
April 11-12, 2002

Performance Optimization

John Urbanic
urbanic@psc.edu



April 11-12, 2002

T3D Architecture

Peak Performance Data
• 150 MHz Alpha EV4 (21064)
• 150 MFLOP/s
• 1.2 Gbyte/s BW from DCACHE
• 320 Mbyte/s from DRAM



April 11-12, 2002

T3D Architecture

Data Stream



April 11-12, 2002

T3D Architecture

Real Performance Data



April 11-12, 2002

T3D Architecture

Data Cache
•8 KB (256 4-word lines)
•Direct mapped



April 11-12, 2002

Memory Writes

A (8192, 5)

DO I = 1, 8192

A(I, 1) = 0.0 
A(I, 2) = 0.0 
A(I, 3) = 0.0 
A(I, 4) = 0.0 
A(I, 5) = 0.0 

ENDDO 

The loop was coded for 1 to 5 output streams with the following results:



April 11-12, 2002

Memory Writes

Number of Streams Clocks per Word MBytes/sec

1 2.6 462

2 7.2 167

3 7.9 152

4 29.5 41

5 28.7 42

Note that theoretical peak for the 
write operation is one cache line 
per 9 clock periods. This equates to 
533 Mbytes/sec. Jim Schwarzmeier
has measured over 500 Mbytes/sec 
with a better scheduled loop.



April 11-12, 2002

Example: QCD

Generally, QCD codes spend the majority of their time in 3x3 
matrix multiplications. On parallel vector processors 
(PVP), this is usually vectorized across multiple matrices 
with excellent resulting performance. On the T3D, results 
are less than optimal at about 3.5 Mflops. In the following 
code fragments, 2 Mflop figures are given. The first is 
without read ahead mode enable and the second is with 
read ahead. 



April 11-12, 2002

PVP code – 3.5 Mflops/3.5 Mflops

As written for the PVP systems, this code 
fragment has 6 distinct input streams for 
reading the matrices. This is because the first 
dimension of A and B is the matrix number. 
There is only one output stream so writes 
should be pretty well optimized. 

As a first step, it makes sense to reverse the 
sense of the array and loops. Instead of 
working on vectors of 3x3 matrix multiplies, 
we work on one 3x3 matrix multiply at a time. 
Also reversing the array indices as x(3,3,n) 
will mean that the 9 elements of each matrix 
will be contiguous in memory, allowing for 
the opportunity to reduce the number of input 
streams to 2 (one each for the a and b 
matrices). 



April 11-12, 2002

PVP code – 3.5 Mflops/3.5 
Mflops

Because there is space allocated for 1024 3x3 matrices for 
each of a, b, and c, we will have direct map cache conflicts 
between any particular 3x3 matrix multiply problem. To 
alleviate this, we place pad arrays between the two arrays 
that are read. We choose size 512 for the pad array since 
this is 1/2 the size of the data cache and we have 2 arrays. 
Note that EV4 does not put values of c in the data cache 
since c is write only. If c had appeared on both the left and 
right hand sides of the equal sign, we would have had to 
worry about the data cache for c as well and chosen a 
different padding strategy. 



April 11-12, 2002

Stream Reduction 15.7 
Mflops/16.9 Mflops

In this construct, however, matrix c is no longer a stride-1 write. This will cause problems 
with the write buffers. To alleviate this, we can unroll the i loop which is the first dimension 
of c. In addition, unrolling will expose more re-use to the compiler and three elements of b 
can be held in registers.



April 11-12, 2002

Unroll I 23.8 Mflops/27.3 Mflops

Now we can unroll the k loop as well. The 9 elements of a and the 9 elements of b are 
fully exposed to the compiler and can be held in registers for the calculations in the 
loop.



April 11-12, 2002

Unroll K and I 26.9 Mflops/27.5 
Mflops



April 11-12, 2002



April 11-12, 2002

Arithmetic Pipelines
The DEC EV4 processor has segmented functional units for floating point multiply and addition. 

Although a multiply or addition can be issued every clock period, the result is not ready for 6 
clock periods. Thus, in order to get top performance from FORTRAN, the code must expose 
functional unit parallelism to the compiler.

To see the effect of functional unit transit time, we test some simple loops on the CRAY T3D. 



April 11-12, 2002

Arithmetic Pipelines
For example, the following loop does a single floating-point multiply on a scalar variable. The data 

for this loop can be completely held in registers by the compiler:

do i = 1, 1024 

t = t * t 

enddo

We would expect a floating-point multiply result approximately every 6 clock periods. No 
functional unit pipelining is possible here, because the result is used in the next pass of the 
loop. One result per 6 clock periods equates to 25 Mflops on the CRAY T3D system. The 
measured result for this loop is 24.5 Mflops.

We would expect the following loop to do much better:
do i = 1, 1024 

t1 = t1 * t1 

t2 = t2 * t2 

t3 = t3 * t3 

t4 = t4 * t4 

t5 = t5 * t5 

t6 = t6 * t6 

enddo 



April 11-12, 2002

Arithmetic Pipelines
Indeed, measured performance for this loop is 110 Mflops. In this case, all 

6 multiplies can fire one after the other and we can achieve near-peak 
performance. 

Unrolling inner loops often exposes more functional unit parallelism to the 
compiler and can dramatically improve the results of loops. In the 
following example, arrays A, B, C, and D are all size 256 and so the 
operands can reside in cache. The loop is repeated many times to get a 
cache-resident performance figure:

DO I = 1, 256 

A(I) = B(I) + 2.0 * C(I) + D(I) 

ENDDO



April 11-12, 2002

Arithmetic Pipelines
As written here, with no unrolling, we see about 18 Mflops. In this case, we need the result of the 

multiplication for a subsequent addition. Unrolling exposes much more functional unit 
parallelism to the compiler. Unrolling by 8 gives us 75 Mflops for the same loop:

The CFT77 compiler will unroll simple inner do-loops by using the -vU option. An alternative is to 
use the fpp pre-processor to unroll loops with the unroll directive. The divide operation is not 
pipelined and so presents a special set of challenges. It is covered in detail in the next section.



April 11-12, 2002

Divide Operation
The divide operation is expensive at 61 clock periods. The divide unit is not pipelined, so it is not 

possible to issue a second divide while a first divide is in progress. 
Generally, the best advice with divides is to try to avoid them whenever possible. The CFT77 

compiler currently follows the IEEE rules, which state that a divide cannot be replaced with 
multiplication by a reciprocal (this may change in the future with a flag in CFT77 to ignore the 
IEEE rules). 

In the following example, A, B, C, and D are all cache resident and we achieve about 9 Mflops.
cfpp$ unroll (8) 

DO I = 1, 256 

A(I) = (B(I) + 2.0 * C(I) + D(I)) / x 

ENDDO 

Since this divide is loop invariant, we can simply multiply the reciprocal:
xinv = 1.0 / x 

cfpp$ unroll(8) 

DO I = 1, 256 

A(I) = (B(I) + 2.0 * C(I) + D(I)) * xinv

ENDDO

Resulting code performance here is a little better at 93 Mflops!



April 11-12, 2002

Divide Operation
Other operations can proceed when a divide operation is in progress. If it's not possible to move a 

divide outside of a loop, it's sometimes possible to pre-schedule it from FORTRAN. 
The following code segment is from Amber. This inner loop has a divide, and the result is 

immediately used. Initial performance of this loop is 20 Mflops.



April 11-12, 2002

Divide Operation

We can use a technique similar to bottom-loading where we 
compute the divide that is required for the next iteration of 
the loop in advance. The result of the divide is not needed 
until the next pass of the loop and hence the floating-point 
operations following the divide can overlap with the 61 
clocks. This increases performance to 25 Mflops at the 
expense of nice-looking code:



April 11-12, 2002

Divide Operation

Note that the last iteration is potentially unsafe since we may go out of bounds. The last 
iteration may need to be special-cased.



April 11-12, 2002

Local Load Access: 
Pentium Pro PC



April 11-12, 2002

Local Load Access: SGI Origin



April 11-12, 2002

Local Load Access: DEC 8400



April 11-12, 2002

Local Load Access: 
Sun Enterprise



April 11-12, 2002

Local Load Access: 
SGI Cray T3E



April 11-12, 2002

Comparison – Local Access



April 11-12, 2002

Performance in an SMP Setting

•Copy bandwidth decreases for simultaneous access with 1, 
2, 4 and 8 processors 

•Topics of interest: 
• small working sets in caches: performance remains 
same 
• large working sets in memory: interesting differences 
• behavior for even/uneven strides 

•"Gather copy stream"
(strided load/contiguous store) 

Text on this page © Ch. Kurmann, T. Stricker, Laboratory for Computer Systems, ETHZ-Swiss 
Institute of Technology, CH-8092 Zurich. 



April 11-12, 2002

Local Copy: Pentium Pro SMP



April 11-12, 2002

Local Copy: 
SGI Origin CC-NUMA



April 11-12, 2002

Local Copy:
DEC 8400 SMP



April 11-12, 2002

Local Copy:
Sun Enterprises SMP



April 11-12, 2002

Remote in Parallel Computers



April 11-12, 2002

Remote Transfers: SGI Origin



April 11-12, 2002

Remote Transfers: DEC 8400



April 11-12, 2002

Remote Transfers:
SGI Cray T3E



April 11-12, 2002

Comparison – Remote Transfers


