
UTILITIES AND APIS
NVCPL.DLL API
Manual

Document Version 1.0

NVIDIA Corporation
January 28, 2003

N V I D I A C o r p o r a t i o n

N V I D I A U t i l i t i e s N V C P L . D L L A P I M a n u a l V e r s i o n 1 . 0

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Copyright © 2003 NVIDIA Corporation. All rights reserved.

This software may not, in whole or in part, be copied through any means, mechanical, electromechanical, or
otherwise, without the express permission of NVIDIA Corporation.

Information furnished is believed to be accurate and reliable. However, NVIDIA assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties, which
may result from its use. No License is granted by implication or otherwise under any patent or patent rights of
NVIDIA Corporation.

Specifications mentioned in the software are subject to change without notice.

NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

NVIDIA, the NVIDIA logo, nForce, GeForce, GeForce2, GeForce3, GeForce4, GeForce2 Pro, GeForce2 Ultra,
GeForce2 Go, GeForce2 MX, GeForce2 GTS, GeForce 256, PowerMizer, Quadro2, NVIDIA Quadro2, Quadro2 Pro,
Quadro2 MXR, Quadro, Quadro DCC, NVIDIA Quadro, Vanta, NVIDIA Vanta, TNT2, NVIDIA TNT2, TNT,
NVIDIA TNT, RIVA, NVIDIA RIVA, NVIDIA RIVA 128ZX, and NVIDIA RIVA 128 are registered trademarks or
trademarks of NVIDIA Corporation in the United States and/or other countries.

Intel and Pentium are registered trademarks of Intel.

Microsoft, Windows, Windows NT, Direct3D, DirectDraw, and DirectX are registered trademarks of Microsoft
Corporation.

CDRS is a trademark and Pro/ENGINEER is a registered trademark of Parametric Technology Corporation.

OpenGL is a registered trademark of Silicon Graphics Inc.

SPECglperf and SPECviewperf are trademarks of the Standard Performance Evaluation Corporation.

Other company and product names may be trademarks or registered trademarks of the respective owners with which
they are associated.

N V C P L . D L L A P I M a n u a l V e r s i o n 1 . 0

Table of Contents

1.Overview

About This Document . 1
Document Revision History . 1
System Requirements . 1

2.Desktop Configuration
Overview of DTCFG . 3
Setting Delay Times . 4
Configuring the Desktop . 5

DTCFG Command Format . 5
Understanding the Command Options . 6

3.Control Panel APIs
API Descriptions . .14

Gamma Ramp .14
Get Windows Display Mode .18
Get Connected Devices .19
PowerMizer. .22
N V I D I A C o r p o r a t i o n i

N V I D I A C o r p o r a t i o n i

U t i l i t i e s a n d A P I s
ii N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s O v e r v i e w
OVERVIEW

About This Document
This document describes several APIs and functions that are exposed by the
NVIDIA driver component nvcpl.dll. The document is divided into two
sections:
• Desktop Configuration

This chapter describes the command line function—dtcfg (Desktop
Configuration)—that allows configuration of the desktop and its displays
using the Windows Start->Run dialog box.

• Control Panel APIs
This chapter describes several APIs that allow you to control the display
gamma, the display PowerMizer settings, and also to obtain display
information such as multimonitor modes and a list of the displays that are
connected to the system.

Document Revision History

System Requirements
The NVCPL.DLL APIs support the NVIDIA Detonator XP Release 40 drivers for
Windows® 98, Windows Me, Windows 2000 and Windows XP.

Revision Date Description
1.0 1/28/03 Initial Release. Combined previous PowerMizer API with

DTCFG document. Added new APIs.
N V I D I A C o r p o r a t i o n 1
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s O v e r v i e w
2 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
DESKTOP CONFIGURATION

Overview of DTCFG
The NVIDIA Control Panel library exports a command line function—”dtcfg”
(Desktop Configuration)—that allows configuration of the desktop and its
displays using the Windows Start->Run dialog box. NVIDIA control panel
interfaces are exposed to this API as individual commands.
DTCFG was developed to assist in manual testing and verification of desktop
display behavior such as nView display modes, rotation, and digital vibrance
settings.
DTCFG is explained in the following sections:
• “Setting Delay Times” on page 4 explains how to coordinate multiple

commands.
• “Configuring the Desktop” on page 5 explains the command line format and

describes each of the DTCFG commands.
N V I D I A C o r p o r a t i o n 3
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
Setting Delay Times
You can run several DTCFG commands from a batch file. To make sure that the
commands are launched in a controlled manner, and to avoid conflicts between
commands, you can impose a delay time between commands.
Even though multiple commands will always run serially, specifying a delay is
useful when you want to ensure that a process—such as a modeset—has enough
time to complete.

Command Description
To configure the delay time between dtcfg commands, enter the command
line in the following format:
“rundll32.exe NvCpl.dll,dtcfg setdelay <delay_type>
<delay_time>”
where

• delay_type is one of the following:
pre - indicates the delay time is imposed before each command is
processed.
post - indicates the delay time is imposed after each command is
processed.

• delay_time is the time in milliseconds.
Note: Use of the setdelay command can exaggerate the serial execution of

multiple commands.
The delay time specified by the setdelay command applies to all subsequent
commands, and can be changed only by reissuing the setdelay command
using a different time value. To restore the wait time to zero, issue the
setdelay command using a delay_time value of 0.

Examples
• rundll32.exe NvCpl.dll,dtcfg setdelay pre 500

Wait 0.5 seconds before starting the next process.
• rundll32.exe NvCpl.dll,dtcfg setdelay post 120000

Wait 2 minutes after a process completes before starting the next process.
4 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
Configuring the Desktop

DTCFG Command Format
To configure different displays and the desktop, enter the command line in the
following format:
“rundll32.exe NvCpl.dll,dtcfg <command> <display#> [arg1]
[arg2] [arg3] [arg4]”
where
• command can be any of the following:

• attach - Attach a display to the desktop
• detach - Detach a display from the desktop
• detect - Detect devices attached to the adapter backing a display
• primary - Make a display the current windows primary display
• rotate - Rotate a display
• setmode - Set the display mode on a display
• setview - Set one of the TwinView modes on a display
• setdvc - Set the Digital Vibrance level on a display
• setgamma - Set the gamma for the desired color channel.
• setcontrast - Set the contrast for the desired color channel.
• setbrightness - Set the brightness for the desired color channel.
• setscaling - Sets the scaling of a display.

• display# is the display number on the windows settings page.
This can be any of the values shown on that page, a value of 0 for the current
windows primary display, or the word "all" for all of the displays on the
windows settings page.
Note: Most commands do not support the "all" option.
N V I D I A C o r p o r a t i o n 5
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
Understanding the Command Options
Following are the formats for each <command> option in the desktop
configuration command line.

attach

detach

detect

primary

Description Attach a display to the desktop.

Format rundll32.exe NvCpl.dll,dtcfg attach <display#>

Example rundll32.exe NvCpl.dll,dtcfg attach 2
Attaches display #2 to the desktop. (Can also be accomplished using the
windows settings page).

Description Detach a display from the desktop.

Format rundll32.exe NvCpl.dll,dtcfg detach <display#>

Example rundll32.exe NvCpl.dll,dtcfg detach 2
Detaches display #2 from the desktop. (Can also be accomplished using the
windows settings page).

Description Detect devices attached to the adapter driving a display.

Format rundll32.exe NvCpl.dll,dtcfg detect <display#>

Example rundll32.exe NvCpl.dll,dtcfg detect 2
Detects all displays attached to the adapter driving display #2. This
command will normally not be used by most users.

Description Make a display the current windows primary display.

Format rundll32.exe NvCpl.dll,dtcfg primary <display#>

Example rundll32.exe NvCpl.dll,dtcfg primary 2
Makes display #2 the desktop primary. (Can also be accomplished using the
windows settings page).
If the display is not currently attached, it will be attached and then changed
to the primary.
6 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
rotate

setmode

Description Rotate a display to the designated orientation.

Format rundll32.exe NvCpl.dll,dtcfg rotate <display#>
<angle: 0,90,180,270>

Example rundll32.exe NvCpl.dll,dtcfg rotate 2 90
Rotates display #2 to the 90 degree position.

Description Sets the display mode on a display.

Format rundll32.exe NvCpl.dll,dtcfg setmode <display#>
<hres> <vres> <bpp> <freq>

Example rundll32.exe NvCpl.dll,dtcfg setmode 2 1024 768 32
75
Sets display #2 to 1024x768x32 @75Hz . (Can also be accomplished using
the windows settings page).
N V I D I A C o r p o r a t i o n 7
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
setview

Description Set an nView multimonitor mode on the specified display device or devices.

Format rundll32.exe NvCpl.dll,dtcfg setview <display#>
<viewtype> [<primary device mnemonic>]
[<secondary device mnemonic>]
where
• viewtype can be any of the following:

• standard (or normal)
• clone
• hspan
• vspan

• primary device mnemonic and secondary device
mnemonic indicate which display to assign as the primary and, in the
case of clone or spanning mode, secondary devices. If these fields are not
included, then the driver will make the assignments automatically.
To specify, use the following two character string format:
• A0–A7 (or AA–AH) for analog devices.

These normally include CRTs or analog flat panels.
• D0–D7 (or DA–DH) for digital devices.

These normally include digital flat panels and digital CRTs.
• T0–T7 (or TA–TH) for TVs.
The first character is a mnemonic that specifies the display type—A
corresponds to analog display, D corresponds to digital displays, and T
corresponds to TVs.
The second character specifies the display in one of two ways:
A–H: For most purposes, use A-H, where A maps to the first display
found of a given device type, regardless of where it is connected, B maps
to the second display, and so on.
0–7: Each physical connector is given a bit assignment, starting with bit 0
and progressing one bit higher for each additional connector within the
same display type. Use 0-7 only if you know the actual connector
assignments on the adapter card, otherwise the command will fail if there
is no device on that connector.

Example 1 rundll32.exe NvCpl.dll,dtcfg setview 2 clone
Sets display #2 to Clone mode and let the driver assign the primary and
secondary devices.

Example 2 rundll32.exe NvCpl.dll,dtcfg setview 2 clone AA
Sets display #2 to clone using the first CRT found as the primary, and let the
driver assign the secondary display device.

Example 3 rundll32.exe NvCpl.dll,dtcfg setview 2 clone AA DA
Sets display #2 to Clone mode using the first CRT found as the primary, and
the first DFP found as the secondary display.
8 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
setdvc

setgamma

Description Set the Digital Vibrance level of the specified display.

Format rundll32.exe NvCpl.dll,dtcfg setdvc <display#>
<dvc value: 0-63>
If the adapter only supports DVC1 (value of 0–3), the value will be scaled as
follows:
0–15: 0
16–31: 1
32–47: 2
48–63: 3
Note: This is currently the only command that supports "all" for the display
number.

Example 1 rundll32.exe NvCpl.dll,dtcfg setdvc 2 16
Sets the digital vibrance on display #2 to 20. On an adaptor that supports
only DVC1, the value of 16 is scaled to 1.

Example 2 rundll32.exe NvCpl.dll,dtcfg setdvc all 16
Sets the digital vibrance on all of the displays supporting DVC to 20. On an
adaptor that supports only DVC1, the value of 16 is scaled to 1.

Description Set the gamma level of the specified display.

Format rundll32.exe NvCpl.dll,dtcfg setgamma <display#>
<color channel> <value:0.5–6.0>
Where
• color channel is one of the following:

• red

• blue

• green

• all
• value is in the range 0.5 through 6.0.

Example rundll32.exe NvCpl.dll,dtcfg setgamma 2 all 1.0
Sets the gamma value for all color channels on display #2 to 1.0.
N V I D I A C o r p o r a t i o n 9
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
setcontrast

setbrightness

Description Set the contrast level of the specified display.

Format rundll32.exe NvCpl.dll,dtcfg setcontrast
<display#> <color channel> <value: -82—82>
Where
• color channel is one of the following:

• red

• blue

• green

• all
• value is in the range -82 through 82.

Example rundll32.exe NvCpl.dll,dtcfg setcontrast 2 all 50
Sets the contrast level for all color channels on display #2 to 50.

Description Set the brightness level of the specified display.

Format rundll32.exe NvCpl.dll,dtcfg setbrightness
<display#> <color channel> <value:-125—125>
Where
• color channel is one of the following:

• red

• blue

• green

• all
• value is in the range -125 through 125.

Example rundll32.exe NvCpl.dll,dtcfg setbrightness 2 all
100
Sets the brightness level for all color channels on display #2 to 100.
10 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
setscaling

Description Set the scaling of the specified display.

Format rundll32.exe NvCpl.dll,dtcfg setscaling <display#>
<mode: 0,1, 2, 3, 4, 5>
Where the scaling modes are defined as follows:
0 : Default
1: Native
2: Scaled
3: Centered
4: 8 bit scaled
5: Aspect scaling (for wide panel LCD)

Example rundll32.exe NvCpl.dll,dtcfg setscaling 1 2
Set the scaling of display #1 to scaled mode.
N V I D I A C o r p o r a t i o n 11
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s D e s k t o p C o n f i g u r a t i o n
12 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
CONTROL PANEL APIS
This chapter documents the following functions that are exported from
nvcpl.dll:

• “Gamma Ramp” on page 14
• NvColorGetGammaRamp()
• NvColorSetGammaRamp()

• “Get Windows Display Mode” on page 18
• NvGetWindowsDisplayState()

• “Get Connected Devices” on page 19
• NvCplGetConnectedDevicesString()

• “PowerMizer” on page 22
• nvGetPwrMzrLevel()

• nvSetPwrMzrLevel()
N V I D I A C o r p o r a t i o n 13
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
API Descriptions

Gamma Ramp
The Gamma Ramp API provides functions that read and write the gamma
values for the GPU. The API consists of two functions that are exported from
nvcpl.dll:
• NvColorGetGammaRamp() gets the current gamma color values.
• NvColorSetGammaRamp() sets the gamma color values.

NvColorGetGammaRamp()

NvColorSetGammaRamp()

Function Call BOOL NvColorGetGammaRamp(LPTSTR szUserDisplay,
PGAMMARAMP_MULTI pGammaNew);

Parameters In LPTSTR szUserDisplay -- Either specify “all” for all displays, or
specify a particular display using the following two character format:

The first character specifies the display type—A corresponds to analog
displays, D corresponds to digital displays, and T corresponds to TVs.
The second character is one of A-H, where A maps to the first display
found of a given device type, regardless of where it is connected, B
maps to the second display, and so on.

Parameters Out PGAMMARAMP_MULTI pGammaNew -- the new gamma table values

Return Values TRUE if the new gamma values have been applied.
FALSE if the display name is not valid.

Function Call BOOL NvColorSetGammaRamp(LPTSTR szUserDisplay,
DWORD dwUserRotateFlag, PGAMMARAMP_MULTI pGam-
maNew);

Parameters In LPTSTR szUserDisplay -- Either specify “all” for all displays, or
specify a particular display using the following two character format:

The first character specifies the display type—A corresponds to analog
displays, D corresponds to digital displays, and T corresponds to TVs.
The second character is one of A-H, where A maps to the first display
found of a given device type, regardless of where it is connected, B
maps to the second display, and so on.

DWORD dwUserRotateFlag -- display rotation flag
PGAMMARAMP_MULTI pGammaNew -- the new gamma table values

Return Values TRUE if the new gamma values have been applied.
FALSE otherwise, for the following reasons:
• The display name is not valid.
• The gamma values do not produce a valid gamma ramp.
14 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
Relevant Gamma Structures
 // Single Head Display Gamma Support

 typedef struct GAMMARAMP {

 WORD wRed [256];

 WORD wGreen[256];

 WORD wBlue [256];

 } GAMMARAMP, *PGAMMARAMP;

 // Multiple Head Display Gamma Support

 typedef struct GAMMARAMP_MULTI {

 DWORD dwMask;

 GAMMARAMP grGammaRamp;

 } GAMMARAMP_MULTI, *PGAMMARAMP_MULTI;

Code Sample
The following is an example of how to use the GammaRamp APIs:

typedef struct GAMMARAMP

{

 WORD wRed [256];

 WORD wGreen[256];

 WORD wBlue [256];

} GAMMARAMP, *PGAMMARAMP;

typedef struct GAMMARAMP_MULTI

{

 DWORD dwMask;

 GAMMARAMP grGammaRamp;

} GAMMARAMP_MULTI, *PGAMMARAMP_MULTI;

typedef BOOL (*PCOLORSETGAMMARAMP)(LPTSTR, DWORD,
 PGAMMARAMP_MULTI);

typedef BOOL (*PCOLORGETGAMMARAMP)(LPTSTR, PGAMMARAMP_MULTI);

void main()

{

N V I D I A C o r p o r a t i o n 15
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
 HINSTANCE hCpl = NULL;

 PCOLORGETGAMMARAMP pGetGamma = NULL;

 PCOLORSETGAMMARAMP pSetGamma = NULL;

 GAMMARAMP_MULTI Gamma;

 memset(&Gamma, 0, sizeof(Gamma));

 // Load the NVIDIA control panel applet. This from where the

 // gamma functions are exported.

 hCpl = LoadLibrary("nvcpl.dll");

 if(hCpl == NULL)

 {

 return;

 }

 pGetGamma = (PCOLORGETGAMMARAMP)GetProcAddress(hCpl,
"NvColorGetGammaRamp");

 if(pGetGamma == NULL)

 {

 FreeLibrary(hCpl);

 return;

 }

 // Retrieve the gamma table.

 pGetGamma("all", &Gamma);

 for(int i = 0; i < 256; i++)

 {

 // Do something with gamma values...

 //Gamma.grGammaRamp.wRed[i] = ...;

 //Gamma.grGammaRamp.wGreen[i] = ...;

 //Gamma.grGammaRamp.wBlue[i] = ...;

 }

 pSetGamma = (PCOLORSETGAMMARAMP)GetProcAddress(hCpl,
"NvColorSetGammaRamp");

 if(pSetGamma == NULL)

 {

 FreeLibrary(hCpl);
16 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
 return;

 }

 // Set the new gamma values.

 pSetGamma("all", 0xFFFFFFFF, &Gamma);

 FreeLibrary(hCpl);

}

N V I D I A C o r p o r a t i o n 17
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
Get Windows Display Mode
The function NvGetWindowsDisplayState() returns the multimonitor state for
the specified Windows display. The state is either Windows DualView, or one
of the nView modes—Standard, Horizontal Spanning, Vertical Spanning, or
Clone mode.

NvGetWindowsDisplayState()

Function Call int APIENTRY NvGetWindowsDisplayState(int
 iDisplayIndex);

Parameters In iDisplayIndex -- the display number shown on the Windows
Display Properties->Settings page. A value of 0 indicates the current
Windows primary display.

Return Values -1 -- The display is in an unknown view mode.
0 -- The call failed.
1 -- The requested display index does not exist.
2 -- The display is not attached to the desktop.
3 -- The display is attached to the desktop, but the driver is not an
NVIDIA driver.
4 -- The display is in nView Standard mode (not in Dualview).
5 -- The display is in Dualview mode (not in nView Standard)
6 -- The display is in nView Clone mode.
7 -- The display is in nView Horizontal Spanning mode.
8 -- The display is in nView Vertical Spanning mode.
18 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
Get Connected Devices
The function NvCplGetConnectedDevicesString() returns a list of all the
displays that are connected to the system. You can specify whether to return
only the displays that are active, or all connected displays.

NvCplGetConnectDevicesString()

Sample Code
The following is an example of how the Get Connected Devices API is used:

#include <stdio.h>

#include <windows.h>

typedef BOOL (APIENTRY *FNCGETCONNECTEDDEVICESSTRING)(LPSTR
lpszTextBuffer, DWORD cbTextBuffer, BOOL bOnlyActive);

int main()

{

 TCHAR connectedString[256];

 FNCGETCONNECTEDDEVICESSTRING funcNvCplGetConnectedDevicesString;

 HMODULE hCplDLL;

 hCplDLL = LoadLibrary("NvCpl.dll");

 if (hCplDLL == NULL)

 {

 printf("Unable to load library NvCpl.dll\n");

Function Call BOOL APIENTRY NvCplGetConnectedDevicesString(LPT-
STR lpszTextBuffer, DWORD cbTextBuffer, BOOL bOn-
lyActive);

Parameters In lpszTextBuffer -- The buffer to receive the requested strings.
cbTextBuffer -- The size of the ‘receive’ buffer.
bOnlyActive --
 FALSE to return all the connected devices.
 TRUE to return only the connected devices that are active.

Return Values • If bOnlyActive is FALSE, then the list of all connected devices is
returned.

• If bOnlyActive is TRUE, then the list of active connected devices
is returned.
N V I D I A C o r p o r a t i o n 19
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
 return -1;

 }

 funcNvCplGetConnectedDevicesString =
(FNCGETCONNECTEDDEVICESSTRING)GetProcAddress(hCplDLL,
"NvCplGetConnectedDevicesString");

 if (funcNvCplGetConnectedDevicesString == NULL)

 {

 printf("Unable to find function NvCplGetConnectedDevicesString\n");

 FreeLibrary(hCplDLL);

 return -1;

 }

 // ok now for testing do a 2 character string which should fail.

 if (!(*funcNvCplGetConnectedDevicesString)(connectedString, 2, FALSE))

 {

 printf("Function failed like it should have\n");

 }

 // ok now for testing do a 5 character string which should fail,

 // because no room for \0

 if (!(*funcNvCplGetConnectedDevicesString)(connectedString, 5, FALSE))

 {

 printf("Function failed like it should have\n");

 }

 // ok now for testing do a 6 character string which should work

 if (!(*funcNvCplGetConnectedDevicesString)(connectedString, 6, FALSE))

 {

 printf("Function failed, but shouldn't have!\n");

 FreeLibrary(hCplDLL);

 return -2;

 }

 printf("Function succeeded, connected = %s\n", connectedString);

 // ok now for testing do a 6 character string which should work,

 // with active masks

 if (!(*funcNvCplGetConnectedDevicesString)(connectedString, 6, TRUE))
20 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
 {

 printf("Function failed, but shouldn't have!\n");

 FreeLibrary(hCplDLL);

 return -3;

 }

 printf("Function succeeded, active devices = %s\n", connectedString);

 return 0;

}

N V I D I A C o r p o r a t i o n 21
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

U t i l i t i e s a n d A P I s C o n t r o l P a n e l A P I s
PowerMizer
The PowerMizer API provides functions that read and write the PowerMizer
level to be used when a laptop is running on battery power. The API consists of
two functions that are exported from nvcpl.dll:
• nvGetPwrMzrLevel() gets the current PowerMizer level.
• nvSetPwrMzrLevel() sets the current PowerMizer level.
There are three PowerMizer levels, and are described as follows:

nvGetPwrMzrLevel()

nvSetPwrMzrLevel()

PowerMizer Leveli Comments
1 (Maximum performance) Automatically set when the laptop is running on AC power.
2 (Medium setting) This setting requires that the laptop is running on battery power.
3 (Maximum power savings) This setting requires that the laptop is running on battery power,

and provides the maximum battery life.
i. A call to nvSetPwrMzrLevel() that sets a different level takes effect only after the laptop is switched to

battery power.

Function Call BOOL nvGetPwrMzrLevel(DWORD* dwLevel);

Parameters In DWORD* must be a valid pointer.

Return Values True if the PowerMizer level is obtained successfully.
False for the following reasons:
• The DWORD* pointer passed in is not valid.
• The system does not support PowerMizer.
• The value passed in is less than 1 or greater than 3.
• The hardware escape into the resource manager to obtain the

PowerMizer level fails.

Function Call BOOL nvSetPwrMzrLevel(DWORD* dwLevel);

Parameters In DWORD* must be a valid pointer.
The value that it passes in must be between
1 (NVPWRMZR_MIN_VALUE) and 3 (NVPWRMZR_MAX_VALUE).

Return Values True if the PowerMizer level is obtained successfully.
False for the following reasons:
• The DWORD* pointer passed in is not valid.
• The system does not support PowerMizer.
• The hardware escape into the resource manager to obtain the

PowerMizer level fails.
22 N V I D I A C o r p o r a t i o n
N V C P L . D L L A P I M a n u a l - V e r s i o n 1 . 0

	NVCPL.DLL API Manual
	1
	Overview
	About This Document
	Document Revision History
	System Requirements

	2
	Desktop Configuration

	Overview of DTCFG
	Setting Delay Times
	Command Description
	Examples

	Configuring the Desktop
	DTCFG Command Format
	Understanding the Command Options
	attach
	detach
	detect
	primary
	rotate
	setmode
	setview
	setdvc
	setgamma
	setcontrast
	setbrightness
	setscaling

	3
	Control Panel APIs

	API Descriptions
	Gamma Ramp
	NvColorGetGammaRamp()
	NvColorSetGammaRamp()
	Relevant Gamma Structures
	Code Sample

	Get Windows Display Mode
	NvGetWindowsDisplayState()

	Get Connected Devices
	NvCplGetConnectDevicesString()
	Sample Code

	PowerMizer
	nvGetPwrMzrLevel()
	nvSetPwrMzrLevel()

