
Mixed-Criticality Real-Time Scheduling for Multicore Systems

Malcolm S. Mollison∗, Jeremy P. Erickson∗,
James H. Anderson∗, Sanjoy K. Baruah∗ and John A. Scoredos†

∗University of North Carolina at Chapel Hill
{mollison, jerickso, anderson, baruah}@cs.unc.edu

†Northrop Grumman Corporation
john.scoredos@ngc.com

Abstract

Current hard real-time scheduling and analysis tech-
niques are unable to efficiently utilize the computational
bandwidth provided by multicore platforms. This is due to
the large gap between worst-case execution time predic-
tions used in schedulability analysis and actual execution
times seen in practice. In this paper, we view this gap as
“slack” that can be accounted for during schedulability
analysis and reclaimed for less critical work. We use
this technique to develop an architecture for scheduling
mixed-criticality real-time workloads on multiprocessor
platforms. Our architecture provides temporal isolation
among tasks of different criticalities while allowing slack
to be redistributed across criticality levels.

1. Introduction

In order to enable the next generation of cyber-physical
systems, or systems that exhibit a high degree of inter-
action between computational and physical components,
significant innovation in real-time scheduling and analysis
will be necessary. Many future cyber-physical systems will
exhibit two important characteristics that differentiate them
from current systems.

First, they will make use of multicore platforms. The
adoption of multicore platforms will be driven by the
need for additional computational bandwidth, and by size,
weight, and power (SWaP) concerns. Additionally, as ma-
jor chip manufacturers switch to multicore designs in their
product lines, reduced availability of single-core chips may
be a factor.

Second, future systems will be supported by compu-
tational workloads that are both complex and of mixed

Work supported by AT&T, IBM, Northrop Grumman, and Sun Corps.;
NSF grants CNS 0834270 and CNS 0834132; ARO grant W911NF-09-
1-0535; and AFOSR grant FA9550-09-1-0549.

criticality. Criticality is a designation of the level of
assurance against failure needed for a task. A mixed-
criticality task system is one in which the criticality levels
demanded by tasks are diverse.

A good example of such a system is provided by
the next-generation unmanned aerial vehicles (UAVs) cur-
rently under development in the aerospace industry [4].
Next-generation UAVs will have combat and reconnais-
sance capabilities surpassing those of currently deployed
manned aircraft. Their workloads can be divided into three
broad categories of tasks, each of which is likely to span
criticality levels:

1) Tasks that perform “safety-critical” operations, such
as adjusting flight surfaces to maintain aerial stabil-
ity. Such tasks are already supported by embedded
computers in existing airplanes (albeit with some
limitations, discussed below).

2) Tasks that perform “mission-critical” operations,
such as external communication and advanced
decision-making. Such functions are performed by
pilots in existing systems. An example would be
intelligently responding to radar detection of an
unfriendly aircraft.

3) Tasks that perform other, “background” work. Of
particular note are tasks executing advanced planning
algorithms that are not available in existing systems.
An example would be finding an optimal route
through an area under enemy radar surveillance. Of-
tentimes, these algorithms solve optimization prob-
lems, the results of which improve with time.

There is strong motivation for hosting the described work-
load on a multicore platform. Such a platform would
produce significant SWaP improvements, which is of crit-
ical importance for UAVs. In addition, the alternative of
using multiple single-core systems connected via a network
would significantly limit computational throughput and
increase costs.

1



Unfortunately, with existing real-time scheduling tech-
niques, hosting mixed-criticality workloads on multicore
platforms is not possible. This is due to two related prob-
lems: (i) underutilization caused by pessimism in worst-
case execution time (WCET) analysis, especially for high-
criticality tasks; and (ii) the need to temporally isolate tasks
of differing criticality.

WCET analysis is needed to validate that tasks will
complete by their specified deadlines. Even on single-
core systems, WCET analysis is highly problematic. To
compensate for this, pessimistic WCET estimates are used.
These estimates increase in pessimism with increasing
criticality level. This leads to an under-utilization of
computing resources in practice and severely limits the
computational workload that can be supported by a given
piece of hardware. In order to make effective use of the
computational bandwidth provided by multicore platforms,
a scheduling methodology that makes use of this “slack”
processing capability would be desirable.

Requirements for temporal isolation state that if a
lower-criticality task can impact the scheduling of a higher-
criticality task, it must be designed and certified at the
criticality level of the higher-criticality task [15]. Doing
so is often impractical: it exacerbates the WCET prob-
lem, raises costs significantly, and may require additional
programming constraints to be placed on lower-criticality
tasks, such as using only static loop bounds.

In this paper, we present an architecture for mixed-
criticality scheduling on multicore platforms. We view
higher-criticality tasks as “slack generators” that, in the
common case, will use only a small fraction of the exe-
cution time budgeted for them. Lower-criticality tasks are
then budgeted to run using this slack. Thus, computational
hardware is used more efficiently, allowing more demand-
ing task systems to be deployed. Our architecture preserves
isolation among criticality levels from the perspective of
temporal correctness.

The rest of this paper is organized as follows. In
Sec. 2, we discuss relevant background material and related
work. In Sec. 3, we present our architecture for mixed-
criticality systems. In Sec. 4, we give correctness proofs
for our architecture. In Sec. 5, we discuss future work. We
conclude in Sec. 6.

2. Background

In the following subsections, we present relevant back-
ground information on multiprocessor real-time scheduling
and mixed-criticality scheduling.

2.1. Multiprocessor Real-Time Scheduling

In this paper, we assume that temporal constraints for
tasks can be modeled by the periodic task model. Under
this model, each task T has an associated period, T.p, and
WCET, T.e. Successive jobs of T are released every T.p
time units, starting at time 0, and a job released at time
t must complete by its deadline, t + T.p. The utilization,
or long-run processor share required by a task, is given by
T.u = T.e/T.p. A harmonic task system is a periodic task
system in which all task periods are integer multiples of the
smallest task period. It is common for avionics workloads,
among others, to be modeled as harmonic task systems.

A task system is schedulable if, given a scheduling
algorithm and m processors, the algorithm can schedule
tasks in such a way that all temporal constraints are
met. For hard real-time tasks, jobs must never miss their
deadlines, while for soft real-time tasks, some deadline
misses are tolerable. Specifically, we require here that the
tardiness of jobs of soft real-time tasks be bounded by a
(reasonably small) constant.

Scheduling algorithms. Two scheduling approaches are
common for multicore systems: partitioning and global
scheduling. In a partitioning scheme, tasks are statically
assigned to processors, and do not migrate. An example
is partitioned EDF (P-EDF), which preemptively sched-
ules jobs in earliest-deadline-first (EDF) order on each
processor. In global scheduling, tasks may migrate across
processors. An example is global EDF (G-EDF), which
schedules jobs from a single deadline-ordered run queue.

P-EDF is often a good choice for hard real-time task
systems [6]. One downside of P-EDF is that spare capacity
on processors may be wasted due to bin-packing issues that
arise when assigning tasks to processors.

In contrast, G-EDF is often a good choice for soft real-
time task systems, because the bin-packing issues that
arise under P-EDF are alleviated if bounded tardiness
is permitted [9, 10]. G-EDF is particularly well suited
for task systems that are provisioned on the basis of
average execution time [11]. A downside of G-EDF is that
contention for shared caches and busses increases, making
WCET analysis more difficult.

In this paper, we make use of P-EDF, G-EDF, and
a multiprocessor adaptation of the uniprocessor cyclic
executive scheduling approach [3]. A cyclic executive is a
simple real-time executive that dispatches tasks according
to a table that is precomputed offline. Cyclic executives are
often preferred for high-criticality real-time task systems
because tasks are scheduled in a highly predictable way,
which makes certification easier. Cyclic executives are best
suited for scheduling harmonic task systems, since in that
case, the size of the dispatching table can be pseudo-

2



Crit. T.p T.eA T.uA T.eB T.uB

T1 A 10 5 0.5 3 0.3
T2 A 20 10 0.5 6 0.3
T3 B 20 – – 4 0.2
T4 B 40 – – 8 0.2
Σ 1.0 1.0

Table 1: Multi-criticality task system for Example 1.

polynomially bounded.

Hierarchical scheduling. We use a two-level hierarchical
scheduling approach in our mixed-criticality architecture.
In hierarchical scheduling, special tasks known as con-
tainer tasks are scheduled alongside normal tasks. Each
container task schedules tasks from an associated container
(also called a server). Hierarchical scheduling is typically
used to allow the timing correctness of subsystems to be
validated independently. Well-known hierarchical schedul-
ing schemes include constant bandwidth servers [1], total
bandwidth servers [13], and resource kernels [12].

2.2. Mixed-Criticality Scheduling

The conventional approach to scheduling high criticality
tasks on uniprocessor systems is to use very pessimistic
WCET values. Such a system may be fully utilized from
a validation and certification perspective, i.e., at design
time, but will be severely underutilized in practice, i.e.,
at runtime.

Vestal proposed a technique for accounting for this
under-utilization and reclaiming it at design time for lower-
criticality tasks [15]. In his work, it is assumed that tasks
are scheduled using a static-priority, uniprocessor schedul-
ing algorithm. In this class of scheduling algorithms, a
task’s schedulability is dependent on the WCET values
of tasks of equal or higher priority. Vestal observed that,
from the perspective of scheduling a less-critical task, the
WCET values given for more-critical tasks are needlessly
pessimistic. Thus, he proposed that schedulability tests for
less critical tasks be altered to incorporate less pessimistic
WCET values for more critical tasks. In light of this,
multiple WCET values must be assigned to each task: one
for its own criticality level, and one for each lower crit-
icality level. Moreover, per-criticality-level schedulability
tests must be used (L variants of an L-level system must
be analyzed). The WCET value for task T at level X
is denoted T.eX and the resulting utilization is denoted
T.uX . This has come to be known as the multi-criticality
task model.

Example 1. Table 1 gives an example single-processor
multi-criticality task system. T1 and T2 are highly-critical
tasks (level A) that are assigned very pessimistic WCET
values. If this degree of assurance were needed for the

entire task system, no additional tasks could be included,
because T1 and T2 would be assumed to fully utilize
the processor. However, T3 and T4 are lower-criticality
tasks (level B) that do not need such a high level of
assurance. In fact, by assuming level-B execution costs
and statically prioritizing tasks in the order T1 (highest)
to T4 (lowest), all four tasks can be accommodated. Note
that under this priority assignment, T3 and T4 can never
impact the scheduling of T1 and T2.

Subsequent work by Baruah and Vestal [5] examined
scheduling-theoretic issues that arise in the context of
the multi-criticality task model. They proposed a new
uniprocessor scheduling algorithm that dominates static-
priority algorithms for multi-criticality task systems.

Anderson et al. [2] proposed a multi-criticality schedul-
ing approach for multicore platforms that uses a two-level
hierarchical scheduling framework in which containers
provide isolation for tasks of different criticality levels.
P-EDF is used as the intra-container scheduler. They
also proposed the use of slack re-allocation techniques to
redistribute unused processing capacity at higher criticality
levels to lower criticality levels. However, the development
of exact rules for slack redistribution was left as future
work. This paper builds upon the foundation provided in
[2] by proposing a framework in which different intra-
container schedulers are used for tasks of different criti-
calities. In addition, slack redistribution rules are devised.

3. Mixed-Criticality Architecture

We seek to provide a scheduling architecture suitable
for real-world mixed-criticality task systems scheduled on
multicore platforms. While most prior theoretical research
on mixed-criticality scheduling allows for an arbitrary
number of criticality levels, in practice, the number of such
levels is likely to be small. For example, RCTA standard
DO-178B, which is used by the U.S. Federal Aviation
Administration (FAA) for the certification of commercial
airplanes, allows for five criticality levels, labeled A (most
critical) through E (least critical). Our architecture assumes
a similar five-level classification.

In our architecture, tasks at each criticality level are
scheduled by different intra-container schedulers, and thus
according to different scheduling policies. This allows the
tasks of each criticality level to be scheduled in a way that
is appropriate for that level. This scheme is described in
more detail below, and illustrated in Fig. 1.

Level A. A table-driven scheduling approach, similar to
that used in a real-time cyclic executive, is used to sched-
ule level-A tasks. These tasks are statically assigned to
processors, and a dispatching table for the tasks assigned

3



Figure 1: Container scheduling for a four-processor system.
Here, CE stands for cyclic executive.

to each processor is used.1 From a hierarchical scheduling
perspective, the level-A tasks assigned to each processor
form a container whose tasks are served by the table-driven
scheduler. The table-driven scheduler is the highest-priority
task in the system from the viewpoint of the top-level
scheduler, so it always runs when a level-A task becomes
eligible.

Rationale. Level-A tasks are the highest-criticality tasks
that need to be scheduled. Table-driven scheduling is the
de facto standard for scheduling high-criticality workloads.

Level B. Similarly to level A, each processor hosts a level-
B container, and each level-B task is assigned to one of
these containers. P-EDF is used at level B, so each level-
B container is served by an EDF scheduler. Level B has
the second-highest priority from the viewpoint of the top-
level scheduler, so any eligible level-B task will execute
if no level-A task is executing on the same processor. For
each processor, we require that the periods of all level-
B tasks be integer multiples of the level-A hyperperiod
(the least common multiple of level-A task periods). Also,
assuming level-B WCET values, the sum of the utilizations
of all level-A and -B tasks must not exceed 1.0. As
shown in Sec. 4, these conditions are sufficient for level-
B schedulability, assuming no level-B WCET is exceeded
(by tasks at level A or B).

Rationale. P-EDF is a simple and well-studied schedul-
ing algorithm with relatively low overhead. Because task
execution patterns are not constrained by a table, using

1. Existing approaches for creating dispatching tables may be used to
ensure that level-A tasks will meet their deadlines [3].

EDF scheduling eases software development and allows a
wider range of tasks systems to be scheduled. For these
reasons, P-EDF is appropriate for scheduling hard real-
time workloads that do not need to be table-driven.

Level C. Level-C tasks are globally scheduled using the
G-EDF algorithm. All level-C tasks are grouped into the
same container, which is served by all processors. G-
EDF is invoked on any processor whenever level-C tasks
are eligible but no higher-criticality tasks are eligible. In
Sec. 4, we give a schedulability test for ensuring bounded
tardiness for level-C tasks. The test uses level-C WCET
values for tasks of criticality C and higher.

Rationale. In our architecture, level C provides a facility
for supporting tasks for which a relatively small amount
of tardiness is acceptable.

Level D. Level D provides an additional level of G-EDF
scheduling and behaves in a similar fashion to level C. G-
EDF is invoked on any processor to schedule a task from
the level-D container whenever level-D tasks are eligible
but no higher-criticality tasks are eligible.

Rationale. By providing an additional criticality level,
level D enables further utilization of the system in practice,
but with a less strong guarantee that deadlines will be met.
Level D is furthermore distinguished from level C because
its tardiness bounds are significantly less tight than those
available for level C. This topic is discussed further in
Sec. 4.

Level E. At level E, “best effort” jobs are scheduled
by a server that is invoked whenever a processor would
otherwise be idle. Level-E jobs are guaranteed to receive
a long-term utilization equal to m minus the sum of the uti-
lizations of all real-time tasks present in the system, based
on level-E WCET values. Any non-real-time scheduling
policy can be used at level E.

Rationale. Level-E WCET values are likely to be pro-
visioned based on average-case behavior observed during
testing. Thus, level E is suitable for long-running tasks that
need to make a predictable amount of progress over time,
and for short-running tasks for which a quick response
time is desirable.

Slack shifting. We allow lower-criticality tasks to execute
before eligible higher-criticality tasks, when doing so does
not cause deadline misses or impact temporal isolation
requirements. Each time a real-time job is released, it
is allocated a budget equal to its WCET value for its
own criticality level. As the job executes, the budget is
depleted. If the job completes before its budget is ex-
hausted, it becomes a ghost job. For scheduling purposes,

4



ghost jobs are viewed identically to normal jobs. However,
any intra-container scheduler that selects a ghost job to
execute instead suspends until the next time that it (the
scheduler) is invoked, which will occur when the ghost
job exhausts its budget or when a higher-priority job at
the same criticality level is released. This has the effect
of shifting higher-criticality slack, which is consumed by
lower-criticality tasks, earlier in the schedule. The budget
of the ghost job continues to be depleted until work of
equal or higher criticality commences execution on the
same processor. When the budget of the ghost job is
exhausted, it is removed from the system.

Rationale. Slack shifting allows tardy jobs at levels C and
D to execute sooner than they otherwise would, thereby
decreasing tardiness in the system. It also allows best-effort
jobs at level E to run earlier than they would if no slack
shifting occurred, improving response time.

Temporal isolation. Intra-container schedulers only sus-
pend (i.e., donate slack) during times for which an already-
completed task was provisioned to run, based on its WCET
value for that criticality level. Thus, our slack shifting
scheme does not violate temporal isolation requirements.

Example 2. Table 2 gives a five-criticality task system
provisioned for our architecture. Fig. 2 gives an example
schedule for this system. Note that in order to make our
example more palatable, WCETs were artificially restricted
to small values. In a real task system, the level-A WCET
for a level-A task is likely to be orders of magnitude greater
than its observed average execution time.

4. Schedulability

In this section, we prove that no level-A (level-B) task
misses a deadline if all level-A (level-A and level-B) tasks
execute for at most their level-A (level-B) WCETs. We
establish similar results for levels C and D, except at those
levels, only bounded tardiness is required, and level-C
and -D WCETs (respectively) are assumed in the analysis.
(No correctness proof is required for level E, as jobs at
this level are scheduled on a best-effort basis.) Level-A
correctness is straightforward: any correct cyclic executive
schedule remains correct regardless of levels below it,
since the level-A container (on each processor) is statically
prioritized over all lower-criticality containers.

4.1. Level B

The analysis for level B uses level-B WCET values (for
level-A and -B tasks), and assumes that those values are
not exceeded at runtime.

Recall that we limited the total utilization of level-A
and -B tasks on any processor to 1.0. Any periodic task
system with utilization at most 1.0 is schedulable using
EDF. Therefore, if EDF scheduling were used for all level-
A and -B tasks, level-B tasks would never miss deadlines.

Let us denote the interval of time between the release
and deadline of a job as the window of the job. Because of
the requirement that level-B periods be integer multiples
of the level-A hyperperiod, the window of each level-B job
overlaps (without overhang) the window(s) of any level-A
job(s) that may block it from executing. Thus, although a
level-A job may execute at a different time in its window
than it would under EDF (since table-driven scheduling
is used), it cannot reduce the amount of processor time
available to a level-B job within that level-B job’s window,
assuming level-B WCET values.

Therefore, no level-A job can cause a level-B job
that completed by its deadline under full EDF scheduling
to miss its deadline when level-A jobs are not EDF-
scheduled. This means that level-B jobs will not miss their
deadlines under our architecture (assuming level-B WCET
values for level-A and -B tasks).

4.2. Levels C and D

At levels C and D, some of the time on each processor
has already been consumed by levels A and B. Thus,
the schedules at levels C and D can differ significantly
from a typical G-EDF schedule in which all processors
are available at all times. For example, in Fig. 2, over the
interval [2, 3) both processors are available, whereas over
the interval [3, 4) only the second processor is available,
causing T8 to migrate. Therefore, we must use analysis
that takes into account restricted processor supplies. Such
analysis, for G-EDF, has been given by Leontyev and
Anderson [10].

Leontyev and Anderson considered a G-EDF-scheduled
system where the supply on processor k is characterized
by a service function [8]

βk(∆) = max(0, ûk · (∆− σk)) (1)

where ûk ∈ (0, 1] is the long-term available utilization on
processor k and σk is a blocking term related to the longest
duration of time when processor k can be unavailable.
σk must be chosen such that βk(∆) lower bounds actual
availability. Denote S as the task system under consider-
ation. Denote US as the sum of the m − 1 largest Ti.u
values for Ti ∈ S, and F as the number of processors
which may not be fully available. [10] demonstrates that
tardiness is bounded assuming

∑
Ti∈S Ti.u ≤

∑m
k=1 ûk

and
∑m

k=1 ûk−max(F −1, 0) ·maxTi∈S(Ti.u)−US > 0.
In our setting, choosing the proper parameters requires

analyzing the particular workloads of higher criticality

5



Crit. CPU T.p T.eA T.eB T.eC T.eD T.eE
T1 A 1 5 3 2 1 1 1
T2 A 1 10 4 2 2 2 1
T3 A 2 10 4 3 2 1 1
T4 B 1 10 – 2 2 1 1
T5 B 1 20 – 2 1 1 1
T6 B 2 10 – 3 2 1 1
T7 B 2 20 – 8 3 2 2
T8 C Global 10 – – 3 2 2
T9 C Global 15 – – 2 2 2
T10 C Global 20 – – 2 2 2
T11 D Global 5 – – – 2 2
T12 D Global 20 – – – 1 1

Table 2: Multi-criticality task system for Example 2.

T
1

T
2

T
4

T
8

T
9

T
1 0

T
5

T
1 1

50 10 15 20 25 30 35 40

E

T
1 2

A

B

C

D

(a) CPU 1

T
3

T
6

T
7

50 10 15 20 25 30 35 40

T
8

T
9

T
1 0

T
1 1

E

T
1 2

C

D

A

B

(b) CPU 2

Figure 2: Possible schedule for the task system in Example 2. Darker boxes indicate on-time task execution, while lighter boxes
indicate tardy task execution. Empty boxes represent slack shifting. Up-arrows indicate releases, while down-arrows indicate deadlines.

6



levels, but making level-C or -D assumptions about worst-
case execution times. To apply the above results to our
architecture, we extend the notation introduced above, by
allowing the criticality level L (C or D) to be specified,
e.g., we use ûLk instead of ûk. Denote L as the set of all
tasks running at level L. The result of [10] in our setting
implies that tardiness at level L is bounded assuming∑

Ti∈L

Ti.uL ≤
m∑

k=1

ûLk, (2)

m∑
k=1

ûLk − (m− 1) ·max
Ti∈L

(Ti.uL)− UL > 0, (3)

and no task at any level exceeds its level-L WCET.

We first consider level C. Denote HCk as the set of
all tasks on processor k above level C. Then ûCk =
1 −

∑
Ti∈HCk

Ti.uC . To illustrate how level-C analysis
is conducted, we consider the system in Example 2. To
analyze this system, we use the Ti.eC column of Table 2.
In particular,

ûC1 = 1−
(

1

5
+

2

10
+

2

10
+

1

20

)
=

7

20

and
ûC2 = 1−

(
2

10
+

2

10
+

3

20

)
=

9

20
.

Also, substituting into (2),

3

10
+

2

15
+

2

20
=

8

15
<

16

20
,

and into (3),(
7

20
+

9

20

)
− 1 ·

(
3

10

)
− 3

10
=

1

5
> 0.

Thus, tardiness is bounded at level C for Example 2.

To compute actual tardiness bounds for level C, σCk

must be determined for each k. The processor-k schedule
at levels A and B repeats at every integer multiple of
the hyperperiod h of the set of tasks HCk. We refer to
an interval [nh, (n + 1)h) for an arbitrary nonnegative
integer n as a cycle. σCk can be computed based on the
observation that the upper bound for long-term utilization
of tasks in HCk also upper bounds their utilization within
a single cycle. Specifically,

σCk ≤ 2h
∑

Ti∈HCk

Ti.uC

Equality would be achieved in the case where all execution
from HCk in one cycle occurred at its end and all execution
from HCk in the next cycle occurred at its beginning.
Further analysis allows tighter bounds for systems such as
that given in Example 2, because the worst-case situation
described here cannot happen, but such analysis is omitted

due to space reasons. Using equality provides valid, albeit
pessimistic, tardiness bounds. In our system, σC1 = 26
and σC2 = 22.

In the case of level D, σDk and ûDk are problematic
to compute. This is because level-C tasks may migrate, so
accounting for the supply on each processor independently
is not possible. Therefore, computing precise tardiness
bounds is difficult. Nonetheless, from (2) and (3), estab-
lishing that tardiness is bounded at level D (whatever the
bound) merely requires computing

∑m
k=1 ûDk, which is

equal to m −
∑

Ti∈HD
Ti.uD, where HD is the set of

tasks on all processors above level D. Because no precise
bound on tardiness is provided, only soft real-time tasks of
low criticality should be scheduled at level D. In the case
of the system in Example 2, we use the Ti.eD column of
Table 2, and we have

m∑
k=1

ûDk = 2−
(

1

5
+

1

10
+

1

10
+

1

10
+

1

20
+

1

10

+
2

20
+

2

10
+

2

15
+

2

20

)
=

49

60
.

Substituting into (2),

2

5
+

1

20
=

9

20
<

49

60
,

and into (3),
49

60
− 2

5
− 2

5
=

1

60
> 0.

Thus, tardiness at level D is bounded.

5. Future Work

Additional work is needed before our architecture could
be considered applicable for real workloads. Future re-
search effort can be broken down into two related but
distinct areas: implementation studies and enhancement of
the architecture.

Implementation studies. We plan to implement our archi-
tecture in LITMUSRT (LInux Testbed for MUltiprocessor
Scheduling in Real-Time systems) [7,14]. LITMUSRT is a
UNC-developed real-time operating system testbed based
on the Linux kernel. Our implementation will be used
for performance evaluations that will provide feedback on
the practicality of our architecture. Collecting overhead
measurements will be a significant portion of this work.

At a later date, we would like to investigate the pos-
sibility of implementing our architecture in an applicable
commercial real-time operating system. Because Linux is
not particularly well-suited for hard real-time tasks (largely
due to sources of unpredictability within the kernel) [6],
this would be a key step in demonstrating the feasibility

7



of our architecture for real-world use.

Architecture enhancement. A number of enhancements
to our architecture would expand the range of real-time
workloads that can be supported on multicore platforms.
Resource sharing, particularly among tasks of different
criticalities, is a prime example. Another area of interest is
enabling adaptivity, which is likely to be important for fu-
ture cyber-physical systems, which themselves must adapt
to changing environments. For example, in a UAV, when
previously-undetected enemy radar stations are located, it
might be useful to increase the processor share of a route-
planning task. Alternatively, if an enemy missile were to
be detected, in order for evasive action or communication
to be carried out rapidly, the ability to enact a mode change
(in which a new set of tasks replaces those currently being
scheduled) might be desirable.

Finally, we would like to obtain improved schedulability
results for our architecture. For example, we would like
to allow sporadic job releases (instead of requiring that
jobs be released on period boundaries) and constrained
deadlines (i.e., relative deadlines at most periods). We
would also like to tighten the tardiness bounds for levels
C and D.

6. Concluding Remarks

We have illustrated the challenges and potential rewards
of enabling the deployment of mixed-criticality workloads
on multicore platforms, and have specified an architec-
ture that addresses those challenges. The fundamental
insight exploited by our architecture is the notion of
high-criticality tasks as “generators” of slack that can
be reclaimed under the multi-criticality task model. Our
architecture allows appropriate scheduling techniques to
be employed for tasks of different criticalities, while pre-
serving temporal isolation. Furthermore, our slack shifting
technique alleviates much of the “unfairness” faced by
lower-criticality tasks that would otherwise have to wait
for more critical but less urgent higher-criticality work to
be completed. Finally, we have outlined important areas of
future research that are on the critical path to enabling the
employment of our architecture by future cyber-physical
systems.

References

[1] L. Abeni and G. C. Buttazzo. Integrating multimedia
applications in hard real-time systems. In Proceedings of
the 19th IEEE Real-Time Systems Symposium, pages 3–13,
December 1998.

[2] J. H. Anderson, S. K. Baruah, and B. B. Brandenburg.
Multicore operating-system support for mixed criticality.
In Proceedings of the Workshop on Mixed Criticality:
Roadmap to Evolving UAV Certification, April 2009.

[3] T. P. Baker and A. C. Shaw. The cyclic executive model
and ADA. The Journal Of Real-Time Systems, 1(1):7–25,
1989.

[4] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Pau-
nicka, P. Sarathy, J. Scoredos, et al. A research agenda
for mixed criticality systems, 2009. Available online at
http://www.cse.wustl.edu/˜cdgill/CPSWEEK09 MCAR/ as
of March 5, 2010.

[5] S. K. Baruah and S. Vestal. Schedulability analysis of
sporadic tasks with multiple criticality specifications. In
Proceedings of the 20th Euromicro Conference on Real-
Time Systems, pages 147–155, July 2008.

[6] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson.
On the scalability of real-time scheduling algorithms on
multicore platforms: A case study. In IEEE Real-Time
Systems Symposium, pages 157–169, 2008.

[7] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and
J. H. Anderson. LITMUSRT: A testbed for empirically
comparing real-time multiprocessor schedulers. In Proceed-
ings of the 27th IEEE Real-Time Systems Symposium, pages
111–126, December 2006.

[8] S. Chakraborty, S. Künzli, and L. Thiele. A general
framework for analysing system properties in platform-
based embedded system designs. In Proceedings of the
conference on Automation and Test in Europe, pages 10190–
10195, March 2003.

[9] U. C. Devi and J. H. Anderson. Tardiness bounds under
global EDF scheduling on a multiprocessor. The Journal of
Real-Time Systems, 38(2):133–189, 2008.

[10] H. Leontyev and J. H. Anderson. Generalized tardiness
bounds for global multiprocessor scheduling. The Journal
of Real-Time Systems, 44(1):26–71, February 2010.

[11] A. Mills and J. H. Anderson. A stochastic framework for
multiprocessor soft real-time scheduling. In Proceedings of
the 16th IEEE Real-Time and Embedded Technology and
Applications Symposium, April 2010. To appear.

[12] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-
source kernels: A resource-centric approach to real-time
and multimedia systems. In Proceedings of the SPIE/ACM
Conference on Multimedia Computing and Networking,
pages 476–490, January 2001.

[13] M. Spuri and G. C. Buttazzo. Efficient aperiodic service
under earliest deadline scheduling. In Proceedings of the
15th IEEE Real-Time Systems Symposium, pages 2–11,
December 1994.

[14] UNC Real-Time Group. LITMUSRT project. http://www.
cs.unc.edu/˜anderson/litmus-rt/.

[15] S. Vestal. Preemptive scheduling of multi-criticality systems
with varying degrees of execution time assurance. In Pro-
ceedings of the 28th IEEE Real-Time Systems Symposium,
pages 239–243, December 2007.

8


