Programming in Smalltalk

TR87-023
April 15, 1987

Katherine N. Clapp, Hermann von Borries

The University of North Carolina at Chapel Hill
Department of Computer Science

Sitterson Hall, 083A

Chapel Hill. NC 27514

@©1987 Katherine N. Clapp and Hermann von Borries

Programming in Smalltalk

Katherine N. Clapp Hermann von Borries

April 15, 1987

©1987 Katherine N. Clapp and Hermann von Borries

Contents

1 Imntroduction
Tl MEEREEGE . i 5o scm i v s g wodo k6
1.2 COWBITIEW .. v oo vor momos woms wos w s &os o weom n wew e wie

LR SENBRIORE . 0 et el S v Bt o e T

2 Tutorial
Dol TIVREVIONE . Jor pih o ale Rl B me e N ae & eAA R
22 Getting BEarted - v s eu v o bs mies s b s e s
BE Windowm: ;. ..o s wos aiws s ook e S Ee v o s
24 BExecuting Examples: v i % i v o vw % sid 5w sies
25 Saving yourWERK: - v 5003 a5 P el aee e maeia

28 Lesving Somalltall . . .0 v vin e s ais w wie e

3 Classes

Bl TOUBEVIRNT o oo weie ss e ke BIKE RecE SRl 04 Fodua

12
22
25
27

3.3 The Rangeof Built-in Classes« v v o

S EIRRBAOTME - vaia S Tk e e N € SR R e
&5 Theferarchy: s &0 i s e v eiiline Fa i
36 An Example Hierarchy - . . ¢ oo ¢ i c o v s sn s vas o v
- W R 1 1 T BT S G S e g ST SR S R
3.8 Choosing Effective Objects, Classes, and Methods
Programming

L DeTRIW 1 W e e e e e e e
2 DebpingaClaBe , . o cosom ns = o n ol &t v S
S DelnInG OPETELIBNE . -« 5.0 wr € ors own o7s wenw bodk
g SR T S T R T R
45 DeDURRIERE - s o v §dig B EEnE Sl e @R e
4.8 Methodeynba® & i vivi e aie sen bowi v 5 e i
References

Reading Smalltalk Source Code

How to Program a User Interface

ol CFPBERIEW & oo v e e R R AW e el BUE e TR 4w e

31
33
35

36
36
37
42
49
52
a5

63
63
63
65

66

68

D MENSe cwn ohw covor e aieon SseE e MomE SO E e 69

it G e LT S e e e S T R 70
Ol BeVHOERR i i oici i madion 6 onn Baly BE w5 71
C.B Bustemr Trapderipd . v« 0 v s s v pwmem @ e s es 71
R0 PUOREER . e b N o B R B 72
RRl IBEIR s e b i 8 R T A B R M A 0 B 73
BB BB & 5w il e a5 05 S SR G R e e RS 75
D Sample Program 76

Chapter 1

Introduction

1.1 Motivation

The Smalltalk system is a remarkably powerful programming environment.
Complex applications can be designed and coded in Smalltalk far more
easily and quickly than in most programming languages. Three or four
lines of Smalltalk code can have the same power as pages of C code.

Smalltalk is an object-oriented programming language. Programming con-
sists of defining objects and making them perform actions. For example,
you can display a spiral on the screen by creating a pen and sending the
message drawSpiral to this pen.

Examples of objects are numbers, arrays, text, rectangles, a terminal screen,
an editor, and a compiler. Useful actions might include move: aDistance
(defined on rectangles and text), insert: aText (defined on editors), and
divideBy: aninteger, (defined on numbers).

The object-oriented programming paradigm has several advantages over
traditional programming languages such as C or Pascal. It enforces mod-
ular design and implementation, where modules correspond to objects and
their methods. It encourages programmers to build libraries of tools and
to program incrementally, building on those tools. The power of Smalltalk

comes from the tools (objects and methods) it provides. Smalltalk pro-
grammers customize, extend, and piece together existing tools to create
their programs.

Unlike most common programming languages, Smalltalk is a comprehensive
environment which includes its own text editor, compiler, and sophisticated
debugging facilities. The environment is fairly easy to learn. You can
manage most components with the small set of commands presented in

this manual.

Smalltalk also contains a large amount of source code you will want to reuse,
In fact, Smalltalk is itself written in Smalltalk, and all the source code is
readily available. Most of the modules of Smalltalk are very general; you
will find many of them useful, although sometimes not well documented.

1.2 Overview

This manual is a practical guide to Smalltalk for those who want to de-
sign and program simple applications quickly. With this manual and the
documentation you will find in the Smalltalk code, you should be able to
master a useful subset of the system. Sources of more detailed information
are listed in the Reference section.

The best way to read this guide is sitting at a Sun running Smalltalk. You
can read the chapters in any order you wish, though we recommend reading
them sequentially. The guide contains the following chapters:

Chapter 1: Introduction

An overview of this manual.

Chapter 2: Tutorial

Steps through a sample session with Smalltalk, for those who have
never used the system. Presents the basic building blocks of the
Smalltalk system: objects and methods. Covers essential functions
such as startup, quitting, and saving.

(=11

Chapter 3: Classes

Introduces the hierarchy of classes available in the system. Discusses
in some detail a few objects which are likely to be useful.

Chapter 4: Programming

Describes programming in Smalltalk. The syntax and semantics of
the Smalitalk language are discussed; you will learn how to define
classes and write methods.

Appendix A: Reference

Points to sources of more information: books and articles.

Appendix B: Reading Smalltalk Source Code

A guide to reading source code.

Appendix C: Programming the Interface

Describes how to program tools such as the mouse and pop-up menus.

Appendix D: Sample Program

Lists the code for the example used in the Programming chapter.

1.3 Definitions

As you may have noticed, Smalltalk includes its own vocabulary. This
section defines basic Smalltalk concepts.

Method

A method is a procedure or function. Methods are code segments,
they can be called, receive parameters, and return a value.

An example of a method is drawSpiral, defined on pens.

Sending a message

To "send a message” is to call a method. The message consists of the
name of the method and the parameters of the call. The method can
return a value as an answer.

(Don’t get confused: method calls are not asynchronous. Smalltalk’s
message sending has nothing to do with message passing.)

For example, the message goto: location can be sent to a pen. The
name of the method is goto: and the parameter is location.

Class
A class is a definition which includes:

e The definition of a data structure.
¢ Methods to operate on the data structure.
Classes correspond to abstract data types: an abstract data type

consists of a data structure and operations (Smalltalk methods) to
operate on that data structure.

Programming in Smalltalk consists of writing classes.

An example of a class is Pen. The data structure includes a descrip-
tion of the current location of the pen, whether it is up or down, its
color, its shape, etc.

Object
An object is an instance of a class.
At runtime, a program can request a new object from a class. This
operation will:
o Set aside memory for the data structure.
e Associate this new object with the methods of its class.
In other words, a class is a femplate for an object: new objects are cre-

ated according to the definition of the data structure and the methods
of the class,

Objects have a flavor of autonomy. Once you create one, you lose the
direct control over what goes on inside the object and the only way

to do something with or to the object is to send it a message. This
enforces information hiding.

Almost everything in Smalltalk is an object: numbers, arrays, sets;
even methods and classes. '

Examples of objects are different pens: a black pen, a big pen, etc.

Variable

The Smalltalk notion of variables differs in two ways from other pro-
gramming languages:

All variables in Smalltalk point to objects; they do not contain values
like in other programming languages.

Variables are not typed (but the objects are!). This means that a
variable is only named, not declared. Any variable may point to an
object of any class.

Instance variable

Instance variables are the set of variables which contain the data
structure of an object. '

The instance variables are defined in the class, Whenever a new object
is created, it will have the number of instance variables specified in
the class definition.

Instance variables are owned by the object; they are not accessible
except through methods belonging to the object’s class.

For example, a pen has instance variables color, location, penDown,
ete.

The following table compares the Smalltalk terms to terms in other pro-
gramming languages. The comparison is not formally exact, but it provides
a starting point to understand the new "lingo™:

Smalltalk-80 Pascal or C

method procedure or function

class abstract data type (module, Ada package)
object strongly typed variable

message procedure call

send a message | call a procedure

variable pointer to a data structure

Table 1.1: Informal comparison of Smalltalk terms

This a diagram describes the relationship between objects, classes, methods
and instance variables.

e
-y - ——
Tiaay Pen P L ooy T
e -~ et of dladd Fen .,
| amaladoe Valtadias P
! P-E‘|‘_,1-" F ’ FA R B B b
|smsar ¥, rolis bl | __l e
! lagaling | Medipan | 18,20) - i
Tl st e L] LR LT \
Mariali]
s :
| Wt TH i ,h,' — -
| 112 ! salar whate O
L1 | Sorstion. (40,59 =
el kgl Tl |
L—I -ll
#
, “'. [Ahagi mEiRgs ha
LY ¥ % v rales g] ./
o \\k | e [-189,4Y i e
s =

Figure 1.1: Example of objects, classes, methods and instance variables

Chapter 2

Tutorial

2.1 Overview

This tutorial introduces the novice Smalltalk user to the system. It defines
basic terms needed to understand other chapters of the manual. If you have
never used Smalltalk, be sure to go through this exercise.

At UNC, Smalltalk is available on Sun Workstations. Because it uses a lot
of memory, Smalltalk is significantly faster on 4-megabyte Suns than on 2-
megabyte machines. There is also a version of Smalltalk for the MacIntosh,
but this tutorial assumes that you are using a Sun.

This symbol indicates that you should perform an action at the ter-
minal.

2.2 Getting Started

2.2.1 Setup Procedure

> Create and enter a directory from which to run Smalltalk:

10

mkdir newDirectory
cd newDirectory

b Execute the UNC setup procedure
func/smaltalk/ps0/bin/setup

The single | in smaltalk is not a misprint! All six files created by the setup
procedure are needed to run Smalltalk. Always start the system from this

directory.
2.2.2 Startup

> To start Smalltalk, type

st

The initial Smalltalk screen looks like figure 2.1. It may vary from instal-
lation to installation.

Figure 2.1: Initial Smalltalk screen (installation dependent)

(Smalltalk does not run properly within suntools. If your login file executes
suntools automatically you will need to change it.)

11

2.2.3 The Mouse

The Smalltalk mouse has three buttons. In the literature and in Smalltalk
code you may see references to red, blue, and yellow buttons. Since modern
mice are monochromatic, this document refers to left button (red), middle
button (yellow), and right button (blue).

Each one has a designated use:

left button

Press this button to select text and to position the cursor, when the
cursor is in a window. It has no effect if the cursor is not in a window.

middle button

accesses a menu for using the contents of a window in various ways.
The menu varies from window to window.

right button

accesses a menu to modify a window: open, close, change size, and
others.

2.2.4 Menus

Most work in Smalltalk is done with menus. This is a typical menu:

utilities !
=L Y

nica things
fartune cookies
Adventure gamse
e

Figure 2.2: A menu

Smalltalk displays a menu when you press a mouse button. The current
option is highlighted. You select an option by releasing the mouse button.

12

If you don’t want to make any selection, move the cursor off the menu and
then release the menu button. If a menu flashes on the screen, you must
select one of its items before going on to other work.

2.2.5 Using The Main Menu

& Press the middle button while the cursor is outside all windows.

The main menu appears:

restore display
qarbage collect
axit project
project
fila lisg
browser

system tr8fscript
yatem Wworkspace
suspand
save
quit

Figure 2.3: The main menu

Exercise this menu:

> Select the option restore display and release the middle button.

Smalltalk will erase the screen and redraw all windows.

> Get the menu again, and move the cursor off the menu. Release the
middle button.

The menu disappears and no action occurs.

13

2.3 Windows

2.3.1 Creating a Window

This section demonstrates how to create a window: a workspace. A work-
space is a general-purpose type of window. You can put any kind of text
in a workspace. You can also use one to code small programs (see chapter

4).
b Select the workspace option from the main menu:

restarg display
garbage collect
2xlt project
projoct
file list

SYSTAM workipace
suspand
sdva

S | I

Figure 2.4: Main menu option to create a workspace

Now the cursor will transform into the top left corner of a window:

Ly
Figure 2.5: Top left cursor

You can move this corner freely around the screen by moving the mouse
button.

> Press and hold the left mouse button to fix the location of the new
window’s top left corner. Keep holding that button!

14

Now the cursor will look like a bottom right corner. A rectangular form
will flash on the screen in the space delimited by the corners. As you move
the mouse, the form will expand or contract.

> Release the button to fix the bottom right corner of the window.

You have just opened a workspace:

Figure 2.6; A workspace

2.3.2 The Editor

The Smalltalk editor is available in the workspace and all windows where
you can enter text. It is simple and well-adapted to Smalltalk programming.
It is not possible to use other editors inside the system.

> With the cursor inside the workspace, click the left mouse button.

The edit cursor, a caret, appears. To change the cursor location, press the
left button at a new spot in the window.

> Type The cat chased the bat.

15

Workspace

H l The cat chased the bart,

Figure 2.7: Typing text

Text is inserted at the cursor location.

> Place the cursor at the end of bat and hit backspace three times.

Workspace
ﬂ Tha cat chased the

Figure 2.8: Deleting text

This is one way to delete text. More efficient ways are explained below.

» Type gnat.

Waorkspace

Tha cat chased the gnat,

Figure 2.9: Typing new text

» Now select the words cat chased: place the cursor at the beginning
of eat. While holding the left button down, move the cursor to the
other end of chased. Release.

tha gnat,

Figure 2.10: Selecting text

The selected text is highlighted, You could de-select it by clicking the left
button once. Or you could replace the text by typing.

) Workspace
’ B | The Bar atg the gnat
j

Figure 2.11: Replacing text

> Type bat ate.

16

You can select various units of text with the left mouse button as follows:

a word
double-click at the end of the word.

delimited text (inside quotes, parentheses or brackets)

double-click at either end of the passage, after the first or before the
last delimiter.

all text
double-click at the beginning or end of the text.

a line
double-click at the end of the line.

Erase selected text by pressing the delete key,

There is a menu, accessed by the middle button in editable sections of
windows, which contains other edit commands:

s e
| 2gain
Lt
copy
Eut
paste

arin it
YT
cAnce

L ——

Figure 2,12;: The Edit Menu

undo

reverses the last edit command (usually!).

copy
copies any text currently highlighted into a buffer.

17

cut
deletes highlighted text and saves it in a buffer.

paste
adds the text currently in the buffer at the location of the cursor. If
any text is currently selected (highlighted), it is replaced.

accept
reads the text, and stores it internally in Smalltalk.

If the window accepts source code (like the workspace or the browser),
it is also checked for syntax errors. If there is an error, an explanatory
message appears in the window. You have to delete the message (press
delete), correct the error, and accept again.

cancel

reverts to the text as it was before the last accept.

Chapter 4 covers the options do it, print it, and other uses of accept. Refer
to |2] for a complete description of the editor.

2.3.3 Window Manipulation

You manipulate windows using the right button menu:

Urider
My g

frame

collapsse

Figure 2.13: Standard right button menu

collapse

This leaves only the window’s label visible on the screen. The top
left corner cursor allows you to move the label to some place on the
screen.

18

Figure 2.14: Collapsed window

frame
lets you resize the window.
move
allows you to move the window, without changing the size.

close

removes this window permanently.

& Test the menu options on your workspace window.

& With the cursor in the workspace, select close from the right button
menu. Since there is unsaved text in the window, Smalltalk will
present a confirmer menu:

=

The Text showing has teen Altersd,
| Do you wish 1o discard those changes?
i

i yai Q e !
Figure 2.15: Confirmation for closing a window with unsaved text

> Move the cursor to the square marked yes and click the left mouse
button.

2.3.4 Scroll Bars

Most windows or subwindows have a scroll bar along the left edge. A scroll
bar is visible only if the cursor is in the window. The shaded part of a scroll
bar indicates the portion of the text currently visible in the window.

Now exercise the scroll bar in a system workspace.

15

> Open a system workspace. If a label is already present on your screen,
use the frame option of the right button menu to frame the window.
Otherwise, use the main menu to create a new one.

> Place the cursor in the system workspace.

» Move the cursor into the scroll bar which appears along the left edge
of the subwindow.

Bystem Workspace

System Workspace

SmiircaFilgs = Diak = o
r!
Fites, fdg Files,
(FilgStraam oldFilahiam

| SourceFiles « Cisk = ni SourceFias = Disk « ni

-L ! Files,

| (FleScream pidFilafam:

q

I

| | (FitaStraam atafilahams

Figure 2.16: The cursor in the scroll bar

The cursor becomes an arrow. As you move the cursor around inside the
scroll bar, the direction of the arrow will change. Click the left button when
the arrow points up to page down one line; click when it points down to
page up one line, If the cursor is inside the vertical stripe in the scroll bar,
it appears as an arrow pointing right.

You can jump several pages when the cursor is a right arrow: the position
of the cursor in the scroll bar determines the amount scrolled. You can also
hold the left button down while moving the cursor along the scroll bar to
move around in the contents of the window.

2.3.5 Types of Windows

Smalltalk provides special-purpose windows to help you find and structure
information as well as write new code. Most types of windows can be
created by selecting their names from the main menu:

browser

A browser window is the main programming tool. It is also extremely
useful for learning about the objects which make up the Smalltalk

20

system. Section 2.3.6 describes the browser, and Chapter 4 explains
how to program with it.

workspace

A workspace is a blank window to be used any way. You can write
short programs in this window. The workspace is especially useful for
writing code which is not going to be saved.

file list

At UNC, the file list window lets you read and edit Unix files while
you are in Smalltalk.

UnixFila List on falphafunc/vonborrl/smalitalk
Lo

intarfaca=Mavigsm
PastSeript.Ln

fila n

- L.
|l Scrinbiv-Exanple ey
B StandhrgSysi=mi *

L}

TR Tersme
UnixFiraList=filelis—aassy

=g =~ Balaor "9t contdncs! to vidw Sontencr

Figure 2.17: A file list window

In the top portion of the window, enter the file(s) you want listed. You
can use regular expressions here. For example, to list all Smalltalk
code files (which always end with .st), type *.st. Use accept on the
middle button menu when you are ready.

In the next window you will see list of files which match your descrip-
tion. If you select a file and then press the middle button and get
contents, the file will be listed in the bottom window.

Use the bottom window to edit the file if you wish. When you finish,
select put from the yellow button menu to write the file back on disk.
system workspace

The system workspace contains documentation and templates to help
you issue commands to manipulate files, do error recovery, and find
out information about methods.

21

This window is normally present when you load Smalltalk, so you
don’t need to create it.
system transcript

This window provides a record of important occurences in your Small-
talk sessions. It also displays informative error messages.

This window is also normally present, so you don’t need to create it.

For an explanation of the other main menu options, see [2].

There are many other types of windows, like the inspector (see Chapter 4)
or the debugger window, which appears whenever there is a runtime error.

2.3.6 The Browser

> Select the browser option of the main menu and frame the window.

You have just opened a browser. Browsers are the most important type of
Smalltalk windows. You use them to examine and modify classes and their
associated methods.

Classes and methods are organized into categories for ease of use. Inspect
your browser. The four sub-windows along the top contain, from left to
right:

categories of classes

s classes

groups of methods, known as protocols

methods.

If you select a category in the first window, classes contained in that cat-
egory will appear in the next sub-window. If you select a class, method
protocols for that class will appear in the next window. And if you select

22

a protocol, a set of methods will be displayed in the fourth window. Fi-
nally, Smalltalk code for a selected method will appear in the large bottom
window.

Systam Browser

Mumegriz=tiagni
Numeric-MNumbe
Collections—AL
CoMections~Uno
Colacticns-5&q

Figure 2.18: The Browser

> Move the cursor into the top left subwindow, and scroll the contents
of the window up until you see the category Graphics-Primitives.

» Select Graphics-Primitives from the list in the top left subwindow.
All classes in this category are now displayed in the window to the right.

& Select Pen from the second window.

When Pen is selected, you can see the types of methods provided for this
class displayed in the third window.

23

> Now select a protocol from the third window and a method from the
fourth window. You will see the source code of the method in the
bottom subwindow:

System Browser

Colgctions=Tas
GCallactions=Arr

Accezsing fiin:
coloring 7

moving i

genrETnC dad g Foime

| goto: aPaint
"Move the raceiver to pasition aPoine
If the pen is down, a ling will be drawn
froms thé currant Sosition 0 the ndw oné uting 1ng
Faceivers Iorm sowrce Al tha shape of the drewing brush

The recelver's set direction does not change.”, ‘i,
| ala |

olg = fscation

lecation = HFINE

penlown IFTrue [s-.'rl:f drawFrom: o8 14 locarnizn

Figure 2.19: A method of class Pen in the browser

> Browse through some of the methods for Pen by selecting first a pro-
tocol and then a method.

2.4 Executing Examples

2.4.1 Execute a method for Pen

There are two types of methods: instance methods and c¢lass methods.
Instance methods cause a specific object (an instance of a class) to do
something. If you create a particular pen that is black and is named bie, you
use instance methods to make it draw or move or change color. Some classes
include examples as class methods to demonstrate potential applications.

 Select the class box in the browser.

New protocols appear in the third window. These are groups of elass meth-
ods.

24

b Select examples in the third window, and then select example in the

fourth window.

In the bottom window you will see the code for this example using a pen.

Execute the example as follows:

> Select the words Pen example (without the quotes) written in a com-
ment at the end of the code. Refer back to section 2.3.2 if you are

unsure how to select text.

The words Pen example are written inside comments simply for convenience;
you could also type Pen example yourself and then select that text.

» Now send the message. With the cursor anywhere in the code window,
choose do it from the middle button menu.

The cursor will have an asterisk next to it until execution completes. Then,
the scroll bar will reappear in the subwindow where the cursor is. The result

should be a rather impressive spiral!

Figure 2.20: The spiral

25

2.4.2 Modify a Method

> Now draw the spiral in white instead of gray: replace the line
bic mask: Form gray.
with

bic mask: Form white.
The easiest way to do this is to select gray and type white.

» To draw a thicker spiral, change the width of the drawing pen:
bic defaultNib: 4.

becomes
bic defaultNib: 8.

b Inform Smalltalk of your changes by pressing the middle mouse but-
ton and selecting accept from the menu which pops up. Then execute
the example again.

2.4.3 Display Text on the Screen

t Select Graphics-Display Objects, just under Graphics-Primitives in the
top left window of the browser. Then select the class DisplayText.
Make sure that the class box is highlighted (not the instance box) and
select the method protocol examples from the third window. Finally,
select example in the fourth box.

> Test this method as described above: select and execute the words
Display Text example.

As you move the cursor, text will appear on the screen. Press any button to
terminate. Try altering the method by replacing the string in single quotes
with any text. Accept the changes and re-execute the method.

26

> Select restore display from the main menu to clear the text off the
screen.

> The Smalltalk system has many other interesting examples; explore
and try some! In particular, you might want to look at examples for
the class Form (in the Graphics-Display Objects category), Circle and
Arc (both in the Graphics-Paths category).

2.5 Saving your Work

2.5.1 File Out

The most economical way to save your code is to file out a category, class,
protocol, or method; then you can file it in in another session (see below).
For example, if you have changed several of the methods for Pen, you can

save the entire class Pen as follows:
t Select the class Pen in the second window of the browser.

> With the cursor in the second window, select file out from the middle
button menu.

> Wait until the cursor is a up-left arrow again.
You could save a single method by selecting one in the fourth window and
choosing file out from the menu in the fourth window. You could save an
entire class category selecting a category and filing out with the cursor in

the first window. A new file, xxx.st, will appear in your current directory,
where xxx is the name of the category, class, protocol, or method.

2.5.2 FileIn

You can file in a file that you have previously filed out with the file in option
in the File List window:

27

UnixFile Uist on falpha/unc/vonborrl/smalitalk

| -fite = Satact ‘gec contants’ to view
fofncanty

Figure 2.21: Filing in with the File List

You also could find the Smalltalk statement (FileStream oldFileNamed: ‘'my-
file.st’) fileln in the system workspace, select it and then do it:

Bystem Workspace

&

(FileStroam oldFileNamed: *myfile.st) fileln
(FileStraam filaNamed: 'filafyamest’)
filaQutChangas.

Fi W Sleld . Afrans " .
(FiloStraam fSeMamed: ‘fisiame.1t") edit it

Figure 2.22: Filing in from the system workspace

2.5.3 Print Out

Use print out exactly like file out, but choose the print out option from the
middle button menu. A printable file will appear in your current directory.
At UNC, print this file with:

ptroff -ms -Pprinter filename

2.5.4 Snapshots

One way to save the changes youn have made is to select save from the main
menu. You will be asked to enter a file name for the image. The next time

28

you fire up Smalltalk, you can restore the system as you left it by entering
st fileName
This saves a snapshot of the present state of the system. Use this spar-

ingly, since a snapshot requires 2 megabytes or more of space. Reliability
problems have occurred with snapshots at UNC.

2.6 Leaving Smalltalk

2.6.1 Suspend

Suspend acts like Control-Z in Unix: when you return to the system by
typing fg, Smalltalk will resume.

> Select suspend from the main menu.

» With the left button, select yes from the confirmer menu which ap-
pears.

You will be in UNIX.
& Return to Smalltalk by typing fg.

Sometimes garbage appears on the display when you return to Smalltalk.
In this case, use restore display from the main menu.

You can also suspend Smalltalk at any time by pressing the L2 key. This
is a short cut since no confirmer will pop up.

2.6.2 Quit

> To exit Smalltalk, select quit from the main main menu. Then select
quit without saving from the confirmer menu which appears.

29

Chapter 3

Classes

3.1 Overview

This chapter presents the classes provided in the Smalltalk system. It
demonstrates how you can use existing classes as tools to write efficient,
effective code. The organization of these classes is described to give you
some idea of how to find and use the tools you need. One important
category of classes, the Collections, is discussed in detail.

3.2 Programming with Classes

The Smalltalk system includes a very large set of predefined classes. Each
one has methods which specify the behavior of instances of that class. This
set of classes is a taxonomy of data types which you should use as tools to
help you program.

The first task of programming is to specify your application in terms of
objects., Choose objects to represent important entities in your program.
Think of the objects the users will have in mind when they use it; these
are good candidates for Smalltalk classes. Traditional data types such as

30

trees and graphs are also good candidates. Many objects of this kind are
provided as built-in classes.

Next, specify the behavior of these objects. The behavior will be imple-
mented as Smalltalk methods.

The next task is to choose (or build) classes to represent your objects.
Every object will be an instance of some class. To do this, you need to
know where to find particular types of classes and how to find out what a
class does.

3.3 The Range of Built-in Classes

Smalltalk provides a wide variety of classes. Some of these are magnitude
classes, like Number, Date, and Time; collections like Array, LinkedList,
and Text; and graphical objects, like Rectangle, Arc, and Cursor. This
information is organized in two ways:

e To aid the programmer, classes are grouped into categories

¢ Classes are organized in a strict hierarchy.

Categories and the hierarchy both ease the task of finding appropriate
classes. The correspondence between these two is fuzzy: classes grouped in
a category do not neccesarily match portions of the hierarchy.

3.4 Categories

For the convenience of the user, classes are grouped into categories. All
categories are listed in the top left subwindow of the browser window. One
of the best ways to locate useful classes is to choose a category which seems
relevant to your needs and then browse through the classes in that category.
These are most commonly used categories:

31

Numeric-Magnitudes
Numeric—-Numbers
Collections-Abstract
Collections-Unordered
Collections-Sequenceable
Collections-Text
Collections-Arrayed
Collections-Streams
Graphics-Primitives
Graphics-Display
Graphics-Paths
Kernel-Obdjects
Files-Streams
Unix-Interface

Figure 3.1: Some Useful Categories of Classes

3.5 The Hierarchy

Every Smalltalk class has some position in the class hierarchy. The hierar-
chy is a tree structure: every class has one immediate superclass and any
number of subclasses. Classes which are related to each other are often
close together in the hierarchy.

The main purpose of the class hierarchy is to exploit common characteristics
of objects. The hierarchy is partly determined by implementation issues,
so its structure does not always make sense from a conceptual standpoint.

Classes inherit methods and variable declarations from all their super-
classes. By default, all methods of a class are inherited by all its subelasses.
A subclass may explicitly override a2 method specified in one of its super-
classes or it may add new methods. Thus, you cannot infer the behavior of
an object by the methods in its class alone; you have to take into account
its superclasses.

The class Object is at the top of the hierarchy. All other classes are sub-
classes of Object. Object provides fundamental methods which are inherited
by all classes. These include copy (to make a copy of an instance), and =
and == (to compare instances).

32

Inheritance of methods is very important because if you choose classes
judiciously, the amount of code you will need to write can be very small.
For example, to create block diagrams of houses you could define a class
House from scratch. Or you could use the existing class Rectangle. To use
Rectangle, create a subclass House and add an extra point to mark the top
of the roof. Then add or modify methods provided by Rectangle as needed
to deal with the roof. In fact, all the code you write for House will specify
ways in which it differs from Rectangle.

Figure 3.2: A Rectangle and a House

3.6 An Example Hierarchy

Suppose you are writing a program to draw circles and ellipses. You could
define Circle and Ellipse as independent classes:

class: Circle
variables: center, radius
methods: moveTo ...

class: Ellipse
variables: center, radiusi, radius2
methods: moveTo. ...

The declarations have similarities:

33

s the variable center is declared in both

e the method moveTo is declared in both and it can be implemented
the same way

The following class hierarchy would be useful:

super-class: CenteredObjects
variable: center
methods: moveTo,

sub-class: Circle
variable: radius
methods: ...

sub-class: Ellipse
variable: radiusl, radius2
methods: ...

This structure is less redundant and easier to maintain than the previous
one. The code has been split into sections and duplicate parts are factored
out to a higher level. Subclasses Circle and Ellipse can use the instance
variables defined in any of their superclasses as well defining new ones.

To program in Smalltalk, specify the important objects in your applications
and choose classes to represent these objects. Then modify, add, and remove
methods until instances of the classes behave as you intend. You may have
to create new classes; if so, they probably will include temporary variables
which are instances of existing Smalltalk classes. Whenever possible, use
the classes provided instead of reinventing them.

To select the one of several closely-related classes that is best suited to
an application can be difficult. The best way to choose between classes
is to examine the methods provided. What follows is a short guide to a
commonly used set of categories: the Collection classes.

34

3.7 Collection Classes

In many languages, when you need to use a list of objects, you declare an
array or program a linked list. In Smalltalk, you can choose one of the
collection classes to represent your list.

r
COLLECTIONS

B i i e P

— s
Seguanceshle raotea
Ge Sel " " "
. ‘ : Collection | Callaciion ‘
|llll '
/ /
J i, L
/ 8 =
I I | Arrogec || Dreeres
[ig=nl iyl | | Buttiangry |1 Il Cailectich Limkentist | bt
d_ | = L
o |\\
r’/ I i
- l |1 Serted
4 i . M | | colieersen
! i1

Figure 3.3: Hierarchy of the Collection Classes

If you choose a class which is far down in the hierarchy, you get the ad-
vantage of inheriting a lot of methods from its superclasses. If the class
you choose inherits an inappropriate method, you have the options of not
using it or of replacing it by adding a method of the same name in your
class. For example, suppose you want to represent a list of students in
alphabetic order. You would like to be able to insert and delete students,
while maintaining alphabetic order. Look at the classes

SequenceableCollection
OrderedCollection
SortedCollection

Which class would you choose? Notice that SortedCollection and Ordered-
Collection are both subclasses of SequenceableCollection.

35

You could select SequenceableCollection itself. But would you gain more
capabilities if you chose one of its subclasses?

If you use an instance of either SortedCollection or OrderedCollection to
represent and manipulate your list, you will be able to use all methods
defined for SequenceableCollection. Which of these two classes would be
most appropriate to your goal? To determine this, look at the methods
defined on OrderedCollection and SequenceableCollection and decide which
one contains the most useful methods.

If you choose SortedCollection, your list will be kept sorted, since the class
you have chosen provides this facility. By judicious selection of classes, you
can avoid writing routines and keep your Smalltalk code very, very short.

This figure depicts decisions you will want to make to choose a class to
represent your list:

[Coileciion
wre elementd grdered”
il e
L wereageble by 2 eyt | Seguencentinl slecian
wel L]]
:“ .

proered deterrmngd

wler iy ety

Cletipnary i‘!ﬂlﬂrﬂlcﬂnnlq Eag -
il clemenis
sttessibde o6 Wey? [[
[TL) - L ey

dugheatei allysed?

H
L Feo NTl=1 il
I I "2 e
: ErrapedColleciban 5 Emrgreal Sortedlaleciics
| SN |
vlaas ar'® cmrLy
class of #lpments [\
rd [bt Lina
SEmallineager Chafaaiar ans
i Bysedmey | | Siring Tont | [_Muqu | Mundaray | [Lmteciar | | SesmwaCsnecoan |

Figure 3.4: Decision Tree of the Collection Classes, reproduced from [1]

a6

3.8 Choosing Effective Objects, Classes, and
Methods

Objects are like modules in procedural languages, so they should conform
to the same principles as modules:

¢ Hide information and implementation details.
¢ Encapsulate specifications that are likely to change.

¢ Be as general as possible and permit reuse.

For each class, determine a set of methods which intuitively apply to that
object. All other methods should be considered private. Unfortunately, all
Smalltalk methods are global so there is no way to enforce hiding. Put such
methods in a protocol called private.

For example, appropriate operations for a tree are: get the root, get the
value of each node, and traverse in pre-order, in-order, and post-order.
Inappropriate operations for a tree are "get the value of an internal pointer”
or "traverse in stored order”. These depend on the implementation and
have no place in the concept of a tree.

Reuse method names for similar objects. For example, Smalltalk collections
define the method do: to traverse all their members. Use the do: to express
the same concept in your data structure, instead of making up a new name.
You will need to remember less.

a7

Chapter 4

Programming

4.1 Overview

This chapter describes how to write classes and methods.

The main components of the programming task are:

e define classes using class templates

e write instance methods to access and manipulate instances of the
classes

e write class methods to create these instances

e debug

The first part of the chapter describes the programming task with an ex-
ample. The illustrations show how to use the Smalltalk browser for pro-
gramming.

The second part of the chapter describes the programming language in
detail.

The program code for the example is listed in Appendix D.

38

4.2 Defining a Class

4.2.1 The Example

Suppose you would like to draw many dots on the screen:

Figure 4.1: The example: dots drawn on the screen

You can define a class to do this task. Each dot will be an instance of the
class. A dot can be created, assigned a size and a pesition, and displayed.

The name of the class will be Dot. Class names always begin with a capital
letter.

4.2.2 Specification

As with any programming task, before you start programming, clarify what
you intend to do. Determine the data structures you need and the opera-
tions you need to perform on the data.

Then define classes to implement the data structures and operations. This
step is explained in this chapter.

Once the classes are defined, you can run your program to create new
objects according to the definition you have provided. These objects will
respond to the messages sent to them.

i9

4.2.3 Defining a New Class

To define a new class with the browser, you may wish to create a new
category to contain the class. This is done for clarity and documentation
purposes only.

> Create a category with the browser:

Interface-Changd
Systam-Suppart
System-Changes
Systeam—Compiler

sl InCerface~Changs
¥l Svstam=Support
= Systam=-Changes
Bt Systom-Compiler
B Siystam-FRelzasing

Systam-Suppart
Systam-Changes| -~
N System-Compilar
. Sy item-Aeleasing
o Files-Straams

B Filas-Strual Enter new category nams Filas-Abstract
j Filas-ADiTn then accept or CR F-In_:—ﬁ:m:: Alto
i Files-Xere e Unix=intarface

- My=Cartegory

T inst
HMamalfZuparclass su

Unix=Ilnterf

My=Category,

Figure 4.2: Creating a new category
You may wish to review in chapter 2 how to open a browser.

Now define the new class.

You can describe a Dot by its center and its radius. The center is a point
on the screen, and the radius is a number. Only one variable is needed for
the center (not two for the x and y coordinates), since Smalltalk provides
Points. Thus a Dot will have two instance variables: center and radius.

> Get the class definition template with the middle mouse button in
the class pane of the browser:

40

e e s
IER printour |reemmmoe
A spawn
ppawn hlararehy
higrarch
commeant ‘
protocols

inat var raf:
"""""" class var refs

Object subclazs ¥5 class rafs

i Instancevariabl i :
| arlable Hisgolmiss mat InstvarName2
(class¥arableNares—omrorrorete | ClassvVarName? *

System-~Sup
System-Cha
System=Co
Systeam~PAale
Files=Stroam
Flies=Abatra
Flles-Xarox

Unlz=interfa

poolDletlonarias:]
catapgory: 'My-Catoegory'

Figure 4.3: Getting the class definition template
This is the class definition template:

NameOfSuperclass subclass: #NameOfSubclass
instanceVariableNames: ‘instVarNamel instVarName2'
classVariableNames: ‘ClassVarNamel ClassVarName2'
poolDictionaries: "
category: ‘My-Category’

» Modify it as follows:

Object subclass: #Dot
instanceVariableNames: ‘radius center’

classVariableNames: "
poolDictionaries:
category: 'My-Category’

and accept it with the middle mouse button:

41

System Browser
System-Support

System~Changes
System-Compilar
System-Raleasing
Filgs=Streams
Filas-Abstract
Filas=Xarox Alto
Unix=interface

LDbject subclass: #Dot
InstanceVariableNames: "radlus n:::-ntqr
classvariableNames: **
poeiDictionarias: **
category! 'My-Catagory’

Figure 4.4: Accepting the class definition

Now the Dot class is defined. It is a subclass of Object, so any instance
of a Dot will also respond to the methods defined for Object.

Please note that this is an example only. Should you ever want to program
a dot, define it as a subclass of Circle to get most of this behavior with only
a little bit of effort.

4.2.4 Testing the Class Definition

Now write a short test program that uses this new class. Such programs
can be written in a workspace.

> Open a workspace. (See chapter 2 for a description of how to open a
workspace.)

> Type in this program. (You may leave out the comments shown in
quotes.)

“This is an example.
Declare a temporary variable:”
| theFirstDot |

42

“Get a new instance of a dot and

assign it to variable theFirstDot.”

theFirstDot +— Dot new.

" Return the value of the dot compared to itself”
1 (theFirstDot = theFirstDot)

Type in the assignment operator + as an underscore and the return
operator 1 as the up-arrow or hat symbol. The period separates
statements (much like the semicolon in Pascal).

> Select the text with the left mouse button and print it. Smalltalk will
execute the program and display the return value:

This is an example. K *This Is an example

Declare a temporary variabla™ e ¢ M | Ceclare a temporary variabie:”

| theFirstDox | B || thaFirstDaot |

"Get a naw instance of a dat ; - 1 : *Gar & new instance of a dot and
assign it to variable thefirstDe ” : &ssign it o variable thefirsiDor”

thefirstDot + Dot new. _ theFirstDot « Dat naw,

B Feturn the vaive of the dot ciE It ; "Aeturn tha vajua of the cor comparsd
to itsalf” : M to [tselt”

¢ theFirstDot = theFirstDot o) R t theFirstDot = thefirstOo:FOT

Figure 4.5: Executing the program and printing the result

As expected, the return value printed by Smalltalk is true, because
the variable theFirstDot was compared with itself. Press the delete
key to erase the result.

Note that the new function and the comparison (=) are already available
for Dot because both are defined in the superclass of Dot, Object, and a
class inherits all methods of its superclasses.

43

4.3 Defining Operations

4.3.1 Protocols

We will specify these operations for an instance of a Dot:

L] a.cl:e.'lﬂing

— change the radius
— change the position of the center
— ask the dot for its radius

— ask the dot for position of its center
¢ calculating

— caleulate the diameter

— calculate the area
s displaying
— display it
Remember that groups of operations (like accessing, calculating and dis-

playing) are called protocols. Here is how you define protocols. Make sure
the instance box in the class pane is highlighted.

Systam Browser

LRl add protocol

Files=Xerox Altg
Uniz=Interface
f

‘C}'.J__:-'_-s:t subsiaLs: = Dot
instanceVariableMamas ‘radiys center *
classVarisblgilames: "'
pooiDictlonarigs: "
categary: "My-Catagory”

Figure 4.6: Defining protocols

44

Protocols are for documentation and convenience. If you have many meth-
ods, you can find methods more easily if you group them and give them
meaningful names.

4.3.2 Writing an Instance Method

> To write an instance method, replace the meihod template in the
browser. The template is:

message selector and argument names
| temporary variable names |

statements
> This short method replaces the radius of an instance with a new value:

radius: aNumber
"Replace my radius with aNumber”
radius «— aNumber

> Use the accept option of the middle button menu to compile and store
this method (this will take only a few seconds).

A method behaves much like a procedure:
e It has a name, radius:. (The colon is part of the name, and indicates
that an argument follows.)
e [t has arguments. This example has the single argument aNumber.

¢ It can have temporary (local) variables. They are named between
vertical bars. Temporary variable names start with a lowercase letter,
This example has no temporary variables.

e It has a body. The body of this method has only one assignment
statement.

45

e [t may return information to the caller.

All instance variables, like radius, are visible from all instance methods of
the class, much like global variables are visible in procedures in conventional
programming languages. [nstance variables in one class are not visible from
other classes, except for subclasses of that class.

There is one important difference between methods and subroutines: meth-
ods belonging to different classes can have the same name, For example,
the class Circle also has a method called radius:, which is different from
this one.

» As an exercise, write the method center: to move the center of a dot.

4.3.3 Testing an Instance Method

Here is an easy way to test this instance method:

> Write the following program in the workspace:

|xy |

" Assign a new instance of dot to both x and y."

x « Dot new.

y + Dot new.

"Invoke the method radius: with argument 10 upon x.”
x radius: 10.

"Change radius of y to 20."

y radius: 20.

“Return x compared to y.”

T(x=y)

> Execute the code. The result should be false.

46

4.3.4 Writing a Method with Several Parameters

> Here is a method to replace both the radius and the center of a dot
in one call:

center: newCenter radius: newRadius
" Replace my radius by newRadius and my center by new-
Center”
center «— newCenter.
radius +— newRadius

4.3.5 Self

The previous example contains two assignments. But two methods (the
radius: and the center: method) already perform this assignment. Why
not call them instead?

The variable self refers to the abject to which the current message was sent.
For example:

"Suppose aDot and anotherSpot are instances of the class Dot.”
aDot center: a radius: b
anotherSpot radius; b

Inside the method center:radius:, self refers to the object aDot, and within
the method radius:, self refers to the object anotherSpot.

This means that the method center:radius: can be rewritten as follows:

center: newCenter radius: newRadius
"Replace my radius by newRadius and my center by newCenter.
Use methods radius: and center: to perform the change.
Call these methods on myself.
This method is equivalent to that of the previous section.”
self center: newCenter.
self radius: newRadius.

47

Note that self is an implicit parameter of any method call.

4.3.6 Inspecting an Instance

Here is another way to test the effect of a method, which is better than
printing its result.

> Write the following code in the workspace, and do it.

| aDot |

aDot « Dot new.

“Set radius to 10 and center to the point 100@200.
(The @ sign is the Smalltalk operator to form points.)”
aDot center: 100Q200 radius: 10.

aDot inspect

The aDot inspect instruction opens a window to access the instance

radiy 5!

------- - —————

C) Y ——

R L T (M BT P A T

igure 4.T: An spectr

> You can select each of the instance variables with the left mouse
button and inspect them too. You even can inspect self, but this gets
you another copy of the same inspector.

> To get rid of an inspector, use the right mouse button close function.

48

4.3.7 Returning a Value
Here is a method with no parameters that returns a value:

center
" Return my center”
T center

> Write a short program to test this method in conjunction with center:.

4.3.8 A Method to Display a Dot

> This method displays a dot. Put it in the displaying protocol. It is
based on existing Smalltalk software.

display
" Display myself on the screen
The variable dotBitmap holds a bitmap for the dot,
and is copied to the bitmap display of the workstation.”
| dotBitmap |
" Create the bitmap of size radius*2”
dotBitmap + Form dotOfSize: (radius * 2).
dotBitmap
displayOn: Display
at: center
rule: Form paint

> Now try it with the following program in the workspace:

| theDot |

theDot + Dot new.

theDot center: 100@100 radius: 20.

theDot display.

theDot center: 200Q200 radius: 50; display.

The last statement is shorthand; this is called cascading a message,
and it applies the display call to the same object as the previous call.

49

4.3.9 Creating New Instances

The standard way to obtain a new, uninitialized object is to send the new
message to the class, as in Dot new. Normally, the first operation you
perform on any new instance is to initialize some or all of its instance
variables.

The elass methods can be used to create and initialize objects in one step.

Class methods:

* initialize new instances
¢ cannot reference instance variables directly, as instance methods can
e are sent to the name of the class, as in Dot center: 20@20 radius: 10.

> Select the class box in the class pane. Then define protocols and
methods just as for instance methods.

instance

Figure 4.8: Selecting class methods

» Enter this class method:

defaultShape
"Return a dot with default size and position”
| x
" Ge|t a new dot.”
x + Dot new.
" Initialize it with some default values.”
x center: 100@200 radius: 10.

X

a0

This method is used as follows:

| blob |
blob «— Dot defaultShape

4.4 Subclasses

Suppose you want to draw flowers:
=l o ™

/N

This example has many features in common with the dot example:

¢ A flower has a center and the radius of the central dot

¢ [t needs similar methods to set and request the value of the instance
variables center and radius

But some additional features are needed:

e The length of the petals must be specified

e The display of the flower is different, but similar to the display of the
dot.

51

4.4.1 Defining a Subclass

» Define Flower as a subclass of Dot:

Dot subclass: #Flower
instanceVariableNames: 'petalLength’
classVariableNames: ”
poolDictionaries: "
category: "‘My-Category’

This will add the instance variable petallength to the instance variables
center and radius of Dot. In this respect, it is the same as declaring:

Object subclass: #Flower
instanceVariableNames: ‘radius center petallLength’
classVariableNames: "
poolDictionaries: "
category: 'My-Category’

But if Flower is defined as a subclass of Dot, then also all methods of Dot are
available for Flower, such as center, radius, center:, radius:, center:radius:,

display and defaultShape. Thus, you can build on existing software, by
adding and replacing features.

4.4.2 Defining New Methods in a Subclass
> The following methods are also needed for a Flower:

petalLength: newLength
petalLenth + newlength

petalLength
T petalLength

New methods, with different names from the superclass methods, can be
added as desired.

52

4.4.3 Overriding a Method

You can also write a method in a subclass to override a method in the super-
class. For example, the display method of Flower is different: it should also
display the petals. Here is the new display method. It uses the standard

Smalltalk object Circle to draw the petals.

> Type this method:

display
"Display myself on the screen,
Temporary variables: petal points to a circle.”
| petal c |
"Display the petals. Use the Circle object to draw little
circles. Get a (new) circle. and set the thickness of the
line to 1. The radius of the circle is the petal length.”
petal «— Circle new.
petal form: (Form dotOfSize: 1).
petal radius: petallLength.
“Draw six petals with this loop."
0 to: 300 by: 60 do: [: angle |
"Calculate the center of the petal”
¢ + (angle degreesToRadians cos) @
(angle degreesToRadians sin).
¢ «— ¢ * radius + center.
"Set the center of the petal”
petal center: c.
"and display it."”
petal display |.
“Now draw the dot inside the flower.”
aDot «— Dot new.
aDot center: center radius: radius.
aDot display

This method replaces the method of the superclass for all Flower objects.
The display method defined on Dot is still available for instances of the Dot
class, but it is hidden for instances of the Flower class.

53

4.4.4 Use of super

super permits calling methods of a superclass, which would be otherwise
redefined by the class.

It is a variant of self, but the method is looked up in the superclasses only,
instead of this class and the superclasses.

t Here is an example of the use of super. The method in the last
example, which displayed a Flower, can be rewritten more efficiently
as:

display
" Display myself on the screen.
Temporary variables: petal points to a circle”
| petal c |
...same as before ...
“Now draw the dot inside the flower.”
super display

The super display statement calls the display method of Dot, Thus, the
new Flower display method is really a refinement of the Dot method: it

adds some statements to the original method (it adds the statements
that draw the petals).

The use of super is appropriate when a method in a subclass should perform
functions similar to those are already programmed in a superclass. You only
need to write code to do the additional functions.

4.5 Debugging

4,5.1 Run time errors
Whenever Smalltalk detects a runtime error, a notifier appears:

54

Meassage not understood: moveAtRandomSomewhere

Pan class{Object)¥>doasNotUndarstanda:
[J I UndafinedOnjaci»dDolt
UndefinedObject>»Dolt
Compilarsrevaiuatainitona tifyingifFall
ScringHolderController) ddolt

Figure 4.10: A notifier for a runtime error

Using the middle button menu, you can either proceed (which tries to ignore
the error) or debug. You also can use the close option of the right button
menu to abandon the task.

If you select debug, a debugger window appears:

Messaga not understood: moveAtRandomSomewhore

Pen class{DbjectibdonsiotUndarstand: ————]
L] in UndefinedObjectr»Dalt

UndefingdObject> 2 Dailt

gripe * statusss#HigrarchyViclatlon
itTruer [aMessage saloctar classPare , * s nat one of my
suparelasses: ”]
ItFalse: ["Message not understood:)
MNotitiarvieow
openContext thisContext
label gripe , aMessage selector
contants: thisContext shortStacky

:EE[-LF'EH aMassag] "Message not
supercia £ farst 4
'nerft-udlii EEIHI-M R

Figure 4.11: A debugger window

The first subwindow shows the stack of calls. There is one line for each call
and the most recent call is first. You can move up and down the stack to
select the method that interests you.

The middle button menu in this subwindow is:

55

full stack
hroceed

| restart

i senders

rmplementnrs
messagas

| step

sand

Figure 4.12: Middle button menu in the top subwindow

Some of the options are:

proceed

Continues the execution.
single step
Executes instruction by instruction.
full stack
Shows the full stack of calls, not only part of it.

The second subwindow shows the source code of the selected method. The
current instruction is highlighted.

If you discover an error you can change the source code, accept it, and then
select proceed on the middle button menu of the top subwindow.

The third subwindow consists of an inspector of the instance variables (left
side) and of the temporary variables (right side).

4.5.2 Inserting breakpoints

A breakpoint is the instruction:
nil halt

Whenever it is executed, the debugger appears.

56

4.5.3 Loops

If your program is in a loop, hit control-C. A notifier will appear, and you
can enter the debugger.

You can use the L2 key to suspend Smalltalk and enter Unix (see section
2.6.1) if control-C doesn't help.

4.6 Method syntax

4.6.1 Overview

This section describes method syntax in detail. The definitions are practical
rather than rigorous. Use this section as a reference. For more information,
see [1].

Four topics are covered:

e constants and variables

¢ types and precedence of message expressions
e arithmetic and boolean operations

e arrays

¢ common control structures, including if-then-else and while

4.6.2 Constants

These are some of the constants that can appear in Smalltalk programs:

57

example type

10 decimal

10.3 decimal

10.3e-4 decimal with exponent

-6 decimal, negative

"hello’ string

"don”t’ string with * in it

$x one character (the x)

true. false the boolean true and false value

nil the value of an uninitialized variable
#(1020 30)| an array constant with 3 elements
F#center: a symbol (for example a method name)

Table 4.1: Smalltalk constants

4.6.3 Variables

Smalltalk variable names are alphanumeric. The first letter of a variable
indicates its scope:

o First letter lowercase: local variables, like instance variables or tem-
porary variables.

o First letter uppercase: global vartables, like class variables or class
names.

4.6.4 Types and Precedence of Message Expressions

Smalltalk statements are message expressions. Here are the three types of
simple message expressions (the keyword message is illustrated twice):

58

sample expression type arguments
| aDot display unary none
radius * 3.14159 binary 3.14159
aDot radius: 20 keyword 20
aDot center: aPoint radius: aNumber keyword aPoint and aNumber

Table 4.2: Message types

All expressions are a combination of these types of messages: unary, key-
word and binary. Their characteristics are:

Unary messages

Unary messages have no arguments.

The name of a unary message is alphanumeric, starting with a low-

ercase letter.

Unary messages have the highest precedence.

Binary messages

Binary messages have exactly one argument.

The name of a binary message consists of one or two special charac-
ters, like + /* " > <@ % | &7 and -

Binary messages have intermediate precedence.

Keyword messages

Keyword messages can have any number of arguments.

Each argument is indicated by a keyword and a colon (:). Keywords
are alphanumeric, starting with a lowercase letters.

Keyword messages have the lowest precedence.

Use parenthests to alter the precedence or to clarify your intentions. In-
denting an expression may also add to the clarity. For example:

59

BitEditor
openScreenViewOnForm: (Form fromDisplay)
at: 0@Q0
magnifiedAt: 100@100
scale: 8@8

Within the same precedence, expressions are interpreted strictly from left
to right. For example index + offset * 2 is the same as (index + offset) * 2,

All messages can be cascaded with a semicolon. That is, several messages
can be sent to the same object in just one statement:

aDot radius: 10: center: 20Q20: display.
is the same as

aDot radius: 10.
aDot center: 20@20. aDot display.

Variables point to objects, they do not eontain objects. For example:

"Create a new rectangle, and make ‘a’ point to it:"
a «~ Rectangle origin: 0Q0 corner: 100@120.
"Make 'b’ reference the same rectangle:”

b« a

“Modify the rectangle. moving its origin:”

a moveTo: 10@20.

In this example, both b and a point to the same object. The last line
modifies the object, so after this operation, b will have moved too!

If you want to assign a copy of an object to a variable, use:
b «— a deepCopy.

Now a and b point to different objects, and whatever you do with a will
not affect b.

4.6.5 Common Operations

All numeric objects accept the four arithmetic operations (messages) +, —,
and /, and the comparison operators <,>,>=, <= and =,

All objects can be compared using =, to see if they have tdentical values.

Two objects can also be compared using ==: this test will succeed only if
the variables which name these objects point to exactly the same memory
location.

To see whether a variable x has been initialized, that is, has value nil, use
x notNil.

The boolean operators are:

operator | meaning
& and

| or

not negation

Table 4.3: Boolean operators

Be careful: since not is a unary operator, it has to go after the expression,
so that

(a|b) not
really means
not{ a or b).

All parts of boolean expressions are evaluated. See the control structures
and: and or: for variants that evaluate only the necessary parts of the
expression.

Arrays are created with the Array new: message:

61

“Assign an array of 20 empty elements to x”
x + Array new: 20.

Use at: to refer to an element and at:put: to replace the value at an element:

" Assign the 5th element of x to y”
y «— x at: 5.

"Replace the Tth element of x by 2"
x at: T put: z

The message size returns the size of an array. For example, return true if
the i-th element of x is positive, false if it is negative or the index i is out
of bounds:

T(i>0and: |[i<xsizeand: [(xat:i)>0]])

The elements of an array can contain any object: numbers, dﬂtﬁ_, strings,

characters, arrays, etc. Different elements of a single array can contain
different object types.

Many other types of collections are available in Smalltalk: sets, ordered

collections, dictionaries, bags, etc. See [1| or the Smalltalk code for more
details.

Strings are a particular form of array. You can use at; to access a particular
character in a string. Concatenate strings with

bothStrings «— stringl | string2.

4.6.6 Control Structures

Smalltalk has many control structures. Creating new ones is easy.

Here are some control structures similar to those found in other languages.
A block is a sequence of statements surrounded by brackets | and |.

62

condition if True: [statements |.

condition ifFalse: [statements |.

condition ifTrue: [statements] ifFalse: [statements].
[condition | whileTrue: [statements |.

[condition | whileFalse: [statements].

1 to: 10 do: [: index | statements |.
Iteration with index varying from 1 to 10
1 to: 100 by: 5 do: [: index | statements |,
Iteration with index set to 1,6, 11 ...96
n timesRepeat: [statements |.
Repeat statements n times
condition1 and:[condition2 |

and operation; evaluates condition2 only if condi-
tionl is true

conditionl or:[condition2]

or operation; evaluates condition2 only if condi-
tionl is false

Example: Return the maximum of a and b.

a>bifTrue: [T a]
ifFalse: [T b].

The do: loop is useful for processing all members of a collection. It works
with arrays, sets, bags, lists, and other collections:

63

aCollection do: [: element |
...process element |

The variable element points to each element of the collection as the collec-
tion is scanned.

Example: find the maximum in the array x:

max +— x at: 1.
x do: [: element |
element > max ifTrue: [max « element | |

Appendix A. Reference

64

Appendix A

References

A.1 Overview

This section describes books and articles you may wish to consult.

A.2 Books

The Smalltalk language is described in the "Blue Book":

1. Adele Goldberg, David Robson, Smalltalk-80, The Language
and 1ts Implementation. Addison-Wesley, 1983.

This book starts from ground up. The first chapters define concepis like
objects, methods, messages and classes.

It contains descriptions of most Smalltalk classes:

e Numbers: integer, floating point, fraction, random numbers

e Character and string

e Collections: array, set, interval, bag, dictionary, ordered collection,
etc.

o Stream and file stream

e Files

¢ Process management: process, semaphore, shared queue
e The classes Object and UndefinedObject

s Class objects: metaclass and class

e Graphical objects: point, rectangle, arc, circle, curve, line, linear fit,
spline

e Display objects: forms, display screen, cursor

Topics not covered include mouse, menus, fill in the blanks and Smalltalk
windows. =

The "Orange Book” describes the programming tools:

2. Adele Goldberg, Smalltalk-80: The Interactive Programming
Environment. Addison-Wesley, 1984,

If you have used Smalltalk you will be familiar with most of the contents
of this book, but it contains many interesting hints and details. Many
facilities, such as the text editor, are covered in depth.

Another introduction to Smalltalk is:

3. Ted Kaehler, Dave Patterson, A Taste of Smalltalk. W. W,
Norton & Co., 1986.

It uses examples, contains formal definitions, and explains the use of many
classes. It also has special sections on the text editor and how to read
source code.

66

A.5 JoOlUrnal Articles

A source of good articles on Smalltalk is
4. BYTE 6, 8. (August 1981).

It contains introductory articles and also some more advanced ones, like
Design Principles behind Smalltalk. Several articles discuss implementation
issues.

Another worthwhile article in the same issue discusses control structures.

It demonstrates how to pass blocks as parameters and how to write your
own control structures.

A collection of papers on Smalltalk-80 is:

5. Glenn Krasner, ed., Smalltalk-80: Bits of History, Words of
Advice. Addison-Wesley, 1983.

Appendix B. Reading Smalltalk Source Code

67

Appendix B

Reading Smalltalk Source
Code

Source code for all Smalltalk objects is (usually) visible in the Smalltalk
environment. It is a good example of

¢ object oriented design
e programming methodology

e how to use classes and methods effectively

Unfortunately, it is often poorly documented.

Before you begin to program, search through this code to see if it includes
an object you can use. Smalltalk has commands and features to help you
find objects. Most searching is done with the browser.

The senders menu option in the methods pane permits access to all meth-
ods that call the selected method.

The implementors menu option in the methods pane gives access to all
methods with the same name as the selected method.

68

Lilg 2Apidin menu optlon in the edilor points Lo classes, calegories and
methods.

Here is a strategy for reading Smalltalk source code with the browser:

e Take a look at the class hierarchy.

¢ Dig into a category. Select some class that seems interesting.
e Read the class comment.

¢ Read the class definition. Compare.

s Glance at the class methods. There may be examples. If so, execute
them.

e Now go to the instance methods. A good starting point is the "pro-
tocols for accessing” section.

e If you don't find an ins;ta.nce method that you expect, look in the
superclasses.

69

Appendix C

How to Program a User
Interface

C.1 Overview

Smalltalk includes aids for programming a user interface. There are Smalltalk
classes which give you access to the following entitites. At a low level:

* Mmouse

® Cursor

keyboard

display

L]

the system transcript

and at a higher level:

e prompts

70

B lIiellds

e choice

Many of these classes have been presented elsewhere in this manual. This
appendix explains how to use these classes. The description is not detailed,
but the information is sufficient to enable you to use the most important
features.

The display screen is not discussed here. [1] contains a detailed explanation
of the use of the display. Information can also be found with some effort in
the Form class and its superclasses, and in the Graphics categories.

C.2 Mouse

The mouse has three buttons: red button (left), yellow button (middle)
and blue button (right). The mouse buttons can be tested by =

Sensor redButtonPressed
Sensor yellowButtonPressed
Sensor blueButtonPressed
Sensor anyButtonPressed
Sensor noButtonPressed

which return either true or false. You can use Sensor waitButton to wait
for any of the three buttons to be pressed.

The position of the mouse is returned by the command:
mouselocation + Sensor mousePoint
This message returns a Point on the screen.

The coordinates of the borders of a SUN screen are depicted below:

71

0@o 1151@0

08899 11518899

Sensor is a global variable. It contains an instance of the class InputSensor,
and lets you communicate with the keyboard and mouse of your worksta-
tion.

C.3 Cursor

The cursor is a moving image of 16 by 16 pixels on the screen. Normally,
the movement of the mouse is coupled to the cursor. Whenever the mouse
moves, the cursor follows it.

Management of the cursor is done through the Cursor and the InputSensor
class (Sensor global variable).”

The usual shape of the cursor is a leftward-pointing arrow. The class defini-
tion of Cursor also contains other shapes (arrow, arrow with star, scribbling
pen, cross hairs, blank, etc).

This example shows how to read the form of the current cursor, then change
it to the "write” cursor (a little pen, which appears, for example, when you
do a file out), and then restore the original cursor:

“Get the current cursor from the Sensor.”
tempCursor +— Sensor currentCursor.

" Get the write cursor and show it.”
Cursor write show,

"Return to previous cursor shape.”
tempCursor show.

The cursor can be moved to another point with the instruction:

72

SENSUT CUESOrrolfit. Nevw rosition

where newPosition is a point on the screen.

You can assign any 16 by 16 Form to the cursor using the methods in the
Cursor class.

C.4 Keyboard

This section explains the use of the keyboard. If you want to read strings
input by the user, do not use these methods, but use the prompts instead
(see section C.6).

The keyboard is accessible through the Sensor object (InputSensor class).
Here are the most commonly used methods:

Sensor ke:yhﬂard

Returns one ASCII character from the input buffer. Returns false if
there is no character available. (This is a non-blocking read).

Sensor flushKeyboard
Flushes all type-ahead.

C.5 System Transcript
The system transcript is useful for displaying small amounts of information.
for showing progress, and for debugging.

The system transcript is available through the global variable Transcript
(class TextCollector).

Example:

73

&® =rs R ERL -l b WK -l WY R ELRTTIN G ¢ WY

displays

Start
List of actions

on the system transcript.

You can also print many other objects (like numbers, arrays, points) on the
system transcript using the printString function:

x + Sensor mousePoint.
Transcript show: "The mouse points to *; show: x printString :
er.

Prior to using the system transcript window, it is convenient to put it the
foreground:

Transcript refresh.

C.6 Prompts

A prompt is used to ask a question and get an answer from the user.
Example:

'y

Hﬂl!i antar tha filanama

R R R

- .-. d e ! 3 =] ..E
8| Ploase enter the Flename f

I:hl Is the dﬂfautt &
k B

Figure C.1: A ’request’ and a 'message’ prompt

This is the code to produce the 'request’ box:

74

| AT Wl)

FillinTheBlank
request: 'Please enter the filename’
displayAt: Sensor mousePoint
centered: true
action: [:answer | answer |
initialAnswer: ‘this is the default’

request: gives the question to be asked. The user accepts (with the middle
button menu) or presses the return key to enter his/her answer.

If you use message: instead of request: then the answer can be several lines
long. In this case, the FilllnTheBlank window will also have a scroll bar (see
Figure C.1).

displayAt: indicates the position of the box; Sensor mousePoint is conve-
nient, another good possibility is Display boundingBox center.

The action: block is executed when the answer has been entered. The
parameter of the block receives the answer string — in this example the
action leaves the answer in the temporary variable answer,

The initialAnswer: may be a null string (*).

C.7T Menus

Pop-up menus are a convenient command language. A pop-up menu looks
like this:
| utliitios

nice things |

fortuna cookigs

sdventure game
(Vi

Figure C.2: A pop-up menu

The use of a pop-up menu has two parts:

s Activate the menu. This displays the menu, allows selection, and
returns the index of the selected item.

Reuse menu objects; create them once at the beginning rather than each
time you use one. You can also share a menu object among several places
where it is used, putting it in a class variable.

Here is the code to initialize the pop-up menu of Figure C.2:

“Create a menu with 6 items and lines after items 2 and 5.
menu +— PopUpMenu
labels:
‘goodies
utilities
nice things
fortune cookies
adventure game
quit’
lines: #(25).

There are many ways to activate a menu (see also PopUpMenu class, pro-
tocols for controlling). Here are the most common forms.

selecteditem +— menu startUp

Show the menu and wait for any button to do a selection.

selecteditem +— menu startUpRedButton

Show the menu and wait for the left button to do a selection. Other
buttons will be ignored.

selectedltem «— menu startUpYellowButton

selectedltem +— menu startUpBlueButton

Similar to selecteditem +— startUpRedButton.

76

sEIELLIEUILE 7 el stal LU, el DULLON WILTTReading. |ite oF the iVienu

Shows a menu with a title. You also can use #yellowButton and
#blueButton. A selection must be made (menu flashes if you leave
it).

In all cases, the number of the menu item is returned (assigned to the
variable selecteditem in the examples). 0 is returned if no selection was
made, else an integer from 1 to the number of items in the menu.

You can also use ActionMenus. Instead of returning a selection, they call
a routine depending on the selection. See the ActionMenu class in the
Smalltalk code for an example.

C.8 Choice

A choice is a question with yes-no answer. This is how a choice looks on
the Smalltalk screen:

Do you want to leave now ?

yas e}: no

Figure C.3: A Binary Choice

The program code for this example is:

BinaryChoice
message: Do you want to leave now 7
displayAt: Sensor mousePoint
centered: true
ifTrue: [...action if true ...]
ifFalse: | ...action if false ...]

Do not put a Smalltalk return command (1) inside the ifTrue or ifFalse
blocks, because the BinaryChoice will not be erased properly.

Appendix D

Sample Program

This chapter contains the sample program used in Chapter 4. The code

in this appendix differs slightly from Chapter 4, and several methods have
been added.

78

1L

class name Dot
superclass Object
instance variable namesa center
radius
class variable names none
pool dictionaries none
category Graphics-Bubbles
comment

I am a cirele with a center and a radius. [can be displayed on the sereen,
and [appear as a black dot.

Instance Protocols For: accessing
area

*Return my area”

T 3.14159 * radius * radius >
I center

“Return my center”
1 center

center: newCenter

“Replace my center by a new center?
center +— newCenter

eenter: newCenter radius: newRadius

“Replace both my radius and my center®
self radius: newRadius,
zelf center: newCenter

diameter

“Return my diameter”®
t 2 * radius

diameter: newDiameter

“Alternative form of changing my size”
radius ~— newDiameter [2

79

“Return my perimeter”
T self diameter * 3.14159

radins

"Return my radius”
1 radius

radius: newladius

*Replace my radius by a new radius”
radius — newRadius

Instance Protocols For: testing
containsPoint: aPoint

*Return true if the dot containg aPoint.
A cirele containg a point if the distance to the center
32 less than the radivs. The distance to the center is
caleulated as the length of the vector “center - aPoint’, This
makes use of Point arithmetic, see Point class, ‘arithmetic’ ml.d
solar coordinates’ profocols.”
(center - aPoint) r < radiua
ifTrue: | 1 true |.
T false

Instance Protocols For: comparing

= otherDot

“NOTE., This method overrides the standard comparison method.
In this case, dols will be equal whenever the radius 1s the same.

The center may be different. This differs from the normal
comparison (provided by the Object object] which requires
all instance variables have the same value.®
{ radius = otherDot radius)

ifTrue: | T true |.
T false

Instance Protocols For: displaying
display

80

LAY TAWARL UTL GfilE SCTEETR

*Declare a lemporary variable, to contain the bitmap of a dot.”

| bitmapDot |

*Create the bitmap graphic form of & circular dot of my diameter®
bitmapDot « Form dotOfSize: (radius * 2).

“Display this dot at the center. Since all 'Form’ bitmaps are rectangles,

'Farm pasnt’ indicates that the enclosing rectangle shall not be shown.”
bitmapDot

displayOn: Display

at: center

rule: Form paint

Dot class
instanceVariableliames: "'

Class Protocols For: instance creation
center: aCenter radius: aRadius

“Returns a new wnstance of a dot, initialized with these parameters®
“This i3 a short form of:

|z

T +— self new.

z center; aCenter radivs; aRadius”®
T (self new) center: aCenter radius: aRadius

defaultShape

"Returns a new inatance of Dot with default size”
| x|

x +— Dot new,

x center: 1008100 radius: 10.

Tx

Class Protocols For: examples
exampleOne

“Display some dots,
To execute, select next line and do ii:
Dot ezample One

81

®Clear the screen”
Display white.
y +— Dot new.
y center: 100@100 radius: 10,
y display.
200 to: 600 by: 100do: [:i|

y center: 1.

y display |.
y center: 3008200 radius: 20,
y display.
v radius: 30.
v display.
*Use a cascading expression for the rest”
y radius: 40; display ; radius: 50 ; display ; radius: 60 ; display ; radius: 70 ; display.
*Now write a short message on the transcript to remind user
to refresh the screen®
Transcript refresh.
Transcript show: 'Press any mouse button to refresh display’ ; cr.
Sensor waitButton.
“Hefresh screen”
ScheduledControllers restore

exampleThree

“Display dots followsng the mouse. Hit blue (right) button to stop.
Hit red button to leave a dot.
To ezecute, select nezt line and do it:
Dot ezample Three
=
| ¥ rstop |
“Clear the screen”
Display white.
“Get a new dot®
y +— Dot new.
y radius: 20,
*Change the cursor to cross hairs®
Cursor crossHair show,
stop +— false.
| stop | whileFalse: |
Sensor redButtonPressed ifTrue: |
¥ center: Sensor mousePoint.
y display |.
Sensor blueButtonPressed ifTrue: |
stop + frue !

82

'Rnlfum to normal cursor®
Cursor normal show,
“Refresh sereen”
ScheduledControllers restore

exampleTwo

“Display some random dots.
To ezecute, select nezt line and do at:
Dot example Two
L]
|yr|
®Clear the screen”
Display white,
“Get a new dot”
y +— Dot new.
“Get a random number Stream”
r «— Random new.
Draw 20 random dols”
20 timesRepeat: |
¥ center: (r next * 800) @ (r next * 600),
y radius: (r next * 30) asInfeger.
y display |.
Now write a short message on the transcript to remind user
to refresh the sereen”
Transcript refresh.
Transcript show: 'Press any mouse button to refresh display’ ; cr.
Sensor waitButton.
*Refresh screen”

ScheduledControllers restore

Flower
class name Flower
superclass Dot
instance variable names petalLength
class variable names none
pool dictionarjes none
category Graphics-Bubbles

comment

83

Instance Protocols For: accessing
petalLength

“Return my petal length®
T petalLength

petalLength: newLength

“Set the my petal length to newlength®
petallLength + newLength

Instance Protocols For: displaying
display

“Display myself on the screen.
This method relies on the display method of the superclass Dot
to draw the dot in the center, and then it adds the petals only”
| petal ¢ |
“Display the petals. Use the Circle object to draw little circles.
Get a new circle, and set the for (the undth) to a dot of size 1.
The radius of the circle is the petal length.”
petal «— Circle new.
petal form: (Form dotOfSize: 1).
petal radius: petalLength.
*Draw siz petals with this loop.”
0 to: 300 by: 60 do: | : angle |
“Calculate the center of the petal®
¢ +— angle degreesToRadians cos @ angle degreeaToRadians sin.
e + ¢ * radius + center,
“Set the center of the petal”
petal center: c.
“and display it.”
petal display |.
“DHsplay the dot *
super display

Flower class

instanceVariablelNames: '°*

84

Ulass Frotocols For: examples
example

*Paint two flowers. To execute this ezample select
the nezt line and do it.

Flower ezample

| aFlower |

"clear the display”

Display white,

“Get o new flower”

aFlower «— Flower new,

“Size the flower and ask it to display viself”
aFlower center: 2000200 radius: 50.

aFlower petalLength: 20.

aFlower display.

aFlower center: 4008250 radius: 50.

aFlower petalLength: 60.

aFlower display.

“Remind refreah display after thiz little graphics®
Transcript refresh; show: 'Press any mouse button to refresh display’; cr.
Sensor waitButton,

ScheduledControllers restore

85

