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Abstract. The natural deduction theorem prover sprfn has been operational since August 1986. Since 

then. many experiments have been performed on it to test different strategies and data suucturcs; many 

retincmcnts have been added in the attempt to make it more ef6cicnL Some of these aucmpts have been 

successful and some have not been. In litis rcporL we wiU describe the evolution of our tdeas, discuss the 

test rcsuiLS, motivate and justify our decisions and draw some conclusions. We hope that we can share our 

experiences as well as lessons in our rescarcll on this theorem prover. 
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1. Introduction 

Sprfn is a natural deduction type system thnt proves theorems in first order logic. It is based on a 

modification of the theorem proving suaregy dcscnlled in Plaisted(82). Being a theorem pro,-er in Jim 

order logic, this prover may also be vtewed as an extension of Prolog tO full first order logic, that ts, non· 

Hom clauses. Sprfn possesses some desirable features both as a theorem prover aod as an cxu:nsion to the 

existing programming langWJgc ·- Prolog. Some features about its implementlnion are also worth mention­

ing. We will briefly menuon them in what follows. For a more detailed dcscnption of these features and 

lhetr justifications, see Pl:usted(87). 

[I] Negation is treated as in fim·crder logic. i.e .. with semantics of firs t-order logic. This is sound. 

unlike the treatment of negation in Prolog. Also, the prover performs true unification - unification 

with occur-eheck. 

[2] The prover is capable of general term rewriting 10 replace subexprcssions by equivalent ones. The 

term rewriting capability gives the user one way lO provide domain dependent knowledge about lhe 

problems he is working on. 

[3] The prover can perform both forward chaining aod backward chaining. 

)41 The input syma.' for lhc prover is much Lhc same as Lhe syni.3J< of Prolog. This is CXp<:eled since the 

prover is intended 10 be ao extension of Pro log. The prover also has a convenient interface 10 Prolog 

SO\ItCe code. Some taSks can be performed efficiently using this interface. 

[5] The prover allows user interaction to provide guidance during the course of proofs for problems with 

t!qunlity involved.._ 

[6) The prover uses Prolog style depth-titst seatch wilh a gradually increasing depth bound , i.e .. deplh­

fi rst iterative deepemng search. This search suutegy is complete. It can also be easily tmplcmcnted in 

Prolog by taking advantage ofProlog's buill-tn backtracking mcchantsm. 

[7] Subgoals and the solutions 10 the subgoals arc "cached" so lltat if a subgoal is seen more ~1an once. 

work IS not repeated. 
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Sprfn is implemented m C-Prolog. lt has been designed for use with as tittle user guidance as possi· 

ble, for users who have little background about theorem proving. Thus the default set-up of the prover is 

carefully mned to provide rcusonable overall perfom1ance. However, a set of Rags and parameatrs are also 

provided. These Hags and parameltTS can be set or 3d jus ltd by more sophisueated users to have more con­

IIOI over the prover. The !irst working ''ersion IS operational around August, 1986. Since then, a number of 

optimizations and experiments have been done 10 improve and test the performance of the prover. In this 

report, we will describe the imponant effortS invesltd during the process of implementing this theorem 

prover and the ideas behind these effons. We will describe the evoluuon or those ideas and their impact on 

the current starus of the prover, and justify the decisions and conclusions we have made. We w1ll also share 

our e~pericnces and lessons in implementing, tuning and using this prover. 

2. The ;\1odified Problem Reduction Format 

We will introduce lhe deduction system underlying sprfn ·· the modified problem reduction format. 

The following is a eoncise description of the deduction system. This dcscnption is taken from Plaistcd[87], 

to which lllteresltd readers are referred 10 for a complete description and discussion of this strategy. 

A clause is a disjuncuon of literals. A Horn-like dause is of the form L :- Lt.L2, .... L. where L 

and L, 's are literals. L is called the head liieral. L1 's constitu le the clause body. A clause C is convcrltd 

into a Hom-like clause HC as follows. One of the positive literal inC is chosen as the hcud liter31 of HC 

and all other literals m C are negated and put in the clause body of HC. For example, P v Q v R v IV can 

be Cl<J)rcssed either a.~ R :· P. Q, not(\V) or W :· P, Q. not{R). Only one such representation is chosen for 

each such non-Hom clause. If C contains only negative literals. we use false as the head literal of HC. 

Thus P v Q will be represented as false: · P. Q. 

AssumeS is a set of Hom-like clauses. In the modified problem reduction fonnat. a set of inference 

rules for S is obtained as follows. For each Hom· like clause L :- L 1, L 2, •••• L, inS, we have the follow· 

in& clause rule. We call the r's on the left of the arrow .... assJLmption list. 

Clause Rules 
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ro~L I => ri~L I. rl-tL2 => r2-tLz, ... ' r.-1-tL. => r.~L. 

r0-+L - > r .... L 

This rule corresponds to the following idea: if the initial subgoal is r0~L. then make L 1, . •.• L. subgoals 

in succession: add to assumption list r 0 successively the Ji~eraJs that arc needed to make each one or L, 

provable: finally, retwn r.~L where assumption list r . contains all the literals needed to make 

L 1, ••. , L. provable. We also have assumption axioms and case analysis (splitting) rule. The l. '" the 

assumption axioms is a positive literal. 

Assumption Axioms 

Case Analysis (splitting) Rule 

ro....;L => r~oM ~L . r, ,M-+L => r, . M....;L 
r0....;L: => r,_,L 

The following is a theorem in group theory. We use this example to illustrate the input fonnat to 

sptfn and the proof generated by sprfn. Th•s theorem states thai.. if me square of any element in a group 

equals tO the identity element of the group, the multiplication operation of the group is commutative. In the 

input clauses below, e is the identity element, p(X, Y. Z! means that the product of X and Y is Z. The labels 

cl, c2, .... c7 arc given to the clau.ses for easy reference and do not constituiC the input. 

cl: p{X,e.X). 
c2: p(e. X. X). 
c3: p(X, X, e). 
c4: p(a. b, c). 
c5: p(U. Z. W) :- p(X, Y. U), p(Y, Z. V), p(X. V, W). 
c6: p(X. V, W) :- p(X, Y, U), p(Y, Z, V), p{U, Z, W). 
c7: false :- p(b.a.c). 

In the input c lau.ses above, claus.:s c I. c2 and c3 are the axioms about the identity element or the group. C5 

and C6 are me associativity axioms. C4 and C7 are the negation of the theorem. The following is the proof 

gcnera!Cd by sptfn for this theorem. 



false:-
p(b,a,c) :-

p(b.b.e) 
p(b.c,a) :-

p(e.c.c) 

p(a.c,b) :­
p(a.a.e) 
p(a.b,c) 
p(e.b,b) 

p(c,c,e) 
p(a,c,a) 

In Lhe proof above, false is the top-level gool The subgoals belonging 10 one goal are aligned on lhe left. 

For example. p(bh.e), p(b.c.JJ). p(e.c.cj are subgools of p(b.a.c). This corresponds 10 

[J~p (b ,b ,e), n -)p (b ,c A), O~p (e .C ,C) 
[)-+p(b.JJ,C) 

which is an inslallCe of lhe clause rule derived from the input clause c6. We omitlhe assumption usts for 

subgoals in lhe proof sin<:<llhey nre all empty. 

3. Discrimination Net 

3.1. Caching Subgoals 

In sprfn, lhc subgoals which have been worked on are cached. The solutions generated during lhe 

course of lhe proof are also cached for later use. The 1dea of caching is to avoid repeated work invol"ed in 

trymg to solve lhe same subgoaJ more lhan once. After the prover has generated all the soluuons for a 

subgoal G. a clause done( D. G) will be assened. where Dis lhe measurcmcn1 of the effon invcstcd in try­

mg 10 solve the subgoal G. We will c:ill donefD. G) a done clause. 

E:lch subgoal will be auemp<ed wuh some elfon bound. Ths effon bound indicat.es the maximal 

amoum of effon allowed at present to confirm a panicular subgoaJ. If it requires more effon. lhan that the 

effort bound allows 10 confirm a subgoal, lh1s subgoal will be aucmptccl later with a larger effort bound. 

Suppose a subgoal G is 10 be aucmptcd with the effort bound D. The prover first checks 10 see if any solu· 

uon wh1ch has been generated could be used for solvtng G. After all the old solutions have been used. the 
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prover is about to gener.ne all the posstble new solutions for G with effon bound D. Howe,·er, before it 

proceeds with trying to generate the new solutions for G. sprfn checkS whether there is a done clause 

done(D I. G I) such that Dl is greater or equal to D and G is an instance or a variant of G I. If there is such 

a done clause, sprfn does not need to work on subgoal G at all since aU the possible solutions for G have 

been generated already. If there is no such done clause. the prover will proceed to generate aU lite possible 

new solutions for G. When lite prover 6ntshes. a done clause dcne(D. G) will be asserted to tndieaLC lltat 

subgoal G has been worked on witlt effort bound D. 

3.2. Basic Structure of Discrimination Net 

Because of tlte possible large number of subgoals, lite cachtng described above may involve a great 

deal of housekccpmg. We used lite built-in prolog database to implement tlte caclling by asserting tlte done 

clauses. Consequently, checking whether a subgoal is an instance or a variant of :1nother subgoal whtCh has 

been worked on requires a linear search among all done clauses. In lite auempt to speed up this search pro· 

cess. a new dal;l structure C<llled a disctiminauon net was added lO the prover. 

Conceptually, a discrimination net organizes a set of suings of symbols as a tree. This tree is orgnn· 

ized in tlte manner llta~ each node in the tree conuuns one or more branches which are labelled by tJte sym· 

bois in tlte SLnngs; and tlte branches diverge at the places where lite stnngs have different symbols. To 

search a string in a net, we follow the following discrimination process. Slllrt with the root node or the net 

as tlte current node and the first symilol of the suing as tbe current symbol. At any moment. if the current 

node conuuns :1 branch labelled with tlte current symbol, follow the brnnch to obtain a new node: if no such 

branch exists. tlte string is n01 in lite ne1: •f such a branch exists. repeat tlte above prOCeSS with the new 

node as tltc current node and the next symbol•n the suing as the current symbol. When tlte current node is 

a leaf node and there is symbol in the rcmatning part of the string, the suing is in the net. Regarding the 

subgoals as being strings of symbols. we implemented this data structure in sprfn. All lite done clauses arc 

stored 1n a discnmination net. 
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3.3. Implementations or Discrimin:ttlon :-let 

There arc three implemenwtions of the discrim ination net. The last two implemenwtions arc Ute 

results of the unsatisfactOry perlonnunce of its predece.mrs. We will describe each implementation in this 

section. 

The first implementation uses individual symbol (function symbols. predicate symbols and variables) 

as label. Each node in the net is represented as a list of <symbol, branch> pairs. Each pair in the li.~t 

represents a branch labelled by the symbol in the pair. The discrimin;ltion net is implemented using the pro-

log <mwbasc utilities. A node will be represented by a clause node( pair _lisr) in the database. Note each 

such clause can be referenced using a reference number assigned by the system so linear search in the data-

base wiU nat be necessary. In this implementation. discrimination net is designed to be a generator. User 

can specify four kinds of subgoals to be generated: subgoals which are no less general than the cunent 

subgoal, subgoal which are no more general than the current subgoal. subgoals which arc unifiable with the 

current sub~;oal and sub goals which are variants of the currenL sub goal. 

Fim implementation does not g•vc s:~usfnctory results. We spot several things which arc likely to 

cause mefficicncy: verifying the rel:luonsh1p between the subgoals Ill the database and the current subgoal; 

the linear search at each node when looldng at a branch labelled w1th a symbol and unfolding a subgoal 

into a list of symbols before searching. In the second implementation. discrimination net is used as a fi her 

10 generate the subgoals which may be unifiable with the current subgoal. ln onler to avoid the linear 

search at each node, the input clauses are preprocessed so that each node will have a fixed number of pairs 

and each symbol has a fixed slot m the nodes. This can be done since the symbol set in the input clauses is 

6J<ed for each theorem if we treat all the vanables as ii they were one symbol. In thts implcment:nion. 

some prolog clauses will be generated at preprocessing time for some frequent operations. For example, 

suppose there are four symhols in the input clauses. the following c lauses will be generated: 

replaccRef(l. N. pos(Xl, X2. X3. X4), pos(N. X2, X3. X4}). 
replaceRef(2. N, pos(Xl, X2, X3, X4), pos(Xl. N, X3, X4)). 
replaccRcf(3. K, pos(XI. X2. X3, X4), pos(Xl. X2. N, X4)). 
replaceRef(4. :-1, pos(X I, X2. X3, X4), pos(Xl, X2. X3. N)). 

search(P, Type. S. E):- nonvar(S),% for atomic constanl~. 
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clause(sttuel(_. L), ~ S), arg( I, L, _:E))), 

search(X, Type. S, E):- nonvar(S).% for variables. 
var(X),!, clause(struct(_. L). _, S), 
functor(L~,N), sk.ip(L. E. I , N)). 

search(X, Type, S, E) :- nonvar(S), % for constantS. 
atomic(X), clause(struct(_, L), ~ S), 
index(X/0, 1), arg(l.L~:E). 

search(f(XI, X2), Type, S, E):- %for function f. 1 is conSt3nt. 
nonvar(S), clausc(suuctL. L),_ S). 
arg(l. L. _:A). nonvar(A), 
search(X l , Type. Ref. Ref!), search(X2, Type. Ref! . E). 

The structure pos(Xl. X2, .... Xn) has one slm for each symbol in the input. Each Xi represenl~ a 

<symbol. branch> pair. The suucrure struct(DIU11tle. pos(Xl. X2 , .... Xn)) represems one node in the 

discriminauon net. where D= is the name of the net. Each symbol witt have one repwceRef clause gen· 

crated for it. The replaceRef clauses wilt be used to update individual node. Note that, by utilizmg the pro-

log built-in unification capability. we have avoided the explicit liJtcar search at each node when modifying 

it. For each predicate symbol and fwtcLion symbol, a search clallse is gcncrJted. These clauses arc used to 

search the discrimination neL By giving cach symbol an unique index which is the slot number for this 

symbol in the pos saucrure, we also avoid the linear search at each node when searching the net by uti liz-

ing the prolog built-in capability. In the first implementa.tion, a searched subgoal is unfolded into a list of 

~)'TT1bols before searching. We avoid this toO by generating the search clauses. 

Second implementation docs not provide the improvementS we have hoped. (n both implementations. 

the inscruon and deletion operations result in a large numbet of strucr structures being asse~d into and 

ret:racted rrom the database. By lL~ang individual symbol as the labels. the search operation is also expen· 

s1ve since each symbol in the subgoal will result in a prolog procedure call. In the third implementaiJOn. we 

use the literals in the subgoal r~ther than the symbols as labels. In this implemematioo. node is nOt 

represcnr.ed as a list of pairs. Ramer, each node is given a unique id when it is generated at runtime as ~1e 

new done clalL~S are insened. Each node is represented by a pro log procedure the code for which IS gcn-

erated as the new done clauses are insened. The code for this implemen13tion is given in Appendix A. Only 

insertion and search functions are implemented here. We are still usang the discrimination net as a tiltcr to 
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generate the pos.~iblc unofiable subgoals with the current subgoal. 

3.4. Perrormance or DiscrimiMtion Net 

Table 1 give:; the performance data of sprfn using the different implementations of the discrimination 

net. The degeneration of performance is obvious irom these data. There arc several reasons for the degen­

eration. One possible r=on is that the number of cached subgoals is generally smalL Thus, the overhead 

for mainuining a discrimination net is 100 much to be compensated for by the saving in SCMCh time. Note 

lhat. for the e.'amples whose proofs take large amount of cpu time 10 obuin, the performance does not vary 

very much when the d iscrimination net is added. This suggests that maintnining the discrimiMtion net can 

only be effective when there Ute a large number of subgoals_ Another rea.~on seems to be the language we 

are usmg. Now lhat we represent the data structure using the prolog database facility. To modify the data 

suucture, we have to assen into or rcttact from the prolog d:llilbase. This may contribute a great deal to the 

large overhead. The third implementation performs better tba.n the first and second. The reason is twofold. 

On one hand, it asscns less than the o ther two do since it is indexing on a larger structure. On the other 

hand. it does not retr.~et at all when the data suucrure is modified as other two implementation do. We do 

not see any better factlity provided by Prolog for implementing the discnmination neL We thtnk that Prolog 

is not SUitable for implementing such "lower- level" data saucturc due to its highly abstr.lCt execution 

mcd1Mism. Other langu:1gcs such as C may prove to be stlitable. 

-1. Caching most Dominating subgoals 

Wo inU'o<luccd done clause in last :;cellon. A done cl~usc donc(D. (i) States that lhe subgoal G has 

been worked with effort D. Note that a subgoal or its instances may appear several times during the course 

of the proof, with different amount of effon involved. Suppose we have two done clauses. done(D/. G/J 

and done(D2. G2), where 01 is an instance or an variant of G2 and 02 is greater or equal to OJ. These 

swte that 02 has been worked on with larger amount of effort invested and all solutions that have been 

obtcined for G 1 with amount of effort Dl ha,·e been obtcined for 02 with the amount of effort 02. We 

only need to maintain dondD2. G2) to have complete information. The done clause done(DI. G/J can be 
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deleted. This suggestS !hat for any subgoal and itS pOSSible instances which appear as subgoals, some done 

clauses are not needed. We say done(Dl. Gl) is dominated by done(D2, G2) if G I is an Instance or a vari­

ant of G2 and D2 is gn:.tter or equal to OJ. We only need to maintain the most dominating done clause and 

delete the dominated ones. By only keq>ing the most dominant done clause, the space taken w cache 

subgoals will never be greater than the number of essentially different subgoals generated. 

Sprfn was modified 10 keep only the most dominating done clause and delete the dominated ones. 

We caU this clause elimination. Table 2 shows the execution UJn<: and the numbe<' of done clauses main­

uuned by sprfn in the data base at the end of proof. Two seL~ of data are listed. The set on the left 1S for 

sprfn witllOut clause elimination implemented. The set on the right is for sprfn with cluusc elimination 

implemented. One can easily sec that the performance of the prover docs not vary very much. This is due 

co the fact th:u the number of done clauses is generally small. The 5.68% loss in cputime is the result of the 

overhead of detecting dominating relationship and maintairting the database. 

Let us go back to tl1e dlscussion or discrimination neL We conjectured that one of the reasons for the 

inefficiency of dlscrimination net is that the number of cached subgoals is generally small. The data 10 this 

secuon have enforced this conjecture. The overhc:ld of maintaining the discrimination net is JUSt tDO big to 

be compensated for by the speedup in the search time since tlhe number of subgoals cached is too small. 

5. Parameters and Flags 

Sprfn is designed 10 be used with a~ lit~e user guidance as pOSsible. Thus i t may appeal to a larger 

community. People with litt!c or no background in theorem proving wlH be able to usc iL How..:vt:r. a scl of 

parameters and flags are identified and prov1ded which more sophisticated users can use to enforce more 

contrOl on the prover. This section explains the motivation for the provision of these panunetcrs and nags 

and their effect on the behavior of the prover. 

Before we go inw tile explanations of these Oags and parametus. we first explaln how the search 

bound is increased. As we indicated before. sprfn uses depth-first nerative deepening se=h. We usc the 

following formula 10 calculatc the new seasch bound based on the old search bound. The st;ltting search 
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bound is 5. 

. !0/dbound +2 if 0/dbound~ 
New8ound= 4 L. • 

0/dBoundx- orncrwrse 
3 

Sprfn can alternate between backward chaining and forward chaining. The search bound for forw01d chain-

ing l~ approximately two thirds of that of backward chaining. 

The remaining pan of this section will be devo1ed 10 mouvating and explaining !he imporum ftags 

and parameters. Some ex.perimemal results will be given along the way. Most of these data are ob1ained 

using chc most recem version of s prfn so Lhe results for some problems arc no1 the best result~ we have 

oblained. We especially noiC that, when we give results by setting some nags or parameter$, all lhc other 

Hags and parameterS are at their default s!aiCS. 111ese parameters and nags affect !he foUow•ng aspects of 

the prover, which will be discussed separmely in what follows: 

11 1 How backward chain ing and forward chaining are combined. 

[2) How the old solutions. lemma as lhey are sometimes called, are used. 

[3J How the size of Lhc subgouls is limiled by lhe search bounds. 

5.1. Perform only Backward C haining or Forward Chaining 

The prover performs hndrw:m1 chaining and fotward ch!Un ing alte.rnntively. Durins lhe txlckw~rd 

chaining phases, lbc prover ules 10 derive the top-level goal, geneMing subgo:lls as needed. During the 

forward chaining phases, on !he other hand, it only derives the goals thai can be decomposed in10 subgoals 

already solved . without regard 10 the relevance of the derived go:lls tO 1he tOp· level goal. User$ can dinect 

lhe prover to petfonn only backward chaining or forward chaining by scning nags which arc available in 

the prover. 
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Forward chaining is helpful in generatmg sunple facts f rom lhe \olown facts. But for problems wilh a 

large number of input clnuses. forward chaining tends 10 cluner up lhe prover with too many facts. many of 

which may be redundant and irrelcvanL Those redundant and irrelevant facts can easily lead the prover 

astray, resulting in much useless work. This has been coofinned in m:my occasions where. by permitting 

forward chaining, lhe prover ran out of space before it could obtain lhe proof. Of course. it might well be 

lhm lhe forward chaining is not well conrrollcd in lhe prover. As a matter of fact, it is still an interesting 

research problem how to control forward chaintng 10 make best use of iL Backward chaining. on the other 

hand. has some advantages. Backward ch:limng always S13ltS Wllh the top-level goal and generates 

subgoals a.~ needed. Together with the goal-subgoal strucrure of lhe deduction system underlying the 

prover. backward chaining tends not to generate many useless facts. Thus space will be utilized more 

efficienUy. In some of our experiments. the prover obtained the proofs by performing only backward chain­

mg for some problems whose proofs could not be obtained if both forward chaining and backward ch31lling 

were performed. What happens was lhat space ran out before proofs were obtained These indicate lhe rela­

tive space efficiency of backward chaining. "!eucr space efficiency i~ n big advantage in theorem proving 

since it is usually not time, but space, lhat is run out more qu.icldy. Moreover, backward chaining is able to 

use only those clauses necessary for achieving the top-level goal. effectively discarding lhe useless input 

clauses. if any. 

Table 3 gives lhe st.atistics for lhe performance of the prover when only backward chaining is per­

formed. The statistics when both forward chaining and backward chaining arc performed are also listed for 

easy companson. The overall •mprovemcnt in performance is obvious from the st.atistics. Th•s set of data is 

very representative of our experiments on backward chainmg. It g•ves beuer performance for most of lhe 

problems. By performing only backward chaining. the prover performs better on 31 of 59 problems. wi th 

lhe average speedup of 53.8% relative 10 the default prove.r in terms of inference.~. But for lhe 10 problems 

out of 59. the prover suffers efficiency loss w1th the :lvcr-•ge slowdown of 135.6% relauve 10 the default 

prover. also in terms of inferences. We like to po101 out that the performance of lhe prover is better lhan it 

may be suggested by the three average ratios. Tl\c performance of Ute prt)vcr when performing only back­

ward chaining degenerates so much on one example (woslO) lhat the corresponding ratio for this problem 

contributes 100 much to the overall 3\'erage. thus overweighs the gains m performance for mos1 of the 
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problems. 

Space efficiency is better. Ls65 is an example. This problem is to prove the transitivity of the less-

than relation, given the ax•oms for integer addition. multiplication • equality and less-or-equal relation. For 

this problem. the prover runs out of space before ob.ainmg the proof when performing both forward chain-

ing and backward chaining. Forward chaining results in nn explosion of search space due to the rclmively 

large number of input clauses or !his problem (20). When perfarming backward chaining only, the prover 

gets !he proof after generating 67 solutions. When performing both forward chaining and forward chaining. 

the prover sull fails tO obwn the proof after gcneroung over 600 solutions. 

The prover tends to usc the c luuses relevant to the proof when performing only backward chaining. 

Cases in question are wost3. wosl4 and ls26. These three problems all sute some closure property of a 

subgroup of a grocrp. The proofs for these theorems do not need the associativity axioms and equality 

axioms. as exhibited below by the proofs for wosl3 and wosl4. 

false:-

false:-

wos l3 proof 

o(e) :-
o(a) 
o(n) 
p(a.g(n),e) 

p(e,j(e) j (e)) 
p(j(e).ej(c)) 

wost4 proof 

o(g(a)) 
o(e):· 

o(a) 
o(a) 
p(a.g(a).e) 

o(a) 
p(e.g(a).g{a)) 

In the above proofs. Uteral of a) states that a belongs tO the subgroup. Literal p(X. Y, Z) states that the pro-

duct of X and Y is Z. e is the idcmity elemenL j is a skolcm funcuon symbol and g is the inverse funcuon. 
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By performing backward chaining only. the prover just generates me required subgoals only invo!v-

ing me predicates describing the sub-group and some simple facL~ directly provable from the basic axioms 

for a group, thus di~egarding the associativity axioms and equality axioms. When the prover performs 

both forward chaining and backward chaining, it derives a large number of facts using the equality axioms 

and associativity axioms. These irrelevant facts completely <Iiston the search space, resulting in a great 

amount of fruitless search. 

It is interesting to note that. for the problems whose proofs are long, only performmg backward 

chruning makes prover's perfonnance degenerate. The two ootewonhy examples are wos!O and Is!03. The 

proof the prover generates for wosl O has 7 levels of recursion with max imal branching factor 3. For lsl03. 

the proof has 8 levels of recursion w ith maximal brJnching factor 3. For thes.> two problems. the prover 

finds proofs at a larger search bound when only performing backward chaining. When the prover is per­

formmg both forward ctulintng and backward chaining, the =h bound for wos!O is 7. and for lsi03. 14. 

When the prover performs only backward chaining, the search bound for woslO and lsl03 arc 9 and 18 
. 

respectively. These two examples show the usefulness of forward chaining in generating useful facts 

relevant for the proof. thus neducing the depth of the s=h ~'J)3Ce. This is one of the reasons why we 

include both forward chaining and backward chaining in sprfn. 

5.2. To limit the size or subgoals at certain search bound. 

For some examples whose input clauses contains large numbers of variables and function symbols. 

the prover tends to generate many subgoals havmg large complex structures. Large subgoals are not desir­

able for two reasons. First. larger subgoals take more space. Second, if the subgoals contain variables, the 

size of subgoals will "snowball", resulting in more and bigger subgoals. This size propagnuon will be more 

senous if the subgoals contain many vanablcs. We somehow •;ould like the prover to foeus its effon on 

the subgoals with reasonable size relative to the current search bound, since, if the proof for one problem 

can be obtained with a smull search bound, the subgoals in the proof are not likel y to get very large. We 

use the search bound since the search bound represents the maximal amount or erron to invest on any 

subgoal. 
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B3Sed on !he reasoning above, a ftag caUed maxsize is introduced. When this flag is sel. sprfn checks 

the size of a sub goal before aucmpts to prove it. Only if !he size of the sub goal does not exrecd the current 

search bound, is this subgoal attempted. Since the search botmd is increased after each round, the s ize 

aUowcd for the subgoals will also be increased. Thus it does not remove the completeness of the prover to 

set the m.axsiu Rag. When the miJ.:tSiu llag is set, the syntaetic complcx•ty oi the subgoals will be limned 

and !he syntacticaUy simptiet subgoals will be favored. However, 10 set maxsiu may make the prover 

search deeper into the search space than it would when maxsize is not set. This is because the number of 

subgoals in the search space with a certain search bound will be smaller when maxshe is set Experiments 

with maxsi:e show dramatic improvements in the overall performance. 

Table 4 shows the perfonnancc d:ll!l of the prover when the max.rize flag is set. As always. perfor­

mance data of prover in its default setup :u-e listed for easy companson. In table 4,prooj si:e is the se:u-ch 

bound at which the prover obtains the proofs. The prover performs better on 27 of the 58 problems w11Jl the 

average speedup of S 1.1% in tenns of inferences, when maxsi:e is set The average slowdown of I 753.1% 

for l.he IS problems is a strong indicator of the unsteady perfonnance of the prover when maxsize is SCI. 

Ag:Un, the perfonnance of the prover when maxsize is set is noc :JS bad :JS it may be suggested by llle aver­

age ratios of cputime and inference. The two rauos are large because that the prover with maxsiu set per· 

forms so poorly on several problems that the ratios for these problems overweigh the performance gams on 

other problems. 

We can immediately notice the larger proof sizes. The proof sizes increase 25% on the average when 

ma:.csiu is set. This is because the sit-e of llle subgoals are limited by the search bound. so the numb<:r of 

subgOOis will be reduced. AS a consequence. the prover has 10 go deeper 1010 the search space 10 find the 

proofs, thus resulting in the larger proof size. In sp1te of the increased search bound. however. it often pro­

vides dramatic improvemenL~ to set maxslre. as demonsu-aled by the data in Table 4. because the subgoals 

to be attempted are simplier and Ute number of subgoals will be smullcr. T11is is the primary reason for the 

improvements. For example, the prover finds a rather large proof for wosiO involving the equality wuoms 

(sec table 3) when maxsi:e is not set :u search bound 7. Wheo ma:t:r~:t is set, the prover finds a simple 

proof wh1ch only uses the associauvity ax•oms at search bound 9. The subgoals in this prQQf are much 
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smaller . Although the search bound is increased. the smaller number or subgoals makes the prover find the 

proof more quickly. Other examples are wosl3, wos 14, wos8, wos6. 1$28 and L~29. These examples all 

have prools which are not long and h:tve small subgorus. All these examples indicate the advamnge of the 

global conuol over the complexil)l or subgoals. at least for the problems w1th short proofs whose subgoals 

are also small. 

h often helps for problems having short proofs with small subgoals to set maxsize. What about those 

problems whose proofs :ue long or whose proofs are short but contain some large subgoals? One could not 

help to nonce the dramatic degeneration in the performance of the prover when maxsue is set on some 

examples. such as group! , ls23, lsSS and wos l. What is common about these problems is thnt the proofs for 

them nrc short and conu.in some subgoals whose sizes are large relative to the length of the proofs. The 

mput clauses for group! and its proof is given below to illustracc what we mean. The proof has only 3 lev-

els of recursion. But the subgoals in the proof arc large. 

p(g(X, Y), X, Y). 
p(X, h(X,Y), Y). 
p(X. Y, f(X.Y)). 
p(U, Z, W) :· p(X. Y, U), p(Y, Z, V). p(X. V. \V). 
p(X. V. W):- p(X, Y,U),p(Y.Z. V),p(U.Z, W). 
false:· p(j(X), x. j(X)). 

f::Use:· 
p(j(h(X.X)).h(X.X)j(h(X,X})) :· 

p(g(Xj(h(X,X))).Xj(h(X,X))) 
p(X.h(X.X).X) 
p(g(X,j(h(X.X))),Xj(h(X,X))) 

When maxs•ze is set, the prover IS forced to go deeper into the search space. The larger expansion of the 

SC!ltch space. which is the result of ~te lnrger search bound, offsetS the benefits of a smal ler number of 

subgoals for these ex~mples. Th•s is more serious for the problems with a large number of input clauses 

~lJch 3S wo.~l. for which the prover even fruls to <>bum any proof when max.uze is set- Although 11 IS inev-

1t.able for the prover to search deeper into the ~arch space when maxsi:e is set. the degeneration of perfor· 

ntancc of the prover for these examples seems tO have something to do with the fact that we ure using the 

SC3!Ch bound as the size bound for the subgoals. A question comes up namr:tlly concerning this approach. 

Why arc we using the search bound a~ the subgoal s1ze bound while they represent diiTen:m dimensions of 
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!he search space? It is up ro !he nature of each individual problem to decide what is !.he proper size of !he 

subgoals at each search bound. What is more suiwble may perhaps be to determine Lhe goal size limit from 

!he input clauses and !he intermediate solutions of a problem. 

5.3. To charge for using old solutions 

Any solution is derived wilh a certain amoum of "effort" invested. When an old solution is used, how 

moch effort we charge for it will affect !he future expansion of !he search space significantly. Before we 

can elabor:lte on this. we first bneft y explain how the "cost" of the input clauses and the solutions affect !he 

expansion of the search space. 

The use of coch input clause and soluuon has a certain cost associated wilh 11. As !he prover 

searches down along any branch of the search tree. the total cost accumulates until it exceeds the search 

bound. At that point. Ule search along that branch will be cut off and the prover backtracks to search the 

rcmain1ng branches, if any. In the input, an input clause of the form L. :- L 1.L 2, ... • L, has cost n; an 

input clause of !he form L. ;--L 1, L. 2 • . .•• L. haS cost 0: an input clause of the form 

L :-. L. 1. L., .. . , L. {note the period at the end) has cost I. An old solution also haS a c.cnain cost associ-

31ed w1th i~ How to calculate ~tc cost of a solution when it is used will be discussed at length later. During 

tlte search process. whenever an input clause is used. its cost is added 10 the cost accumulated so far, and 

!he totJJ cost must not exceed the search bound. Sim1larly, whenever an old solution is used during the 

search. its cost is also added to the cost accumulated so far and the tOtal must not exceed !he search bound. 

When a new solution is derived. !he cost accumulated to generate this solution is recorded togclher wilh !he 

solulion itself. Tllis cost represents roughly ~1e effort invested in deriving this solution . We will C3ll this 

piece of information proof-size s1nce tt can be interpreted as the length of !he proof to derive this solution. 

!tiS =y !0 see that how much we charge for us1ng an old solution w1ll greatly afr<:<;t the expans•on 

of ~tc s~rch space. Nor only docs it affect the current possibility of search space cxpans1on along tlte 

current branch, it a lso affectS the cost of the new solutions that may be generated later on !his brunch. It 1s 

oot hard to appreciate !he complexity of this matter. The till porum question to ask is how the cost or nn old 

17 



solution is <:alculated. Two imponant auribmes of lhe soluti.ons seem 10 be imponanL The first auribu~e is 

how much cffon has been invested In deriving a particular solution. This piece of information is recorded 

wilh the solull011 and will be referred 10 as the proof-size of the solution. For those problems whose proofs 

are long and whose search space has a small branching factor, charging less for the proof-size makes the 

prover go dup in10 lhe search space 10 find the proof more qwckly: it will enable the prover 10 get a rather 

long proof within a small se:uclt bound. The second auribute is lhe S~>.e of a particular solution. whtch we 

will call the solution-size of the solution. As we mentioned before. we need some method to gutde the 

prover so that lhe smaller subgoals arc favored. By charging some for the solution size. searching along the 

branch having large subgoals will be stopped earlier to favor other branches having smaller subgoals. 

Based upon these considerations. we provide two p:lr.lmeters, proof_si-u_multiplier and 

solution_size_multiplier. We will refer to !hem as psm and ssm respectively in wllat follows. The user 

can adjust these two parameters depending on the nature and. char:~Cterisucs of the problems they are work· 

ing on. The ce-~t of a solution is culculmed using the following formula: 

Cost_ of_ Solurion =soltttion _size _mttltiplier xsolu<ion _si:e +proof _size _mui<iplierxproof _size 

TableS gtves the smtistics for the performanee of the prover when these two parameters are set 10 different 

values. The blank entries indicate the prover's failure 10 obtain the proof for the corresponding problem 

under the indicated setting. The default prover uses 0.1 as ss.m and 0.4 as psm. Sell uses 0 a.~ ssm and I as 

psm. Sel2 uses 0.125 as ssm and 0 as psm. These set~ of values, by !he way, work wcU from our expcri· 

ence. 

We <:an see that the prover performs re:ISOnably well when only considering lhe proof size of the old 

soluuons while disregarding the solution size. But by only considering lhe solution size while disregarding 

the proof size. lhc prover performs poorly and even fails tO obtain some proofs. It is interesting to note 

that, sprfn with defau lt setup performs poorly on those problems on which it performs weU when it uses 

setJ. The examples are ls28, ls29, ls65,1s75, wosl3, wosl4, wos6. wos7, wosll and wos9. It is insttucuvc 

to explain this. The fact that sprfn performs better when only considering the proof size suggestS that. for 

these problems. the solution size does not play important roles in controlling the search space. Wllat it com· 

mon about these problems is that they all have relatively shon proofs and the si7.e of the subgoals •n the 
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proofs are not very large either. For this kind of problem, it is a good idea to be able to search ~Hough the 

search spsce for the smaller scare it bound as soon as possible. At smaller search bounds. the proof size is 

more imponantthan the solution size since the subgoals do nOt get very large anyway. The default prover 

seems to have undercharged the proof s•zc, thus leading the seareh asuay. It seems that by only considering 

the proof size, the prover would be able to find the shan proofs more quickly than if it considers the solu· 

lion size at the same time. The default prover performs bcw:r on wosl and woslllhan it does when using 

set!. The reason is that, to prove these Lheorems. some big sub goals are generated during the search. By 

setting ssm to 0, the prover has no way to stop this quick expansion of search space due to the lllrge number 

of b1g subgoals. By seuing ssm to non-zero. the quick expansion can be beuer com:rolled. Table 5 also 

shows that the solution size alone is not sufficient for controlling lhe search space expansion. The pro,•er 

rarely performs better when using sel2, except in lhe case of wos l l which seems to be an poculiar case. 

The prover seems to be very sensitive to any concrol over the size of the subgoals when !rying to prove 

wos II. The proof for wos II is long and the subgoals tend to get big. 

6. Forward Chaining a nd Backward Chaining 

Sprfn performs !rUe Prolog-style backward chaining. By only performing backward chaining, sprfn 

realizes a complete search procedure. Ncvcrlhelcss. combination of forward chaining and backward chain· 

ing in one theorem prover may help. With due considerations to the fact that forward cltaining is a funda· 

' 
mental and widely used problem solving s~ra~gy, lack of it may sometimes be a disadvantage. In many 

cases. we find out !bat forward chaining is useful. One earlier version of sprfn was implemented 10 perform 

only limited forward ctutining. The number of inferences was limi~d: the level of recursion during the for-

ward chaining phases was limited to one. i.e .. the prover only derived the goals that could be decomposed 

into the subgoals already solved; and forward chaining was performed only at the early stage of the proof. 

We first doubled the allowable inferences for the forward chaining phases, just to get an idea how much 

unpact forward chaming might have. This simple cltange made a big difference in prover's performance on 

one problem. The prover lOOk JUSI over 100 seconds to prove some problem for which it used 10 Lake over 

1,000 seconds. For the lawr version of Lite prover where forward: chaining rutd backward chaining are both 

performed during the whole course of proofs, the prover's performance is greatly affected by the presence 
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of forward chaining, as shown by some dala lll Table 3 (wos 10. wos 11 ). Although these two examples are 

not rcpresenUJtive of the problems sprfn may be presented to, it does suggest a class of problems in which 

forward chaining may be helpful; i.e .. those problems whose proofs may be long and require the prover to 

go deep into the search SJl3CC to obtain them. 

TI>e experiments we conducted convince us that it is going to be useful to combine backward chain­

ing and forward chaining in the prover. This combination is certainly going to have great impact on the 

prover's performance. What we need is some method 10 combine backward chaining and forward chaining 

an such a manner so lhatlllcy will panicipate in the whole course of proofs and their panicipation will help 

the prover's perfonnancc. We ask two related questions. First. what is llle best way to combine forward 

chruning and backward chaining in the prover so that both forward chaining and backward chaining will 

contribute during llle whole cour.;e of the proofs. Second. how can we conuol forward chairung and back­

ward chaining so that a kind of balance will be achieved. The meaning of these questions will be bcttec 

understoOd irom lhe followi ng discussion. 

6.1. Allernation between forward and Backward Chllining 

The deduction system underlying sprfn lS a goal-oriented system. To u~ this deduction system. one 

SUIJ1S willl the top-level goal. If lhc confirmation of the tOp-level goal requires Lhe con6rmauon of several 

other goals, these will be attempted one by one. in the same manner as the tap-level goal is being 

attempted. This is the essence of backward chaining. We have menuoned that the prover explo>tS depth· 

firs>. necati ve deepening search. Whenever a new search bound is established in llle search process. tt is 

natural for the prover tO stan with the top-level goal using backward chaining. If the backward chaining 

phase foils to confirm the top-level goal. lhere arc two options for the prover. One option is to restart the 

process of confinnmg llle top-level goal with an increased search bound. Another optioo is 10 derive some 

factS from lhe known factS before restarung. To adopt llle first option. the prover will be performmg pure 

backward chaining. TI>c second option suggestS n natural melhod to combine forward chaini ng and back­

ward chaining. To adopt the second option. the prover wi ll derive some facL~ from the known facts before 

auempung 10 achieve the top-level goal ag:un. This may sometimes be helpful. Since the fadure of the 
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prover to achieve the top-level goaJ in the backward chaining phase is due 10 the fact that Ute proof for the 

top-level goal is too long for the current sc:ueb bound; and forward chaining is not limited by the disiA!lce 

between the subgoals and lhe 10p-level go:U in lhe search spxe, some facts that are generated during for­

ward chruning, useful for achie,•ing the top-level goaJ • may be 100 far from the lOp-level goal in the search 

'IJ)ace 10 be reached by backward chaining phase with small search bound. 

Sprfn was subsequently changed 10 incorporate the above idea During the modification, we intro­

duced two flags, b_only and f_only, which direct the prover lO do either only forward chaining or back­

ward chaining. Here. we are giving user the flexibility 10 choose the two options mentioned above. If the 

b_only llng is not set.. the prover will altem:ue between backward chaining and forward chaining phases. 

As before, it derives all the goals that can be derived by only one level of recursion during the forward 

chaining phases. By restricting the recursion level to one, forward chaining will be contrOlled so that not 

many facts would be gcner.ued. We direct Je:lders' attenuon 10 table 3 10 see the effect of forward chain· 

in g. 

6.2. Dalance between Forward and B3ckward Chaining 

Two questions arc raised at the beginning of this section. The first question concerns how 10 combine 

properly forward chaining and backward chaining. We have ctiscussed this question. Now the remaining 

question is how to bal:lllCC between backward chaining and forward chammg. 

TI1e prover is in danger of illo uncontrolled expansion of the se<l!ch space. This danger is present 

both on the forward choinong phases and bxkw:ud chaining pbases. Forw:ll'd chaining runs out or conr.rol 

more easily since the prover JUS! derives 1111 the facts il can from ille known f3CL~. By restricting the level of 

recursion 10 one during forward chainang, wo are elimmaung this danger to some extent. However, experi­

ence shows that forward chaining suJI generates a large number of useless facts, IC<lding the prover asuay. 

To funlter eliminate this danger, we experimented with other ideas. A lOt of experiments were conducted 

on this topic. We have to admit that better ideas are 10 be conceived. The following is a summary of wh~t 

we have done and the results we have obt:lined. 
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The basic objective of our research is to balance and conlt'OI forward chaining and backward chain· 

ing so that neither of them get out of comrol. Our basic ide3 is summcrized as follows. Sprfn allCmntes 

between forward chaining and backward chaining. During e:~ch phase, as backward chaining or forward 

chaining proceeds, the prover monitors the expansion of th.e search spnce. When the search spnce gets 

larger, the prover will gradually decrease the size limit for the subgools; thus the expansion of the search 

space wt)l be gradually stOpped. The goal size limit function is a lin= function of the "size" of the search 

space. It also uses the current search bound. The imponant issue is how 10 measure the "size" of the search 

space. 

Usc inference count. This experiment uses the inference count to measure the size of the search 

space. II is ba.~ed on the following considerations. First. it may help the prover's pcrfonnance to set n larger 

goal size limn relative 10 search bound when the search bound is small. The subgoals are not likely 10 be 

very large when the scan;h bound is small; and it provides a beucr chance of finding a proof withm a small 

search bound to allow larger subgools. Second, it seems 10 be reasonable to maintain a larger and constant 

goal size lil11it for backward chaining. Third, we should enforce more contrOl on forward chninmg since 

forward chaining can get out of control more easily. To control forward chaining, we set lhe goal size 

limit to be large at the early stage of forward chaining and. as forward chaining proceeds, gradually reduce 

the si7,e limit to a constant fraction of the search bound. We formulated the following fonnula to calculale 

the goal size limiL 

2XSIZE 
2xSIZE 

SiztLimit• 0.5xSIZE 

if backward chaining 
if f count <50 
if j_count>150 

11 3 otmrwlst --1 councx--
.1 - 200 

where SIZ£ is the current search bound; r_counl is inference count for forward chaining. 50 and 150 are 

chosen smce the prover does not re<Juire very many forward chaining inferences to obtain the proofs for 

easy problems. This function has lhc effect of favoring backward chaining when the prover proves hard 

problems. 
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Use inference count revisited. In !he previous experiment. we are not considering !he expansion of 

lhe search space based on the current search bound. This is because we are using lhe lOla! inferences per· 

Conned in the forward chaining phases 10 determine !he goal size limiL In !his experiment. we 1ry to 

remedy this. Still using lhe number of inferences to measure lhe size of lhc search space. we conrrol the 

expansion of lhe current search space based on the size of the previous one. We use two simil:lt fonnulae 

10 calculme the goal size hmit for backward chaining and forward cbaining. FOf forward cbammg. we use; 

Sl?.ExF I 

SizeLimit a 17.ExF 2 

Fx(F 1-F:) 
SIZ£x( F.-F, 

ifF <F. 

if F>F0 

otherwis~ 

where F • .F • ,F 1.F 2 are constanL~; F is the mtio between the number of inferences pcrfonned slnce this for-

ward chaining phase starts and lhe number of inferences perfonn<!d in the previous forward chaining phase. 

For backward chaining, we use: 

SI2E x:JJ I 

SizeLinliJ• J'l.ExB 2 

Bx(B 1-Bi) 
SIZEx( B.-B, 

if 8 <B. 
if 8>8• 

otherwise 

where B. ,80 ,8 1,8 2 are constantS; B is the ratio between the number of inferences perfonned since lhis 

backward chaining phase sr.ans and the number of inferences pcriOfmed in the previous backward chaining 

phase. By setting the four parameters 10 different values. we can have different functions. 

Use number of solutions. It seems that lhe number of the soluuons is a beuer indica10r of the ex pan-

sion of lhe search space. One reason IS that a larger number of solutions indiC:lteS wider expanston of lhe 

se:trch space. Large exp;msion of lhc search space is signified if lhere are a large number of solutions gen-

eratcd either during the forward chaining or backward chaintng phase. Some conuol sllould be enforced to 

limtt tL Anolhcr reason IS that the old solutions will be used later during lhe course of the proof. A larger 

number of solutions mdicatcs a greater possibility to have larger expansion at the la~r phases. Hence. il 

seems to be rca~onablc to control lhe search space based on the number of solutions generated. In this 

experiment. we conuol the goal s•ze depending on the number of new soluuons generated in lh1s phase. 
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Siulirrur= !
SIZE if S>P 

S/Z£x(2- ~ ) orhuwrse 

where Sis the number of solutions generated so far since the current forward chaining phase or backward 

chaming phase sUU'tS; P is maximum (20.0.5xN) where N IS the number of solutions already gcncmu:d 

wben the current forward chaining phase or backward chaimng phase stanS; SJZE is the cu"ent se::~tch 

bound. 

6.3. Over~ll Comments 

We modified the prover to rmplcment the above ideas. Although the prover does extremely well for a 

few problems, more often than not, 11 tilrls tO get the proofs for some problems. Closer examinauons reve:ll 

1hat :lll the methods above seem 10 wscriminatc some pans of the =h space. By examining the 1r3Ce of 

the proofs, we discover that the prover proceeds nonnally at the beginning of each phase. After some point. 

u large number of subgoals arc rcj<letcd becauSe the goal size limit has been decreased. This is the scenario 

for all the methods above. Because of the Prolog-style depth-first search sprfn perfonns aad the predctcr-

mined order of the input clauses. some pans of the search space will be explored by the prover w1th smaller 

goal size limits. This explains the unsteady performance of the prover. For some problems, the prover can 

find proofs withom searching !hose parts of the search space that would have been searched with smaller 

goal size limiL~. For some problems, the prover always search some parts of the search space with smaller 

goal size limits and these parts happen to he relevant for the proof. 111c prover is forced to search deeper 

into the relevant pans of search space. while wasting a lot of efron search the i""levant parts with large 

goal s1ze umrts. We think a carerully chosen constant goal size limn w111 help the most in achoeving rea-

son:~bly good and consoan• performance. 

7. Conclus ion 

Sprfn turns out to be a quice respectable theorem prover. The compacmess of the prover and the ease 

of understanding it enable us 10 modify the prover easily to teSt different ideas. The prover can get m~ny 



rolauvcly non-trivial theorems using the default setup. For harder problems, however, the user may nee<lto 

adjust the parameters and set the flags based on the characteristics of the problem to obl:lin the proofs. 

Some tmporunt charactenSUCS of problems are the possible length of the proof, the possible branching fac· 

UJr of the search space, the relative impon.ancc of the input clauses and subgoals, the diSLribution of the 

subgo:ds in the search space, etc. To nobody ' s surprise. the prover still falls to obtain proofs for some hard 

problems. 

During our research on the prover, we have appreciated the importance of "syntactic intell igence" in 

theorem proving. i.e •. takmg into considerauon the SyntJCtic propenles of the problems sucb as the size of 

subgoals. !he number of vanables and the number of function symbols in the subgoals. We have achieved 

the most drarnati.c improvements by adding some simple syntactic refinements like maxsize nag into the 

prover. The parameter. solulioo_size_multiplier. is another example. In another extensive research. we 

investigated the effect of dynamically reordering the subgoals dunng the proof process based on these syn­

l:lCtic characteristics of subgoals on the performance of the prover. We have obutined some interesting 

results. However, we will not have room tO detail !his research in !his repon. 

More complex refinements, on the other hand. have failed to offer the ll!lprovements we have hoped. 

TI1c research described in last section I~ an example. The lack of success in ~l3t research is due to the facL 

lhatlhe nature of the problems varies. Some of them can be solved more eflictcntly by backward ch:Uning; 

some. by forward chaintng. There are probably as many patterns of search space expanston as there are 

problems. Any scheme tO con1r01 and balance forward chaining and backward chaining based on anything 

less than !he properties of individual problem is not likely to offer any improvements on a large scale. That 

IS the lesson we have le:lm~. 

We wiU briefly mention our current and future work on sprfn. At presenL, we ure wod<Jng on mclud· 

ing semantics into !he prover. Although some preliminary results have been obutined. more substnnual 

work needs to be done an this area. We feel thru we need a better priority scheme for the subgoals and the 

soluttons in 1/le prover. At present, the prover u.~es the old solutions in tl1c order they are stored. Whm we 

need is some methods to identify the more promising solutions and prefer those solutions to Others. Beuer 
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methods to use forwaro chaining are also one or lhc research topics. We are also looking for posstble appli­

cations for lhe prover. 
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Appendix A ·• Prolog code ror the third implementation or discrimination :-let 

% top-level call tO do insertion 
% 
dn_insen((Tenn, Tag)) :-

copy(Term. Term I), numberva.rs(Term 1,1, ...). 
St.nK:l(Term. List), suuct(Tenn I, List!), in I {List I. Lis~ Tag). 

% top-level call to search a term. 
'I> 
dn_scarch((Term. Tag)) :-

struel(Tcrm. List). sel(List. Tag). 

%top-level call to mitialize the discrimination neL 
% 
dn_init ;. 

clean_ up(!), 
(retniCt(nodeidU); true). ! , asscn(nodeid(2}), 
assen((ini((OUGB], (UB], T) :· 

) 
). 

set_up(M) :· 

retrael(node•d(M)). 
assembly(se. I, (L1A], n, Sl ). %search clause 
assembly(sc. M.A. Tl. S2), asseri({Sl :- S2)), 
asscmb1y(in, M. GC, C. Tl. S). % insen clause 
assena((in1 (1GLIIGC]. (LIIC), Tl) :-

GLl =GL. !, S 
)), . 
inscn(Oil, B. T, M) 

assembly{in. M, !GLIGB), (UBJ, T, Sl). 
asscmbly{se, M, (UA), Tl, 52). 
assen((Sl :· retract{nodeid(M 1)), 

)). 

assembly(se. Ml. A, Tl, $3), 
as.-;en(($2 ;. S3)), 
asscmbly(in, M, fGL l iGC], (LIIC], T2, S5). 
assembly(in, MI. GC, C, T2, S4), 
asserta((S5 :· GLl = GL. !. S4}), 
inren(GB, B. T, M1} 

msen([GLIGBJ, (LIB), T, M) :­
set_up(M), M 1 is M+ 1. 
assembly{se. M. (LIA). Tl, Sl), 
assembly(se. Ml, A. Tl. $2). asscn((Sl :- S2)), 
assembly(in, M. [GLJIGB 1]. (L l iB I], T2. S3). 
a~scmbly(in . Ml, GB 1. B J. T2. $4), 
asserta(( S3 ;. GL I = GL, !, $4)), 
insen(GB, B, T, M l). 

inscn([). 0. T, M) :-
sct_up(M). Ml is M+l, :~SW~(nodeid(t-11)). 
asscmbly{in, :vt. 0. 0. Tl, $1), 
assembly(se, M. II. Tl, $2). 
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asscr~:~((S 1 :- a:>Sert(S2))). 
assembly(se. M. 0. T. S3). <lSSCrt(S3). 

clc:m_up(M) :-
nodeld\.'1). M < N, 
namc(se. Ll ).name(M, L2),append(L I, L2. L3), namc(S, L3), abolish(S,2), 
name(in, Jl),namc{M, J2),append(J 1. 12, J3). namc(l. J3). abolish(l,3), 
Ml isM+ l,clean_up(Ml). 

clean_upU. 

struct((L :- B), [LIB]}. 

%utility functions. 
% 
% yield 3 ground instance of a term. 
% 
numbcrvars('WAR'(L). L. M) :- 1• 

MIS L+l. 
numbervass(Term. K. M) :­

functor(Term. ~ N). 
numbcrv:rrs(O, :-l, Term, K. ~-

numbcrvass(N. :-l. Term, M. M) :- :. 
numbervatll{l, N. Term. K. M) :· 

J IS 1+ I. arg(J, Term, Arg), 
numbcrvars(Arg. K, L). ! . 
numbcrvnrs(J. N, Term, L. M). 

% make a copy of a renn 
% 
copy(Oid, New) :­

asscrw(copy(Oid)), 
rca-act(copy(Mid)), !, 
Ncw•Mid. 

assembly(Pre, ld, A I, A2, AJ, T) :-
namc(Pre. L 1). name{ld, L2). append(L I, L2. L3). nnme(F, L3), 
functor(T. F, 3), 
arg(l, T. AI). arg(2, T, A2). arg(3. T, A3). 

assembly(Pre, ld, A I, A2, T) :-
namc(Pre. Ll). namc(ld, L2}, append(L l. L2. L3). name(F. L3), 
functor(T. F, 2}, 
arg(l, T, AI), arg(2, T, A2). 
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Appendix I) -The Performance Statistics 

Five tables are given m this section. These tables conlains !he performance data of the prover usmg 

the different parameters, flags and data Stt\tcrures. Most of the problems arc from [3].1ncluded are also the 

9 problems form [8J. Three different versions of the prover o.re used to oblain lhese data. Allhough the 

most recent version does not give lhc best performance for aU the problems. it does obtain proofs for a 

larger number of problems. The two earUcr versions ha'·e failed to do so. Dara in Table I are obrained 

using lhe earliest version of sprfn where onl y a smaU amount of forward chaining was performed. Data in 

Table 2 are oblained using a more recent version. with lhc maxsz:e Hag seL It should be poinced out that !he 

max.sz:~ tlag contribuced the moSt tO the beauuful perform:mce of this version of the prover. Data in olher 

table.~ arc obtained using !he most recent version of the prover. The machines on which teStS are run arc 

indicated in the tables. 
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.D~ n a ion \'cliCoufimeon VAX.7sffi 
ln...., No d.isc. net Version 1 Version U Vernon ill 

.1ncoe•l 8.99 16.20 14.88 13.22 
bunu.U 15.98 31.02 29.52 24.45 
dbo.bl>p 1300.72 1796.95 16S8.37 3iS5.8S .... 1.10 1.25 1..10 1.22 .... 2.-10 3.53 3.37 3.02 
•w2 1.61 2.40 2.35 2.07 
ewJ •.zo 8.43 7.55 5.68 
aa.mpk: m 620 9368.38 8922.40 1m.9s 
I"'"PI 2.55 •.zs 3.98 3.00 
I"'"P2 10.22 16.07 14.78 12.17 
lwpaNI 4.64 3.91 8.3S 6.33 
buparu2 10.18 16.<1S 16.80 13.13 
11100 1,03 1.28 1.23 1.27 

' b103 89.66 248.16 207.28 138.85 
I biOS 1.72 2.S2 2.40 2..13 

b106 1.72 2.SO 2.40 2.18 
bill 1.72 2.40 2 . .$() 2.13 
bl7 19.<1S 35 28 33AS 25.25 
b23 56.52 99.18 89.73 61.75 
b26 23.50 28.00 26.21 25.45 
b28 1103.82 1123.63 1115.90 1101.85 
lsJS 20.Z4 lO.QI 26.08 23.00 
b41 14.78 26.97 24.7S 21.53 
IsS 2.12 3.15 3.00 2.n 
lsSS 42.18 68.42 60.SS 54.57 
ls68 38.42 63.25 56.43 SO.lS 
mqw 3.37 6.10 5.83 4.12 
nwnJ 4.39 6.70 6.23 5.50 
prim 6.S1 10.56 10.32 8.<8 
qw 2.77 4.35 4.40 3.82 
rob! 1.12 1.35 1.35 1.43 
rob2 10.55 . 17.57 16.()7 13.60 
'chuberUb$1 6n.IO 1165.22 1067.50 897.60 
shortbunt 7,37 14.55 13.12 10.52 
wosiO 1645.55 2319.13 19:10.50 180 1.30 
wc.ul2 •. , 6.82 6.85 5.92 
wo:siJ 49.73 98.93 81.55 81.25 
W(tS 14 42.22 68.67 60.97 50.30 
wo.s'l 1.63 1.87 1.90 1.83 
wo~6 29()9,j7 3662.00 3233.61 2802.83 
wos7 46807 5n.61 528.83 500.41 
v.·o~8 82.38 97.28 96.26 90.35 

Avcrag1.: slowdown wu.h respect to prover without dl$crimi.n:uion net: 

Version 1: 56.17~. Vers•on 'l; 4S.98'Po. Version 3: 27.88%. 
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~"L ~<.;l>osew. 
Theorem 

I Cll<'JLIT1e(V AX) C•<hecl Goals , ;, <(VAX) C•ched G""lJ 
lll1=1 16.50 Ill 17.30 24 
bunuU 8.35 9.fTI 6 
dbobbp 8513.74 8591.78 101 
dm 8.33 8 3.11 • 
cwl 2.11 9 2.95 5 
ew2 3.02 10 ).47 s 
ew3 6.40 19 7.33 3 
ell 11.73 8 13.00 4 
el2 11.50 12 1245 3 
cl3 6.20 10 6.62 4 
ct.; 6.1 2 9 6Ci0 4 

<IS 0.6'7 0 o.n 0 
<16 6.93 6 7.91 ) 

cl7 4.20 II 4.57 5 
clS 13.62 Z'l 14.65 6 
el9 10.83 26 11.88 12 
CJ.amp)c; 55.03 108 55.93 44 
groupl 64.12 9 70.50 5 
group2 11.23 12 11.95 3 
ha.span.s l 4.67 10 4,45 4 
bup;~~ru2 15.75 32 1M2 7 
lslOO 1.12 2 1.18 2 
1$103 33.:38 63 33..12 36 
biOS 1.90 5 1.90 5 
11106 1.75 • 1.11 • 
hill 1.90 5 1.95 5 
ls17 18.02 29 18.73 10 
1123 161.59 16 169.21 9 
b26 8.05 6 8.34 3 
ts2~ 36.28 . 13 86.88 6 
ls3l 15.05 7 83.45 3 
ls41 4.12 l 4.Z'I 3 
115 '2..1'2 6 2.15 3 
1s55 10.22 25 11.n II 
!s6S •5.12 21 49.08 II 
mqw 2.53 8 'Z.n 3 
auml 4.17 II 453 5 
prim 11.88 IS 11.85 3 
qw 2.83 7 2.90 4 
rob I 3.67 9 4,01 3 
rob2 12.23 12 13.33 3 
schubcrt.ab.sl 237.$6 285 238.<7 109 
shor\burn 3.92 16 4.20 13 
wosl 31..12 14 34.53 8 
wosiO 101.13 390 105.45 1 
wos12 3.88 102 4.15 10 
wos1l 5.78 7 6.18 3 
wosl4 40.03 23 42.00 s 
wos2 16.07 24 16.6'7 6 
WQ$' 1..57 J 1.85 3 
wos6 450.07 33 465.48 12 
wos7 168.97 {; ~;~~ ~~ I wo<8 10.72 

Average slowdown wuh clnuse elimination: 5.68%. 

Average mtio between the numbers of cached goals: OA6. 
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·- -
~9'0'" --· n..o.- ,,_- _,_ 

., ... I 12.<7 ;; ll·~ ~ '~ ~:: ........u 7.08 
Obobhp l6A5 !90 ns.os t.U.9 ... 1.:3 6 15.3 1.15 6 15.3 

·-· 1.92 6 !5.6 U3 6 15.5 
owl 1.2& 5 $~.) .95 4 S4.Z 
owl 4.62 !5 $~3 460 1 86.5 
ell 1.!7 6 $5,1 l.17 6 $5.1 
•!2 19,)0 25~ S~l 21.10 288 SSA 
ell J.:l8 2!J 85.2 ~91 2:2 8~2 
••• ).47 30 iS.4 3.03 2J 86.3 ,.., .52 4 &5.6 .52 • S5.6 
.:16 10::20 151 11.0 I.Sl 8 $6.9 
cl1 251 16 &66 1.60 5 86.5 
10'1.9 9.(,() "' 19.) 5.93 29 90.2 

"' t2.30 40 891 &28 16 38.3 
~•'"'lo 4.S . .&J. ~ ,.3 ~08 U$ 100.3 
!u-'U S$0.62 1002 t29.9 mo.ts t.:11 2663 ....... 1.!7 6 16.1 t.U 6 $6.1 -l !9.:30 159 $6.1 2?.12 283 11.3 .... ,..., •S'l 2S S?.l 1,)2 7 86.9 
..... &".d 9-;0 5o< "'' 3.17 IS 89.2 
t.IQC) n • !6.1 'Ill 0 $6.1 
b!Ol :30.50 131 9i.7 lll.tS 171 1!-U 
~lOS 1.03 5 &9.7 t.!O 5 *9.7 
la::06 1.10 5 19.7 t.!S 5 sn 
4HI 1.10 5 19.1 1.:1 5 899 
~liS 53.53 ?!11 ;012 4023 110 104.2 

' :..17 !6.(i0 16 '91.9 6.90 26 90.5 
'~23 .S\.58 n6 ~H.S 5~57 253 93.9 
~26 34.6? 199 95.6 1.31 7 t7.7 
!AU 7tS.22 1117 214 0 3H5 l SS !00.7 
IAl'l 517.93 941 ""·' 16$.1'3 453 i2S.3 
1$35 .st.SS ):)<; U.l 2o.&O 112 89.0 ... , 12.93 so- 91.5 12.92 80 91.S 
~5 1.95 5 85.7 1.57 s 85.6 
t&55 so.n 369 !02.3 S0.42 369 102.9 
IA68 41.M 791 101.1 .;7,SO 291 !OJ.? 

"" !076.95 )()a$ 170.7 l!lA. !O 5017 l::l4.0 
""'W 2.:8 s 56.2 1.61 5 86.1 
n~;n l 2.52 17 &6.0 UJ 6 &5.9 

"""' I 
5 20 l2 16.5 5.53 "" 393 

qw = II au 2.17 II .... ..... 1.08 } lA I l iS 1 S5.6 
.... 2 19.61 l59 &6.6 :!All 253 su -- ~).02 953 121.5 16952 •1• 132.3 ........... l.55 l< S6.S ).91 7 $6.6 
-I 169.17 613 117) !6$.09 m ll6.3 - •o 121.92 ms 1650 1617UO 20m 974.6 
-u 1502.87 <901 ,,.., !&50.&3 731'6 111.8 
wotl2 ~18 ~ ,,, ) ,:!<> :)<; 92.0 
wotll 1765.!:8 4()8' 331.6 SSl7 362 116.7 
WOtl4 !698.02 <!()' m.6 164.17 687 lli.O ... z 12.68 443 105.6 30.77 231 94.1 
... 3 1.2:2 9 90.3 l.:tl ' 90.3 
woo6 SS%.93 1196 ;st.! ?5.10 671 98.3 ... , n1.r~s '"' 117) l'l?:UO so•• 166.7 
w .. s ·~}~~ ;~~ ~!;~ ..!~~~ ,g~ .~~ :! 
~ 161 II 

Three average moos between the periormanre d:lta of the default prover and the performance data of 

the prover wnh b_only set: for cputime, 1.33; for inference, 0.95: and for memory, 1.06. When b_only is 

set. the prover performs beuer on 31 out of 59 problems wi th the average speedup of 53.8%: it pcrfonns 

worse on 10 out of 59 problems with the average slowdown of 135.6%: 11 performs the same as the default 

prover does on the rcmaintng 18 problems. 
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~~ '"' Th-= 
l..r,__ - ·~--

.,_ 
~ dl· 

.,'ICCIJ 

·~~ ~~ 1 ~ ·;~~ ~~ ·~ ..... ..u 
db.1bbp ;16,4$ 190 9 5~., 14 

""' 1.13 6 5 88.21 22:5 14 
ewl 1.92 6 7 2ll 6 7 
cw2 1.28 5 7 t.•5 5 7 
ewJ 4.62 15 11 5.23 IS 11 
ell U? 6 s 55.91 2.SO 11 
•12 19 :lO 1S9 9 J2.J7 127 9 
dl HI l9 1 s.ss lS 9 
d< ).,<7 :lO 1 5.63 19 9 
dS .51 • s 65 • s 
d6 loli.:O 1S7 7 5.00 )2 9 
d7 'l.$7 16 7 1.rn lS 11 
e.& 960 64 ll U.72 64 ll 
c!9 12.80 40 9 14,.CI " 9 
c.;umplc <$.84 236 14 ss.~~oo 236 I" 
fcJ!kl 850.6'2 1002 18 34?.S3 436 ] 4 
pwpl 1.17 6 s 1??.12 553 ll 
vo->p2 19.30 259 9 12.91 127 9 
hasp.uul 4.87 l& 9 :1.65 20 9 
hupa.rts1 9.40 54 :J 13.92 n !3 
ldOO .72 4 5 Sl • 5 
utoo 30.50 Ill 14 J0.96 "' 14 
IJ.!O:S 1.03 5 5 1:13 s 5 
!.106 IJO s 5 122 5 5 
lJitl 1.10 s s l.)l 5 5 
Itt ! S 5JJJ liJ7 II 47.7:Z '" ll 
bl7 1660 16 9 t?.;s 60 9 
b2) ~1.$1 236 7 SIA.67 1601 9 
h26 )<67 199 7 4,97 ll 9 
h28 71S.2l IH7 7 n.2S lll 14 
h29 517.93 941 7 69.00 2:1'1 ) 4 
h3S 41..11 J$6 9 9S.42 71!6 II .... 12.9H 10 5 3.92 ~I ' h5 1.95 s 7 :Z.I7 5 7 

"" so.n 369 5 5?449& 22134 9 
~«~• <8.05 191 s lt67 ~:19 7 
ts7S i006.9S 3043 7 399.93 ltS6 9 
""!W 2.lS 5 7 2.3.1 s 7 
ac;."!tl 2.52 11 7 6-65 :J) n - l:lll ll 9 6-l) n 9 
'I" )2$ II 9 ~73 II 9 

""'' 
,..,. 3 7 ~n t " ,, 

:o02 19.68 1S9 9 13.61 Ill ' tdn;bc:n.abfl. 203.02 9S3 24 242.30 947 24 
~ 3.55 l4 1 3.65 19 7 
-I 169.17 68$ ' ISOU7 lOll 9 
WOf.IO 821.92 2.878 1 ~$1 438 9 
wr.c l2 3.13 36 5 2.58 26 5 
.... 13 !165.&3 40$4 1 9.21 68 7 
Wl)lll4 1698.02 4104 7 34.12 252 II 
..... 1 72.68 ;W) 7 13.63 67 7 .... ) 1.22 9 5 1.58 ~ s 
.... 6 5546-93 7S96 7 

ji 2:: 9 _, 
133.65 t43l 7 ll 

::! ·~.~ :!:o ~ "~ 7 
• 

..&5 II: ~ • I-GII ..::!! 

Three average rauos between the performance data of lhe default prover and lhc performance da1;1 of 

d1c prover wilh max.rize set for cpulirrtc, 1.33: for tnference, 5.30: and for proof size. 1.25. When IIIIJXSi:e 

is set. Ute prover performs beuer on 27 out of 58 problems with lhe average ~-peedup of 51.1%: tl performs 

wors<; on IS out of 58 problems wilh lhe 3\'er:\!;e slowdown of 1753.1%: it performs !be s:unc as lhe 

default prover docs on the rcnuining 16 problems. 
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. '"" .t..tia.J.a.[Q[ ~U!Istt!ll Ri!Gmtl!l:D i 
O.f..,lt(O 1.0.4) Sui {0, I) S c::Z (0.12$. 0) 

Theo= -
c..,un:clSlJN" '•'• .. Ci"'omc(Str.-lll Jtl{ercncc: Couli..--nc:lSlr.I.'J~ In:e:o:ttce 

ariCCfl 1'1..41 27 t.:.1l 37 9.43 '" """"l1 7.ot 6) 1)_1) 129 1.52 6l 
dOJbbp ~<IS 190 97.01 $113 21.33 19'J 

'"" II) 6 1.1~ 6 1?2 14 .... 191 6 1.90 6 1.92 6 
... 2 12$ s 1.2! s I.U 5 
••) 461 ll ·~s IS 4.51 !l 
ell U7 6 1.12 6 5.41 3l 
ell 1930 ll9 JUS $C8 s.n 123 
dl ),lt l9 ).lO l9 = l9 .,. ).4? 30 l..&S '10 l.<S )0 
<:5 .S2 4 .51 • .52 • a 14 :» ll7 1411 lS7 S0.2S 711 
d1 ~7 16 Z.Sl !6 Z.S2 16 
cll 960 64 11.22 Ill 9.<8 "" "' 12.10 co 11.11 36 10.18: 32 
«.ample 4!1<1 %16 1!007 923 ~A-1 !13 
f<A'<2 1!062 1002 -·· 117 6 t.U 6 19.53 90 
l""'l'l 19 so ll9 li.Sl $08 us !23 
h~.:t•l ·~? 21 4.17 )0 ~.83 21 
h"'i'•NZ 9.AO l4 29.75 1!6 930 5• 
1si00 ?2 • 61 4 .70 • 
lsi OJ JO.SO Ill 23.12 ~ 3U2 147 
ldOS 1.03 l L10 l 1.!3 s 
11106 110 l 1.10 l 1.!2 l 
!Jill 1.10 l 1.03 l 1.10 5 
liltS >333 ltn 48.72 ll'J 57.!5 239 
1117 14./>0 76 29.0! t:l'1 16.83 71 
1•23 4L.Sa ZJ6 31.)5 202 56.10 321 
•26 )4,67 199 )4 38 199 324.40 170:2 
1128 11522 1117 l9l.7l ·<69 
al9 l7793 ~I 18'!.0? .:S"l 
h3S 41 ,~3 336 39.'13 332 70.l2 S76 
J.Cl 12.9$ 10 • 13.12 73 9.95 64 .s 1.95 5 1.90 5 L90 l 
l<SS 5012 369 .... 27 272 56.51 ••s 
li6S 927.50 3?97 
lJ61 4Ml 291 44,03 2:!8 41.32 270 
l.t:75 10'16.9$ )<).18 $52.77 IS66 3033.50 l31S 
mqw l.li 5 2.18 l 2.l8 5 . ...,, 2.51 11 2.48 11 2.47 17 
pti.m 5.20 n 23.38 162 5.21 36 
qw J1.l II 7,63 4() 3.20 II 
tobl I.Oi 3 I.Ol 3 1.07 3 
rob2 19.61 259 39.22. $08 9.6S 133 
J.eblbcrt..e.bst 203.01 953 lll.22 1710 22350 977 

"""""""' 3.Sl 24 3.61 ll :l.4S 26 _, 169.17 613 1719!.50 12191 _,0 Sll .91 2871 8671.95 210.1 

-" l50U? 4901 lSl9.2S 19"~ 64U7 4126 
WOil2 ).IS ).6 317 36 lll 36 
.... u 11&1 33 ~ lll.Tl 5()9 -·· JM$,02 •tO< 11111 S<O ..,.z 72.61 .. ) Sl.<O 27l i1.t..78 2'9<7 _. 1.22 ' ).11 9 !.1$ 9 - ll<6.93 .,... IQnl' 711 _, J)l6l 1;&)1 llt.70 746 68$1.66 9SJ6 ...... l696N 4120 12:2.67 569 
..... 9 ~Jl.,oll 1(~76 24360 932 !tS&.JO .:302 

l'o average data will be calculated because of the many cases or failure .. 


