
Programming in Smalltalk

TR87-023

Apri/15, 1987

Katherine N. Clapp, Hermann von Borries

The University of North Carolina at Chapel Hill
Department of Computer Science
Sitterson Hall. 083A
Chapel Hill. N C 27514

@ 1987 Katherine N. Clapp and Hermann von Dorries

Programming in Smalltalk

Katherine N. Clapp Hermann von Borries

April 15, 1987

© 1987 Katherine N. Clapp and Hermann von Borrics

Contents

1 Introduction 2

1.1 Motivation 2

1.2 Overview . 3

1.3 Definitions . 4

2 Tutorial 8

2.1 Overview 8

2.2 Getting Started . 8

2.3 Windows 12

2.4 Executing Examples 22

2.5 Saving your Work 25

2.6 Leaving Smalltalk 27

3 Classes 28

3.1 Overview 28

3.2 Programming with Classes . 28

1

3o3 The Range of Built-in Classes

3.4 Categories o o o

3o5 The Hierarchy 0

3o6 An Example Hierarchy o

3o7 Collection Classes o o o o o

3o8 Choosing Effect ive Objects, Classes, and Methods o

4 Programming

4ol Overview

4o2 Defining a Class

4o3 Defining Operations

4.4 Subclasses o

4o5 Debugging 0

4o6 Method syntax

A References

Aol Overview

Ao2 Books 0 0

Ao3 Journal Articles 0

B Reading Smalltalk Source Code

C How t o P rogram a User Inter fac e

Col Overview 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

29

29

30

31

33

35

36

36

37

42

49

52

55

63

63

63

65

66

68

68

C.2 Mouse . 69

C .3 Cursor . 70

C.4 Keyboard 71

c.s System Transcript 71

C.6 Prompts . 72

C.7 Menus 73

c.s Choice . . 75

D Sample Program 76

3

Chapter 1

Introduction

1.1 Mot ivation

The_Smalltalk system is a remarkably·powerful programming environment.
Complex applications can be designed and coded in Smalltalk far more
easily and quickly than in most progra=ing languages. Three or four
lines of s·maUtalk code can have the same power as pages of C code.

Small talk is an object-oriented programming language. Programming con­
sists of defining objects and making t hem perform actions. For example,
you can display a spiral on the screen by creating a pen and sending the
message drawSpiral to this pen.

Examples of objects are numbers, arrays, text, rectangles, a terminal screen,
an editor, and a compiler. Useful actions might include move: aDistance
(defined on rectangles and text), insert: aText (defined on editors), and
divideBy: an ln teger , (defined on numbers).

The object-oriented programming paradigm has several advantages over
traditional programming languages such as C or Pascal. It enforces mod­
ular design and implementation, where modules correspond to objects and
their methods. It encourages programmers to build libraries of tools and
to program incrementally, building on those tools. The power of Small talk

4

comes from the tools (objects and methods) it provides. Smalltalk pro­
grammers customize, extend, and piece together existing tools to create
their programs.

Unlike most common programming languages, Small talk is a comprehensive
environment which includes its own text editor, compiler, and sophisticated
debugging facilities. The environment is fairly easy to learn. You can
manage most components with the small set of commands presented in
this manual.

Small talk also contains a large amount of source code you will want to reuse.
In fact, Smalltalk is itself written in Smalltalk, and all the source code is
readily available. Most of the modules of Smalltalk are very general; you
will find many of them useful, although sometimes not well documented.

1.2 Overview

This manual is a practical guide ·to Smalltalk for those who want to de­
sign and program simple applications quickly. With this manual and the
documentation you will find in the Smalltalk code, you should be able to
master a useful subset of the system. Sources of more detailed information
are listed in the Reference section.

The best way to read this guide is sitting at a Sun running Smalltalk. You
can read the chapters in any order you wish, though we recommend reading
them sequentially. The guide contains the following chapters:

Chapter 1: Introduction

An overview of this manual.

Chapter 2: Tutorial

Steps through a sample session with Smalltalk, for those who have
never used the system. Presents the basic building blocks of the
Smalltalk system: objects and methods. Covers essential functions
such as startup, qu itting, and saving.

5

Chapter 3: Classes

Introduces the hierarchy of classes available in the system. Discusses
in some detail a few objects which are likely to be useful.

Chapter 4: Programming

Describes programming in Smalltalk. The syntax and semantics of
the Smalltalk language are discussed; you will learn how to define
classes and write methods.

Appendix A: Reference

Points to sources of more information: books and articles.

Appendix B: Reading Smalltalk Source Code

A guide to reading source code.

Appendix C: Programming the Interface

Describes how to program tools such as the mouse and pop-up menus.

Appendix D: Sample Program

Lists the code for the example used in the Programming chapter.

1.3 Definitions

As you may have noticed, Sma.lltalk includes its own vocabulary. This
section defines basic Smalltalk concepts.

Method

A method is a procedure or function. Methods are code segments,
they can be called, receive parameters, and return a value.

An example of a method is drawSpiral, defined on pens.

6

Sending a message

To "send a message" is to call a method. The message consists of the
name of the method and the parametets of the calL The method can
return a value as an answer.

(Don't get confused: method calls are not asynchronous. Smalltalk's
message sending has nothing to do with message passing.)

For example, the message goto: location can be sent to a pen. The
name of the method is goto: and the parameter is location.

Class

A class is a definition which includes:

• The definition of a data structure.

• Methods to operate on the data structure.

Classes correspond to abstract data types: an abstract data type
consists of a data structure and operations (Smalltalk methods) to
operate on that data structure.

Programming in Small talk consists of writing classes.

An example of a class is Pen. The data structure includes a descrip­
tion of the current location of the pen, whether it is up or down, its
color, its shape, etc.

Object

An object is an instance of a class.

At runtime, a program can request a new object from a class. This
operation will:

• Set aside memory for the data structure.

• Associate this new object with the methods of its class.

In other words, a class is a template for an object: new objects are cre­
ated according to the definition of the data structure and the methods
of the cla.~s.

Objects have a flavor of autonomy. Once you create one, you lose the
direct control over what goes on inside the object and the only way

7

to do something with or to the object is to send it a message. This
enforces information hiding.

Almost everything in Smalltalk is an object: numbers, arrays, sets;
even methods and classes.

Examples of objects are different pens: a black pen, a big pen, etc.

Variable

The Smalltalk notion of variables differs in two ways from other pro­
gramming languages:

All variables in Smalltalk point to objects; they do not contain values
like in other programming languages.

Variables are not typed (but the objects are!). This means that a
variable is only named, not declared. Any variable may point to an
object of any class.

Instance variable

Instance variables are the set of variables which contain the data
structure of an object.

The instance variables are defined in the class. Whenever a new object
is created, it will have the number of instance variables specified in
the class definition.

Instance variables are owned by the object; they arc not accessible
except through methods belonging to the object's class.

For example, a pen has instance variables color, location, penDown,
etc.

The following table compares the Smalltalk teri!l8 to teri!l8 in other pro­
gramming languages. The comparison is not formally exact, but it provides
a starting point to understand the new "lingo":

8

Smalltalk-80 Pascal or C
method procedure or function
class abstraci data type (module, Ada package)
object strongly typed variable
message procedure call
send a message call a procedure
variable pointer to a data structure

Table 1.1: lnformal comparison of Smalltalk terms

This a diagram describes the relationship between objects, classes, methods
and instance variables.

'"'..!.:) p .. :'

I:-. ..-. .-~!..
rn=
L!!lO!._

~

.,.,-·-- ·-- ...
/ .. ~ .. J~;<tt:tJ ... r .,..:~ft.. ..., ..

,/· tl .. t • • , •• .., '
/ 1., ... \t.lot"- , •

/ ~u-l .. h ~~ :.c

Figure 1.1: Example of objects, classes, methods and instance variables

9

Chapter 2

Tutorial

2.1 Overview

This tutorial introduces the novice Smalltalk user to the system. lt defines
basic terms needed to understand other chapters of the manual. H you have
never used Smalltalk, be sure to go through this exercise.

At UNC, Smalltalk is available on Sun Workstations. Because it uses a lot
of memory, Smalltalk is significantly faster on 4-mcgabyte Suns than on 2-
megabyte machines. There is also a version of Smalltalk for the Macint osh,
but this t utorial assumes that you are using a Sun.

C> This symbol inclicates that you should perform an action at the ter­
minal.

2.2 Getting Started

2.2.1 Setup Procedure

C> Create and enter a directory from which to run Smallt alk:

10

mkdir newDirectory
cd newDirectory

t> Execute the UNC setup procedure

funcfsmaltalkf psOfbin/setup

The single I in smalta lk is not a. misprint! All six files created by the setup
procedure are needed to run Small talk. Always start the system from this
directory.

2.2.2 Startup

t> To start Smalltalk, type

st

The initial Smalltalk screen looks like figure 2.1. It may vary from instal­
lation to installation.

Figure 2.1: Initial Smalltalk screen (installation dependent)

(Small talk does not run properly with in sun tools . If your login file executes
suntools automatically you will need to change it .)

11

2.2.3 The Mouse

The Smalltalk mouse has three buttons. In the literature and in Smalltalk
code you may see references to red, blue, and yellow buttons. Since modern
mice are monochromatic, this document refers to left button (red), middle
button (yellow), and right button (blue).

Each one has a designated use:

left button

Press this button to select text and to position the cursor, when the
cursor is in a window. It has no effect if the cursor is not in a window.

middle button

accesses a menu for using the contents of a window in various ways.
The menu varies from window to window.

right button

accesses a menu to modify a window: open, close, change size, and
others.

2.2.4 Menus

:Most work in Smalltalk is done wi th menus. This is a typical menu:

Figure 2.2: A menu

Smalltalk displays a menu when you pTess a mouse button. The current
option is highlighted. You select an option by releasing the mouse button.

12

If you don't want to make any selection, move the cursor off the menu and
then release the menu button. If a menu flashes on the screen, you must
select one of its items before going on to other work.

2.2.5 Using The Main Menu

1> Press the middle button while the cursor is outside al l windows.

The main menu appears:

roHoro dtsplay
g~rb~gc COIIQC t

CIXh; -orojoct
prOjQCt
tilo list

browsor ..
Jy~um t~~~cript

bYntm wor1:.sp~Cii'
JUJpGnd

uvo
qui~

Figure 2.3: The main menu

Exercise this menu:

1> Select the option restore display and release the middle button.

Smalltalk will e~ase the screen and redraw all windows.

1> Get the menu again, and move the cursor off the menu. Release the
middle button.

The menu disappears and no action occurs.

13

2.3 Windows

2.3.1 Creating a W indow

This section demonstrates how to create a window: a workspace. A work­
space is a general-purpose type of window. You can put any kind of text
in a workspace. You can also use one to code small programs (see chapter
4}.

1> Select the workspace option from the main menu:

r:':"
rQHorQ dhplcs y

s~rb4gt :i~nocc
~l.h -oro ect

pt"OJOC:t
tilo lls\
brows~r .. 0

1YHEm t-,~~cript
>Y!tQm wot'lcsoa<o

:.usp9ncf
savo
QVI\

Figure 2.4: Main menu option to create a workspace

Now the cursor will transform into the top left corner of a window:

~::11
r r ·l

Figure 2.5: Top left cursor

You can move this corner freely around the screen by moving the mouse
button.

1> Press and hold the left mouse button to fix the location of the new
window's top left corner. Keep holding that button!

14

Now the cursor will look like a bottom right corner. A rectangular form
will Hash on the screen in the space delimited by the corners. As you move
the mouse, the form will expand or contract.

~ Release the button to fuc the bott.om right corner of the window.

You have just opened a workspace:

Figure 2.6: A workspace

2.3.2 The Editor

The Smalltalk editor is available in the workspace and all windows where
you can enter text. It is simple and well-adapted to Small talk programming.
H is not possible to usc other editors inside the system.

!> With the cursor inside the workspace, cl ick the left mouse button.

The edit cursor, a caret, appears. To change the cursor location, press the
left button at a new spot in the window.

~ Type The cat chased the bat.

15

Figure 2.7: Typing text

Text is inserted at the cursor location.

1> Place the cursor at the end of bat and hit backspace three times.

Figure 2.8: Deleting text

This is one way to delete text. More efficient ways are explained below.

1> Type gnat.

uua gna~

Figure 2.9: Typing new text

1> Now select the words cat chased: place the cursor at the beginning
of cat. While holding the left button down, move the cursor to the
other end of chased. Release.

gnat.

Figure 2.10: Selecting text

The selected text is highlighted. You could de-select it by clicking the left
button once. Or you could replace the text by typing.

1> Type bat ate.

''Wt'.t.Hd

Figure 2.11: Replacing text

16

You can select various units of text with the left mouse button as follows:

a word

double-click at the end of the word.

delimited text (inside quotes, parentheses or brackets)

double-click at either end of the passage, after the first or before the
last delimiter.

all text

double-click at the beginning or end of the text.

a line

double-click at the end of the line.

Erase selected text by pressing the delete key.

There is a menu, accessed by the middle button in editable sections of
windows, which contains other edit commands:

Figure 2.12: The Edit Menu

undo

reverses the last edit command (usually!).

copy

copies any text currently highlighted into a buffer.

17

cut

deletes highlighted text and saves it in a buffer.

paste

adds the text currently in the buffer at the location of the cursor. If
any text is currently selected {highlighted), it is replaced.

accept

reads the text, and stores it internally in Smalltalk.

If the window accepts source code (like the workspace or the browser),
it is also checked for syntax errors. If there is an error, an explanatory
message appears in the window. You have to delete the message (press
delete), correct the error, and accept again.

cancel

reverts to the text as it was before the last accept.

Chapter 4 covers the options do it, print it , <tnd other I!Ses of accept. Refer
to 121 for a complete description of the editor.

2.3.3 Window Manipulation

You manipulate windows using the right button menu:

Figure 2.13: Standard right button menu

collapse

This leaves only the window's label visible on the screen. The top
left corner cursor allows you to move the label to some place on t he
screen.

18

Figure 2.14: Collapsed window

frame

lets you resize t he window.

move

allows you to move the window, without changing the size.

close

removes this window permanently.

1> Test the menu options on your workspace window.

1> With the cursor in the workspace, select close from the right button
menu. Since there is unsaved text in the window, Smalltalk will
present a confirmer menu:

TfQ tVt ShOw,ng !'\ \\~ t-QQn .ahoroo
Oo you wisn tO dhc:arO POSQ' ·(,..4ngt ~.,

i
00

Figure 2.15: Confirmation for closing a window with unsaved text

1> Move the cursor to the square marked yes and click the left mouse
button.

2 .3.4 S croll Bars

Most windows or subwindows have a scroll bar along the left edge. A scroll
bar is visible only if the cursor i.s in the window. The shaded part of a scroll
bar indicates the portion of the text current ly visible in the window.

Now exercise the scroll bar in a system workspace.

19

1> Open a system workspace. If a label is already present on your screen,
use the frame option of the right button menu to frame the window.
Otherwise, use the main menu to create a new one.

1> Place the cursor in the system workspace.

1> Move the cursor into the scroll bar which appears along the left edge
of the subwindow.

W'i''h'''M §·tH§

Figure 2.16: The cursor in the scroll bar

The cursor becomes an arrow. As you move the cursor around inside the
scroll bar, the direction of the arrow will change. Click the left button when
the arrow points up to page down one line; click when it points down to
page up one line. If the cursor is inside the vertical stripe in the scroll bar,
it appears as an arrow pointing right.

You can jump several pages when the cursor is a right arrow: the position
of the cursor in the scroll bar determines the amount scrolled. You can also
hold the left button down while moving the cursor along the scroll bar to
move around in the contents of the window.

2 .3.5 T ypes of W indows

Smalltalk provides special-purpose windows to help you find and structure
information as well as write new code. Most types of windows can be
created by selecting their names from the main menu:

browser

A browser window is the main programming tool. It is also extremely
useful for learning about the objects which make up the Smalltalk

20

system. Section 2.3.6 describes the browser, and Chapter 4 explains
how to program with it.

workspace

A workspace is a blank window to be used any way. You can write
short programs in this window. The workspace is especially useful for
writing code which is not going to be saved.

file list

At UNC, the file list window lets you read and edit Unix files while
you are in Smalltalk.

Figure 2.17: A file list window

In the top portion of the window, enter the file(s) you want listed. You
can use regular expressions here. For example, to list all Smalltalk
code files (which always end with .st), type • .st. Use accept on the
middle button menu when you are ready.

In the next window you will see list of files which match your descrip­
tion. II you select a file and then press the middle button and get
contents, the file will be listed in the bottom window.

Use the bottom window to edit the file if you wish. When you finish,
select put from the yellow button menu to write the file back on disk.

system workspace

The system workspace contains documentaLion and templates to help
you issue commands to manipulate files, do error recovery, and find
out information about methods.

21

This window is normally present when you load Smalltalk, so you
don't need to create it.

system transcript

This window provides a record of important occurences in your Small­
talk sessions. It also displays informative error messages.

This window is also normally present, so you don't need to create it.

For an explanation of the other main menu options, see [2].

There are many other types of windows, like the inspector (see Chapter 4)
or the debugger window, which appears whenever there is a runtime error.

2.3.6 The Browser

P. Select the browser option of the main menu and frame the window.

You have just opened a browser. Browsers are the most important type of
Smalltalk windows. You use them to examine and modify classes and their
associated methods.

Classes and methods are organized into categories for ease of use. Inspect
your browser. The four sub-windows along the top contain, from left to
right:

• categories of classes

• classes

• groups of methods, known as protocols

• methods.

If you select a category in the first window, classes contained in that cat­
egory will appear in the next sub-window. If you select a class, method
protocols for that class will appear in the next window. And if you select

22

a protocol, a set of methods will be displayed in the fourth window. Fi­
nally, Smalltalk code for a selected method will appear in the large bottom
window.

SystGm erovnor
·-------
Numori~-M<l.gnl
Nurn~ric.·Numb'
COI!QC liQ"l J- At.

CO~ cctio~s-Ur..
CoiOtctic~J-$i~

class -

Figure 2.18: The Browser

£> Move the cursor into the top left subwindow, and scroll the contents
of the window up until you see the category Graphics-Primitives.

£> Select Graphics-Pri mitives from t he list in the top left subwindow.

All classes in this category are now displayed in the window to the right.

C> Select Pen from the second window.

When Pen is selected, you can see the types of methods provided for this
class displayed in the t hird window.

23

C> Now select a protocol from the third window and a method from the
fourth window. You will see the source code of the method in the
bottom subwindow:

goto:
"Movq t M ftC eiver to po si(lon a.Po!nc
It th<: p9~ t c-own, c li.r.'i wi I DE: rjraw"l
r:-o.'t U\~ c.urrel"H ;;ositiC:.t' to tt.G> t :;,w ~ t \U·in? t~ .. ~

roc'iivQr'l fOftn ~OI.H'CO •U tl'\~ $06?Q of rr, ... IJUH•n? b:uSf,

The ·ece•"4'f'J 'et air~c:tion doe~ not c.r•&n•;ot.'.,. \

I ••• I
Ojd .. IOC6 flo,
loe~ ti-on • •P¢1nt

Figure 2.19: A method of class Pen in the browser

C> Browse through some of the methodS for Pen by selecting first a pro­
tocol and then a method.

2.4 Executing Examples

2.4.1 Execute a method for Pen

There are two types of methods: irl3tance methods and class methods.
Instance methods cause a specific object (an instance of a class) to do
something. If you create a particular pen that is black and is named bic, you
use instance methods to make it draw or move or change color. Some classes
include examples as class methods to demonstrate potential applications.

C> Select the class box in the browser.

New protocols appear in the third window. These are groups of class meth­
ods.

21

t> Select examples in the third window, and then select eltampl~ in the
fourth window.

In the bottom window you will see the code for this example us ing a pen.
Execute the example as follows:

t> Select the words Pen eltample (wi thout the quotes) written in a com­
ment at the end of the code. Refer back to section 2.3.2 if you arc
unsure how to select text .

The words Pen example are written inside co=ents simply for convenience;
you could also type Pen example yourself and then select tnat text.

1> Now send the message. With the cursor anywhere in the code window,
choose do it from the middle button menu.

The cursor will have an asterisk next to it until execution completes. Then,
the scroll bar will reappear in the subwindow where the cursor is. The result
should be a ratner impressive spiral!

Figure 2.20: The spiral

25

2.4.2 Modify a Method

e> Now draw the spiral in white instead of gray: replace the line

bic mask: Form gray.

with

bic mask: Form white.

The easiest way to do this is to select gray and t~pe white.

!> To draw a thicker spiral, change the width of the drawing pen:

bic defaultNib: 4.

becomes

bic defaultNib: 8.

t> Inform Smalltalk of your changes by pressing the middle mouse but­
ton and selecting accept from the menu which pops up. Then execute
the example again.

2.4.3 Display Text on the Screen

!> Select Graphics-Display Objects, just under Graphics-Primitives in the
top left window of the browser. Then select the class DisplayText.
Make sure that the class box is highlighted (not the instance box) and
select the method protocol examples from the third window. Finally,
select example in the fourth box.

!> Test t.his method as described above: select and execute the words
Display Text example.

As you move the cursor, text will appear on the screen. Press any button to
terminate. Try altering the method by replacing the string in single quotes
with any text. Accept the changes and re-execute the method.

26

1> Select restore display from the main menu to clear the text off the
screen.

1> The Smalltalk system has many other interesting examples; explore
a.nd try some! In particular, you might want to look at examples for
the class Form (in the Graphics-Display Objects category), Circle and
Arc (both in the Graphics-Paths category).

2 .5 Saving your Work

2.5.1 File Out

The most economical way to save your code is to file out a category, class,
protocol, or method; then you can file it in in another session (see below).
For example, if you have changed several of t he methods for Pen, you can
save ~he enti re class Pen as follows:

1> Select the class Pen in the second window of the browser.

1> With the cursor in the second window, select file out from the middle
button menu.

1> Wait until the cursor is a up-left arrow again.

You could save a single method by selecting one in the fourth window and
choosing file out from the menu in the fourth window. You could save an
entire class category selecting a category and filing out with the cursor in
t he first window. A new file, xxx.st, will appear in your current directory ,
where xxx is the name of the category, class, protocol, or method.

2.5.2 File In

You can file in a file that you have previously filed out with the file in option
in the F ile T, ist window:

27

Figure 2.21: Filing in with the File List

You also could find the Smalltalk statement (FileStream oldFileNamed: my­
file.st') file In in the system workspace, select it and then do it:

Figure 2.22: Filing in from the system workspace

2 .5.3 Print Out

Use print out exactly like file out, but choose the print out option from the
middle button menu. A printable file will appear in your current directory.
At UNC, print this file with:

ptroff -ms -Pprinter filename

2.5.4 Snapshots

One way to save the changes you have made is to select save from the main
menu. You will be asked to enter a file name for the image. The next time

28

you fire up Smalltalk, you can restore the system as you left it by entering

st fileName

This saves a snapshot of the present state of the system. Use this spar­
ingly, since a snapshot requires 2 megabytes or more of space. Reliability
problems have occurred with snapshots at UNC.

2.6 Leaving Smalltalk

2.6.1 Suspend

Suspend acts like Oontrol-Z in Unix: when you return to the system by
typing fg, Smalltalk will resume.

C> Select suspend from the main menu.

t> With the left button, select yes fro·m the confirmer menu which ap­
pears.

You will be in UNIX.

C> Return to Smalltalk by typing fg.

Sometimes garbage appears on the display when you return to SmalltaHc
In this case, use restore display from the main menu.

You can also suspend Smalltalk at any time by pressing the l2 key. This
is a short cut since no confirmer will pop up.

2.6.2 Quit

C> To exit Smalltalk, select quit from the main main menu. Then select
quit without saving from the confirmer menu which appears.

29

Chapter 3

Classes

3.1 Overview

This chapter presents the classes provided in the Smalltalk system. It
demonstrates how you can use existing classes as tools to write efficient,
effective code. The organization of these classes is described to give you
some idea of how to find and use the tools you need. One important
category of classes, the Collections, is discussed in detail.

3.2 Programming with Classes

The Srnalltalk system includes a very large set of predefined classes. Each
one has methods which specify the behavior of instances of that class. This
set of classes is a taxonomy of data types which you should use as tools to
help you program.

The first task of programming is to specify your application in terms of
objects. Choose objects to represent important entit ies in your program.
Think of the objects the users will have in mind when they use it; these
are good candidates for Smalltalk classes. Traditional data types such as

30

trees and graphs are also good candidates. Many objects of this kind arc
provided as built-in classes.

Next, specify the behavior of these objects. The behavior will be imple­
mented as Smalltalk methods.

The next task is to choose (or build) c lasses to represent your objects.
Every object will be an instance of some class. To do this, you need to
know where to find particular types of classes and how to find out what a
class does.

3.3 The Range of Built-in C lasses

Smalltalk provides a wide variety of classes. Some of these are magnitude
classes, like Number, Date, and Time; collections like Array, Linked list,
and Text; and graphical objects, like Rectangle, Arc, and Cursor. This
information is organized in two ways:

• To aid the programmer, classes are grouped into ~ategories

• Classes are organized in a strict hierarchy.

Categories and the hierarchy both ease the task of finding appropriate
classes. The correspondence between these two is fuzzy: classes grouped in
a category do not neccesarily match ponions of the hierarchy.

3.4 C ategories

For the convenience of the user, classes are grouped into categories. AU
categories are listed in the top left subwindow of the browser window. One
of the best ways to locate useful classes is to choose a category which seems
relevant to your needs and then browse through the classes in that category.
These arc most commonly used categor ies:

31

Numeric-Magni~udes
Numeric-Numbers
Collections-Abs tlract
Col lections - Unordered
Collections-Sequenceable
Collections-Text
Coll ections-Arrayed
Collections-Streams
Graphics-Primitives
Graphics-Display
Graphics-Pa~hs
Kernel- Objects
Files-Streams
lJnix-InterfaJ:e

Figure 3.1: Some Useful Categories of Classes

3.5 The Hierarchy

Every Smalltalk class has some position in the class hierarchy. The hierar­
chy is a tree structure: every class has one immediate superclass. and any
number of subclasses. Classes which are related to each other are often
close together in the hierarchy.

The main purpose of the class hierarchy is to exploit common characteristics
of objects. The hierarchy is partly determined by implementation issues,
so its structure does not always make sense from a conceptual standpoint.

Classes inherit methods and· variable declarations from all their super­
classes. By default, all methods of a class are inherited by all its subclasses.
A subclass may explicitly override a method specified in one of its super­
classes or it may add new methods. Thus, you cannot infer the behavior of
an object by the methods in its class alone; you have to take into account
its superclasscs.

The class Object is at the top of the hierarchy. All other classes arc sub­
classes of Object. Object provides fundamental methods which are inherited
by all classes. These include copy (to make a copy of an instance). and =
and== (to compare instances).

32

Inheritance of methods is very important because if you choose classes
judiciously, the amount of code you will need to write can be very small.
For example, to create block diagrams of houses you could define a class
House from scratch. Or you could use the existing class Rectangle. To use
Rectangle, create a subclass House and add an extra point to mark the top
of the roof. Then add or modify methods provided by Rectangle as needed
to deal with t he roof. In fact, all the code you write for House wi ll specify
ways in which it differs from Rectangle.

Figure 3.2: A Rectangle and a House

3.6 An Example Hierarchy

Suppose you are writing a program to draw circles and ellipses. You could
define Circle and Ellipse as independent classes:

class: Circle
variables: center. radius
methods: move To ...

class: Ellipse
variables: center. radius1. radius2
methods: move To

The declarations have similarities:

33

• the variable center is declared in both

• the method moveTo is declared in both and it can be implemented
the same way

The following class hierarchy would be useful:

super-class: CenteredObjects
variable: center
methods: moveTo.

sub-class: Circle
variable: radius
methods: .. .

sub-class: Ellipse
variable: radius1. radius2
methods: ...

This structure is less redundant and easier to maintain than the previous
one. The code has been split into sections and duplicate parts are factored
out to a higher level. Subclasses Circle and Ellipse can usc the instance
variables defined in any of their superclasses as well defining new ones.

To program in Smalltalk, specify the important objects in your app lications
and choose classes to represent these objects. Then modify, add, and remove
methods until instances of the classes behave as you intend. You may have
to create new classes; if so, they probably will include temporary variables
which are instances of existlng Smalltalk classes. Whenever possible, use
the classes provided instead of reinventing them.

To select the one of several closely-related classes t hat is best suited to
an application can be difficult. The best way to choose between classes
is to examine the methods provided. What follows is a short guide to a
commonly used set of categories: the Collection classes.

34

3. 7 Collection Classes

In many languages, when you need to use a list of objects, you declare an
array or program a linked list. In Smalltalk, you can choose one of the
collect ion classes to represent your list.

IC:':Mll¢e1 C:t ~ I,T" J ··.·

COLLECT IONS

I"'OO~·tO

C0111(~;on

Figure 3.3: Hierarchy of the Collection Classes

If you choose a class which is far down in the hierarchy, you get the ad­
vantage of inheriting a lot of methods from its superclasses. If the class
you choose inherits an inappropriate method, you have the options of not
using it or of replacing it by adding a method of the same name in your
class. For example, suppose you want to represent a list of students in
alphabetic order. You would like to be able to insert and delete students,
while maintaining alphabetic order. Look at the classes

SequenceableCollection
Ordered Collection
Sorted Collection

Which class would you choose? Notice that SortedCollection and Ordered­
Collection are both su bel asses of SequenceableCollection.

35

You could select SequenceableCollection itself. But would you gain more
capabilities if you chose one of its subclasses?

U you use an instance of either SortedCollection or OrderedCollection to
represent and manipulate your list, you will be able to use all methods
defmed for SequenceableCollection. Which of these two classes would be
most appropriate to your goal? To determine this, look at the methods
defined on OrderedCollection and SequenceableCollection and decide which
one contains the most useful methods.

U you choose SortedCollection, your list will be kept sorted, since the class
you have chosen provides th is facility. By judicious selection of classes, you
can avoid writing routines and keep your Smalltalk code very, very short.

This figure depicts decis ions you will want to make to choose a class to
represent your list:

..
c""~-..... - .,.-.-.• -<,") <

)u M

UCt$.1 1ft!

I I
:: : I

I OIC:t~ I .•• .,,.,,OICO!IOof'll ry

Figure 3.4: Decision Tree of the Collection Classes, reproduced from [1]

36

3.8 Choosing Effective Objects, Classes, and
Methods

Objects are like modules in procedural languages, so they should conform
to the same principles as modules:

• Hide information and implementat ion details.

• Encapsulate specifications that are likely ~o change.

• Be as general as possible and permit reuse.

For each class, determine a set of methods which intuitively apply to that
object. All other methods should be considered private. Unfortunat-ely, all
Smalltalk methods are global so there is no way to enforce hiding. Put such
methods in a protocol called private.

For example, appropriate operations for a tree are: get the root, get the
value of each node, and traverse in pre-order, in-order, and post-order.
Inappropriate operat ions for a tree are "get the value of an internal pointer"
or "traverse in stored order". These depend on the implementation and
have no place in the concept of a tree.

Reuse method names for similar objects. For example, Small talk collections
define the method do: to traverse all the ir members. Use the do: to express
the same concept in your data structure, instead of making up a new name.
You will need to remember less.

37

Chapter 4

Programming

4.1 Overview

This chapter describes how to write classes and methods.

The main components of the programming task are:

• define classes using class templates

• write ii'I.Stance methcd8 to access and manipulate instances of the
classes

• write class methods to create these instances

• debug

The first part of the chapter describes the programming task with an ex­
ample. The illustrations show how to use the Smalltalk browser for pro­
gramming.

The second part of the chapter describes the programming language in
detail.

The program code for the example is listed in Appendix D.

38

4.2 Defining a Class

4.2.1 The Example

Suppose you would like to draw many dots on the screen:

• • • •

Figure 4.1: The example: dots drawn on the screen

You ca.n define a. class to do this task. Each dot will be a.n instance of the
class. A dot can be create.d, assigned a size and a position, and disp layed.

The name of the class will be Dot. Class names always begin with a capital
letter.

4.2.2 Specification

As with a.ny programming task, before you start progra.mm.ing, clarify what
you intend to do. Determine the data structures you need and the opera­
tions you need to perform on the data.

Then define classes to implement the data structures a.nd operations. This
step is explained in this chapter.

Once the classes are defined, you can run your program to create new
objects according to t he defin ition you have provided. These object s wil l
respond to the messages sent to them.

39

4.2.3 D efining a New Class

To define a new class with the browser, you may wish to create a new
category to contain the class. This is done for clarity and documentation
purposes only.

t> Create a category with the browser:

Figure 4.2: Creating a new category

You may wish to review in chapter 2 how to open a browser.

Now define the new class.

You can describe a Dot by its center and its radius. The center is a point
on the screen, and the radius is a number. Only one variable is needed for
the center (not two for the x and y coordinates) , since Small talk provides
Points. Thus a Dot will have two instance variables: center and radius.

t> Get the class definition template with the middle mouse button in
the class pane of the browser:

40

mot lnuVarN.,.mo2 '
> V ,,rl.biGIII•nb...,;,;;r.;:.Ttr,.,..,.,., 1 Cl~ UVAtN<!mr~2 •

pooiOietlono.dcu : •• .

C:6tG~Ory: 'My-CatOf!Ory;,

Figure 4.3: Getting the class definition template

This is the class definition template:

NameOfSuperclass subclass: #NameOfSubclass
instanceVariableNames: ·instVarNamel instVarName2·
classVariableNames: ·classVarName1 ClassVarName2· ·
pooiDictionaries: "
category: ·My-Category"

1> Modify it as follows:

Object subclass: #Dot
instanceVariableNames: ·radius center·
classVariableNames: ··
pooiDictionaries: ··
category: ·My-Category"

and accept it with the middle mouse button:

41

I

S)' st•ra-Support --r-::-= -=-::::-:::-- -,-:.7.:C •. :-:.7.:C •. :-:.7.-__ :---"-T---­
Systtm-Changes I!!ID••••••I ·------····-
SyHtm-C-ompliQr
Syst4m'""RQieaslno
Alu-Stroams -
FiiU•Abstract
Filos .. Xar():x Alto
Unfx-Jntetfll.CCI
M -Cat& ory

Ins ta.ncQV ari.a !>ION .. fl'lts:

ct.us.V4ri•bleNamu: "
pooiOictionari;s: "
C.t tQgory: '•'v1y-C.atogcry'

Figure 4.4: Accepting the class definition

Now the Dot class is defined. It is a subclass of Object, so any instance
of a Dot will also respond to the methods defined for Object.

Please note that this is an example only. Should you ever want to program
a dot, define it as a subclass of Circle to get most of this behavior with only
a little bit of effort.

4.2.4 Testing the Class Definition

Now write a short test program that uses this new class. Such programs
can be written in a workspace.

t> Open a workspace. (See chapter 2 for a description of how to open a
workspace.)

t> Type in this program. (You may leave out the comments shown in
quotes.)

""This is an example.
Declare a temporary variable:··
I theFirstOot I

42

"Get a new instance of a dot and
assign it to variable theFirs tDot.'"
theFirstDot +- Dot new.
··Return the value of the dot compared to itself"
T (theFirstDot = theFirstDot)

Type in the assignment operator +- as an underscore and the return
operator T as the up-arrow or hat symbol. The period separates
statements (much like the semicolon in Pascal).

1> Select the text with the left mouse button and print it. Smalltalk wil l
execute the program and display the return value:

.an 'Q'X.a: mplt
Ote:lorQ a HHnporo.l'y vari~ttiQ·"

I ti'IOFirstOot I
•Gtt a n(lw inH4.rtCt of .a <IGt ~:td

o.ssign it to vanablt thet.:so:Dot.•
ttltFirs tOot .. Dol now,
·~eturn thQ vatuo ot tl'l~ dot comptru;
~0 lt)~l1"

t tntflrstDot • tnoFirnOotl:m!:l

Figure 4.5: Executing the program and printing the result

As expected, the return value printed by Smalltalk is true, because
the variable theFirstDot was compared with itself. Press the delete
key to erase the result.

Note that the new function and the comparison (=) are already available
for Dot because both are defined in the superclass of Dot, Object, and a
class inherits all methods of its superclasses.

43

4.3 D efining Operations

4.3.1 P rotocols

We will specify these operations for an instance of a Dot:

• accessing

- change the radius

- change the position of the center

ask the dot for its radius

ask the dot for position of its center

• calculating

- calculate the diameter

- calculate the a.rea

• displaying

- display it

Remember that groups of operations (like accessing, calculating and dis­
playing) are called protocols. llere is how you define protocols. Make sure
the instance box in the class pane is highlighted.

-----·· ---- ..-

... Obj.:ct s.utv" ~n~ ~Dot

instantOV,\r'l6.bleN4ri'IOS: 'radi•J' o.:trHH •

cla,~,V•tl_.blqN"'mu "
poofOie.tlonari~s: "
CO(O~Ory: '~llj-0:a.t~1o-ry•

Figure 4.6: Defining protocols

Protocols are for documentation and convenience. If you have many meth­
ods, you can find methods more easily if you group them and give them
meaningful names.

4.3.2 Writing an Instance Method

t> To write an instance method, replace the method template in the
browser. The template is:

message selector and argument names
I temporary variable names I

statements

t> This short method replaces the radius of an instance with a new value:

radius: aNumber
··Replace my radius with a Number"
radius +- aNumber

t> Use the accept option of tbe middle button menu to compile and store
this method (this will take only a few seconds).

A method behaves much like a procedure:

• h has a name, radius:. (The colon is part of the name, and indicates
that an argument follows.)

• It has arguments . T his example has the single argument a Number.

• It can have temporary (local) variables. They are named between
vertical bars. Temporary variable names start with a lowercase letter.
This example has no temporary variables.

• It has a body. The body of this method has only one assignment
statement.

45

• It may return information to the caller.

All instance variables, like radius, are visible from all instance methods of
the class, much like global variables are visible in procedures in conventional
programming languages. Instance variables in one class are not visible from
other classes, ezcept for subclasses of that class.

There is one important difference between methods and subroutines: meth­
ods belonging to different classes can have the same name, For example,
the class Circle also has a method called radius:, which is different from
this one.

~ As an exercise, write the method center: to move the center of a dot.

4.3.3 Testing an Instance Method

Here is an easy way to test this instance method:

~ Write the following program in the workspace:

lxyl
.. Assign a new instance of dot to both x and y."
x - Dot new.
y- Dot new.
"Invoke the method radius: with argument 10 upon x."
x radius: 10 .
.. Change radius of y to 20 ...
y radius: 20 .
.. Return x compared to y."
i(x = y)

~ Execute the code. The result should be false.

46

4.3.4 Writing a Method with Several Parameters

e> Here is a method to rep lace both the radius and the center of a dot
in one call:

center: newCenter radius: newRadius
··Replace my radius by new Radius and my center by new­
Center"
center ~ newCenter.
radius +- new Radius

4.3.5 Self

The previous example contains two assignments. But two methods (the
radius: and the center: method) already perform this assignment. Why
not call them instead?

The variable self refers to the object to which the current message was sent.
For example:

··Suppose a Dot and another Spot are instances of the class Dot."
aDot center: a radius: b
anotherSpot rad ius: b

Inside the method center:radius:, self refers to the object aDot, and wi th in
the method radius:, self refers to the object anotherSpot.

This means that the method center:radius: can be rewritten as follows:

center: newCenter radius: newRadius
.. Replace my radius by new Radius and my center by newCenter.
Use methods radius: and center: to perform the change.
Call these methods on myself.
This method is equivalent to that of the previous section:·
self center: newCenter.
self rad ius: newRadius.

47

Note that self is an implicit parameter of any me~hod call.

4 .3.6 Inspecting an Instance

Here is another way to test the effect of a method, which is better than
printing its resu lt.

1> Write the following code in the workspace, and do it.

I aOot I
aOot <- Dot new.
"Set radius to 10 and center to the point 1000200.
(The @ sign is the Small talk operator to form points.)""
aOot center: 1000200 radius: 10.
aOot inspect

The aDot inspect instruction opens a window to access the instance
the dot:

sou
CQntQr
ral\.ilJs

•

1> You can select each of the instance variables with the left mouse
button and inspect them too. You even can inspect self, but this gets
you another copy of the same inspector.

1> To get rid of an inspector, use the right mouse button close function.

48

4.3.7 Returning a Value

Here is a method wi th no parameters that returns a value:

center
·Return my center""
T center

t> Write a short program to test this method in conjunction with center:.

4.3.8 A Method to Display a Dot

t> This method displays a dot. Put it in the displaying protocol. It is
based on existing Smalltalk software.

display
"Display myself on the screen
The vari~ble dotBitmap holds a bitmap for the dot.
and is copied to the bitmap display of the workstation."
I dotBitmap I
"Create the bitmap of size radius*2"
dotBitmap - Form dotOfS ize: (radius * 2 }.
dot Bitmap

displayOn: Display
at: center
rule: Form paint

t> Now try it with the following program in the workspace:

I theDot I
theDot - Dot new.
theDot center: 1000100 radius: 20.
theDot display.
theDot center: 200~200 radius: 50: display.

The last statement is shorthand; this is called cascading a message,
and it applies the display call to the same object as the previous call.

49

4.3.9 Creating New Instances

The standard way to obtain a new, unlnit ialized object is to send the new
message to the class, as in Dot new. Normally, the first operation you
perform on any new instance is Lo initialize some or all of its instance
variables.

The class methods can be used to create and initialize objects in one step.

Class methods:

• in itialize new instances

• cannot reference instance variables directly, as instance methods can

• are sent to the name of the class, as in Dot center: 20~20 radius: 10.

e> Select the class box in the class pane. Then define prowcols and
methods just as for instance methods.

Figure 4.8: Selecting class methods

e> Enter this class method:

defaultShape
"Return a dot with default size and position"
I X I
"Get a new dot. ..
x <- Dot new.
"Initialize it with some default values."
x center: 1001!!200 rad ius: 10.
f X

50

This method is used as follows:

1 blob 1
blob +- Dot defaultShape

4.4 Subclasses

Figure 4.9: The second example: a flower

This example has many features in common with the dot example:

• A flower has a center and the radius of the central dot

• It needs similar methods to set and request the value of the instance
variables center and radius

But some additional features are needed:

• The length of the petals must be specified

• The display of the flower is different, but similar to the display of the
dot.

51

4.4.1 Defining a Subclass

1> Deline Flower as a subclass of Dot:

Dot subclass: #Flower
instanceVariableNames: ·petal length·
classVariableNames: "
pooiDictionaries: ..
category: 'My-Category'

This will add the instance variable petallength to the instance variables
center and radius of Dot. In this respect, it is the same as declaring:

Object subclass: #Flower
instanceVariableNames: 'radius center petallength'
classVariableNames: "
pooiDictionaries: "
category: 'My-Category'

But if Flower is defined as a subclass of Dot, then also all methods of Dot are
available for Flower, such as center, radius, center:, radius:, center:radius:,
display and defaultShape. Thus, you can build on existing software, by
adding and replacing features.

4.4 .2 Defining New Methods in a Subclass

1> The following methods are also needed for a Flower:

petallength: newlength
petallenth - newlength

petal length
j petallength

New methods, with different names from the superclass methods, can be
added as desired.

52

4.4 .3 Overriding a Method

You can also write a method in a subclass to override a method in the super­
class. For example, the display method of Flower is different: it should also
display the petals. Here is the new display method. It uses the standard
Smalltalk object Circle to draw the petals.

!> Type this method:

display
00 Display myself on the screen.
Temporary variables: petal points to a circle."

I petal c I
00 Display the petals. Use the Circle object to draw little
circles. Get a (new) circle. and set the thickness of the
line to 1. The radius of the circle is the petal length."
petal - Circle new.
petal form: (Form dotOfSize: 1).
petal radius: petallength.
00 Draw six petals with this loop."
0 to: 300 by: 60 do: [: angle I

00 Calculate the center of the petal"
c +- (angle degreesToRadians cos) €l

(angle degreesToRadians sin).
c +- c • radius + center.
00 Set the center of the petal"
petal center: c.
"and display it ."
petal display].

" Now draw the dot inside the flower."
aDot +- Dot new.
aDot center: center rad ius: radius.
aDot display

This method replaces the method of the superclass for all Flower objects.
The display method defined on Dot is still available for instances of the Dot
clas$, but it is hidden for instances of the Flower class.

53

4.4.4 U se of super

super pennit.s calling methods of a superclass, which would be otherwise
redefined by the class.

It is a variant of self, but the method is looked up in the superclasses only,
instead of this class and the superclasses.

1> Here is an example of the use of super. The method in the last
example, which displayed a Flower, can be rewritten more efficient ly
as:

display
·Display myself on the screen.
Temporary variables: petal points to a circle··

I petal c I
... same as before ...
··Now draw the dot inside the flower:·
super display

The super display statement calls the display method of Dot. Thus, the
new Flower display method is really a refinement of the Dot method: it
add$ some statements to the original method {it adds the statements
that draw the petals) .

The use of super is appropriate when a method in a subclass should perform
functions similar to those are already programmed in a superclass. You only
need to write code to do the additional functions.

4.5 Debugging

4.5.1 Run time errors

Whenever Smalltalk detects a runtime error, a notifier appears:

54

Menage not umt-ers:tooct moveAtRandomSomewhana

~">0 c:l~, s(Ob~-Kt)) >doe,NocUne!Qr s t•nc:!:
[) in IJnoQll'tnedO~jgcl>>Oolt
Unao t1n9d0bjlic t»Oolt
Compiler>>ov o. fua. te;in: t o.noti fying:iff &II:
Strin~HoloorCon trollt:r >)dOlt

Figure 4.10: A not ifier for a runtime error

Using the middle button menu, you can either proceed (which t ries to ignore
the error) or debug. You also can use the close option of the right button
menu to abandon the task.

If you select debug, a debugger window appears:

gript • ~t'Cltu)••IIHitra.rehyV.olatlon

ir TrUet (a.MQUOgo soiQCtOr CIUtPMt) • ~~not Ofl'i? Of tny
$llpQrc:l.ouos: ·1

ltFals:t ('Meu> not undt~uoott: "J
NOt•fitrVJOW

not
undeut<JOCS: •

Figure 4.11: A debugger window

The first subwindow shows the stack of calls. There is one line for each call
and the most recent call is first. You can move up and down the stack to
select the method that interests you.

The middle button menu in this subwindow is:

55

Figure 4.12: Middle button menu in the top subwindow

Some of the options are:

proceed

Continues the execut ion.

single step

Executes instn1ction by instruction.

full stack

Shows the full stack of calls, not only part of it.

The second subwindow shows the source code of the selected method. The
current instruction is highlighted.

If you discover an error you can change the source code, accept it, and ~hen
select proceed on the middle button menu of the top subwindow.

The third subwindow consists of an inspector of the instance variables (left
side) and of the ~emporary variables (right side) .

4.5.2 Inserting b r eakpoints

A breakpoint is the instruction:

nil halt

Whenever it is executed, the debugger appears.

56

4.5.3 Loops

H your program is in a loop, hit control-C. A notifier will appear, and you
can enter the debugger.

You can use the l2 key to suspend Smalltalk and enter Unix (see section
2.6.1} if control-C doesn't help.

4.6 Method syntax

4.6.1 Overview

This section describes method syntax in detail. The definitions are practical
rather than rigorous. Use this seclion as a reference. For more information,
see [l j.

Four topics are c;overed:

• constants and variables

• types and precedence of message expressions

• arithmetic and boolean operations

• arrays

• common control structures, including if-then·else and while

4.6.2 Constants

These are some of the constants that can appear in Smalltalk programs:

57

example ~ype

10 decimal
10.3 decimal
10.3e-4 decimal with exponent
-6 decimal, negative
"hello" string
'don" t' string with ' in it
Sx one character (the x)
true. false the boolean t rue and false value
nil the value of an uninit ialized variable
#(10 20 30) an array constant with 3 elements
#center: a symbol (for example a method name)

Table 4.1: Smalltalk constants

4.6.3 Variables

Small talk variable names are alphanumeric. The fi rst letter of a variable
indicates its scope:

• First letter lowercase: local variables, like instance variables or tem­
porary variables.

• First letter uppercase: global variables, like class variables or class
names.

4.6.4 Types and Precedence of Message Expressions

Small talk statements are message expressions. Here are the three types of
simple message expressions (the keyword message is iUustrated twice):

58

sample expression type arguments
aDot display unary none
radius • 3.14159 binary 3.14159
aDot radius: 20 keyword 20
aDot center: aPoint radius: a Number keyword aPoint and aNumber

Table 4.2: Message types

All expressions are a combination of these types of messages: unary, key­
word and binary. Their characteristics are:

U nary messages

Unary messages have no arguments.

The name of a unary message is alphanumeric, starting with a low­
ercase letter.

Unary messages have the highest precedence.

Binary messages

Binary messages have exactly one argument.

The name of a binary message consists of one or two special charac­
ters, like + / * • > < ~ % I & ? and -,

Binary messages have intermediate precedence.

K eyword messages

Keyword messages can have any number of arguments.

Each argument is indicated by a keyword and a colon (:). Keywords
are alphanumeric, starting with a lowercase letters.

Keyword messages have the lowest precedence.

Use parenthesis to alter the precedence or to clarify your intentions. In­
denting an expression may also add to the clarity. For example:

59

Bit Editor
openScreenViewOnForm: (Form fromDisplay)
at: 0~0
magnifiedAt: 100~100
scale: 8~8

Within the same precedence, expressions are interpreted strictly from left
to right. For example index + offset * 2 is the same as (index +offset) • 2 .

All messages can be cascaded with a semicolon. That is, several messages
can be sent to the same object in just one statement:

aDot radius: 10: center: 20t020: display.

is the same as

aDot radius: 10.
a Dot center: 20~20. aDot display.

Variables point to objects, they do not contain objects. For example:

''Create a new rectangle. and make ·a· point to it:''
a ~ Rectangle origin: 0<00 corner: 100~120.
"Make 'b' reference the same rectangle:"
b ~a .
.. Modify the rectangle. moving its origin:"
a moveTo: 101D20.

In this example, both b and a point to the same objed. The last line
modifies the object, so after this operation, b will have moved too!

If you want to assign a copy of an object to a variable, use:

b <- a deepCopy.

Now a and b point to different objects, and whatever you do with a will
not affect b.

60

4.6.5 Common O perations

All numeric objects accept ~he four arithmetic operations (messages)+,-, •
and/, and the comparison operators<,>,>=,<= and=.

All objects can be compared using =, to see if they have identical values.

Two objects can also be compared using ==: this test will succeed only if
the variables which name these objects point to exactly the same memory
location.

To see whether a variable x has been initialized, that is, has value nil, usc
x notNil.

The boolean operators are:

operator meaning
& and

I or
not negation

Table 4.3: Boolean operators

Be careful: since not is a unary operator, it has to go after the expression,
so that

(a I b) not

really means

not(a or b).

All parts of boolean expressions are evaluated. See the control structures
and: and or: for variants that evaluate only the necessary parts of the
expression.

Arrays are created with the Array new: message:

61

··Assign an array of 20 empty elements to x"
x <- Array new: 20.

Use at: to refer to an element and at:put: to replace the value at an element:

"Assign the Sth element of x to y"
y ,_ x at: 5.
"Replace the 7th element of x by z"
x at: 7 put: z

The message size returns the size of an array. For example, return true if
the i-th clement of x is positive, false if it is negat ive or the index i is out
of bounds:

j (i > 0 and: [i < x size and: [(x at: i) > 0 JJ)

The elements of an array can contain any object: numbers, dots, strings,
characters, arrays, etc. Different elements of a. single array can contain
difl'erent object types.

Many other types of collutiona are available in Smalltalk: sets, ordered
collections, dictionaries, bags, etc. See jl] or the Smalltalk code for more
details.

Strings are a particular form of array. You can use at: to access a particular
character in a string. Concatenate strings with

bothStrings <-- string! . string2.

4.6 .6 Control Structures

Smalltalk has many control structures. Creating new ones is easy.

Here are some control structures similar to those found in oLher languages.
A block is a sequence of statements surrounded by brackets i and].

62

condition ifTrue: [statements).

condition ifFalse: [statements).

condition ifTrue: [statements I ifFalse: [statements I·
[condition I while True: [statements I.
[condition) whileFalse: [statements).

1 to: 10 do: [: index I statements).

Iteration with index varying from 1 to 10

1 to: 100 by: 5 do: [: index I statements I·

Iteration wi th index set to 1, 6, 11 ... 96

n timesRepeat: [statements).

Repeat statements n times

conditionl and:(condition2 J

and operation; evaluates condition2 only if condi­
tion 1 is true

conditionl or:[condition2 I

or operation; evaluat.es condition2 only if condi­
tion! is false

Example: Return the maximum of a and b.

a > b ifTrue: [T a]
ifFalse: [T b).

The do: loop is useful for processing all members of a collection. H works
with a.r.rays, sets, bags, lis ts , and other collections:

63

aCollection do: [: element I
... process element I

The variable element paints to each element of the collection as the collec­
tion is scanned.

Example: find the maximum in the array x:

max <- x at: 1.
x do: [: element I

element > max ifTrue: (max <- element II

Appendix A. Reference

64

Appendix A

References

A.l Overview

This section describes books and articles you may wish to consult.

A .2 Books

The Small talk language is described in the • Blue Book":

1. Adele Goldberg, David Robson, Sma//talk-80, The Language
and its Implementation. Addison-Wesley, 1983.

This book starts from ground up. The first chapters define concepts like
objects, methods, messages and classes.

It contains descriptions of most Small talk classes:

• Numbers: integer, floating point, fraction, random numbers

• Character and string

65

• Collections: array, set, interval, bag, dictionary, ordered collection,
etc.

• Stream and file stream

• Files

• Process management: process, semaphore, shared queue

• The classes Object and UndefinedObject

• Class objects: metacla.ss and class

• Graphical objects: point, rectangle, arc, circle, curve, line, linear fit,
spline

• Display objects: forms, display screen, cursor

Topics not covered include mouse, menus, fill in the blanks artd Smalltalk
windows.

The n Orange Book" describes the progra=ing tools:

2. Adele Goldberg, Sma//talk-80: The Interactive Programming
Environment. Addison-Wesley, 1984.

If you have used Smalltalk you will be familiar with most of the contents
of this book, but it contains many interesting hin ts and details. Many
facilities, such as the text editor, arc covered in depth.

Another introduction to Smalltalk is:

3. Ted l{aehler, Dave Patterson, A Taste of Smalltalk. W. W.
Norton & Co., 1986.

lt uses examples, contains formal definitions, and explains the use of many
classes. It also has special sections on the text editor and how to read
source code.

66

1\. . 6 .J ourna1 Art 1c1es

A source of good articles on Smalltalk is

4 . B YTE 6, 9. (August l981).

It contains introductory articles and also some more advanced ones, like
Design Principles behind Smalltalk. Several articles discuss implementation
issues.

Another worthwhi le article in the same issue discusses control structures.
It demonstrates how to pass blocks as parameters and how to write your
own control structures.

A collection of papers on Smalltalk-80 is:

5. Glenn Krasner, ed., Smalltalk-80: Bits of History, Words of
Advice. Addison-Wesley, 1983.

Appendix B. Reading Smalltalk Source Code

67

Appendix B

Reading Smalltalk Source
Code

Source code for all Small talk object.s is (usually) visible in the Small talk
environment. It is a good example of

• object oriented design

• programming methodology

• how to use clasMs and methods effectively

Unfortunate ly, it is often poorly documented.

Before you begin to program, search through this code to sec if it includes
an object you can use. Smalltalk has commands and features to help you
find objects. Most searching is done with the browser.

The senders menu option in the methods pane permits access to all meth­
ods that call the selected method.

The implementors menu option in the methods pane gives access to all
methods with the same name as the selected method.

68

.l. He t!!lJll<llf1 menu optton m the e<lltor pomts to classes, categories and
methods.

Here is a. strategy for reading Sma.llta.lk source code with the browser:

• Ta.ke a. look a.t the class hierarchy.

• Dig into a. category. Select some class that seems interesting.

• Read the class comment.

• Read the class definition. Compare.

• Glance at the class methods. There may be examples. If so, execute
them.

• Now go to the instance methods. A good starting point is the "pro­
tocols for accessing" section.

• If you don't find art instance method that you expect, look in the
superclasses.

69

Appendix C

How to Program a User
Interface

C.l Overview

Smalltalk includes aids for programming a user interface. There are Small talk
classes which give you access to the following entitites. At a low level:

• mouse

• cursor

• keyboard

• display

• the system transcript

and at a higher level:

• prompts

70

a lll\lliU~

• choice

Many of these classes have been presented elsewhere in this manual. This
appendix explains how to use these classes. The description is not detailed,
but the information is sufficient to enable you to use the mos~ important
features.

The display screen is not discussed here. Ill contains a detailed explanation
of the use of the display. Information can also be found with some effort in
the Form class and its superclasses, and in the Graphics categories.

C.2 Mouse

The mouse has three buttol)s: red button (left), yellow button (middle)
and blue button (right) . The mouse buttons can be tested by ·

Sensor redButtonPressed
Sensor yellowButtonPressed
Sensor blueButtonPressed
Sensor anyButtonPressed
Sensor noButtonPressed

which return either true or false. You can usc Sensor wait Button to wait
for any of the three buttons to be pressed.

The position of the mouse is returned by the command:

mouseLocation +- Sensor mousePoint

This message returns a Point on the screen.

The coordinates of the borders of a SUN screen are depicted below:

71

O@O 1151@0

0@899 1151@899

Sensor is a global variable. It contains an instance of the class lnputSensor,
and lets you communicate with the keyboard and mouse of your worksta­
tion.

C.3 Cursor

The cursor is a moving image of 16 by 16 pixels on the screen. Normally,
the movement of the mouse is coupled to the cursor. Whenever the mouse
moves, the cursor follows it.

Management of the cursor is done through the Cursor and the lnputSensor
class (Sensor global variable).·

The usual shape of the cursor is a leftward-pointing arrow. The class defini­
tion of Cursor also contains other shapes (arrow, arrow with star, scribbling
pen, cross hairs, blank, etc).

This example shows how to read the form of the current cursor 1 ~hen change
it to the "write" cursor (a little pen, which appears, for example, when you
do a file out), and then restore the original cursor:

"Get the current cursor from the Sensor."
tempCursor ~ Sensor currentCursor.
.. Get the write cursor and show it."
Cursor write show.

"Return to previous cursor shape.''
tempCursor show.

The cursor can be moved to another point with the instruction:

72

.:liWsor c;ursor t'Oint: neWt'OSitlon

where newPosition is a point on the screen.

You can assign any 16 by 16 Form to the cursor using the methods in the
Cursor class.

C.4 Keyboard

This section explains the use of the keyboard. lf you want to read strings
input by the user, do not use these methods, but use the prompts instead
(see section C.6).

The keyboard is accessible through the Sensor object (lnputSensor class).
Here are the most commonly used methods:

Sensor keyboard

Returns one ASCII character from the input buffer. Returns false if
there is no character available. (This is a non-blocking read).

Sensor flush Keyboard

Flushes all type-ahead.

C .5 System Transcript

The system transcript is useful for displaying small amounts of information,
for showing progress, and for debugging.

The system transcrip t is avai lab le through the global variable Transcript
(class TextCollector).

Example:

73

1 • - •• • •• • • ... , • • .,., I '-'~"' V I U.._I.!VIII,f. , \, I ,

disp lays

Start
list of actions

on the system t ranscript.

You can also print many other objects (like numbers, arrays, points) on the
system transcript using the printString function:

x - Sensor mousePoint.
Transcript show: 'The mouse points to ·: show: x printString :

cr.

Prior to using the system transcript window, it is convenient to put it the
foreground:

Transcript refresh.

C.6 Prompts

A prompt is used to ask a question and get an answer from the user.
Example:

Ple•n enter tl'lt fiton•me

Figure C.l: A 'request' and a 'message' prompt

This is the code to produce the 'request' box:

74

I U l hi U \.1 I

Fillln The Blank
request: ·Please enter the filename·
display At: Sensor mouse Point
centered: true
action: [:answer I answer)
initiaiAnswer: 'this is the default'

request: gives the question to be asked. The user accepts (with the middle
button menu) or presses the return key to enter his/ her answer.

If you usc message: instead of request: then the answer can be several lines
long. In this case, the Fill In TheBiank window wi ll also have a scroll bar (see
Figure 0.1).

displayAt: indicates the position of the box; Sensor mousePoint is conve­
nient, another good possibility is Display bounding Box center.

The action: block is execut-ed when the ans"(er has been entered. The
parameter of the block receives the answer string - in this example the
action leaves the· answer in the temporary var iable answer.

The initiaiAnswer: may be a null string (..).

C.7 Menus

Pop-up menus are a convenient command language. A pop-up menu looks
like this:

utilitie, '
n1ce thrngs

fortunQ eook.iQS
,avonture o<lmv

~-Utt

Figure 0.2: A pop-up menu

The use of a pop-up menu has two parts:

75

• Activate the menu. This displays the menu, allows selection, and
returns the index of the selected item.

Reuse menu objects; create them once at the beginning rather than each
time you use one. You can also share a menu object among several places
where it is used, putting it in a class variable.

Here is the code to init ialize the pop-up menu of Figure C.2:

··Create a menu with 6 items and lines after items 2 and 5.'"
menu +- PopUpMenu

labels:
"goodies
ut ilities
nice things
fortune cookies
adventure game
quit"
lines: #(2 5).

There are many ways to activate a menu (see also PopUpMenu class, pro­
tocols for controlling). Here are t.he most common forms.

selectedltem +- menu startUp

Show the menu and wait for any button to do a selection.

selectedltem <- menu startUpRedButton

Show the menu and wait for the left button to do a selection. Other
buttons will be ignored.

selectedltem +-menu startUpYellowButton

selectedltem +- menu startUpBiueButton

Similar to selectedltem +- startUpRedButton.

76

~"'"'- '"u"""' .- 11 1~11u M~nup: 'll" reooutton Wltnneaomg: IItie ot the IVIenu

Shows a menu with a title. You also can usc #yellowButton and
#blueButton. A selection must be made (menu flashes if you leave
it).

In all cases, the number of the menu item is returned (assigned to the
variable selectedltem in the examples). 0 is returned if no selection was
made, else an integer from 1 to the number of items in the menu.

You can also use ActionMenus. Instead of returning a selection, they call
a routine depending on the selection. See the ActionMenu class in the
Smalltalk code for an example.

C.s Choice

A choice is a question with ~·es-no answer. This is how a choice looks on
the Smalltalk screen:

- -Do you want to leave now

yes
~

no
1-

Figure C.3: A Binary Choice

The program code for this example is:

BinaryChoice
message: 'Do you want to leave now T
displayAt: Sensor mousePoint
centered: true
ifT rue: I ... action if true .. ·I
ifFalse: I ... action if false .. ·I

?

Do not put a Smalltalk return command (T) inside the ifTrue or ifFalse
blocks, because the BinaryChoice will not be erased properly.

77

Appendix D

Sample Program

This chapter contains the sample program used in Chapter 4. The code
in this appendix differs slightly from Chapter 4, and several methods have
been added.

78

.LJUt.

ela.s.s n arne
superclass
instanC-e variable namea

class variable names
pool dictionaries
category

commen~

Dot
Object
center
radius
none
none
Grapbks-Du bbles

I am a cirdc with a center and a radiu&. I can he diJplaycd on th.c .se:reen,
and I appear a• a hlacl: dot.

Instance Protocols For: accessing
area

•Retur-n my area•
T 3.14159 • radius • r•dius

eenter

-Return my center•
f center

center: newCenter

•Rep/au my center by 4 new centtr•
center - newCenter

center: newCenter radius: newRadius

•R<place bolh my radius ancl my center•
self radius: new R•d ius.
se.lf c.mt,er: newCenter

diameter

•Return my diameter•
i 2 • radius

diameter: newDJumetcr

"Alternative form of changing my •ize"
radius - newDi•rnetcr / 2

79

"Return my perimtte r"
T !<!If diameter • 3.14159

radius

-Return my rtuliu.t6

T radiWI

radius : ncwRadius

r&R~plau my radiu., by a new radiu4#
radius - now Radius

Instance Protocols For: t est ing
eontainsPoint: aPoint

"Return true i/ the dol contain~ aPoint.
A c.irdc c.ont~u·n.s 4 point if the di1ta.nc.~ to the center
i.s lut tAon th~ rocliu. Tlt.e dUtcHtce to tAc c=~ntcr ;.,
e<llculoted ..., lht length o/lhe ote<or 'center - oPoinl'. Thi.
maku uu of Point arithmetic., .soe Point da.u, 'an't.hmetic, and
'polar coordinate&) protocol.,. •

(center- aPoiM) r < radius
i!T:ruc: I I true I­

T false

Instance Protocols For: comparing

= otherDot

"NOTE. 1'hi1 method overridt3 the 1landard comparuon method.
In thi., co.se, dot.s will be equal whenever the radiuJ ,·., the .Mme.
The cenl<r may be different . Thi1 differ• from the normal
compari.on {prooided by the Object object) which requ>ru
Gil in.stoncc variablu h.-auc tAt 10mc vtdu.c. _.
(radius - otherDot radius)

i!T:rue: I f true 1-
i false

Instance Protocols For: displaying
display

80

•Dtclare a temporary variablt, lo cor>lain the bitmap of a dol. •
I bitmapDot I
~cru.t~ the bitmap 9ropAic fo rm of o c-ircular tlo~ o/ my diomde.r#
bitmapDot o- Form dotOISue: (radius • 2).
'Display thu dot at the eenter. Sir>ee all 'Form' bitmap• are rectanglt~,
'Form paint' indie4fu tAat the ~nc::lo.u:ng rtctongle .1la4/l not he 1hown. •
bitmapDot

di.splayOn: Oil!play
at: center
rule: Form paim

~--- ---- -- ---- ----·

Dot 4;laes
inatanc~Variablelluea:

Class P rotocols For: instance creation
center: a Center radius: aRadius

•Rcturn-5 a new in.stance of a d~t, initialized tuith these paramcJcrsM
•Thi• u a •hort form of:

I :r I
:~3d/new.

% ~enU.r: a Center rodiu: c..RaditU~
T (self new) center: aCenter radius: a Radius

defaultShape

ttReturn" a new in.ttancc of Dot with default &i.zc•
I X I
x- Dot new.
x center: 100@100 radius: 10.
T X

Class Protocols For: examples
example One

•Display •ome dol$.
To e:~:ecute, 4tlect ne:tt lin.e an.d do it:

Dol ezample One
•

81

~cte.ar the .1crecn•
Display white.
y- Dot new.
y conter: 100(1100 radius: 10.
y display.
200 to: 600 by: 100 do: I : i 1

y center: iOi.
y display J.

y center: 3000200 radius: 20.
y display.
y r:>dius: 30.
y display.
11U&e. a ca.:~cadin9 e.zprtuion for the. rul ..
y radius: 40; display ; ndius: 50 ; display ; ri>dius: 60 ; display ; radius: 70 ; display.
•Now write a 1horl me.uage. on tlte tran&cn'pt lo rtmind tu-er
to re.jrc&h tAt ~ereen•
Transcript refruh.
'lh.nscript show: 'Press any mouse button to refresh display' ; cr.
Sensor waitButton.
•Re]re3h 3Ctttn•
ScheduledControllers restore

cxampleThree

~DiJplay dot• following the mou••· Hit blu< (right) button to •~~>p.
Hit red button to I•,.•• G dot
To tzecuteJ &elect ne.:t line. and do it:

Dot eumple Three
•
I Y t stop I
•ctear the. 3cretn""
Display white.
•at.t a new dol)J
y ..,._ Dot new.
y r:>dius: 20.
•change. the cur&or to crol& hair..s•
Cursor crosoHair show.
stop - false.
I stop I whileFalse: I

Sensor redButtonPressed if'I'rue: I
y c:enter: Sensor mousePoint..
y display J.

Sensor blueButtonPressed ifl'rue:
stop- true J

82

I·
"Return to normal (ur.ror,.
C\ll\lor normal show.
•Refruh .terccn•
ScheduledCon~roUen nstort

example Two

•Display Jome random dot1.
To ezuute1 .telcd nc:t line and do s"t:

Dot ezample Two
•
I yr I
•clear the .tuce n"
Display wrute.
"Get a new dot•
y +-Do~ new.
'Get 4 random number Stream•
r .._.. Random new.
•Draw eo random dot.•
20 timesRepeat: I

y center: (r nex~ • 800) 0 (r next • 600}.
y radius: (r next • 30} a$lnieger.
y display J. ·

.-Now write a 1Aort meuagc on tAc tran~cript to remind cuer
to rcfruh the nrccn•
'franscript refruh.
'franscrip~ show: 'Prest any mouse button ~o refruh display' ; cr.
Sensor waitBu~t.on.
~t/re•h •creen•
ScheduledControllers rutore

ch.ss name
superclaaa
instance variable names
class variable names
pool dictionaries
category

comment

Flower

Flower
Dot
petn!Lcngth
none
none:
Graphics-Bubbles

83

Instance P r otocols For: accessing
petalLeog th

"Return my pe tal length"
l peta!L~ngth

petalLeogth: oewLeogth

•set the my petal length to newLength •
petalLength - newLength

Instance Protocols For: displaying
display

•ouplay my•elf on the •ereen.
Thu method rcli .. on the duplay method o/ the •uperclau Dot
to draw the dot '" the <enter, and then it add• the petal• only•
I petal c I
•ouplay the petal•. U•e the Circle object to draw little circlu.
Gel a new circle, and •et tht for {the width) to a dot of •i•e 1.
The radiuo of the circlt io the petal length. •
petal - Circle new.
petal form: (Fonn dotOfSize: 1).
petal radius: petaJLength.
•oraw •'= pttal• with thi• loop. •

0 to: 300 by: 60 do: I : angle I
"Calculatc the center of the petal"

c - angle degreesToRadians cos 0 ang le degrcesToRadians sin.
e ,._ c .., radius+ center.
"Set the center of the petal"
petal <enter: c.
"and cli•play it."
petal dj,play J.

•ouplay the dot •
super display

·- - - - - - - - -- - - - - - - - - .
Flower class
inotanceVariablcNames:

8<1

vlass .Protocols !<'or: examples
exrunple

"Paint two flower~. To <:recut< !hi. example 1<ltct
tlac nczt line and do it.

Flower <r.4mpl•
•
I aFlower I
"clear tl•e di.tplay•
Display white.
4Gd a new flower•
3Flower- Flower new.
"Size the flower and a•k it to di.play it.el/"
aFiower center: 2000200 radius: 50.
aFiower peta.ILongth: 20.
aFlower display.
aFiowH center: 4000250 r..dha: 50.
aFlower peta.ILongth: 60.
aFiower display.
"Remind re/re.h di•pl•v after thi.t little graphico •
Transcript refresh; show: 'Press, any mouse butLon to rcf1·csh display'; cr.
Sensor waitButton.
ScheduledControllert restore

85

