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Abstract

A majority of pre-operative planning and navigational guidance during computer assisted orthopaedic surgery routinely uses three-
dimensional models of patient anatomy. These models enhance the surgeon’s capability to decrease the invasiveness of surgical proce-
dures and increase their accuracy and safety. A common approach for this is to use computed tomography (CT) or magnetic resonance
imaging (MRI). These have the disadvantages that they are expensive and/or induce radiation to the patient. In this paper we propose a
novel method to construct a patient-specific three-dimensional model that provides an appropriate intra-operative visualization without
the need for a pre or intra-operative imaging. The 3D model is reconstructed by fitting a statistical deformable model to minimal sparse
3D data consisting of digitized landmarks and surface points that are obtained intra-operatively. The statistical model is constructed
using Principal Component Analysis from training objects. Our deformation scheme efficiently and accurately computes a Mahalanobis
distance weighted least square fit of the deformable model to the 3D data. Relaxing the Mahalanobis distance term as additional points
are incorporated enables our method to handle small and large sets of digitized points efficiently. Formalizing the problem as a linear
equation system helps us to provide real-time updates to the surgeons. Incorporation of M-estimator based weighting of the digitized
points enables us to effectively reject outliers and compute stable models. We present here our evaluation results using leave-one-out
experiments and extended validation of our method on nine dry cadaver bones.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In surgery, the computerized visualization of three-
dimensional patient data models has both pre- and intra-
operative purposes. Pre-operatively, simulators may be
used to train practitioners in basic surgical tasks as well
as complete interventions. Patient specific models allow
the practice of complex procedures prior to working with
the patient directly. This could be used for effective diagno-
sis and procedural planning methods. Intra-operatively, it
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presents opportunities in navigation by augmenting the
surgeon’s view of the operating field with computer-gener-
ated data. The common approach to obtain 3D models is
to use imaging techniques such as CT or MRI scans. These
have the disadvantage that they are expensive and/or
induce high radiation doses to the patient. Additionally a
number of orthopaedic surgeries such as total hip arthopl-
asty (THA) and total knee arthoplasty (TKA) do not war-
rant a pre or intra-operative scan. The alternative is to
build a statistical deformable model and adapt it to the
patient anatomy.

Statistical shape analysis (Dryden and Mardia, 1998;
Kendall, 1989; Small, 1996) is emerging as an important
tool for understanding anatomical structures from medical
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images. Statistical models give an efficient parameterization
of the geometric variability of the anatomy. Model based
approaches are popular (Kelemen et al., 1999; Turk and
Pentland, 1991; Cootes et al., 1994) due to their ability to
robustly represent objects. Intra-operative 3D anatomical
visualization can be potentially achieved through the use
of statistical shape models. Statistical model building con-
sists of establishing legal variations of shape from a train-
ing population. The statistical model is then adapted, or
fitted to the patient anatomy using intra-operatively digi-
tized bone surface points. Thus the aim of statistical shape
model fitting is to extrapolate from an extremely sparse set
of 3D points a complete and accurate anatomical surface
representation. This is particularly interesting for mini-
mally invasive surgery (MIS), largely due to the operating
theater setup. Statistical modeling technologies allow min-
imal intrusion on the surgical environment as 3D comput-
erized models may be directly injected into the scene,
enabling enhanced visualization.

Extrapolation via principal component analysis (PCA)
based statistical shape models has been explored by several
scientists. Fleute and Lavallée (1998) fit the deformable
model surface to intra-operatively digitized point data via
jointly optimizing deformation and pose. This technology
developed by Fleute et al. has been clinically evaluated
and these results have been published (Stindel et al.,
2002). Chan et al. (2003) optimize deformation and pose
separately using an iterative closest point (ICP) method.
In our prior work (Rajamani et al., 2004b) we proposed
to iteratively remove shape information coded by digitized
points from the PCA model. The extrapolated surface is
then computed as the most probable surface in the shape
space given the data. Unlike earlier approaches, this
approach was also able to include non-spatial data, such
as patient height and weight. It is applicable for very small
set of known points.

We present here a novel bone deformation method that
can seamlessly handle both small and large sets of digi-
tized points and provide real time interactivity. We have
formulated the problem as a least squares error minimiza-
tion with additional regularization terms that computes
the Mahalanobis distance of the predicted model (Raja-
mani et al., 2004a). We solve for the shape parameters
that minimize the residual errors between the recon-
structed model and the cloud of random points. The nov-
elty is that the Mahalanobis distance term enables stable
prediction with minimal number of known surface points.
In addition, the computation is performed in real time as
shape parameters are determined by solving a single linear
system. The formalization also enables the incorporation
of the complete set of eigenvectors for the shape estima-
tion. This scheme was then improved to have better con-
vergence behaviour by having an additional parameter in
the objective function that relaxes the Mahalanobis dis-
tance term as additional points are digitized (Rajamani
et al., 2004c). As more information in terms of additional
digitized points is received we relax the constraint on the
surface to remain close to the mean and allow it to
deform so that the error between the predicted surface
and the set of digitized points is minimized as far as pos-
sible. Finally, the usage of M-estimators based weighting
enables for a smart estimation mechanism that is robust
to outliers.

Surface points are typically acquired by use of a tracked
digitizing pointer. It can, due to limited surgical access, be
difficult to acquire a set of points that sufficiently spans the
patient’s anatomy to ensure accurate shape prediction of a
given statistical model. Hence we explored using ultra-
sound imaging for non-invasive intra-operative surface
points digitization. We briefly illustrate the application of
our deformable bone models concurrently with automatic
segmentation of 2D B-mode ultrasound contours (Kowal
et al., 2003), to provide for a rapid, automatic intra-opera-
tive visualization for navigation and planning especially in
minimally invasive orthopaedic surgery.

This paper is structured as follows. Section 2 briefly
describes model construction using principal components
and outlines the method we chose for building our model.
In Section 3 we describe in detail the evolution of our bone
deformation algorithm. In Section 4 we present our evalu-
ation results using leave-one-out experiments, extended
validation of our method on plastic and dry cadaver bones
and finally application of our deformation algorithm in
conjunction with ultrasound contours resulting in rapid,
automatic intra-operative visualization. We conclude by
discussing the results and limitations and possible exten-
sions of our work.

2. Statistical model construction

The first step is to build a statistical shape model from a
training database. Several different geometric representa-
tions have been used to model anatomy. Bookstein
(1986) uses landmarks to capture the important geometric
features. The active shape model (ASM) of Cootes and
Taylor (Cootes et al., 1995) represents an object’s geometry
as a dense collection of boundary points. Cootes et al.
(1998) have augmented their statistical models to include
the variability of the image information as well as shape.
Kelemen et al. (1999) use a spherical harmonic (SPHARM)
decomposition of the object geometry. Recent researchers
are also exploring methods towards constructing a statisti-
cal shape model using nonrigid deformation of a template
mesh (Heitz et al., 2005).

For our model building we have employed the represen-
tation of shapes using point distribution models (PDM).
The basic idea is to compute the mean shape and to estab-
lish from the training set the pattern of legal variations in
the shapes for a given class of images. This is achieved
using principal component analysis (PCA) (Jolliffe, 1986).
PCA defines a linear transformation that decorrelates the
parameter signals of the original shape population by pro-
jecting the objects into a linear shape space spanned by a
complete set of orthogonal basis vectors. The axes of the



Fig. 1. The first two eigenmodes of variation of our model built from 30
segmented proximal femoral surface data. Each individual surface in the
model and the shapes generated are described by a sparse triangle mesh list
containing 4098 vertices. The shape instances were generated by evaluat-
ing~�xþ x
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shape space are oriented along directions in which the data
has its highest variance. If the parameter signals are highly
correlated, then the major variations of shape are described
by the first few basis vectors. Furthermore, if the joint dis-
tribution of the parameters describing the surface is Gauss-
ian, then a reasonably weighted linear combination of the
basis vectors results in a shape that is similar to the existing
ones.

A key step in this model building involves establishing a
dense correspondence between shape boundaries over a
reasonably large set of training data. In 2D, correspon-
dence is often established using manually determined land-
marks, but this is a time-consuming, error-prone and
subjective process. In principle, the method extends to
3D, but in practice, due to very small sets of reliably iden-
tifiable landmarks, manual landmarking becomes impracti-
cal. Most automated approaches posed the correspondence
problem as that of defining a parameterization for each of
the objects in the training set, assuming correspondence
between equivalently parameterized points. We compared
the methods introduced by Brechbühler et al. (1995)
(SPHARM), Kotcheff and Taylor (1998) (DetCov), Davies
et al. (2002b) (MDL) and a fourth method based on man-
ually initialized subdivision surfaces similar to Wang et al.
(2000) (MSS). We analyzed both the direct correspondence
via manually selected landmarks as well as the properties of
the model implied by the correspondences, in regard to
compactness, generalization and specificity. Our compari-
son study (Styner et al., 2003) of these popular correspon-
dence establishing methods revealed that for modeling
purposes the best among the correspondence methods
was minimum description length (MDL) (Davies et al.,
2002b). Based on the study, for our model building, corre-
spondence was initialized using MSS and then optimized
based on the MDL criteria.

The statistical shape model is constructed based on the
established point correspondences. Each member of the
training population is described by individual vectors ~xi

containing all 3D point coordinates. The aim of building
this model is to use several training datasets to compute
the principal components of shape variation. PCA is used
to describe the different modes of variation with a small
number of parameters. For the computation of PCA, the
mean vector ~�x and the covariance matrix D are computed
from the set of object vectors (1). The sorted eigenvalues
ki and corresponding ~pi of the covariance matrix are the
principal directions spanning a shape space with ~�x repre-
senting its origin (2). Objects ~xi in that shape space can
be described as linear combinations with weights ~bi calcu-
lated by projecting the difference vectors ~xi �~�x into the
eigenspace (3).

D ¼ 1

n� 1

Xn

1

ð~xi �~�xÞ � ð~xi �~�xÞT ð1Þ

P ¼ f~pig; D � ~pi ¼ ki � ~pi; ð2Þ
~bi ¼ DTð~xi �~�xÞ; ~xi ¼~�xþ P � ~bi ð3Þ
Fig. 1 shows the variability captured by the first two modes
of variation of our proximal femur model varied by ±2SD.

3. Model deformation algorithm

The aim of this step is to recover the patient-specific 3D
shape of the anatomy from the few available digitized land-
marks and surface points. Our approach uses the shape
model built earlier to infer the anatomical information in
a robust way and provides the best statistical shape that
corresponds to the patient. The key factor is the observa-
tion that objects in our shape space, and by our hypothesis
the patient’s 3D shape, can be described as the mean shape
plus a weighted linear combination of eigenvectors. The
problem is therefore formulated as estimating the weights
for this unknown shape, such that the errors between the
reconstructed model and the cloud of digitized surface
points is minimized.

Our model fitting algorithm is formulated as a least
squares error minimization with additional regularization
terms that computes the Mahalanobis distance of the pre-
dicted model (Rajamani et al., 2004a). The Mahalanobis
distance term enables stable prediction with minimal num-
ber of known surface points. Where Fleute (Fleute and
Lavallée, 1998) and Chan (Chan et al., 2003) consider a
truncated set, we include the complete set of eigenvectors,
or shape variations, without exorbitant increase in the
computation time. The method consists of two steps:

� Initially a small point-set of anatomical landmarks with
known correspondence to the model is digitized. This is
used to register the patient anatomy to the model. This
also provides an initial estimation of the 3D shape with
only a few digitized points.
� To improve the prediction additional points can be

interactively incorporated via closest distance
correspondence.

The objective function that we minimize is defined as
follows
i i



Fig. 2. The inverted valley function that was generated using the M-
estimator based weights and used in the objective function to achieve
outlier resistance.
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The first term in the function is the Euclidean distance be-
tween the N digitized points ~Y and the estimated shape
comprising the mean ~X plus a weighted sum of the eigen-
vectors ~pi. The corresponding point for each of the digi-
tized points ~Y k is computed using closest point
correspondence from the current estimated shape. This is
denoted as ~X j, where j = Index (k) is the index of the clos-
est point corresponding to the kth digitized point. The sec-
ond term is the Mahalanobis distance of the predicted
shape from the mean and controls the probability of the
predicted shape. This term ensures that the predicted
shapes are valid by favoring those that are closer to the
mean.

The parameter q in the objective function enables the
deformation scheme to have better convergence behaviour
(Rajamani et al., 2004c). This is enabled by relaxing the
effect of the Mahalanobis distance term as additional
points are digitized. This makes the surface less constrained
to remain close to the mean and allows it to more freely
deform. Hence the error between the predicted surface
and the set of digitized points is better minimized. Since
the error typically decreases exponentially, we chose q to
increase logarithmically with the number of digitized
points, and was therefore defined according to the follow-
ing equation

q ¼
0:5 N 6 6
log N

MaxNðge�1Þþ1f g
2 logðgeÞ þ 0:5 N > 6

(
ð5Þ

where N is the number of digitized points, MaxN is the to-
tal number of points in the model, g is a factor which deter-
mines the rate of growth of q. To achieve faster growth rate
for q, g was empirically set to be the number of members in
the population.

The parameter wk enables the realization of stable pre-
dictions and the robust rejection of outliers (Rajamani
et al., 2005). Instead of using a box-filter based rigid
threshold to reject the outliers we decided to employ a
smarter and robust M-estimator based weighting mecha-
nism that creates an inverted valley function as shown
in Fig. 2. This helps us to effectively reject outliers and
compute stable models. Incorporating the M-estimator
based weight-function analytically in the objective func-
tion, would make the system to be solved non-linear as
there is no differentiable, linear weight function that is
an M-estimator. Instead we decided to include the com-
puted weights in the objective function as single indepen-
dent constants for each digitized point (computed based
on its distance from the closest point in the current esti-
mated shape). These weights could be updated iteratively
in an ICP like mechanism until there are no more signif-
icant changes in the weights. This feature was incorpo-
rated by having the weighting parameter wk in the
objective function, adapted from Styner et al. (2000)
and defined according to the following equation

wk ¼ ½ð1� dist2Þ=ðdist2 þ spÞ� þ 1; where ð6Þ

dist ¼ ~Y k � ~X j þ
Xm

i¼1

ai~piðjÞ
 !�����

�����
2

ð7Þ

i.e. dist is the euclidean distance between the digitized sur-
face point and its closest point in the current estimated
shape and sp is a positive scalar parameter that defines
the sharpness or steepness of the inverted valley function.
The greater the value of sp, the sharper the valley is and
the harder the outliers are disregarded. To have a gentle
handling of outliers that lie within a radius of 10 mm
the value of sp was empirically fixed in our application
at 27.

We briefly explain here our solution strategy, where we
formulate the problem as a linear equation system. To
determine the shape parameters a that best describe the
unknown shape, the function f is differentiated with respect
to the shape parameters and equated to zero. Differentiat-
ing f with respect to an yields

of
oan
¼ q
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f is differentiated with respect to each of the a and for each
of the resulting equations collating the different a terms,
and dividing throughout by 2qwk yields a linear equation
system of the form Aa = b with A being



XN

k¼1

~p1ðjÞ � ~p1ðjÞ þ 1�q
qwk

1
k1
� � � ~pnðjÞ � ~p1ðjÞ � � � ~pmðjÞ � ~p1ðjÞ

..

.

~p1ðjÞ � ~pnðjÞ � � � ~pnðjÞ � ~pnðjÞ þ 1�q
qwk

1
kn
� � � ~pmðjÞ � ~pnðjÞ

..

.

~p1ðjÞ � ~pmðjÞ � � � ~pnðjÞ � ~pmðjÞ � � � ~pmðjÞ � ~pmðjÞ þ 1�q
qwk

1
km

0
BBBBBBBBB@

1
CCCCCCCCCA

ð9Þ

K.T. Rajamani et al. / Medical Image Analysis 11 (2007) 99–109 103
The unknowns in our system are (a1 � � � an � � � am). Collat-
ing the constant terms yields b, the right hand side of our
system as follows

XN

k¼1

ð~Y k � ~X jÞ � ~p1ðjÞ
..
.
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This results is a m · m linear equation system over a. This
is solved using standard linear equations system solvers
using QR decomposition. This novel solution strategy
enables real time estimation of shape parameters hence
facilitating incorporation of the complete set of eigenvec-
tors for shape estimation.

4. Results

The primary application that we focus on is hip surgery
such as total hip replacement (THR) and knee surgery such
as total knee arthroplasty (TKA) and anterior cruciate lig-
ament surgery (ACL). Hence we began by concentrating on
the proximal femur. Our database comprised of 30 CT
scans of patient hips (image resolution was 0.684 ·
0.684 · 1.0 mm). The datasets were anonymized when they
were provided from the hospital. The details of age, height
and gender were not available. There were several datasets
that were acquired from the hospital and only the 30
femurs that were intact were used in the model building.
The proximal femurs were segmented and surface models
of the bones were extracted for the statistical model con-
struction. Each individual surface was described by a
sparse triangle mesh list containing 4098 vertices. The tri-
angle mesh was the direct result of a octahedron based sub-
division scheme after parametrically mapping the surface
models onto the sphere.

Dense correspondence between points on the surface of
the bones in the training database was initialized with a
semiautomatic landmark-driven method and then opti-
mized using the Minimum Description Length criterion
(Davies et al., 2002a) to construct a compact optimal
model. Three anatomical landmarks, the femoral notch
and the upper and the lower trochanter are used as the first
set of digitized points. This is used to initially register the
model to the patient anatomy. This first set of points is also
used for computing the bounding box of the shapes in our
databse and the bounding box of the set of digitized points.
This aids in scale normalization of the shapes prior to mod-
eling and normalizing the predicted shape, making our
method size invariant. The remaining points are added uni-
formly across the parameterization so that they occupy dif-
ferent locations on the bone surface. We first demonstrate
proof of principle of our method using leave-one-out tests
and then detail validation studies on cast and dry cadaver
bones.

4.1. Leave-one-out experiments

A series of leave-one-out experiments was carried out to
evaluate our method. Surface points were chosen uniformly
from the surface model of the left out object so that they
occupy different locations on the bone surface. Point corre-
spondence were established by finding the closest point, in
Euclidean distance terms.

Fig. 3 shows an example, with mean surface error of
1.44 mm obtained with 20 digitized points. The color-
coded 3D rendering is calculated using Hausdorff’s Dis-
tance to measure the distance between discrete 3D surfaces
(Aspert et al., 2002). We present in Fig. 4 the reconstruc-
tion errors of this femur using different number of points
picked from the surface of the bone. The maximum, 95-
percentile, median and mean error with standard deviation
are plotted against the number of digitized points. With 20
digitized surface points the mean surface error was
1.44 mm and the error drops down to 1.17 with 80 digitized
surface points. The relatively large difference between the
maximum error and 95 percentile error is explained mainly
by the large distances at the bottom of the meshes, induced
by different locations of the cutting plane used to define the
proximal part of the femur.

The reconstruction errors of 10 different femurs using
leave-one-out experiments with 10 digitized points and 90
digitized points are potrayed in Fig. 5. The maximum,
95-percentile, median and mean error with standard devia-
tion are plotted for each femur. In our leave-one-out exper-
iments the predicted models mean surface error ranged
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Fig. 4. Reconstruction errors for a given femur using different number of
points picked from the surface of the bone. The maximum, 95-percentile,
median and mean error with standard deviation are plotted against the
number of digitized points.

Fig. 3. Left: A typical proximal femur of the population that was used in the leave-one-out test. Middle: The average shape of the population with color
coded distance map to the actual shape. The mean surface error is 3.37 mm and the median surface error is 2.65 mm. Right: The shape based on only six
digitized points with color coded distance map to the actual shape. The mean surface error is 1.50 mm and the median surface error is 1.25 mm.
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from 0.96 to 2.59 mm with 10 digitized surface points, and
the error range decreased to 0.88–2.59 mm with 90 digi-
tized surface points. In two of the experiments the errors
actually increased with more digitized surface points. The
leave-one-out experiments helped us evaluate the proof-
of-concept of our method and showed that we can extrap-
olate a three dimensional shape from sparse data.

4.2. Influence of q parameter

As explained earlier, the q parameter modulates the con-
tribution of the Mahalanobis shape distance term. Our for-
mulation makes q a factor of the number of digitized
surface points and hence it is adapted automatically as
more points are digitized. To evaluate the influence of the
q factor we studied the performance of our deformation
algorithm with and without the q parameter. Fig. 6 shows
the effect of the q factor studied on 10 different femurs
using leave-one-out experiments. The shapes are estimated
with and without the q factor and the median errors are
plotted for 30 digitized surface points. There is an improve-
ment in accuracy using the q factor as can be deduced from
the plots. Incorporating q ensured better convergence and
the error factor gain in seven out of the ten femurs. For
three of the femurs there was no influence, but the errors
did not increase. The influence of the q factor is more
prominent when a larger population is used to build the
model. This is evident from our previous study (Rajamani
et al., 2004c) of the role of the q parameter in Hippocam-
pus model generated from 172 hippocampus instances,
where the error factor gain was about 10%.

4.3. Effect of wk parameter

A series of experiments was carried out to evaluate our
method with regards to robustness to outliers, such as
those obtained by accidental activation of the foot pedal
for point digitization. A proximal cast femur with attached
reference base was used for this experiment. Tracking was
done by using an in-house navigation environment and
maintaining an optimal distance of around 2 m to the
optical tracking camera (Optotrack�, NDI, Waterloo,
Canada). The accuracy for such tracking systems when
used ex vitro with exposed fiducial markers is lesser than
1 mm. Fig. 7 shows screen shots of our method, when the
plastic femur was estimated using surface points digitized
using a calibrated navigated pointer. In the first run, 12
surface points were digitized which comprised four outliers.
In spite of the large set of outliers a stable prediction was
realized. The second run had fewer outliers among digitized
32 surface points. Our experiments verified that the M-
estimator based weighting function was very successful in
robustly eliminating outliers and enabling stable
predictions.

4.4. Cadaver validation study

Nine different dry cadaver femur bones were chosen for
this validation study. High-resolution CT scans of these
bones were segmented (image resolution: 0.652 · 0.652 ·
1.0 mm) and fine 3D surface models were generated. The
experiment trials were carried out in the CT coordinate sys-
tem. The three anatomical landmarks and additional 51
bone surface points were digitized on the surface model
of each of the cadaver bones. The deformation procedure
was then employed to estimate the 3D model that best
approximates the digitized set of points.
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Fig. 7. Owing the screen shots of our method, when the shape of a plastic
femur was estimated using surface points digitized using a pointer in our
navigation environment. As can be seen the outliers are well eliminated
and a stable prediction is realized.
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We carried out the experiments on two models, built
from different initial training population. The first model
was constructed from the entire 30 proximal femurs and
Fig. 8. Left: The surface model that was estimated for one of the cadaver bones
digitized points was 0.85 mm and a median of 0.66 mm. Right: Error statistic
errors are plotted against the number of digitized points for both the models

Table 1
Mean surface errors for nine dry cadaver bones with 3, 27 and 54 selected
surface points in the CT-based error scheme

Cadaver bone
number

Mean error (mm) w.r.t. number of points

Large population Small population

3 27 54 3 27 54

1 2.08 1.90 1.72 2.57 2.02 1.85
2 0.96 0.91 0.85 2.03 1.49 1.23
3 2.44 2.28 2 3.02 2.69 2.50
4 2.55 2.45 2.03 2.92 2.63 2.12
5 2.18 1.99 1.85 1.98 1.87 1.72
6 3.49 3.1 2.54 4.44 3.79 2.65
7 1.73 1.59 1.39 3.15 2.61 2.23
8 2.01 1.87 1.67 1.91 1.75 1.58
9 2.06 2.04 1.83 2.22 2.14 1.64

Average 2.17 2.01 1.76 2.69 2.33 1.95

The errors are tabulated for both the experiments with the larger and
smaller population.
the second model was constructed from a subset of 14
proximal femurs, with correspondence optimized across
the respective training sets. This helped us to evaluate the
effect of training size on the deformation algorithm. Table
1 shows the error results for each of the cadaver bones with
different number of digitized surface points using the larger
and smaller population. The mean surface error with 3, 27
and 54 selected surface points are tabulated. Fig. 8left
shows the surface model of the estimated 3D shape for
one of the cadaver bones with color coded distance map
to the actual shape. The mean error here with 54 digitized
points was 0.85 mm and a median of 0.66 mm using the lar-
ger population of 30 proximal femurs. Fig. 8right shows
the cumulated statistics across all the cadaver bones. The
average of the mean and median errors across the entire
set of nine cadaver bones is plotted against the number
of digitized points for both the models generated from
the smaller and larger population. The average mean sur-
face error with 10 digitized points lies between 2.1 and
2.6 mm and with 54 digitized points the error is 1.7–
1.9 mm. The results for predicting the cadaver bones are
in the same error range as the leave-one-out experiments.
The cadaver experiments helps us conclude that we can
indeed estimate quite accurately the 3D shape of an anat-
omy even with very sparse information.

4.5. Ultrasound-Initialized deformable bone models

Two different cast proximal femurs were chosen for this
study, and CT scans were performed (image resolution was
0.391 · 0.391 · 1.0). Their CT surface models (approxi-
mately 5000 vertices) were registered into the anatomy’s
co-ordinate space using paired point matching and refined
using surface matching (Gong et al., 1997) integrated into
our in-house optical-tracking navigation system, yielding
a registration error of 0.2 mm for this experiment. The reg-
istered surface models were considered as ‘‘gold’’ refer-
with color coded distance map to the actual shape. The mean error with 54
s cumulated across all the cadaver bones. The average mean and median
generated from smaller and larger population.
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ences, used for error measurements (computed with Mesh
(Aspert et al., 2002)) of the predicted bone models.

To initialize as well as provide surface points for our
bone deformation method a classical ultrasound system
(Kontron Sigma 330�, Basel, Switzerland) with a
7.5 MHz linear array transducer, was used for the experi-
ments. The system provides conventional B-Mode imaging.
Calibration was achievable in less than 5 min, using a min-
imum of ultrasound images, and has a high reported accu-
racy (Kowal et al., 2003). The bone contours used in our
experiment were automatically segmented from the image
planes of the calibrated tracked 2D B-mode probe, thereby
yielding a cloud of points in the co-ordinate space of the
anatomy. Our automatic segmentation approach requires
an average of 0.8 s of computation for each ultrasound
image frame and has a mean accuracy of 0.42 mm (Kowal
et al., 2001).

The cloud of segmented ultrasound points were pro-
vided as input to the deformation algorithm. The result
was a predicted model in the anatomy’s co-ordinate space.
To obtain stable estimates of the errors we performed a ser-
ies of five trials per bone, the results of which are tabulated
in Table 2. The results in this table show the mean and
median surface errors for the predicted shapes with respect
to the ‘‘gold’’ references for each bone, using 24–26 digi-
tized surface points. They also include averaged mean
Table 2
Mean and median surface errors from their actual surfaces in five different
trials for the two cast femur bones, using ultrasound to acquire surface
points

Trial number Bone 1 error (mm) Bone 2 error (mm)

Mean Median Mean Median

1 3.88 3.56 2.94 2.12
2 4.37 4.28 5.30 4.98
3 6.88 6.34 3.79 3.48
4 4.75 4.51 4.57 4.54
5 3.08 2.53 3.12 2.84

Average 4.59 4.35 3.95 3.59

Fig. 9. Ultrasound-based prediction: Predicted models overlaid onto ‘‘gold’’ r
mean error.
and median surface errors for each scenario, to help gauge
the repeatability of each experiment. Fig. 9 shows for each
bone one case of ultrasound based shape prediction, with
predicted shape overlaid to its respective ‘‘gold’’ reference.
From the results we can see that ultrasound imaging could
be used along with our deformation algorithm to estimate
an appropriate 3D model of the anatomy.

5. Discussion

In this paper we have presented a novel anatomical
shape deformation technique to predict the three-dimen-
sional model of a given anatomy using statistical shape
models. The proposed shape deformation is especially
attractive in the scenario of sparse set of surface points,
and can also seamlessly handle small and large sets of dig-
itized points, which is an innovative concept. We have
shown that we can robustly estimate a realistic patient-spe-
cific three-dimensional model of a given anatomy. Our for-
mulation of the problem as a Mahanalobis weighted least
squares error minimization, and the novel solution scheme
by linear system solving, enable us to rapidly generate 3D
models for visualization. The running times of the algo-
rithm on a Pentium 4 machine with 512 MB of RAM, run-
ning SuSe Linux 9.0, are in the range of 1–2 s. Our
formulation also enables incorporating the complete set
of eigenvectors.

The q parameter helps us to relax the probability term to
get a better estimate as more points are digitized. The effect
of the q parameter is not significantly noticed in the case
when the population size is small. This is because the error
gets stabilized and uniform after the first few points are
digitized and there is not much information that could be
extracted by adding additional points in this case. Hence
the q factor seems not to contribute much as was observed
in the proximal femur model with a population size of only
14 members. On the contrary in the study using the hippo-
campus population (Rajamani et al., 2004c) the effect of the
q parameter was significantly visible and it contributes in a
eferences. Bone 1 (left): 3.08 mm mean error and Bone 2 (right): 2.94 mm
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significant way to decrease the error and achieve better
convergence.

Rectangular or box filters are quite easy to incorporate
for outlier rejection, but they do not smartly handle the
outliers and are quite rigid. Outlier resistance based on
Gaussian function seems to be an option but they do not
fall off sharply enough. The novel usage of M-estimators
based weighting enables for a smart estimation mechanism
that is robust to outliers. Direct incorporation of the M-
estimator into the function definition makes the minimiza-
tion problem non-linear and not easy to solve. Hence we
incorporated the M-estimating weight function into the fit-
ting function. This gives us all the advantages of the M-
estimator and also we do not lose the linearity of the prob-
lem. Normalization of the shapes prior to modeling and
normalizing the digitized data makes our method size
invariant. Our experiments on the cast proximal femur
data show that our method can robustly reject outliers.

We also see that there is indeed a dependency of the
deformation algorithm on the size of the training popula-
tion. The larger population as expected estimates the
shape better in most of the cases. In seven out of the nine
bones the larger population has better estimation proper-
ties. In two of the cases where the smaller population
seems to outperform, the difference between the two is
in the order of 0.1 mm. It has to be emphasized that our
population is still not large enough to capture all the pos-
sible variability of the shape. It could very well be the case
that for a much larger population the shape variability is
better captured and estimates even these two bones better
than the smaller population. It is to be expected, therefore,
that an increase in population size would increase the
accuracy of the method.

As a natural extension we have explored the use of ultra-
sound imaging for non-invasive intra-operative surface
points digitization. Ultrasound effectively solves the prob-
lems posed by limited surgical access and is an ideal way
to acquire points from otherwise inaccesible regions. We
have seen above that ultrasound initialized deformable
bone models in our experimental conditions can provide
a stable and repeatable prediction for bone visualization.

The results that we have achieved in our different exper-
iments show great promise for the potential of our method
to be applicable in clinical settings. We are confident that
our method can be utilized already for clinical visualization
applications, where we can provide 3D models from very
limited sets of digitized points. We also consider that we
are on the right track towards the ultimate use of our shape
estimation procedure for surgical guidance. Current error
ranges for shapes estimated from few landmark points
are not quite in the range of surgical usability, which is typ-
ically in the area of 1.5 mm average error (Livyatan et al.,
2003). This accuracy could be obtained by using more den-
sely sampled clouds of digitized points, which would
increase the amount of information used for model fitting.

The proposed technology brings a variety of advantages
to orthopaedic and other surgical procedures, such as
improved accuracy and safety, often reduced radiation
exposure, and improved surgical reality through 3D
visualization. In particular navigation based on shape
deformation opens the door to more minimally invasive
approaches. Future work will include the expansion of
our training set of bone shapes to build more comprehen-
sive shape models. We will also target other anatomies like
the distal femur, the entire femur and the spine. Addition-
ally, the order and the location of the surface points that
are provided to the shape deformation algorithm might
have an influence on the overall estimation result. Evalua-
tion and quantification of this dependence could help in
identifying the best ordered set of landmarks and surface
points for a given application. Regarding the use of ultra-
sound for shape estimation, we are also working on improv-
ing the methods for bone detection to improve the accuracy.
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