
April 24, 2002

Parallel Port Example

April 24, 2002

Introduction
The objective of this lecture is to go over a simple problem that illustrates the use of the MPI

library to parallelize a partial differential equation (PDE).
The Laplace problem is a simple PDE and is found at the core of many applications. More

elaborate problems often have the same communication structure that we will discuss in
this class. Thus, we will use this example to provide the fundamentals on how
communication patterns appear on more complex PDE problems.

This lecture will demonstrate message passing techniques, among them, how to:
• Distribute Work
• Distribute Data
• Communication:

Since each processor has its own memory, the data is not shared, and communication
becomes important.

• Synchronization

April 24, 2002

Laplace Equation
The Laplace equation is:

We want to know t(x,y) subject to the following initial boundary conditions:

April 24, 2002

Laplace Equation
To find an approximate solution to the equation, define a square mesh or grid

consisting of points

April 24, 2002

The Point Jacobi Iteration

The method known as “point Jacobi iteration” calculates the value if T9i,j) as
an average of the old values of T at the neighboring points:

April 24, 2002

The Point Jacobi Iteration

The iteration is repeated until the solution is reached.

If we want to solve T for [1000, 1000] points, the grid itself needs to be of
dimension 1002 x 1002; since the algorithm to calculate T9i,j) requires
values of T at I-1, I+1, j-1, and j+1.

April 24, 2002

Serial Code Implementation
In the following NR=numbers of rows, NC= number of columns. (excluding the boundary columns

and rows)
The serial implementation of the Jacobi iteration is:

April 24, 2002

Serial Version – C

April 24, 2002

Serial Version – C

April 24, 2002

Serial Version – C

April 24, 2002

Serial Version - Fortran

April 24, 2002

Serial Version - Fortran

April 24, 2002

Serial Version - Fortran

April 24, 2002

Serial Version - Fortran

April 24, 2002

Serial Version - Fortran

April 24, 2002

Parallel Version: Example Using
4 Processors

Recall that in the serial case the grid boundaries were:

April 24, 2002

Simplest Decomposition for
Fortran Code

April 24, 2002

Simplest Decomposition for
Fortran Code

A better distribution from the point of view of communication
optimization is the following:

The program has a “local” view of data.
The programmer has to have a “global” view of data.

April 24, 2002

Simplest Decomposition for C
Code

April 24, 2002

Simplest Decomposition for C
Code

In the parallel case, we will break this up into 4 processors:
There is only one set of boundary values. But when we distribute the data, each
processor needs to have an extra row for data distribution:

The program has a “local” view of data.
The programmer has to have a “global”
view of data.

April 24, 2002

Include Files
Fortran:
* (always declare all variables)

implicit none

INCLUDE 'mpif.h‘

* Initialization and clean up (always check error codes):

call MPI_Init(ierr)

call MPI_Finalize(ierr)

C:
#include "mpi.h"

/* Initialization and clean up (always check error codes): */

stat = MPI_Init(&argc, &argv);

stat = MPI_Finalize();

Note: Check for MPI_SUCCESS

if (ierr. ne. MPI_SUCCESS) then

do error processing

endif

April 24, 2002

Initialization
Serial version:

Parallel version:
Just for simplicity, we will distribute rows in C and columns in Fortran; this is easier because data

is stored in rows C and in columns Fortran.

April 24, 2002

Parallel Version: Boundary
Conditions

Fortran Version

We need to know MYPE number and how many PEs we are using.
Each processor will work on different data depending on MYPE.
Here are the boundary conditions in the serial code, where

NRL-local number of rows, NRL=NPROC

April 24, 2002

Parallel C Version: Boundary
Conditions

We need to know MYPE number and how many PEs we are using. Each processor will work on
different data depending on MYPE.
Here are the boundary conditions in the serial code, where

NRL=local number of rows, NRL=NR/NPROC

April 24, 2002

Processor Information
Fortran:
Number of processors:

call MPI_Comm_size (MPI_COMM_WORLD, npes ierr)
Processor Number:

call MPI_Comm_rank(MPI_COMM_WORLD, mype, ierr)
C:
Number of processors:

stat = MPI_Comm_size(MPI_COMM_WORLD, &npes);
Processor Number:

stat = MPI_Comm_rank(MPI_COMM_WORLD, &mype);

April 24, 2002

Maximum Number of Iterations
Only 1 PE has to do I/O (usually PE0).
Then PE0 (or root PE) will broadcast niter to all others. Use the

collective operation MPI_Bcast.
Fortran:

Here number of elements is how many values we are passing, in this case
only one: niter.
C:

April 24, 2002

Main Loop
for (iter=1; iter <= NITER; iter++) {

Do averaging (each PE averages from 1 to 250)
Copy T into Told

Send Values down

This is where we use MPI communication calls: need to exchange data between processors
Send values up

Receive values from above

Receive values from below

(find the max change)

Synchronize

}

April 24, 2002

Parallel Template: Send data up
Once the new T values have been calculated:
SEND
• All processors except processor 0 send their “first” row (in C) to their neighbor above

(mype – 1).

April 24, 2002

Parallel Template: Send data
down

SEND
• All processors except the last one, send their “last” row to their neighbor below (mype + 1).

April 24, 2002

Parallel Template: Receive from
above

Receive
• All processors except PE0, receive from their neighbor above and unpack in row 0.

April 24, 2002

Parallel Template: Receive from
below

Receive
• All processors except processor (NPES-1), receive from the neighbor below and unpack in

the last row.

Example: PE1 receives 2 messages – there is no guarantee of the order in which they will be
received.

April 24, 2002

Parallel Template (C)

April 24, 2002

Parallel Template (C)

April 24, 2002

Parallel Template (C)

April 24, 2002

Parallel Template (C)

April 24, 2002

Parallel Template (C)

April 24, 2002

Parallel Template (Fortran)

April 24, 2002

Parallel Template (Fortran)

April 24, 2002

Parallel Template (Fortran)

April 24, 2002

Parallel Template (Fortran)

April 24, 2002

Parallel Template (Fortran)

April 24, 2002

Variations

if (mype != 0){

up = mype - 1

MPI_Send(t, NC, MPI_FLOAT, up, UP_TAG, comm, ierr
); }

Alternatively
up = mype - 1

if (mype == 0) up = MPI_PROC_NULL;

MPI_Send(t, NC, MPI_FLOAT, up, UP_TAG, comm,ierr);

April 24, 2002

Variations

if(mype.ne.0) then

left = mype - 1

call MPI_Send(t, NC, MPI_REAL, left, L_TAG, comm, ierr)

endif

Alternatively
left = mype - 1

if(mype.eq.0) left = MPI_PROC_NULL

call MPI_Send(t, NC, MPI_REAL, left, L_TAG, comm, ierr)

endif

Note: You may also MPI_Recv from MPI_PROC_NULL

April 24, 2002

Variations

Send and receive at the same time:
MPI_Sendrecv(…)

April 24, 2002

Finding Maximum Change

Each PE can find it’s own maximum change dt

To find the global change dtg in C::
MPI_Reduce(&dt, & dtg, 1, MPI_FLOAT,

MPI_MAX, PE0, comm);

To find the global change dtg in Fortran:
call

MPI_Reduce(dt,dtg,1,MPI_REAL,MPI_MAX, PE0,
comm, ierr)

April 24, 2002

Domain Decomposition

April 24, 2002

Data Distribution I
Domain Decomposition I

• All processors have entire T array.
• Each processor works on TW part of T.
• After every iteration, all processors broadcast their TW to all other

processors.
• Increased memory.
• Increased operations.

April 24, 2002

Data Distribution I
Domain Decomposition II

• Each processor has sub-grid.
• Communicate boundary values only.
• Reduce memory.
• Reduce communications.
• Have to keep track of neighbors in two directions.

April 24, 2002

Exercise
1. Copy the following parallel templates into your /tmp directory in jaromir:

/tmp/training/laplace/laplace.t3e.c

/tmp/training/laplace/laplace.t3e.f

2. These are template files; your job is to go into the sections marked "<<<<<<" in the source code
and add the necessary statements so that the code will run on 4 PEs.

Useful Web reference for this exercise:
To view a list of all MPI calls, with syntax and descriptions, access the Message Passing
Interface Standard at:
http://www-unix.mcs.anl.gov/mpi/www/

3. To compile the program, after you have modified it, rename the new programs laplace_mpi_c.c
and laplace_mpi_f.f and execute:
cc –lmpi laplace_mpi_c

f90 –lmpi laplace_mpi_f

April 24, 2002

Exercise
4. To run:

echo 200 | mpprun -n4 ./laplace_mpi_c

echo 200 | mpprun -n 4 ./laplace_mpi_f

5. You can check your program against the solutions
laplace_mpi_c.c and
laplace_mpi_f.f

April 24, 2002

Source Codes

The following are the C and Fortran templates that you need to parallelize for the Exercise.
laplace.t3e.c

April 24, 2002

Source Codes

April 24, 2002

Source Codes

April 24, 2002

Source Codes

April 24, 2002

Source Codes

April 24, 2002

Source Codes

laplace.t3e.f

April 24, 2002

Source Codes

April 24, 2002

Source Codes

April 24, 2002

Source Codes

April 24, 2002

Source Codes

