−6 0 0 0 0
0 10−6 0 0 0
0 0 10−6 0 0
0 0 0 10−6 0
0 0 0 0 0













.

In other words, the vehicle’s coefficient is twice the nominal coefficient.

The vehicle is buffeted by random accelerations,

Q (k) =





2.4064× 10−5 0 0
0 2.4064× 10−5 0
0 0 0





The initial conditions assumed by the filter are,

x̂ (0 | 0) =













6500.4
349.14
−1.8093
−6.7967

0













and P (0 | 0) =













10−6 0 0 0 0
0 10−6 0 0 0
0 0 10−6 0 0
0 0 0 10−6 0
0 0 0 0 1













.

The filter uses the nominal initial condition and, to offset for the uncertainty, the variance on this initial estimate
is 1.

Both filters were implemented in discrete time and observations were taken at a frequency of 10Hz. However,
due to the intense nonlinearities of the vehicle dynamics equations, the Euler approximation of Equation 16 was
only valid for small time steps. The integration step was set to be 50ms which meant that two predictions were
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(a) Results for x1.
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(b) Results for x3.
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(c) Results for x5.

Figure 5: The mean squared errors and estimated covariances calculated by an EKF and an

unscented filter. In all the graphs, the solid line is the mean squared error calculated by the EKF,

and the dotted line is its estimated covariance. The dashed line is the unscented mean squared

error and the dot-dashed line its estimated covariance.

made per update. For the unscented filter, each sigma point was applied through the dynamics equations twice.
For the EKF, it was necessary to perform an initial prediction step and re-linearise before the second step.

The performance of each filter is shown in Figure 5. This figure plots the estimated mean squared estimation
error (the diagonal elements of P (k | k)) against actual mean squared estimation error (which is evaluated using
100 Monte Carlo simulations). Only x1, x3 and x5 are shown — the results for x2 are similar to x1, and x4 is the
same as that for x3. In all cases it can be seen that the unscented filter estimates its mean squared error very
accurately, and it is possible to be confident with the filter estimates. The EKF, however, is highly inconsistent:
the peak mean squared error in x1 is 0.4km2, whereas its estimated covariance is over one hundred times smaller.
Similarly, the peak mean squared velocity error is 3.4× 10−4km2s−2 which is over 5 times the true mean squared
error. Finally, it can be seen that x5 is highly biased, and this bias only slowly decreases over time. This poor
performance is the direct result of linearisation errors.

5 CONCLUSIONS

In this paper we have argued that the principle difficulty for applying the Kalman filter to nonlinear systems is
the need to consistently predict the new state and observation of the system. We have introduced a new filtering
algorithm, called the unscented filter. By virtue of the unscented transformation, this algorithm has two great
advantages over the EKF. First, it is able to predict the state of the system more accurately. Second, it is much
less difficult to implement. The benefits of the algorithm were demonstrated in a realistic example.

This paper has considered one specific form of the unscented transform for one particular set of assumptions.
In a companion paper11, we extend the development of the unscented transform and yield a general framework for
its derivation and application. It is shown that the number of sigma points can be extended to yield a filter which
matches moments up to the fourth order. This higher order extension effectively de-biases almost all common
nonlinear coordinate transformations.
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