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Ridges and valleys on digital images are found by looking for zere crossings of the first
directional derivative taken in a direction which extremizes the second directional derivative.
Computation of the required directional derivative is accomplished by fitting a two-variable
cubic polynomial to each neighborhood of the image. Results are shown for a face image and

an airphoto scene. It indicates that the technique has a good ability 1o [ind ridges and vallcys.

1

1. INTRODUCTION

Computer vision requires the development of an algorithm to explain (for any
digital image) the cause of the spatial distribution of its gray tones. The explanation
must be in terms of the shape and reflectance of the observed objects, the position of
the ilumination source or sources and the viewing direction of the camera, For
elongated objects which have curved surfaces with a specular reflectance function,
the locus of points on their surfaces having surface normals pointing in the direction
of the camera generate pixels on a digital image which are ridges. Similarly, for
objects which have curved surfaces with some degree of Lambertian reflectance, the
locus of points on their surfaces having surface normals pointing in the direction of
a point light source generate pixels on a digital image which are also ridges. Linearly
narrow concavities on an object surface (such as cracks) are typically in shadow and
generate pixels on a digital image which are valleys. Line and curve finding play
universal roles in object analysis. Therefore, one important part of the computer
vision algorithm must be ridge and valley classification of pixels. This classification
task is addressed in this paper. ' ,

What is a ridge or valley in a digital image? The first intuitive notion is that a
digital ridge (valley) occurs when there is a simply connected sequence of pixels
having gray-tone intensity values which are significantly higher (lower) in the
sequence Lhan those neighboring the sequence. Significantly higher or lower may
depend on the distribution of brightness values surrounding the sequence as well as
the length of the sequence.

The facet model (Haralick [1]) can be used to help accomplish ridge and valley
identification. The essence of the facet model is that any analysis made on the basis
of pixel values in some neighborhood has its final authoritative interpretation
relative Lo the underlying gray-tone intensity surface of which the neighborhood
pixel values are observed noisy samples.

To use the facet model we must first translate our notion of ridge and valley to the
continuous surface perspective. Here the concept of line translates in terms of
directional derivatives. 1l we picture ourselves walking, by the shortest distance,
across a ridge or valley what we would do is walk in the direction having greatest
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ressed as a linear combination of the tensor products of S e i
; ﬂ@ﬂﬂﬁ]&k;ﬁf up to degree three (Haralick [2]). These forms are often used in
statistical regression problems (Draper and Smith [4]). Figure 1 illustrates the masks
used to compute the coefficients ol the polynomials in the natural basis set
a,rertrec 3, r2, ret, ¢*) for the 5 X 5 neighborhood.

Section 2 discusses the cancept of directional derivatives and derives an expression
for ihe direction which cxtremizes the second direction derivative. Section 3 dis-
cusses how the expressions derived in Section 2 can be applied to fitting the

coefficients of the facet model.

exp

2, DIRECTIONAL DERIVATIVES

The first directional derivative of a function f in the direction o at row, column
position r, ¢ is denoted by f!(r, ¢) and is defined by

\ . f{r+ dsima,c+ deos o) — Flr.a)
fa‘\rvc)_jl_]}}) d . (U
From this it follows that
f;(r,c)=%{(r,c)sina +%(r,c}cosa (2)

and _
. a2 . g2 . a’.‘
fi(re)= a—:—;(r c)sin‘a + 2 o ;C(r, ¢)sinacos a + Ec—jz:(r, c)cos?a.  {3)

Rearranging the expression for f; we find that the second directional derivative
can be expressed as a linear combination of two terms, the first term being the
Laplacian of f and not depending on and the second term depending on a:

7
18y azf) 1(321 5--2f) D P
R [ Pl iy D L SRl + (4
fa 2(E?r2 act] 2\ac ot cosje [ﬂrggsma (4
C.

The direction @ which extremizes f; can be determined by differentiating Fir with
respect to g, setting the derivative to zero, and solving for a: '

afs iy d ., af
e ( porilee )sm o« + 2 EPl (5)
Lmpe— .
Therefore, Ao el

2 2
M - —a_j:)/D’ (6)

sinfa = + (—29%/3rdc)/D  and  cosa = i (
‘ grt 3¢t

where D = \/2(32}'/3:' ac) + ((8%4/0r?) - (Ezfjacl))l. It is easy to see that
when the plus signs are taken,

2
_a_.f.i>0
da
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Laken,
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' indicating that the extremum is a relative minimum, and when the minus signs are
taken,

61 I

_L",_ <0

dat

indicating that the extremum is a relative maximum. Also, the direction a which
makes f," a maximum differs from the a which makes f," a minimum by # /2 radians.

3. RIDGE~VALLEY IDENTIFICATION

To identify a pixel as a ridge or valley, we set up a coordinate system whose origin
runs through the center of the pixel. We select a neighborhood size to estimate the
fitting coefficients of the polynomials, Using the fitted polynomials, we can compute
all second partial derivatives at the origin, from which the two directions of the
extremizing o« can be computed by Eq, (6). ‘

Having a direction a we next need to see if by traveling along a line passing
through the origin in the direction @, the first directional derivative has a zero
crossing sufficiently near the center of the pixel. If so, we declare the pixel to be a
ridge or valley. Of course, if in one direction we find a ridge and in the other we find
a valley then the piacl is a suddle point.

To express this procedure precisely and without reference to a particular basis set

»olynomials tied to a neighborhood size we will rewrite the fitted bicubic surface
i the canonical form

Flrie) =k, + kor + kye + kyr? + kyre
+hoo? + ko + kyrie

+kgre? + ko’ (7
Then, & = = Jtan ™"k /(kg — k). L Bl | aha
To walk in the direction «, we ¢onstrain r and ¢ by /, T 40 ( 907
r=psina and €= pcosa.. .; Ao - 'L" 45 5

Therefore, in the direction a, we have

fulp} =40 + Bo* + Cp + R, (8

where

A = (kysin'a + kysin’weos @ + &ocoslasin e + kygcos? o),
B = (k sin’x + k,sinacos a + kgcosla),

C = k;sina + kycos a.

The first directional derivative in direction « is given by

falp) =340+ 2Bp + C (9)

B
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and the second directional derivative in the direction « at p away from the center of
the pixel is given by L

4
f7(p) =2%dp + B. (10)

At those positions for p which make f;(p) = 0, the value of /'(p) is propertional t¢
the curvature of the surface. If B? — 44C > 0, the largest magnitude root p, of Eq.
{8) can be found by

B slge € B) (Rire! - B — sign{BWVB: — 44C
o I A T p; = e . (11)
al= __?Au e 2A ‘
The smallest-magnitude root p, can be found by " oeibeae kY
1% e b __%;F
SRR T P R

¢ \ X -Q;(_i J y

If the smallest-magnitude root of (&) is sufficiently close to zero, the center point

of the pixel, we declare the plm:l as a ridge or valley depending on the sign of the

second directional derivative. Pixels which are both ridges and valieys can be
declared as saddles.

4, PROBLEMS

There are two problems which arise in the application of the concepts in Sections
2 and 3. One anises out of the definitions for ridge and valley, The other arises from
the fitting. First we dlscuss the problems in definition, then the problem of the
fitting.

Although it might seem sufficient to define a ridge or valley to occur on any
surface point which has a zero-crossing of the first directional derivative taken in the
direction extremizing the second directional derivative, there are nonpatholegical
simple surfaces for which every point satisfies the definition. One class of such
surfaces has the radially symmetric form f(r? + ¢?). At cach point {r, ¢) the
orthogonal directions extremizing the second directional derivative either point
radially towards the origin or point tangemtially to the radial direction. The tangen-
tial direction has of necessity a zero-crossing of the first directional derivative since
the gradient vector points radially.

We have found two criteria to partially help solve this problem. The first criterion
requires that a ridge or valley have a sufficiently small gradient-te-curvature ratio,
typically smaller than four. The second criterion requires that the angle the gradient

g 0 0 1 0 0 0 10 o 0o 1 0 0
000 10 00 1 0 0 01000
¢ 01 090 0L 0 OO 1 0000
01 600 100 0 O 00 0 0 0
1 0 0 0 0 0000_0 0O 0 0 0 0O
(2) (&) (c)

F1. 2. Three 53 X 5 neighborhoods of ideal lines which are just translates of one another.
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vectors make with each other on each side of the ridge or valley be sufficiently large, i i
We take “on each side of the ridge” to mean 1.5 pixels away and a sufficiently large :
angle 1o be 30 degrees. . ' 4
The problem due to fitting can be understood by examining what the fit does to a s i
simple one-pixel wide white line on a uniformly dark background. Suppose the 4 ¢
mixels on the line have a value of zero, Figure 2a shows a 5 x § window of such a ‘ ig f
e at a 45° orientation, Computing the coefficients of the it by taking the sums of | i
nroducts of the 5 X 5 window with each of the masks in Fig. 1 yields the cubic fit " k i
12+ O.1re where r,e = 2, — 1.0, 1,2, It is clear that the actual line has no G\T'{&'ﬂ!‘m ;Qé_ !
«haracter of a saddle surface but that the fit is indeed a saddle surface, pcﬂa,f% ' E
This pathologic behavior is characteristic of what happens in a cubic fit whenever O3 k0, Ave |
he it is to data which is comparatively simple and piccewise constant. Figures 2b 7 S f
:nd ¢ show the images of two translations of the line in Fig. 2a. Figures 3a and b i
v rface plots for the respective fits. Notice that for the case of Fig. 3a the fit is ’ !

reasofiable while for Fig. 3bitis not, 1 j [
It 15 clear that more work needs to be done regarding the obtaining of fits which 3 ;
wetain the essential character of the discretized data. Questions needing answers
aclude: What are the most appropriate basic functions? What are the most
ippropriate inner products with respect to which the fit is 1aken? 3
We have not found a solution to the fitting problem. The best we have been able 5 {
10 do is 10 try to disregard some of the pixels classified as ridges or valleys due 1o
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FIG. 5,—Continyed,

artifacts of the fit by using a criterion of depth of valley or height of ridge. If the
depth is too small, then the classification of the pixel is disregarded. Depth D is
casily defined for the one-dimensional cubic polynomial of Eq, (8) as the difference
in the value of its stationary points D = [falor) = £o(0,)l

[/

L@?n_,-g 5 rell ot

5. RESULTS

shows the ridges and valleys by themselves, the ridges being brighter and the valleys
s 73Iarker. Notice how the highlights are ridges and the shadow lines are valleys.

“ohiai g $ used for fitting, and tlic depih
‘hicshold was set 0 one. The interval in which a zero-crossing has to oceur js
(—0.85, +0.85). The gradient magnitude-to-curvature ratio had to be less than four,

and the angle between the gradient vectors at a distance of 1.5 pixels on each side of
the ridge or valley had to be greater than 30°

The second image of a road scene is show
and valleys overlayed and Fig. 5¢ shows t

nin Fig. 5a. Figure 5b shows the ridges
he ridges and valleys alone. Notice the
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1 1.
nd valleys and how they seem to alternate. It-s

d valleys are placed where they should l
the ridges and valleys determines ! !

relative connectedness of the ridges 4
clear examining the overlay that ridges an
and that in some sense the placement of

essential character of the image. The results of Fig. 5 were obtained by using a9 >
neighborhood for fitting. The depth threshold was set o 1en, and the interval-+
which the zero-crossing had lo occur was (— 1., + 1.). The gradient magnitude»'ﬁl
curvature ratio had to be less than four and the angle between the gradient vector
a distance of 1.5 pixels on each side of the ridge or valley had to be greater than 3

-

6 RELATED LITERATURE
sification scheme discussed here is the

presented by Paton [3] and Hsu et al. [5]. Paton uses a quadratic surface fit .
defines a ridge or vailey to exist at any pixel whose surface fit has a signific
quadratic component most of whose energy is directed in one direction. Paton |

the continuous least squares fit formulation in setting up the surface fit equati-+
We use the discrete least squares fit formulali

\ on. Because Paton's surface is
quadratic, the ndge-valley definitions can only apply to the center point ofar
Because our surface fit is cubic,

we are able to classify a pixel as a ridge or vall P

there is 2 ridge or valley anywhere in the area of the pixel.

Hsu et al. [5] also use a quadratic approximation, but (as we do) use a dis. !
least squares formulation. Their paper also does more than labeling. They link ¢ F_a
and valleys together in a web network and use this representation o approxi;-
the image. 1'
|-
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