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Summary & Conclusions — This paper describes our
approach to using commercial-off-the-shelf {COTS) products
in highly reliable systems. The methodology calls for multi-
level fault-protection. The methodology realizes that COTS
products are often not developed with high reliability in mind.
Nevertheless, by using multi-level fault protection, the same
level of reliability as the traditional full-custom fault toler-
ance approach can be achieved. This methodology allows more
freedom for design trade-offs among the fault-protection levels,
which can result in less complicated designs than the traditional
strictly-enforced fault-containment policy. This paper covers

our experiences & findings on the design of a fault-tolerant’

avionics bug architecture comprised of two COTS buses, the
IEEE 1394, and the I*C, for the avionics system of X2000 pro-
gram at the Jet Propulsion Laboratory. The X2000 design is
judicicus about ensuring the fault-tolerance provisions de not
cause the bus design to deviate from commercial standard spec-
ifications, so that the economic attractiveness of using COTS
is preserved. The hardware & software designs of the X2000
fault-tolerant bus are being implemented, and flight hardware
will be delivered to the Europa Orbiter missions. This work
provides an example of how to construct a highly reliable sys-
tem with low-cost COTS interfaces.

1, INTRODUCTION

Acronyms
COTS commercial off-the-shelf
I2C Bus Inter integrated-circuit bus
©JPL  Jet Propulsion Laboratory
RAM random-access memory
GMRAM  giant magnetoresistive RAM
FeRAM ferro electric RAM

In recent years, COTS products have found many
applications in space exploration. The attractiveness of
COTS is that low-cost hardware & software products are

widely available in the commercial market. By using
COTS through-out the system, one can appreciably reduce
both the development cost, the recurring cost, and most
importantly, the integration-and-test/equipment cost, of
the system. On the other hand, COTS are not specifically
developed for highly reliable applications such as long-life
deep-space missions. The real challenge is to deliver a low-
cost, highly reliable, long-term survivable system based
on COTS that are not developed with high-reliability in
mind. This paper reports our experience of using COTS
buses to implement a fault-tolerant avionics system for
the Deep Space System Technology Program (also known
as X2000) at the JPL. The X2000 avionics system design
emphasizes architectural flexibility & scalability, so that
it can be reused for multi-missions, to reduce the cost of
space exploration [1]. The advanced avionics technolo-
gles that enable the X2000 program are being developed
at the newly established Center for Integrated Space Mi-
crosystems, {CISM), a Center of Excellence at the NASA
JPL [2]. The main focus of CISM is the development of
highly integrated, reliable, capable micre-avionics systems
for deep space, long-term survivable, autonomaous robotic
missions [3, 4]. The X2000 Program is also participating in
the software-architecture development called the Mission
Data System architecture (MDS), which brings within a
common framework the software for hoth on-hoard avion-
ics as well as on-ground operations.

The X2000 architecture shown in figure 1 is a distrib-
uted, symmetric system of multiple computing-nodes and
device-controllers that share a common redundant bus ar-
chitecture. Most notably, all interfaces used in this dis-
tributed architecture are based on COTS;

- the local computer bug is the Peripheral Component In-
terface (PCI) bus;

- the system-buses are the IEEE 1394 bus and the 12C
bus.

Within each node, there is also a separate subsystem 12C
bus for sensors and instruments control (see figure 1). This
paper focuses on the architecture of the system bus.
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Section 2 outlines a methodology of applying COTS for
highly reliable system. Based on this methodology, sec-
tion 8 presents the current baseline for the X2000 First
Delivery avionics system architecture. Section 4 describes
how the X2000 Program uses COTS to implement a fault-
tolerant bus architecture for a scalable and distributed sys-
tem. Section B reports the status of implementation of this
bus architecture.

The hardware & software development of the COTS-
based fault-tolerant bus architecture is underway at JPL.
A model-based quantitative evaluation [14] shows that, for
an 1i-year mission, the reliability of a 32-node instance
of the COTS-based fault-tolerant bus architecture can re-
main greater than 0.9999 at the end of mission. In com-
parison, the reliability of a non fault-tolerant COTS-based
bus of the same size is less than 0.86 at the end of a mission
with the same duration.

2. USING COTS FOR
HIGHLY RELIABLE SYSTEM

JPL has a long history of successfully applying fault-
protection techniques in space exploration. One of the
most important techniques used by JPL, in design of space
vehicle fault protection, is fault containment. Tradition-
ally, a spacecraft is divided into fault-containment regions.
Rigerous design is used to ensure that no ‘effects of a fault
within a containment region’ can propagate to the other
regions. JPL has a policy of single fault tolerance in most
of the spacecraft design. This policy requires dual redun-
dancy of fault containment regions.

While these techniques have been very successful, they
cannot be easily applied in a COTS environment, because
COTS are not developed with the same level of rigorous
fanlt tolerance in mind. Hence, there are many fundamen-
tal fault tolerance weakness in COTS. For example,

the popular VME backplane bus does not even have
parity bit to check the data & address [11];

» IEEE 1394 bus (cable implementation) adopts a tree
topology in which a ‘single node or link failure’ partitions
the bus.

These fundamental weakness hinder rigorous enforcement
of fault containment. Worse yet, it is very difficult to mod-
ify COTS because:

1. The suppliers of COTS products have no interest in
changing their design, add any overhead, or sacrifice their
performance for a narrow market of high reliability appli-
cations.

2. Any modification renders the COTS incompatible with
commercial test equipment or software, and therefore dras-
tically diminishes the economic benefits of COTS.
Therefore, fault tolerance cannot easily be achieved by
a single laver of fault-containment regions that contains
COTS.

The COTS-hased bus architecture of the X2000 avionics
system has used multi-level fault protection to achieve high
reliability; its 4 levels are:

Level 1: Native Fault Protection

Most. COTS bus standards have some limited fault de-
tection capabilities. These capabilities should be exploited
as the first line of defense.

Level 2: Enhanced Fault Protection

An additional layer of hardware or software can be used
to-enhance the fault detection, isolation, and recovery ca-
pabilities of the native fault containment region. Exam-
ples are heartbeats, watchdog timer, and additional layer
of error checking code. It is important to ensure that the
added fault tolerance mechanisms do not affect the basic
COTS functions. This level is the most convenient one to
implement provisions for fault injections.
lLevel 3: Fault Protection by Design-Diversity

Many COTS have fundamental fault tolerance weakness
that cannot simply be removed by enhancing the native
fault protection mechanisms. These weakness usually are
related to single points of failure. One example is the tree
topology of the IEEE 1394 bus. Once the bus is parti-
tioned by a failed node, the nodes in different segments
cannot communicate with each other to coordinate a re-
covery effort. This is'a fundamental problem of the bus
topology which cannot be solved by the enhanced fault-
partition techniques. To compensate for such fundamental
weaknesses, a different bus with different topology mmst be
used to provide a communication path among the nodes
under those fault conditions, so that they can coordinate
the fault isolation & recovery. In particular, the I*C bus,
which has a multi-drop bus topology, is used in the X2000
architecture to assist the IEEE 1394 fault isolation & ve-
covery.

For buses using tree technologies, it is necessary to add
backup connections in the bus to tolerate failed nodes or
links. In X2000, backup connections are added to the
IEEE 1394 bus (figure 3). These connections are usually
disahled to avoid loaps, which are prohibited in the IEEE
1394 Standard. The backup connections can be selectively
enabled during fault recovery.

Level 4: Fault Protection by System Level Redundancy

The X2000 avionics system architecture is symmetric
and thus provides inherent redundancy. In addition, the
IEEE 1394/I2C bus set is replicated for system level fault
containment. The redundant bus set is in either ready or
dormant states, depending on the recovery time and other
system requirements. In either case, the redundant bus
set is a necessary resource for the fault recovery process.

3. OVERVIEW OF THE
X2000 AVIONICS ARCHITECTURE

Figure 1 shows the X2000 avionies architecture. It is
comprised of multiple Compact PCI based nodes con-
nected by a fault-tolerant system bus. A node can be
either:

« a flight computer,
- a global non-volatile mass memory,
- a subsystem microcontroller, or
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. a science instrument.

The fault-tolerant system bus is comprised of two COTS
buses:

- IEEE 1394 [5, 6],

< 12C (7, 8]

Both buses are multi-master and therefore support sym-
metric scalable and distributed architectures. Due to the
standard electrical interface and protocol of the COTS
buses, nodes complying with the bus interfaces can be
added-to or removed-from the system without impacting
the architecture. The capability of each node can be en-
hanced by adding circuit boards to its compact PCI bus

[9]. The spacecraft functions that are handled by the
X2000 architecture are:

- Spacecraft command and data handling,

- Telemetry collection, management and downlink space-
craft navigation and control, '

« Science data storage and on-board science processing,

« Power management and distribution,

- Autonomous operations for on-board planning, schedul-
ing, autonomons navigation fault-protection, isolation and
recovery, etc,

« Interfacing to numerous device drivers: both dumb and
intelligent device drivers.
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Figure 1: X2000 Avionics System Architecture

3.1 The IEEE 1394 Bus

The IEEE 1394 bus is the artery of the system, and
. can transfer data at 100, 200, or 400 Mbps. The X2000

First Delivery Project implements only the 100 Mbps data

rate. The IEEE 1394 bus has two kinds of implementa-
tions: cable and backplane. The cable implementation
has adepted a tree topology; the backplane implementa-
tion has a multi-drop bus topology. From the topologi-
cal viewpoint, many dosigners at JPL are more interested
in the backplane implementation because it resembles the
1553 bus used in the Cassini project [13]. Unfortunately,
although products of the backplane 1394 bus are available
[12], it is not widely supported in the commercial indus-
try, and thus cannot take full advantage of COTS. On the
other hand, the cable implementation has been enjoying
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a much wider commercial support. It has better perfor-
mance than the backplane implementation [5]. Therefare,
the cable implementation has been selected for the X2000.

The IEEE 1394 bus has 3 layers of protocal,

- physical,

- link, .

« transactions,

and supports 2 modes of data transaction,

- isochronous: guarantees on-time delivery but does not
require acknowledgment,;

- asynchronous: requires acknowledgment but does not
guarantee on-time delivery.

Isochronous messages are sent through channels, and a
node can talk-on or listen-to more than one isochronous
channel. Each isochronous node can request, and is allo-
cated, a portion of the bus bandwidth at the bus initial-
ization. Omnce every 125 usec (called isochronous cycle},
each isochronous node has to arbitrate, but is guaranteed
a time slot, to send out its isochronous messages if it has
been allocated a portion of the bus bandwidth. At the
beginning of each isochronous cycle, the root sends out a
cycle-start message and then the isochronous transaction
follows. After the isochronous transaction is the asynchro-
nous transaction.

Asynchronous messages are not guaranteed to be sent
within an isochronous cycle, Therefore, a node might have
to wait several isochronous eycles before its asynchronous
massage can be sent. The asynchronous transaction uses
a fair arbitration scheme, which allows each node to send
an asynchronous message only once in each fair arbitration
cycle. A fair arbitration cycle can span many isochronous
cycles, depending on,

- how much of each cycle is used by the isochronous trans-
actions,

+ how many nodes are arbitrating for asynchironous trans-
actions.

The end of a fair arbitration cycle is signified by an Arhi-
tration Reset Gap.

During the bus startup or reset, the bus goes through
an initialization process in which each node gets a node
ID. The root (cycle master), bus manager, and isochro-
nous resource manager are elected.

- The root mainly is responsible for sending the cycle-start
message and acts as the central arbitrator for bus requests.
» The bus manager is responsible for acquiring & main-
taining the bus topology.

« The isochronous resource manager is respounsible for al-
locating bus bandwidth to isochronous nodes.

The root, bus manager, and isochronous resource manger
are not pre-determined; thus any nodes can be elected to
take these roles if they have the capability.

3.2 The I?C Bus

The I2C bus, developed by the Philips Semiconductor
[8], is a simple bus with a data rate of 100 kbps. It has a
more traditional multi-drop topology. The I2C bus has 2
open-collector signal lines: '
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« a data line (SDA),

- a clock line (SCL).

Both signal lines are normally pulled high, When a bus
transaction begins, the SDA line is pulled down before the
SCL line. This constitutes a start condition. Then the
address bits follow; they are followed by a read/write bit.
The target node can acknowledge the receipt of the data
by holding down the SDA line in the next clock (called
acknowledgment bit). After that, 8 bits of data can be
sent followed by another acknowledgment bit. Data can
be sent repeatedly until a stop-condition occurs, in which
the source-node signals the end-of-transaction by a low-
to-high transition on the SDA line while holding the SCL
line high.

The I2C uses collision avoidance to resolve conflicts be-
tween master nodes contending for the bus. If two or more
. masters try to send data to the hus, the node producing a
1-bit loses arbitration to the node producing a 0-bit. The
clock signals during arbitration are a synchronized com-
bination of the clocks generated by the masters using the
wired-AND connection to the SCL line.

There are two applications of the I*C bus in this archi-
tecture, '

- gystem level: the bus is used to assist the IEEE 1394
bus to isolate and recover from faults; ‘

. subsystem level: a separate I*C bus is used to collect
cngineering data from sensors, and to send commands to
power switches or other equipment.

3.3 Description of Nodes

There are three basic types of nodes in the system:
. flight computer node,
- microcontroller node,
- non-volatile memory node.

The flight computer node consists of a high-performance
Power PC processor module (250 MIPS); 128 Mbytes of
local (DRAM) memory; 128 Mhbytes of non-volatile storage
for boot-up software and other spacecraft state data; an
I/0 module for interfacing with the IEEE 1394 and I2C
buses. All modules communicate with each other via a 33
MHz PCI bus.

The microcontroller node is very similar to the flight
computer node except that, to conserve power, the mi-
crocontroller has lower performance and less memory, It
is used to interface sensors & instruments with the IEEE
1394 and I2C bus.

The non-volatile memory node has 4 slices, each slice
contains 256 Mbytes of flash memory and 1 Mbytes of
GMRAM. The flash memory has much higher density and
is suitable for block data storage. However, it has a lim-
ited number of write cycles, and is susceptible to radiation
effects. The GMRAM has unlimited write cycles and is ra-
diation tolerant, but its density is much lower than Aash,
In X2000, the flash memory is used for software codes and
science data storage while the GMRAM is used to store
spacecraft state data.

The non-volatile memory slices in the non-volatile merm-
ory node are controlled by a microcontroller with the IEEE
1394 and I2C bus interfaces. :

The complete system is housed in a standard compact
PCI backplane chassis with 3U hoards.

4. DESIGN OF COTS FAULT-TOLERANT BUS

The COTS fault-tolerant bus architecture is comprised
of the IEEE 1394 and the I2C buses. A very detailed trade-
off study was conducted at the beginning of the X2000
First Delivery project to select the buses [16]. The IEEE
1394 bus was selected because of its,

- high data rate (100, 200, or 400 Mbps),

« multi-master capability,

- moderate power consumption,

+ strong comimercial support,

- relatively deterministic latency,

« availability of commercial ASIC cores (referred to as
Intellectual Properties or IPs in industry).

The advantages of commercial IPs are that they are
reusable and can be integrated in ASIC and fabricated
by rad-hard foundry to meet radiation requirements. The
I2C bus was selected because of its,

- very low power consumption,

« multi-master capability,

- availability of ASIC IPs,

» adequate data rate (100 kbps) for low speed data,

- simple protocal,

« strong commercial support.

The Applied Physics Laboratory (APL) of the Johns H()p-
kins University has developed a rad-hard I2C! based sensor
interface chip called Temperature Remote 1/Q (TRIO) for
the X2000 First Delivery Project.

Although the IEEE 1394 and I?C buses are very attrac-
tive in many aspects, they are not ideal buses in the clas-
sical fault-tolerance sense. The 1394 bus has limited fault-
detection capabilities, and has no explicit fault-recovery
mechanisms such as built-in redundancy or cross strap-
ping. In particular, the 1394 bus has a tree topology that
cant easily be partitioned by a single node or link failure.
The 12C bus Las almost no built-in fault detection except
an acknowledgment bit after every byvte transfer. How-
ever, it is selected mainly because of their low cost and
commercial support. Managing the tradeoffs effectively
is the characteristic of our approach to using COTS for
highly reliable systems; the techniques to compensate for
their weakness in fault tolerance is the main focus of this
research.

4.1 Failure Modes in the Data Bus of
Spacecraft Avionics Systems

The most common or critical faillure modes for data
buses in spacecraft avionics systems are the targets of the
fault-tolerance techniques described in this paper. NASA/
JPL, always performs Failure Mode Effect and Critical-
ity Analysis (FMECA) for every spacecraft design. Based
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on those experiences, the following failure modes for data
buses in avionics systems have been identified as either
‘frequently occurring’ or ‘critical to the survival of the
spacecraft’.

. Invalid Messages: Messages sent across the bus contain
invalid data.

. Non-Responsive: An anticipated response to a message
does not occur or return in time. ‘

. Babbling: Communication among nodes is blocked or
interrupted by uncontrolled data stream.

» Conflict of Node Address: More than one node has the
same identification.

4.2 Qverall Strategy of the COTS Fault-Tolerant
Bus Design

Applying the methodology in section 2, the overall strat-
egy of the COTS fault-tolerant bus design can he estab-
lished, and is shown in figure 2. The strategy first uses the
native fault-tolerance features of the IEEE 1394 and 12C
buses to detect fault-occurrences. An additional layer of
hardware & software fault-tolerance enhances the fault de-
tection & recovery capability of each bus. Then the IEEE
1394 and 12C buses assist each other to isolate & recover
from difficult faults. The entire set of IEEE 1394 and 12C
buses are duplicated at the system level to provide neces-
sary redundancy for fault recovery.

Systern Lavel Redundancy {Layar 4)

Mutualy Assisted Recavery Mutually Assisted Recovery
(Layer 3 Design Dk ersity) (Layar 3: Design Div ersity)
Enhanced Enhancad Enhanced Enhancad
Fault [« Faul -] Fault je—w  Fault
Tolerance. Tolerance Taierance Tolerance
{Laver 2) (Layer 2) (Layer 2 (Layer 2
1394 Bus 12C Bus 1394 Bus 12C Bus
Native MNative Native Mative
Fault Fault Fauit Fault
Tolerance Tolerance Tolerance Tolerance
(Layer 1) {Layer 1) (Layer 1) (Layer 1)

Figure 2. COTS Bus Architecture Fault-Tolerance Strategy

When a fault occurs in the primary bus set, it is de-
tected by either the native or enhanced fault protection
(layer 1 & 2). Simple recovery procedures such as retry
and bus reset are first attempted. If the simple proce-
dures cannot correct the problem, then the backup set of
buses is activated and the system operations are trans-
ferred to the backup bus (layer 4). At this point, the sys-
tem can have more time to diagnose the failed bus-set. If
the TEEE 1394 bus fails, the I2C bus is used to diagnose it
(layer 3). After the faulty node or connection is identified,
the system removes it from the bus topology by disabling
the connections attached to the node, and enable selected
backup connections around it. Similarly, if the I°C bus
fails, the IEEE 1394 bus can be used to diagnose it (layer
3). If a faulty I*C bus interface is found, the system can
disable the bus interface by commanding the node to shut

TThis assumes that the backup bus is healthy. Section 4.6 dis-
cusses bus-switching in more detail

off its I2C bus transmitter. The repaired bus-set becomes
the backup. Implementation of this bus architecture al-
lows the IEEE 1394 and I?C buses to be switched to their
backups independently to enhance recovery flexibility. Tn -
some scenarios, both the primary and backup IEEE 1394
buses are partitioned by a failed node Then, the switchover
to the backup bus fails. The primary bus must be diag-
nosed and repaired first so that the system operations ean
resume. After that, the backup bus can be repaired in the
background. Details of each layer in figure 2 are explained
as follows.

Layer 1: Native Fault Detection

The hasic fault detection mechanisms of the IEEE 1394
and I2C buses, eg, CRC and acknowledgment are used to
detect invalid messages or non-responsive failure modes.

Layer 2: Enhanced Fault Detection & Recovery

A layer of hardware & software fault tolerance is used
to detect more difficult failure modes such as babbling
and ‘conflict of node addresses’ in the IEEE 1394 and 12C
buses. Some low-level fault-recovery mechanisms are im-
plemented in each bus.

Layer 3. Fault Isolation & Recovery by Design Diversity

Since the IEEE 1394 bus adopts a tree topology, it is
very difficult to isolate or recover from a failed node or link
which partitions the bus network and cuts off communica-
tion between the sub-trees. The I1C bus is used to assist
the fault isolation & recovery by maintaining the comru-
nication of all nodes. Similarly, if the shared medium of
the 12C bus fails, the 1394 bus can assist in the fault iso-
lation & recovery of the I2C bus. '

Layer 4; Fault Protection by System Level Redundancy

The entire set of IREE 1394 and I?C buses are dupli-
cated to provide redundancy for fault recovery. For long-
life missions, only one set of the buses is activated in nor-
mal operation. If one of the buses in the primary bus-set
fails, the backup set of buses is activated, and the system
operations are transferred to the backup buses. After that,
the failed bus set is diagnosed & repaired. Even though
either one of the buses in the primary set can be indepen-
dently switched to its backup-bus, it is preferred to have
the entire bus-set switched. This engures that the diag-
nostic operations of the failed bus are transparent to the
system operations.

Specific implementation techniques of each layer are de-
scribed in sections 4.3 — 4.6.

4.3 Native Fault-Containment Regions

This section highlights the basic fault detection mecha-
nisms of the IEEE 1394 and I12C buses.

4.3.1 Highlights of the IEEE 1394 bus
fault-tolerance mechanisms

The 1394 bus standard has many built-in fault detection
mechanisms; they are summarized in this section. Details
of the acknowledgment and response packet error codes
are described in |5, 6].
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1. Data and packet header CRCs for both isochronous
& asynchronous transactions.

2. Acknowledgment packets that include error code to
indicate if the message has been successfully delivered in
asynchronous transactions.

3. Parity bit to protect acknowledgment packets.

4. Response packets that include error code to indicate
if the requested action has been completed successfully in
asynchronous transactions,

5. Built-in timeout conditions: response timeout for
split transaction, arbitration timeout, acknowledgment
timeout, ele.

A very hmport feature in the latest version of the IEEE
1394 standard (IEEE P1394a [10]) is the capability to en-
able or disable individual ports (a port is the physical in-
terface to a link). With this feature, every node in the bus
can .

- disable a link connected to a failed node,

« enable a backup link to bypass the failed node.
This feature is the basis of the IEEE 1394 bus recovery in
this bus architecture.

Another feature in the IEEE 1394 standard is the keep-
alive of the physical layer with cable power. This feature
allows the link-layer hardware and the host processor to be
powered off without affecting the capability of the physical
layer to pass-on messages. This is useful for isolating a
failed processor during fault recovery.

4.3.2 Highlights of the I?C bus fault-detection mechanisms

The only fault-detection mechanism of the 12C bus is the
acknowledgment bit that follows every data byte. When
a node (master) sends data to another node (slave), and
if the slave node is able to receive the data, it has to ac-
knowledge the transaction by pulling the data line (SDA)
to low. If the slave node fails to acknowledge, the master
node issues a stop condition to abort the transaction. Sim-
ilar situations can happen when the master node requests
data from a slave node. If the master fails to acknowledge
after receiving data from the slave, the slave stops send-
ing data. Subsequently, the master node can issue a stop
condition to terminate the transaction if the master node
is still functional.

4.4 Enhanced Fault-Containmoent Regions

Several mechanisms are added to enhance the fault de-
tection & recovery capability of the IEEE 1394 and I*C
buses.

4.4.1 Enhanced fault tolerance mechanisms for
IEEE 1394 bus

Heartbeat and Polling
The X2000 architectural design enhances the fault-
detection capability of the 1394 bus with heartbeat &
polling. Heartbeat is effective for detecting root failure;
polling can detect individual node failures. ‘
Since the cycle master (root) of the 1394 bus always
sends an isochronous cycle-start message every 125 usec

(average), it is reasonable to use the cycle-start message

as the heartbeat. All other ‘nodes on the bus’ monitor the
interval hetween cycle-start messages. If the root-node
fails, other nodes on the bus detect missing cycle-start
and report to the bus manager of the IEEE 1394 bus via
the I°C bus. Then the bus manager initiates the fault-
isolation process by sending an I2C message to interrogate
the health of each node.

Other failure modes can be detected by this method. For
example, multiple roots generate more than 1 hardware
heartheat {cycle start) within an isochronous cycle. By
comparing the actual heartbeat interval with a minimum

“anticipated heartbeat interval, the multiple heartbeats can

be detected.

The cycle-start can detect only hardware-level faults be-
cause it is automatically generated by the link layer hard-
ware. Therefore, polling should be used to detect faults in
the transaction or application layers.

Polling is effective in detecting non-responsive nodes.
If the non-responsive node is not the root, the hardware
heartbeat will not detect its failure. On the other hand,
polling can easily detect it non-responsiveness. Therefore,
the polling is preferred over the hardware heartbeat in
detecting non-responsive nodes.

The root node can send polling messages periodically
to individual nodes by asynchronous transaction. Since
asynchronous transaction requires acknowledgment from
the target node, a node failure can be detected by ac-
knowledgment timeout.

Isochronous Acknowledgment ‘

Sometimes, acknowledgment is desirable for isochro-
nous transactions, especially when the isochronous trans-
action requires on-time and reliable delivery. Therefore, a
confirmation-message type needs to be added to the ap-
plication layer, so that the targer node can report any
isochronous transaction errors to the source node. The
confirmation message itself can be either an isochronous
or asynchronous transaction, depending on the time criti-
cality. The data field of the original isochronous message
contains the source node ID; thus the target node knows
where to report the isochronous transaction errors. If the
confirmation message containg an error code, the source
node can retransmit the message in isochrenous or asyn-
chronous mode as appropriate.

Link Layer Fail-Silence

The root node of the IEEE 1394 bus periodically sends
a fail-silence message to all nodes; every node in the bus
has & fail-silence timer in the application layer to moni-
tor this message. Upon receiving the message, cach node
resets its fail-silence timer. If one of the nodes babbles
because of a link-layer or application-layer failure, the fail-
silence message is blocked or corrpted. This causes the
fail-silence timer in each node to time out. Subsequently,
the fail-silence timer disables the hardware of its own link
layer and thus inhibits the node from transmitting or re-
ceiving messages (the ability of the physical layer to pass
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on a message is unaffected). Eventually, after a waiting
period, the link layers of all nodes including the babbling
node are disabled and the bus becomes quiet again. At
this time, another timer in the root unmutes the root it-
sclf and sends a Link-on packet {(a physical layer packet)
to individual nodes. Upon receiving the Link-on packet,
the physical layer of a node sends a signal to awaken its
link layer. If a node causes the bus to fail again while its
link layer is re-enabled, it is identified as the failed node
and is not enabled again. If the root itself is the babbling
node, other nodes detect the unmute timeout and issue a
bus reset.

Watchdog Timers

The IEEE 1394 standard has specified many watchdog
timers. Additional watchdog timers that are related to
fault detection of the IEEE 1394 bus include the following
types.

. CPU Watchdog Timer: A hardware timer to monitor
the health of the host CPU (microprocessor or microcon-
troller). This watchdog timer is an incremental counter
and must be reset by the CPU periodically. If the CPU
fails to reset this watchdog, an overflow occurs which then
triggers a local reset. '

- Poll Response Timer (in Root Node): A software timer
monitors the response tlme of polling message on the 1394
bus.

4.4.2 Enhanced fault tolerance mechanisms for I°C Bus

Protocol Enhancement

A layer of protocol is added to the I?C bus. This proto-
col includes a byte count after the address and two CRC
bytes after the data. X2000 design also uses special hard-
ware message commands to control critical functions, For
these messages, command is sent followed by its comple-
ment to provide one more layer of protection.

Byte Timeout

The I2C bus permits a receiving node (slave or master)
to hold down the clock signal (SCL) as a means to slow
down the sending node (master or slave}, This allows a
fast node to send data to a slow node. However, a failed
receiving node can cause a stuck-at-low fault on the SCL
signal, so that the sending node might have to wait in-
definitely. To recover from this failure mode, every node
needs to include a byte timeout timer to monitor the du-
ration of the SCL signal. When the byte timeout timer in
a node (including the faulty node) expires, it disables the
circuitry of the SDA and SCL transmitters. After all nodes
have disabled their SDA and SDL transmitters, a recov-
ery procedure similar to that in the fail-silence mechanism
{see next) is used to disable the failed node.

Fail Silence

One node in the I2C is designated as the controlling
master. The contrelling master periodically sends a fail-
silence message to all I°C nodes. All nodes monitor this
" message with an I°C bus fail-silence timer. Upon receiving
the message, each node resets its [2C bus fail-silence timer.

If one of the nodes is babbling so that the fail-silence mes-
sage is blocked or delayed, the I*C bus fail-silence timer of
cach node times-out. Subsequently, the bus transmitters
of each node are disabled to inhibit any transmission of
messages. However, the bus receiver of each node is still
enabled so that it can receive commands for fault recovery
later on. After a waiting period, the bus transmitters of
all nodes, including the babbling node, are disabled and
the bus is quiet again. At this time, another timer in the
controlling master node unmutes the node itself and sends
a message to re-enable the other nodes individually. If a
node causes the bus to fail again while it is enabled, it
is identified as the failed node and is not enabled again.
If the Controlling Master itself is the failed node, other
backup nodes, such as the bus manager or the isochronous
resource manager of the IEEE 1394 bus, detect the un-
mute timeout, and promote themselves as the controlling
master according to a pre-determined priority.

4.5 Fault Protection by Design Diversity

By working together, the IEEE 1394 and I2C huses can
igsolate and recover from many faults that might not be
possible if each bus is working alone. The 3 failure-modes
that can be isolated & recovered by the cooperation of the
buses are listed here.

Non-Responsive Failures

In the IEEE 1394 bus, when a node or one of its links
fails in the non-responsive mode, it cannot respond to re-
quests, and messages cannot pass through the node, The
existence of the failure can easily be detected by the

+ bus timeout,

+ message re-transimission,

- heartbeat, or

+ polling.

In general, the failed node is relatively easy to isolate. If
the processor or link layer of the node failg, it is the only
non-responsive mode, If its physical layer fails, then all
the nodes in the sub-tree under it become non-responsive
to the requests from the root node. Therefore, the prime
suspect is usually the non-responsive node nearest to the
root. However, to recover from the fault is not trivial if
the fault is in the physical layer because the tree topology
of the hus has been partitioned into 2 or 3 segments by the
failed node. The nodes in a segment cannot communicate
with the nodes in the other segments. Consequently, the
root node cannot command some of the nodes to change
bus topology if they belong to another segment. It might
be possible to devise distributed algorithms so that each
node can try different link configurations to re-establish
the connectivity. However, these algorithms uvsually are
rather complicated, and their effectiveness is difficult to
prove, :

Under these circumstances, the I*C bus can facilitate the
communication among all the nodes. The root-node first
interrogates the health of the nearest non-responsive node
(the prime suspect} through the I*C bus. If the node does
not respond, or if its response over the I2C bus indicates
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any internal or physical connection failures, then the root
node can ‘send I°C messages to the other nodes’ and ‘com-
mand them to connectivity their links to bypass the failed
node’. This is done by disabling the active connections at-
tached to the failed node and enabling the backup connec-
tions to reconnect the separated segments. If the prime-
_suspect node is fault-free, then the root can repeat the
interrogation (and recovery procedure} on the other nodes
in the separated sub-trees.

Similarly, if a node in the IC bus becomes non-respon-

sive, the source node can 7

- interrogate the health of the target node through the
IEEE 1394 bus,

. command the target node to reset its I2C bus interface,

- request the target node to retransmit the message,

. command the target node to shut off its bus transmitter
if retransmission fails.

IEEE 1394 Bus Physical Layer Babbling

The fail-silence technique is effective in handling bab-
bling-failures in the I?C bus and in the link or application
layers in the IEEE 1394 bus. However, it is not effective in
handling babbling in the physical layer of the IEEE 1394
bus. The physical layer of the IEEE 1394 bus is rather
complicated and contains state machines; thus a transient
fault could cause it to babble. Such failures cannot be
handled by fail-silence, because if the physical layer is si-
lenced, it cannot pass-on messages, and thus causes bus
partitioning, In this case, each node can check its own
physical layer (eg, read the physical layer registers). If the
physical layer of a node is faulty, the processor of the node
can issue a physical-layer reset to correct the problem. If
the physical-layer fault is permanent, then the node has to
inform the root node via the I2C bus. Subsequently, the
root node can command other nodes via the I?C bus to
reconfigure the bus topology to bypass the failed node.

Conflict of Node Addresses

The address of any node in the IEEE 1394 or I2C buses
can be corrupted by permanent-fault or single-event upset.
If the faulty address coincides with an existing node ad-
dress, any read-transaction to that address is corrupted by
bus conflict from the two nodes, and any write-transaction
goes to both nodes, and can have unpredictable conse-
quences. Hence, it ig difficult to disable the fault node
by the bus itself. However, with the redundant IEEE
1394/T2C bus set, this kind of failure can be handled
through using one bus to isolate and then disable a faulty
node on the other bus, so that the erroneously duplicated
node address can be eliminated.

4.6 Fault Protection by System-Level Redundancy

The COTS bus set is duplicated to provide systeni-level
fault protection. Using the redundant COTS bus set to
handle faults is explained in section 4.2.

To enhance the effectiveness of system-level redundancy,
a special tree topology called stack-tree [14] is employed.
This topology permits the IEEE 1394 bus in the backup

bus set to initially connect the nodes in such a way that any
branch node in the IEEE 1394 bus of one bus set is a leal
node in the other bus set. As mentioned in section 4.2 and
described in detail in [14], backup connections {disabled)
are added to the IEEE 1394 bus in each bus set to allow
the bus network to be reconfigured via port-disabling and
port-enabling. In particular, when a node failure cceurs,
it is first examined whether the failed node is a branch
node in the active bus and a leaf node in the backup bus.
If this is the case, recovery is accomplished by switching
to the backup bus and then reconfiguring the failed bus in
background. However, if the failed node is a branch node
for both buses, then the recovery begins with reconfiguring
the failed active bus. Should another node failure occur
subsequently, the same recovery rule is applied.

Backup Connections (Dissbled)

Bus 1 Branch
Bus 2 Leal

e

120

Hus 4 Branch
Bus 2 Leaf

Bus 1 Root
Bus 2 Leal

|
:

7

oo

CESERRRY LSO

RO

¥R \L
SEVONR
o mi

Bus 1 Leaf
Bus 2 Branch

Bus 1 Leaf
Bus 2 Branch

Bus1 Leal
Bus 2 Root

| Bus1 Leaf
Bus 2 Branch

Figure 3; Stack-Tree Topology of IEEE 1394 Bus

4.7 Fault Recovery under Catastrophic Failure Conditions

Under catastrophic failure conditions such as bus power
failure, both COTS bus sets can fail such that ‘all com-
munication among the nodes’ is lost. To re-establish the
communication, each node can execute a distributed re-
covery procedure that consists of a sequence of link en-
able/disable steps. The ‘enabled links of all the nodes in
each step’ form a bus configuration.” If the critical nodes of
the systemn can communicate with each other in one of the
bus configurations, further fault recovery procedures can
follow. Unfortunately, this approach requires rather tight
synchronization among all the nodes, which is very difficult
to achieve when all bus communications are lost. Because
the cause of the catastrophic failure might not be within
the avionics system, there is no guarantee that the dis-
tributed recovery-procedure will succeed. Therefore, this
approach is only the last recourse io save the spacecraft.

5 CURRENT STATUS OF THE FAULT-TOLERANT
COTS-BASED BUS ARCHITECTURE
IMPLEMENTATION

The X2000 Program at JPL has already implemented
some of the fault-tolerance techniques in this paper; the
rest of the techniques are stili being implemented. The -
implemented techniques include:
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. the native fault-detection features of the buses,

. fail silence,

. protocol enhancement,

- watchdog timers [15].

A testbed will be completed in early year 2000, and sev-
eral levels of simulation models are being developed. The
flight version of the system will be delivered to the Furopa
Orbiter mission by the end of the year 2001.

As the testbed and simulation models are completed,
the design techniques in each level of fault protection will
be verified by fanlt injection under various fault scenar-
ios. The effectiveness of the multi-level fault protection
methodology will be measured by its fault coverage. The
implementation and test results will be reported in future
papers. ‘
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