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Abstract. We define a methodology for training deformable shape mod-
els as a basis for studying anatomic shape spaces. We present a complete
implementation using a sampled medial representation and provide quan-
titative results of the method applied to both synthetic and real medical
images.

1 Introduction

Computational anatomy requires a priori parameterized models to statistically
characterize anatomic shape variability across subjects, and day-to-day within
subjects. Deformable shape models (DSMs) provide useful parameter sets for
estimating statistical shape spaces applicable to a variety of problems includ-
ing image segmentation and shape studies. However, the problem of effectively
training a particular DSM has not been fully addressed in the literature.

In this paper we present a rationale and methodology for training a DSM
given a set of expertly segmented training images. We initially assume that the
shape space has certain desirable properties, then project the training population
into the space to produce a coarse statistical model that can be refined by iter-
ation. Projection is done in a Bayesian framework by computing optimal model
parameters for each training case. Our posterior probability is decomposed into
a geometric prior tied to our desiderata of the shape space and a data likelihood
tailored specifically to binary images. We present both the general method and
an example implementation using the m-rep parameterization. Our results show
that the method is accurate and yields models suitable for statistical analysis.

1.1 Studying Shape with Deformable Models

DSMs are probabilistic shape descriptions. Under the Gaussian model, the dis-
tribution of the training data is modeled by several modes of deformation about
a point in the shape space. This distribution describes all shapes in the training
data and moreover, for a sufficiently large training set, estimates the full ambient
shape space from which the training data are drawn. This statistical framework
then can serve as the basis of further shape studies or as a geometric prior for
segmentation of novel data.
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The classic model parameterization is the point distribution model (PDM)
with shape variance described by principal component analysis (PCA) of the
feature space[1]. PDMs assume feature correspondence by fixed sampling, or at-
tempt to induce correspondence post facto by minimizing variance in the para-
meterization. Other surface parameterizations include point/normal, coefficients
of spherical harmonic basis functions[2], and landmarks[3]. Each of these meth-
ods make slightly different feature correspondence assumptions as the basis for
their statistics.

Our example implementation, Binary Pablo, uses the multi-scale discrete m-
rep parameterization proposed in [4]. Medial parameterizations provide a model-
centric volumetric coordinate system for the shape and hence, a framework for
volumetric correspondence. An m-rep figure is a collection of samples of an ob-
ject’s medial manifold. Each medial sample, or atom, has eight parameters: po-
sition (3), two spoke directions (2x2), and scale (1). The difference between two
samples, d(m, o), is derived by defining a mapping of scale and rotation into the
Euclidean domain. This leads to a Reimannian distance, d2(m, o). The distance
between two models M and O with samples {m1, ...,mn} and {o1, ..., on} re-
spectively is defined as the sum of the distances between corresponding samples
d2(M, O) =

∑
mi∈M d2(mi, oi). These metrics allow for the extension of PCA

into non-Euclidean domains such as m-reps[5].

2 Method

Our task is to find the best member of the shape space for each binary labeled
training image. Members of the shape space are parametric models, M , with
implied boundary surfaces Ω. Training images, I, are expert binary parcelations
of 3d patient data, each with boundary voxels B.

We desire to find the best M for a given I. In a Baysian framework, we
seek Arg MaxM{P (M |I)}, the model with the greatest conditional probabil-
ity given the data. By Bayes Rule, P (M |I) = P (I|M)P (M)/P (I). Since log
is monotonic, Arg MaxM{P (I|M)P (M)/P (I)} = Arg MaxM{log(P (I|M)) +
log(P (M))− log(P (I)} = Arg MinM{−log(P (I|M))− log(P (M))+ log(P (I))}.
We assume normal distributions such that the model surface matches the bound-
ary voxels in the image data, P (I|M) = N(B, σ2

f ), and that the model shape
matches µ, the mean shape, P (M) = N(µ, σ2

g). Without any other knowledge
about the image space, we assume P (I) is a constant. Our search is therefore to
find Arg MinM {σ−1

f d2(B, Ω) − σ−1
g d2(µ,M)} The following sections describe

how to go about estimating these boundary and shape dissimilarity functions
before a complete statistical framework is known.

2.1 Geometric Penalty

The underlying parameter space from which the models are drawn is much larger
than the shape space we are trying to model. So, we desire to restrict our models
to a legal subspace where we are confident that features are in correspondence
across the training population. Our two assumptions are as follows.



1. Shapes are distributed normally about the mean.
2. There is a unique best model for a given training case, which can be identified

by imposing a model smoothness constraint.

We consider each of these constraints separately under the assumption that
P (M) is their independent joint distribution.

Normal With limited a priori knowledge of the space, we estimate the mean
by identifying a training image that is not an outlier, and then manually fit a
model to it. We use this model, R0, as a tentative reference point for the shape
space. Each image in the training population is then fit about this reference,
using the distance d2(R0,M) as the dissimilarity metric. This fitting yields a
statistical model with a mean, R1 that is closer to the true mean of the training
population. The population is refit iteratively about R until R converges on the
true mean of the training population when Ri−1 ≈ Ri ≈ µ.

For our m-rep implementation, this term simplifies to the sum of the atom-
to-atom distances between the candidate model and the reference model used to
initialize the optimization.

Ref(M, R) ∝
∑

mi∈M

d2(mi, ri) (1)

Unique Correspondence implies that there is a unique set of parameters that
best describes each training case. However, the parameter space may have many
possible models that have nearly the same data match, so we differentiate them
by establishing an additional geometric criterion. As an example, there are many
possible cubic approximations to a given function, but by preferring certain end
conditions, we can identify a unique best approximating function.

The geometric criterion we use is the smoothness of the approximating model.
For a discrete model, we follow the Markov assumption that the likelihood of
a sample conditioned on the model is the same as the likelihood of the sample
conditioned on its neighbors. Here, the smoothness of a sample is the agreement
between any sample and the expectation of its neighbors. The total smoothness
of the model is the sum of such sample agreements. This extends to continuous
parameterizations as the integral of the second derivative over the parameter val-
ues. Since we are producing a dissimilarity term, Smooth(M) is actually defined
as the distance d2(M, M̄), where M̄ = M smoothed by some filter.

For m-reps, smooth organization is a medial sheet that is locally flat with
evenly spaced samples. Fig. 1 shows an example of an un-smooth organization.
M̄ is the model such that each atom m̄i is the Fréchet mean of mi’s neighbors in
M . Let N (m) be the neighborhood of atom m, then we can reduce and rewrite
this constraint as follows.

Smooth(M) ∝
∑

mi∈M

1
|N (mi)|

∑

mj∈N (mi)

d2(mi,mj) (2)



Fig. 1. Left A medial mesh with a high smoothness penalty. Such meshes can result
in qualitatively inferior results and break our volumetric correspondence assumptions.
Center A suboptimal fit illustrating Θ. The light gray lines show the distance map
gradient direction, dark gray lines show the surface normal direction. Right Two can-
didate model meshes compared to the tiled surface of the thin masseter muscle in the
neck. The light gray mesh has been fit to a dilated image and then contracted.

2.2 Data Match

The data match term guarantees that Ω, the surface implied by model M , is
in accordance with the boundary voxels, B. Again using a Gaussian model, we
define the log image likelihood as the integral over B of the minimum distance
to Ω as Data(M,I) ∝ ∑

bi∈B Min(d2(bi, Ω)).
In Binary Pablo, Ω is generated via a modified Catmull-Clark algorithm with

additional normal constraints[6]. Ideally, we desire to measure the distance of the
label boundary surface from the model, d2(B, Ω). However, this is computation-
ally exorbitant given finely sampled subdivision surfaces required for accurate
matches and the large number of candidate surfaces generated for optimization.
Furthermore, we note that when Ω and B are very close, the distance function is
nearly symmetric, that is, B ≈ Ω → d2(B, Ω)− d2(Ω,B) < ±ε. So we simplify
by approximating our ideal function with the more tractable d2(Ω, B).

Because the label boundary is static, we generate a single space filling lookup
table for distance from the label boundary by Danielsson’s algorithm[7]. Trilinear
interpolation gives a very fast measure of the distance at any point in space to
the closest boundary point on B. Then we let d(ω, B) be the lookup of the
position of ω in the distance map and d2(Ω, B) =

∑
ω∈Ω d2(ω, B).

However, for some areas of high curvature, this approximation leads to un-
desirable results. In these areas, the desired d2(B, Ω) distance-minimizing Ω
tends to be more volume filling than the minimizer of the d2(Ω,B) distance.
We implement two solutions to this problem. In certain cases, the areas of high
curvature are exactly the points we would identify manually as anatomic land-
marks. Manual landmarks, discussed in the next section, provide a sparse set
of correspondences that override the closest-point correspondence assumed by
the data match term. Without nearby landmarks, the approximation may be
enhanced by computing the true label boundary to model distance at a minimal
number of points. We identify points on Ω where we would expect large distance
asymmetry by computing the angle between the gradient of the distance map



and the surface normal. If the angle is greater than a threshold, we compute a
new distance along the surface normal at that point as shown in Fig. 1. With
Θ2(x, y) as this modified minimum distance function, then our data likelihood
term can be expressed as follows.

Data(M,I) ∝
∑

ωi∈Ω

Θ2(ωi, B) (3)

An advantage of the m-rep parameterization is that the medial skeleton can
be thought of as the limiting case of a morphological erosion. This provides an
additional relationship between M and I. To fit models to images with structures
that are less than a voxel in thickness, we can fit an initially dilated model to
a dilation of the labeling, and then contract the model surface by the same
amount by an inverse scaling of the radius parameter. As seen in Fig. 1, this
morphologically closed model approximates the thin object.

Landmarks The data match term can be extended to allow for identified ex-
plicit feature correspondences via a landmark term. An expert identifies anatom-
ically important landmarks in the training image population, then we constrain
the fit models to always interpolate these points at the same object-coordinates.
As with the image likelihood term, we define the landmark likelihood as a normal
probability over the positions of the landmarks LM identified in M , with mean
at the landmarks LI identified in the image, and with τi equal to a tolerance or
confidence assigned to each pairing lmi to lii.

Landmark(LM,LI) ∝
∑

lmi∈LM

1
τi

d2(lmi, lii) (4)

The complete data match is then jointly conditioned on the model’s surface fit to
the boundary and the model’s landmarks fit to the data landmarks. We assume
that these factors are independent.

Landmarks in an m-reps model are identified as spoke ends of the medial
hubs. Corresponding landmarks in the data are identified as points in space.
In our implementation, the Euclidean distance from the corresponding spoke
ends to the points is computed and summed, weighted by individual confidence
factors τi exactly as in (4).

2.3 Training

Optimization We now search for the error minimizing M , with error, E, com-
puted via our complete dissimilarity function E = αRef + βSmooth + γData +
δLandmark, using α, β, γ and δ as relative weighting factors. For our implemen-
tation, this can be written out as the sum of (1), (2), (3), and (4).



Fig. 2. M-rep shape studies. Left A fifteen object complex of structures from the head
and neck, some parameterized as as m-rep tubes, chains of atoms with only six para-
meters, position (3), orientation (2), and scale (1). Center Male pelvic organs in gray
level context. Right Cortical structures for an autism study shown as medial atoms.

E = α
∑

mi∈M

d2(mi, ri) + β
∑

mi∈M

1
|N (mi)|

∑

mj∈N (mi)

d2(mi, mj) (5)

+γ
∑

ωi∈Ω

Θ2(ωi, B) + δ
∑

lmi∈LM

1
τi

d2(lmi, lii)

Optimization is done in three steps:
1. Initialize the optimizer with the presumptive mean of the shape space, R
2. Align R to the landmarks and image data.
3. Optimize the parameters of R to find the energy minimizing model, M . This

can be done over scales or hierarchy if the underlying parameterization is so
amenable.

We typically initialize Binary Pablo with R coarsely via the method of mo-
ments and refine by searching numerically for a similarity transformation of the
entire figure minimizing just the data and landmark terms of E. Final optimiza-
tion of the full E is over individual atoms using a conjugate gradient descent.

Shape Statistics Generation of the statistical model covering the training pop-
ulation is outside the scope of this paper. For a discussion of principal geodesic
analysis, see [5]. It is sufficient to note the statistical model consists of a mean
shape, which will be used as a better estimator of the mean of the shape space,
and several principal modes of deformation.

We then refit the data using a statistical optimization. We modify the fig-
ural refinement step to vary according to coefficients of the principal modes of
shape variance. The Normal condition may also be replaced with the eigenvalue
weighted length of coefficient vector. It is likely that the first iteration will re-
sult in some ill-fit models. Because of the multi-pass scheme, these outliers may
be thrown out of the first round statistics, then refit within the new statistical
framework and possibly included on the next round. Eventually, the statistics
cover the entire training population when the difference between the computed
mean and the initializing model for the iteration is smaller than some threshold.



Fig. 3. Resultant statistical model for synthetic bent, magnified, and twisted ellipses.
Mean and two standard deviations of the first three principal modes of deformation
which together cover 98% of the training population’s shape variance.

3 Results

The ultimate indication of our methodology’s effectiveness is its application to
further scientific problems. Results are shown in Fig. 2 and summarized in Table
1 are taken from a variety of shape studies based on our methodology. Synthetic
data are taken from a standard training set of bent, magnified, and twisted
ellipsoids used to validate many of our methods. Kidney data are taken from a
histogram based gray image match study[8]. Male pelvis bladder, prostate, and
rectum data are taken from a medical physics application[9]. Cortical structure
data are taken from an autism shape study in progress. Head and neck structure
data are taken from a computational anatomy study in progress. Our method
gives sub-millimeter mean surface-to-boundary accuracy for all of these objects.

Although validation of the resultant statistics are outside of the scope of this
paper, the excellent fits and correspondence in our models has led to very useful
bases for our studies. Fig. 3 shows an example of the trained geometry template
for our phantom data. We see our input bending, magnification, and twisting
reflected in the deformations output by our statistics.

Phantom Kidney Male Pelvis Hippocampus Cortical Head & Neck

Cases 640 35 69 50 20 8
Objects 1 1 3/case 1 10/case 56 total

Landmarks None 6 2-5/object None None None
Vx Resolution 0.2x0.2x0.2 0.3x0.3x1 1x1x3 0.5x0.5x0.5 0.8x0.8x0.8 0.8x0.8x0.8

Ave RMS Dist 0.054 0.95 0.963 0.354 0.224 0.751
Std RMS Dist 0.005 N/A N/A 0.058 0.076 0.250
Ave Worst Dist 0.193 1.23 1.486 1.235 1.645 5.275

Ave Int/Ave N/A 95.38 91.28 N/A N/A N/A

Table 1. Average and max model to label surface distances and the volume over-
laps from Binary Pablo trainings for several studies. Voxel resolution and surface-to-
boundary distances given in millimeters, volume overlaps in percentages. Not all values
were computed for all studies.



4 Discussion

We presented a methodology for training and validating deformable shape mod-
els that can serve as the geometric basis for image segmentation and shape stud-
ies. We also described our m-rep based implementation of the method, Binary
Pablo. Binary Pablo has a variety of visualization and m-rep modeling tools, and
automatic fitting runs as a configurable batch process. It works quickly, produc-
ing the models presented here in under two minutes per model on modern 2GHz
desktop computers, and population analysis can be easily parallelized over a
network, scaling in speed with number of machines. Binary Pablo is currently
being applied to a variety of shapes in several different labs beyond the results
presented here, including caudate, liver, and heart chambers. It is also contin-
uously improved, with current research focused on designing a mathematically
rigorous legality function based on non-linear medial sheet interpolation[10]. Bi-
nary Pablo is is available as a freely licensed download from our group and is
distributed with a user’s guide and example data.
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