Implementation Notes on SPRFN-A
Natural Deduction Theorem Prover

TR&7-028
September, 1987

Xumin Nie, David Plaisted

The University of North Carclina at Chapel Hill
Department of Computer Science
Sitterson Hall, 083A

Chapel Hill, NC 27514 .

Implementation Notes on SPRFN
-- a Natural Deduction Theorem Prover

Xumin Nie
David A. Plaisted
Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27514

Abstract. The natural deduction theorem prover sprin has been operational since August 1986, Since
then, many experiments have been performed on it to test different strategies and data structures; many
refinements have been added in the attempt to make it more efficient. Some of these attempls have been
successful and some have not been. In this report, we will describe the evolution of our ideas, discuss the
test results, motivate and justify our decisions and draw some conclusions, We hope that we can share our

experiences as well as lessons in our research on this theorem prover,

This rescarch was supported in part by the National Science Foundation under gramt DCR - 8516243,

1. Introduction

Sprin is a natural deduction type system that proves theorems in first order logic. It is based on a

modification of the theorem proving strategy described in Plaisted{82]. Being a theorem prover in first

order logic, this prover may also be viewed as an extension of Prolog to full first order logic, that is, non-

Horn clauses, Sprin possesses some desirable features both as a theorem prover and as an extension 1o the

existng programming language -- Prolog. Some features about its implementation are also worth mention-

ing. We will briefly mention them in what follows. For a more detailed description of these features and

their justifications, see Plaisted([87].

(1]

(2]

3]

4]

(3]

(6]

(7]

Negation is treated as in first-order logie, i.e., with semantics of first-order logic. This is sound,
unlike the wreatment of negation in Prolog. Also, the prover performs true unification -- unification

with occur-check.

The prover is capable of general term rewriting to replace subexpressions by equivalent ones. The
lerm rewriting capability gives the user oné way (o provide domain dependent knowledge about the

problems he is working on.
The prover can perform both forward chaining and backward chaining.

The input syntax for the prover is much the same as the syntax of Prolog. This is expected since the
prover is intended to be an extension of Prolog. The prover also has a convenient interface to Prolog
source code. Some tasks can be performed efficiently using this interface.

The prover allows user interaction to provide guidance during the course of proofs for problems with
equality involved,

The prover uses Prolog style depth-first search with a gradually increasing depth bound | i.e,, depth-
first iterative despening search. This search stmiegy is complete. It can also be easily implemented in
Prolog by taking advantage of Prolog's built-in backtracking mechanism.

Subgoals and the solutions o the subgoals are "cached” so that if a subgoal is seen more than once,

work is not repeated,

Sprin is implemented in C-Prolog. Tt has been designed for use with as litle user guidance as possi-
ble, for users who have little background about theorem proving, Thus the default set-up of the prover is
carefully tuned 1o provide reasonable overall performance. However, a set of lags and parameters are also
provided. These flags and parameters can be set or adjusted by more sophisticated users to have more ¢on-
trol over the prover. The first working version is operational around August, 1986, Since then, a number of
optimizations and experiments have been done o improve and test the performance of the prover. In this
report, we will describe the important efforts invested during the process of implementing this theorem
prover and the ideas behind these efforts. We will describe the evolution of those ideas and their impact on
the current status of the prover, and justify the decisions and conclusions we have made. We will also share

our experiences and lessons in implementing, tuning and using this prover,

2. The Modified Problem Reduction Format

We will introduce the deduction system underlying sprin -- the modified problem reduction format.
The following is a concise description of the deduction system. This description is taken from Plaisted[87],

to which interested readers are referred to for a complete description and discussion of this strategy.

A clause is a disjunction of literals. A Horn-like clause is of the form .-E =L Lawn L, where L
and L;'s are literals. L is called the head literal, L;'s constitutz the clause body. A clause C is converted
into a Homn-like clause HC as follows. One of the positive literal in C is chosen as the head literal of HC
and all other literals in € are negated and put in the clause body of HC, For example, 7 v Q vR v W can
be expressed either as R ;- P, Q, not{W) or W :- P, Q, not{R}. Only one such representation is chosen for
each such non-Hom clause. If C contains only negative literals, we use false as the head literal of HC.

Thus P v O will be represented as faise - P, Q.

Assume S is a set of Hom-like clauses. In the modified problem reduction format, a set of inference
rules for 5 is obtained as follows, For each Hom-like clause L =L, L4, ..., L, in 5, we have the follow-

ing clause rule. We call the T”s on the left of the arrow — assuemption list,

Clause Rules

rq—’L] = T'i—!LL rl—FLI == r:—lL'!_, e r.u-l_"L,‘ => F,-—hf-,,
Ig=l => T, —l

This rule corresponds to the following idea; if the initial subgoal ts Ty=+L , then make £, . . . L, subgoals
in succession; add 1o assumption list Ty successively the literals that are needed to make cach one of L,
provable; finally, retumm T,.—L where assumption list T, contains all the literals needed to make
Ly, ..., L, provable. We also have assumption axioms and case analysis (spliting) rule. The L in the

assumplon axioms is a positive literal.

Assumption Axioms

F=L=>T=L ifL el
T =T L=aL
Case Analysis (splitting) Rule

oL =>T\, ML, I ML =>T, , M—=L
Fg—=Ll =>T =L

The following is a theorem in group theory. We use this example to illustrate the input format 1o
sprin and the proof generated by sprin. This theorem states that, if the square of any element in a group
equals 10 the identity element of the group, the multiplication operation of the group is commutative. In the
input clauses below, e is the identity element, piX, ¥, Z) means that the product of X and ¥ is Z. The labels

cl, ¢2, ..., ¢7 are given o the clauses for easy reference and do not constitute the inpuL

el: plX, e X).

e ple. X, X).

(=4 H pX, X, e).

cd: pla, b, c)

c5: plU, Z, W) :- p(X, Y, U}, p(Y, Z, V), p(X, V. W)
ch: P, VW) - X, Y, U, plY, Z, V), p(ULZ, W)
ot false :- p(ha.c).

In the input clauses above, clauses ¢l, ¢ and ¢3 are the axioms about the identity element of the group. C5

and C6 are the associativity axioms. C3 and C7 arc the negation of the theorem. The following is the proof
generated by sprin for this theorem.

pib.ac)
p(b,b.e)
pib.c.a) i-
placb) :-
plaag)
pabe)
plebb)
ple.ce)
pla.ea)
plec.c)

In the prool above, faise is the top-level goal. The subgoails belonging w one goal are aligned on the left.
For example, p(b.b.e}, pib.c.a), ple.c.c) are subgoals of pib.a.c). This corresponds to

[l—=pib.b.e) [1=plbeca) [l=plec.c)
(l—=pbac)

which is an instance of the clause rle derived from the input clause ¢b6, We omit the assumption lists for

subgoals in the proof since they are ail empty.

3. Discrimination Net

3.1. Caching Subgoals

In sprfn, the subgoals which have been worked on are cached. The solutions generated during the
course of the proof are also cached for kater use. The idea of caching is to avoid repeated work involved in
trying to solve the same subgoal more than once. After the prover has generated all the solutions for a
subgoal G, a clause done(D, G} will be asserted, where D 15 the measurement of the effort invested in trv-

ing to solve the subgoal G. We will call donerD, G) a done clause;

Each subgoal will be attempted with some effort bound. This effort bound indicates the maximal
amount of effort allowed at present to confirm a particular subgoal, If it requires more ¢ffort than that the
effort bound allows w confirm a subgoal, thig subgoal will be auempled later with-a larger effort bound.
Suppose a subgoal G is to be attempted with the effort bound D. The prover first checks to see if any solu-

tion which has been generated could be used for solving G. After all the old solutions have been used, the

prover is about 10 generate all the possible new solutions for G with effort bound D. However, before it
proceeds with trying to generate the new solutions for G, sprfn checks whether there is a done clause
done(D 1, G1) such that D1 is greater of equal 1o D and G is 4an instance or a variant of G1, I there is such
a done clause, sprin does not nead to work on subgoal G at all since all the possible solutions for G have
been generated already. If there is no such done clause, the prover will proceed o generate all the possible
new solutions for G. When the prover finishes, a done clause done(D,) will be asserted to indicate that

subgoal G has been worked on with effort bound D.

3.2, Basic Structure of Discrimination Net

Because of the possible large number of subgoals, the caching described above may involve a great
deal of housekeeping. We used the built-in prolog database o implement the caching by asserting the done
clauses. Consequenty, checking whether a subgoal is an instance or a variant of ancther subgoal which has
been worked on requires a linear search among all done clauses. In the attempt to speed up this search pro-

cess, 4 new data structure called a discrimination net was added to the prover,

Conceptually, a discrimination net organizes a set of strings of symbols as a tree. This tree is organ-
ized in the manner that, each node in the tree contains one or more branches which are labelled by the sym-
bols in the strings; and the branches diverge at the places where the strings have different symbols. To
search a string in a net, we follow the following discrimination process. Start with the root node ol the net
as the current node and the frst symbol of the string as the current symbaol. At any moment, il the current
node contains a branch labelled with the current symbol, follow the branch 1o obtain 2 new node; if no such
branch exists, the string is not in the net; if such a branch exists, repeal the abave process with the new
node as the current node and the next symbol in the siring as the current symbol. When the current node is
a leaf node and there is symbol in the remaining part of the string, the string is in the net. Regarding the
subgoals as being sirings of symbols, we implemented this data structure in sprin. All the done ¢lauses are

stored in a discriminaton nat.

1.3, Implementations of Discrimination Net

There are three implementations of the discnminaton net. The last two implementations are the
results of the unsatisfactory performance of its predecessors. We will describe each implementation in this

seclion.

The first implementation uses individual symbol (function symbols, predicate symbols and variables)
as label. Each node in the net is represented as a list of <symbol, branch> pairs. Each pair in the list
represents a branch labelled by the symbol in the pair. The discrimination net is implemented using the pro-
log database utilities. A node will be represented by a clause node(pair list) in the database. Note each
such clause can be referenced using a reference number assigned by the system so linear search in the data-
base will not be necessary. In this implementation, discrimination net is designed o be a generator. User
can specify four kinds of subgoals to be generated: subgoals which are no less general than the current
subgoal, subgoal which are no more general than the current subgoal, subgoals which are unifiable with the

current subgoal and subgoals which are variants of the current subgoal,

First implementation does not give satisfactory results. We spot several things which are likely 1o
cause inefficiency; verifying the relationship between the subgoals in the database and the current subgoal;
the linear search at each node when looking at a branch labelled with a symbol and unfolding a subgoal
inta a list of symbols before searching. In the second implementation, discrimination net is used as a fller
tir generate the subgeoals which may be unifiable with the current subgoal. In order to avoid the linear
search at each node, the input clauses are preprocessed so that each node will have a fixed number of pairs
and each symbol has a fixed slot in the nodes. This can be done since the symbol set in the input clauses is
fixed for cach theorem if we treat all the variables as if they were one symbol. In this implementation,
some prolog clauses will be generated at preprocessing time for some frequent operations. For example,

suppose there are four symbaols in the input clauses, the following clauses will be generated:

replaceRef(1, N, pos(X1, X2, X3, X4), pos(N, X2, X3, X4)).
replaceRef(2, N, pos(X1, X2, X3, X4), pos{X1, N, X3, X4)).
replaceRef(3, N, pos(X1, X2, X3, X4), pos(X1, X2, N, X4)).
replaceRef(4, N, pos(X1, X2, X3, X4), pos(X1, X2, X3. N)).

search(P, Type, S, E) :- nonvar(S), % for atomic constants.

clause{struci(_, L), _, §), arg(1. L. _:EW),
search(X, Type. S, E) ;- nonvar(S), % for variables.
var(x),!, clause(struct(_, L), _, 8,
rtmﬁtﬂrﬂ-hM| Skipﬂ—t Ef 11- N}}‘
search(X, Type, 5, E) :- nonvar(S), % for constants.

atomic(X), clause(strucy , L), _, S).
index{X/0, I), argi{L.L,_:E).

search(f(X1, X2), Type. 5. E) :- % for function £. | is constant,
nonvar({S), clause(stroct_, L), 5),
arg{l, L, _:A), nonvar(A),
search(X1, Type, Ref, Refl), search(X2, Type, Refl, E).

The structure pos(X!, X2, ..., Xn) has one slot for each symbol in the input. Each Xi represents a
<symbol, branch> pair. The structure struct/Dname, posiX1, X2, ..., Xn)) represents one node in the
discrimination net, where Dname is the name of the net. Each symbol will have one replaceRef clause gen-
erated for it, The replaceRef clauses will be used to update individual node, Note that, by utilizing the pro-
log built-in unification capability, we have avoided the explicit linear search at each node when modilying
it- For cach predicate symbol and function symbc-i, a search clause is generated, These clauses are used o
search the discrimination ner By giving each symbol an unique index which is the slot number for this
symbol in the pos structure, we also avoid the linear search at each node when searching the net by utiliz-
ing the prolog built-in capahility. In the first implementation, a searched subgoal is unfolded into a list of

symbols before searching, We avoid this oo by generating the search clauses,

Second implementation does not provide the improvements we have hoped. In both implementations,
the insertion and deletion operations resull in a large number of struct structures being asserted into and
retracted from the database. By using individual symbol as the labels, the search operation is also expen-
sive since each symbol in the subgoal will result in a prolog procedure call. In the third implementation, we
use the literals in the subgoal rather than the symbols as labels, In this implementation, node is not
represented as a list of pairs. Rather, each node is given a unique id when it is generated at runtime as the
new done clauses are inserted. Each node is represented by a prolog procedure the code for which is gen-
erated as the new done clauses are inseried. The code for this implementation is given in Appendix A. Only

insertion and search funcions are implemented here. We are still using the discnimination net as a filter 1o

generate the possible unifiable subgoals with the current subgeal.

3.4. Performance of Discrimination Net

Table 1 gives the performance data of sprin using the different implementations of the discrimination
net. The degeneration of performance is obvious from these data. There are several reasons [or the degen-
eration. One possible reason is that the number of cached subgoals is generally small. Thus, the overhead
for maintaining a discrimination net is 100 much o be compensated for by the saving in search time. Note
that, for the examples whose proofs 1ake large amount of cputime to obtain, the performance does not vary
very much when the diserimination net i added. This suggests that maintaining the discriminaton net can
only be effective when there are a large number of subgoals. Another reason seems to be the language we
are using. Note that we represent the data structure using the prolog database facility. To modify the data
structure, we have 0 assert inlo or retract from the prolog database. This may contribuie a great deal to the
large overhead. The third implementation performs betier than the first and second. The reason is twofold.
On one hand, it asserts less than the other two do since it is indexing on a larger structure, On the cther
hand, it does not retract at all when the data structure is medified as other two implementation do. We do
not see any better facility provided by Prolog for implementing the discrimination net. We think that Prolog
is not suitable for implementing such "lower-level” data structure due to its highly abstract execution

mechanism. Other languages such as C may prove 1o be suitable.

4. Caching most Dominating subgoals

W introduced done clawse in last section, A done clause donefD,) states that the subgoal G has
been worked with effort D, Note that a subgoal or its instances may appear several imes during the course
of the proof, with different amount of effont involved. Suppose we have two done clauses, done(D1. GI)
and danefD2. G2), where G1 is an instance or an variant of G2 and D2 is greater or equal 1o D1. These
state that G2 has been worked on with larger amount of effort invested and all solutions that have been
obtained for G1 with amount of effort D1 have been obtained for G2 with the amount of effort D2. We

only need W maintain done(D2, G2} w have complete information. The done clause dene(D1, GI1) can be

deleted, This sugeests thal for any subgoal and its possible instances which appear as subgoals, some dons
clauses are not needed. We say done(D{, G1) 15 dominated by dene(D2, G2) if G1 is an instance or a vari-
ant of G2 and D2 is greater or equal to D1. We only need to maintain the most dominating done clause and
delete the dominated ones. By only keeping the most dominant done clause, the space waken w0 cache

subgoals will never be greater than the number of essentially different subgoals generated,

Sprin was modified 1o keep only the most dominating done clause and delete the dominated ones.
We call this clause elimination. Table 2 shows the execution time and the number of done clauses main-
1ained by sprin in the data base at the end of proof. Two sets of data are listed. The set on the left is for
spefn without clause elimination implemented, The set on the right is for sprfn with ¢lause elimination
implemented. One can easily see that the performance of the prover does not vary very much, This is due
to the fact that the number of done clauses is generally smail. The 5.68% loss in cputime is the result of the

overhead of detecting dominating relationship and maintuning the database.

Let us go back to the discussion of disctimination net. We conjectured that one of the reasons for the
inefficiency of discrimination net is that the number of cached subgoals is generally small. The data in this
section have enforced this conjecture. The overhead of maintaining the discrimination net is just too big w

be compensated for by the speedup in the search tme since the number of subgoals cached is 100 small,

5. Parameters and Flags

Sprin is designed 0 be used with as little user guidance as possible. Thus it may appeal w a larger
community. People with litde or no background in theorem proving will be able 10 use it, However, a setof
parameters and flags are identified and provided which more sophisticated users can use to enforce more
control on the prover. This section axplains the motivation For the provision of these parameters and flags

and their effect on the behavior of the prover.

Before we go into the explanations of these Mags and parameters, we first explain how the search
bound is increased. As we indicated before, sprin uses depth-first iterative deepening search. We use the

following formula to calculawe the new search bound based on the old search bound. The starting scarch

10

bound is 3.

Oldbound +2 if Oldbound <9

OldBound x—;— otherwise

NewBound=

Sprin can alternate between backward chaining and forward chaining. The search bound for forward chain-

ing is approximately two thirds of that of backward chaining.

The remaining pan of this section will be devoted 1 motivating and explaining the important flags
and parameters. Some experimental results will be given along the way, Most of these data are obtained
using the most recent version of sprin so the results for some problems are not the best results we have
obtained. We especially note that, when we give results by setting some flags or parameters, all the ather
Rags and parameters are at their defanlt states. These paramesers and flags affect the following aspects of

the prover, which will be discussed separately in what follows:
[1] How backward chaining and forward chaining are combined.
[2] How the old solutions, lemma as they are sometimes calied, are used.

[3] How the size of the subgoals is limited by the search bounds.

5.1. Perform only Backward Chaining or Forward Chaining

The prover performs hackwsard chaining and forward chaining alternatively, During the backward
chaining phases, the prover tries to derive the top-level goal, generating subgoals as needed. During the
forward chaining phases, on the other hand, it only denves the goals that can be decomposed into subgoals
already solved, without regard (o the relevance of the derived goals to the top-level goal. Users can direct
the prover to perform only backward chaining or forward chaining by setting flags which are available in

the prover.

Forward chaining is helpful in generating simple facts from the known facts. But for problems with a
large number of input clauses, forward chaining wnds to clutter up the prover with 100 many [acts, many of
which may be redundant and irrelevant. Those redundant and irrelevant facts can easily lead the prover
astray, resulting in much useless work. This has been confirmed in many occasions where, by permitting
forward chaiming, the prover ran out of space before it could obtain the proof. Of course, it might well be
that the forward chaining is not well controlled in the prover. As a matter of fact, it is still an interesting
research problem how to control forward chaining to make best use of it. Backward chaining, on the other
hand, has some advantages. Backward chaining always starts with the top-level goal and generates
subgoals as needed. Together with the goal-subgoal structure of the deduction system underlying the
prover, hackward chaining tends not to generate many useless facts, Thus space will be wiilized more
efficiently. In some of our experiments, the prover obtained the proofs by performing only backward chain-
ing for some problems whose proofs could not be obtained if both forward chaining and backward chaining
were performed. What happens was that space ran out before proofs were obtained These indicate the rela-
tive space efficiency of backward chaining. Bewer space efficiency is a big advantage in theorem proving
since it is usually not ime, but space, that is run out more quickly. Mareover, backward chaining is able to
use only those clauses necessary for achieving the wp-level goal, effectively discarding the useless input

clauses, if any.

Table 3 gives the statistics for the performance of the prover when only backward chaining is per-
formed. The statistics when both forward chaining and backward chaining are performed are also listed for
easy comparison. The overall improvement in performance is obvious from the statistics. This set of data is
very representative of our experiments on backward chaming, It gives better performance for most of the
problems. By performing only back\;urd chaining, the prover performs better on 31 of 39 problems, with
the average speedup of 53.8% relative o the default prover in lerms of inferences. But for the 10 problems
out of 59, the prover suffers efficicncy loss with the average slowdown of 135.6% relative to the defanls
prover, also in terms of inferences. We like to point out that the performance of the prover is beuer than it
may be suggested by the three average ratos. The performance of the prover when performing only back-
ward chaining degenerates so much on one example (wosl0) that the corresponding ratio for this problem

contributes too much o the overall average, thus overweighs the gains in performance for most of the

12

problems.

Space efficiency is beuter, Ls65 is an example. This problem is to prove the transitivity of the less-
than relation, given the axioms for integer addition, multiplication , equality and less-or-equal relaton. For
this problem, the prover runs out of space before obtaining the proof when performing both forward chain-
ing and backward chaining. Forward chaining results in an explosion of search space due to the relatively
large number of input clauses of this problem (20). When performing backward chaining only, the prover
gets the proof afier generating 67 solutions. When performing both forward chaining and forward chaining,

the prover still fails 10 obtain the proof afier generating over 600 solutions.

The prover tends to use the clauses relevant to the proof when performing only backward chaining.
Cases in question are wosl3, wosl4 and 1s26. These three problems all state some closure property of a
subgroup of a group. The proofs for these theorems do not need the associativity axioms and equality

axioms, as exhibited below by the proofs for wosl3 and wos14,

wosl3 proof
false:-
ole) :-
ofa)
ofa)
pla,gla).e)
ple.jle)j(e))
plitel.e.ile))
wosi4 proof
false:-
ofglal))
ale):-
ola)
ofa)
pla.gla)e)
o(a)
ple.gla).g(a))

In the above proofs, literal ofa) states that a belongs to the subgroup. Literal p(X, ¥, Z} sutes that the pro-

duct of X and ¥ is Z. ¢ is the identity element f is a skolem function symbol and g is the inverse function.

13

By performing backward chaining only, the prover just generates the required subgoals only involv-
ing the predicates describing the sub-group and some simple facts directly provable from the basic axioms
for a group, thus disregarding the associativity axioms and eguality axioms. When the prover performs
both forward chaining and backward chaining, it derives a large number of facts using the equality axioms
and associativity axioms, These irrelevant facts complewely distont the search space. resulting in a great

amount of froitless search,

It is interesting o note that, for the problems whose proofs are long, only performing backward
chaining makes prover's performance degeneraie. The two noteworthy examples are wosl0 and 15103, The
proof the prover generates for wos10 has 7 levels of recursion with maximal branching factor 3, For 1s103,
the proof has 8 levels of recursion with maximal branching factor 3, For these two problems, the prover
finds proofs at a larger search bound when only performing backward chaining. When the prover is per-
forming both forward chaining and backward chaining, the search bound for wos10 is 7, and for 1s103, 14.
When the prover performs only backward chaining, the search bound for wosl and 15103 are 9 and 18
respectively, These two examples show me'usefulncss of forward chaining in generating useful facts
relevant for the proof, thus reducing the depth of the search space. This is one of the reasons why we
include both forward chaining and backward chaining in sprin.

5.2, To limit the size of subgoals at certain search bound.

For some examples whose input clauses contains large numbers of variables and function symbols,
the prover tends to generate many subgoals having large complex structures, Large subgoals are not desir-
able for two reasons, First, larger subgoals take more space. Second, if the subgoals contain variahles, the
size of subgoals will "snowball”, resulting in more and bigger subgoals. This size propagation will be more
serious il the subgoals contain many variables. We somehow would like the prover to focus its effort on
the subgoals with reasonable size relative to the current search bound, since, if the proof {or one problem
can be obtained with a small search bound, the subgoals in the proof are not likely to get very large. We
use the search bound since the search bound represents the maximal amount of effort to invest on any

subgoal.

14

Based on the reasoning above, a flag called maxsize is introduced. When this flag is set, sprfn checks
the size of a subgoal before attempts to prove it. Only if the size of the subgoal does not exceed the current
search bound, is this subgoal attempted. Since the search bound is increased after sach round, the size
allowed for the subgoals will also be increased, Thus it does not remove the completeness of the prover 1o
set the maxsize Mag. When the maxsize flag is set, the syntactic complexity of the subgoals will be limited
and the syntactically simplier subgoals will be favored. However, 0 st maxsize may make the prover
search deeper into the search space than it would when maxsize is not set. This is because the number of
subgoals in the search space with a certain search bound will be smaller when maxsize is set Experiments

with maxsize show dramatic improvements in the overall performance,

Table 4 shows the performance data of the prover when the maxsize flag is set. As always, perfor-
mance data of prover in its default setup are listed for casy comparison. In table 4, proof size is the search
bound at which the prover obtains the proofs. The prover performs better on 27 of the 58 problems with the
average speedup of 51.1% in terms of inferences, when maxsize is set. The averge slowdown of 1753.1%
for the 15 problems is a strong indicator of the unsteady performance of the prover when maxsize is sel.
Apain, the performance of the prover when maxsize is set is not as bad as it may be sugeested by the aver-
age ratios of cputime and inference. The two ratios are large because thal the prover with maxsize set per-
forms so poorly on several problems that the ratios for these problems overweigh the performance gaing on

other problems,

We can immediately notice the larger proof sizes. The proof sizes increase 25% on the average when
muacsize 18 sei. This is because the size of the subgoals are limited by the search bound, so the number of
subgoals will be reduced. As a consequence, the prover has to go deeper into the search space 1o find the
proofs, thus resulting in the larger proof size. [n spite of the increased search bound, however, it often pro-
vides dramatic improvements to set maxsize, as demonstrated by the daia in Table 4, because the subgoals
to be attempted are simplier and the number of subgoals will be: smaller. This is the pnmary reason for the
improvements. For example, the prover finds a rather large proof for wosl0 involving the equality axioms
{see mble 3) when maxsize is not set at search bound 7. When maxsize 1S sel, the prover finds a simple

proof which only uses the associativity axioms at search bound 9. The subgoals in this preof are much

15

smaller, Although the search bound i5 increased, the smaller number of subgoals makes the prover find the
proof more quickly. Other examples are wos13, wosld, wosl, wosé, 1528 and 1529, These examples all
have proofs which are not long and have small subgoals. All these examples indicate the advantage of the
global control over the complexity of subgoals, at least for the problems with shon proofs whose subgoals

are also small.

It often helps for problems having short proofs with small subgoals to set maxsize. What about those
problems whose proofs are long or whose proofs are short but contain some large subgoals? One could not
help to notice the dramatic degeneration in the performance of the prover when maxsize is set on some
examples, such as groupl, 1s23, 1555 and wosl. What is common about these problems is that the proofs for
them are short and contain some subgoals whose sizes are Targe relative to the length of the proofs. The
input clauses for groupl and its proof is given below to illustrate what we mean. The proof has only 3 lev-

els of recursion. Bul the subgoals in the proof are large.

pa(X,Y), X, Y).

p(X, h(X.Y), Y).

p(X, Y, 10X, YY),

p(U. Z, W) :- p(X, Y, U), p(Y. Z, V), p(X. V, W).
p(X, V. W) - piX, Y, U), p(Y.Z, V), p(U, Z, W).
false :- p(i(X), X. i(X)).

false:-

PG X)X Y X)) -
plg(Xth(X, X)), X j(h(X.X)))
p(Xh(X,X),X)
ple(X jh(X.2X0N). X j{h(X X))

When maxsize is set, the prover is forced o go deeper ino the search space, The larger expansion of the
search space, which is the result of the larger search bound, offsets the benefits of a smaller number of
subgoals for these examples. This is more serious for the problems with a large number of input clauses
such as wosl, for which the prover even fails (o obtain any proof when maxsize is set. Although it is inev-
itable for the prover to search desper into the search space when mazxsize is set, the degeneration of perfor-
mance of the prover for these examples seems to have something to do with the fact that we are using the
search bound as the size bound for the subgoals, A question comes up naturally concerning this approach.

Why are we using the search bound as the subgoal size bound while they represent different dimensions of

16

the search space? It is up to the nature of each individual problem to decide what is the proper size of the
subgoals at each search bound. What is more suitable may perhaps be to determine the goal size limit from

the input clauses and the intermediate solutions of a problem.

3.3, To charge for using old solutions

Any solution 1 derived with a certain amount of “effort” invested. When an old solution is used, how
much effort we charge for it will affect the future expansion of the search space significantly. Before we
can elaborate on this, we first briefly explain how the "cost” of the input clauses and the solutions affect the

expansion of the search space.

The use of each mpul clause and solution has a cerain cost associated with it As the prover
searches down along any branch of the search tree, the total cost accumulates untl it exceeds the search
bound. At that point, the search along that branch will be cut off and the prover backiracks o search the
remaining branches, if any, In the input, an inpat clause of the form L =L, Lo .., L, has costn; an
input clause of the form L :-—L,Ls..., L, has cost 0; an input clause of the form
L:.LyLs,...,L, (note the period at the end) has cost 1. An old solution also has a certain cost associ-
ated with it. How 1o calculate the cost of a solution when it is used will be discussed at length later, During
the search process, whenever an input clause is used, its cost is added to the cost accumulated so far, and
the total cost must not exceed the search bound. Similarly, whenever an old solution is used during the
search, its cost is also added to the cost accumulated so far and the total must not exceed the search bound.
When a new sclutien is derived, the cost accumulated 10 generate this solution is recorded wgether with the
solution ltself. This cost represents roughly the effort invested in deriving this solution. We will call this

picce of information proof-size since it can be interpreted as the length of the proof to derive this solution.

It is easy 10 sze that how much we charge for using an old solution will greatly affect the expansion
of the scarch space. Not anly does it affect the current possibility of search space expansion along the
current branch, it 2lso atfects the cost of the new solutions that may be generated fater on this branch. It is

not hard o appreciate the complexity of this matter. The impomnant question 1o ask is how the cost of an old

17

solution is calcolated. Two important attributes of the solutions seem o be important. The first attribute is
how much effort has been invested in deriving a particular solution. This piece of information is recorded
with the solution and will be referred w as the proof-size of the solution, For those problems whose proofs
are long and whose search space has a small branching factor, charging less for the proof-size makes the
prover go deep into the search space to find the proof more quickly: it will enable the prover to get a rather
long proof within a small search bound. The second attribute is the size of a particular solution, which we
will call the solution-size of the solution. As we mentioned before, we need some method 1o guide the
prover so that the smaller subgoals are favored. By charging some for the solution size, searching along the

branch having large subgoals will be stopped earlier to favor ather branches having smaller subgoals.

Based upon these considerations, we provide two parameters, proof size_multiplier and
solution_size_multiplier. We will refer 1o them as psm and ssm respectively in what follows. The user
can adjust these two parameters depending on the nature and characteristics of the problems they are work-

ing on, The cost of a solution is calculated using the following formula:

-

Cost_of Solution=solution_size_multiplier xsolution_size +proof _size_multiplier xproof _size

Table 5 gives the statstics for the performance of the prover when these two parameters are set (o different
values. The blank entries indicate the prover's failure to obtain the proof for the comesponding problem
under the indicated seuing. The default prover uses 0.1 as ssm and 0.4 as psm. Setl uses 0 as ssm and | as

psm, Set2 uses 0.123 as ssm and 0 as psm. These sets of values, by the way, work well from our experi-

ence.

We can see that the prover performs reasonably well when only considering the proof size of the old
solutions while disregarding the solution size. But by only considering the solution sixe while disregarding
the proof size, the prover performs poorly and even fails 1o obtain some proofs. 11 is imeresting 1o note
that, sprin with default setup performs poorly on those problems on which it performs well when it uses
set]l, The examples are 1528, 1529, 1865, 1575, wosl3; wosi4, wosh, wos7, wos8 and wos9, It is instructive
to explain this. The fact that sprin performs betier when only considering the proof size suggests that, for
these problems, the solution size does not play impornant roles in controlling the search space. What it com-

mon about these problems is that they all have relanvely short proofs and the size of the subgoals in the

18

proofs are not very large either. For this kind of problem, it is a good idea to be able to search through the
search space for the smaller search bound as soon as possible. At smaller search bounds, the proof size is
more important than the solution size since the subgoals do not get very large anyway. The default prover
seems to have undercharged the proof size, thus leading the search astray. It seems that by only considering
the proof size, the prover would be able to find the short proofs more quickly than if it considers the solu-
tion size at the same time. The default prover performs better on wosl and wosl 1 than it does when using
setl. The reason is that, to prove these theorems, some big subgoals are generated during the search. By
setting ssm to 0, the prover has no way to stop this quick expansion of search space due to the large number
of big subgoals. By setting ssm o non-zero, the quick expansion can be better controlled. Table 5 also
shows that the solution size alone is not sufficient for controlling the search space expansion, The prover
rarcly performs better when using set2, except in the case of wosll which seems o be an peculiar case.
The prover seems to be very sensitive o any control over the size of the subgoals when trying (o prove
w511, The proof for wosl | is long and the subgoals tend to get big.

6. Forward Chaining and Backward Chaining

Sprin performs true Prolog-style backward chaining. By only performing backward chaining, sprin
realizes a complete search procedure. Nevertheless, combination of forward chaining and backward chain-
ing in one thegrem prover may help. With due considerations m’rhc fact that forward chaining is a funda-
mental and widely used problem solving strategy, lack of it may sometimes be a disadvantage. In many
cases, we find out that forward chaining is useful, One earlier version of sprin was implemented to perform
only limited forward chaining. The number of inferences was limited; the level of recursion during the for-
ward chaining phases was limited 10 one, i.¢., the prover only denved the goals that could be decomposad
into the subgoals already solved; and [orward chaining was performed only at the early stage of the proaf,
We first doubled the allowable inferences for the forward chaiming phases, just o get an idea how much
impact forward chaining might have. This simple change made a big difference in prover’s performance on
one problem. The prover took just over 100 seconds 10 prove some problem for which it used to take over

1,00%) seconds. For the later version of the prover where lorward chaining and backward chaining are both

performed during the whole course of proofs, the prover's performance is greally affected by the presence

19

of forward chaining, as shown by some data in Table 3 (wos10, wos11), Although these two examples are
not representative of the problems sprin may be presented to, it does suggest a class of problems in which
forward chaining may be helpful; i.e., those problems whose proofs may be long and require the prover to

go deep into the search space to obtain them.

The experiments we conducted convinge us that it is going to be useful o combine backward chain-
ing and forward chaining in the prover. This combination is certainly going to have great impact on the
prover's performance. What we need is some method to combine backward chaining and forward chaining
in such a manner so that they will paricipate in the whole course of proofs and their participation will help
the prover's performance. We ask two related questions. First, what is the best way o combine forward
chaining and backward chaining in the prover so that both forward chaining and backward chaining will
contribute during the whole course of the proofs. Second, how can we control forward chaining and back-
wird chaining so that a kind of balance will be achieved. The meaning of these gquestions will be beter

understood from the following discussion,

6.1. Alternation between Forward and Backward Chaining

The deduction system underlying sprin is a goal-onemied system. To use this deduction system, ane
starts with the top-level goal. If the confirmation of the top-level goal requires the confirmation of several
other goals, these will be attempted one by one, in the same manner as the top-level goal is being
attempied. This is the essence of backward chaining. We have mentioned that the prover exploits depth-
first neratve deepening search, Whenever a new search bound is established in the search process, it is
natural for the prover to start with the top-level goal using backward chaining. If the backward chaining
phase fails to confirm the top-level goal, there are two options for the prover. One option is to restart the
process of confirming the top-level goal with an increased search bound. Another option is to derive some
facts from the known facts before restarting. To adopt the first option, the prover will be performing pure
backward chaining, The second option suggests o natural method to combine forward chaining and back-
witrd chaining, To adopt the second option, the prover will derive some facts from the known facts before

auempting to achieve the top-level goal again. This may sometimes be helplul. Since the failure of the

20

prover to achieve the top-level goal in the backward chaining phase is due w the fact that the proof for the
top-level poal is o long for the current search bound: and forward chaining is not limited by the distance
between the subgoals and the top-level goal in the search space, some facts that are generated during for-
ward chaining, useful for achizving the top-level goal , may be o far from the top-level goal in the search

space (0 be reached by backward chaining phase with small search bound.

Sprin was subsequently changed (o incorporate the above idea. During the modification, we intro-
duced two flags, b_only and _enly, which direct the prover to do either only forward chaining or back-
ward chaining. Here, we are giving user the flexibility to choose the two options mentioned above. If the
b_only flag is not set, the prover will alternate between backward chaining and forward chaining phases.
As before, it derives all the goals that can be derived by only one level of recursion during the forward
chaining phases. By restricting the recursion level to one, forward chaining will be controlled so that not
many facts would be generated. We direct readers” attention to table 3 to see the effect of forward chain-

ing.

6.2. Balance between Forward and Backward Chaining

Two questions are raised at the beginning of this section. The first question concems how (o combing
properly forward chaining and backward chaining. We have discussed this question. Now the remaining

question is how to balance betwesn backward chaining and forward chaining.

The prover is in danger of the uncontrolled expansion of the search space. This danger is present
both in the forward chaining phases and backward chaining phases. Forward chaining runs out of control
more easily since the prover just denives all the facts it can from the known facts. By restricting the level of
recursion to one during forward chaining, we are eliminanng this danger (o some extent. However, experi-
ence shows that forward chaining still generates a large number of useless facts, leading the prover astray.
To further eliminate this danger, we experimented with other ideas. A lot of experimenis were conducted
on this topic, We have (o admit that better ideas are (o be conceived. The following 15 a summary of what

we have done and the resulls we have oblained.

The basic objective of our research is o balance and control forward chaining and backward chain-
ing 5o that neither of them get out of control, Our basic idea is summerized as follows. Sprin aliernates
between forward chaining and backward chaining. During each phase, as backward chaining or forward
chaining proceeds, the prover monitors the expansion of the search space. When the search space gets
larger, the prover will gradually decrease the size limit for the subgoals; thus the expansion of the search
space will be gradually stopped. The goal size limit function is a linear function of the "size” of the search
space. It also uses the current search bound. The important issue is how o measure the "size” of the scarch

space,

Use inference count. This experiment uses the inference count to measure the size of the search
space. It is based on the following considerations. First, it may help the prover’s performance to set a larger
goal size limit relative o search bound when the search bound is small. The subgoals are not likely o be
very large when the search bound is small; and it provides a better chance of finding a proof within a small
search bound 1o allow larger subgoals, Second, it seems 1o be reasonable (o maintain a larger and consiant
goal size limit for backward chaining, Third, :.w: should enforce more control on forward chaining since
forward chainmg can get out of control more easily. To control forward chaining, we set the goal size
limit to be large at the early stage of forward chaining and, as forward chaining proceeds, gradually reduce

the size limit 1o a constant fraction of the search bound. We formulated the following formula 1o calculate

the goal size limit.
ZxSIZE if backward chaining
. |SHEE if f counr <50
StzeLimit=10 sxs17E if f_count>150
Ll-—f_fﬂﬂﬂr xi otherwise

where SIZE is the current search bound: _count is inference count for forward chaining. 50 and 150 are
chosen since the prover does not require very many forward chaining inferences to obtain the proofs for
easy problems. This function has the effect of favoring backward chaining when the prover proves hard

prablems,

[
(3]

Use inference count revisited. In the previous experiment, we are not considering the expansion of
the search space based on the current search bound. This is because we are using the total inferences per-
formed in the forward chaining phases to determine the goal size limit. In this experiment, we oy 10
remedy this, Still using the number of inferences to measure the size of the search space, we control the
expansion of the current search space based on the size of the previous one. We use two similar formulac

10 calculate the goal size limit for backward chaining and forward chaining. For forward chaining, we use:

STZE xF | if F<F,
SizeLimit=SIZE>F , if F>F,
Fx(F=F3) FxF ~FxF, otherwise
JZE % -
S { F"Fi, 'FE_Fh

where F, F,.F | F, are constants; F is the ratio between the number of inferences performed since this for-
ward chaining phase starts and the number of inferences performed in the previous forward chaining phass.

For backward chaining, we use:

SIZE B | if B <8,
Sizelimit=<STZE %8 5 if B>B,
Bx(B-B,) B>B,-B q_:-:B;} otherwise

SIZE +
L 5,5,

where B, B, B .8, are constants; B is the ratio between the number of inferences performed since this
backward chaining phase starts and the number of inferences performed in the previous backward chaining

phase. By setting the four parameters o different values, we can have different functions,

Use number of solutions. It seems that the number of the solutions is a better indicator of the 2xpan-
sion Of the search space. One reason is that a larger number of solutions indicates wider expansion of the
search space. Large expansion of the search space 1s signified if there are a large number of solutions gen-
erated either during the forward chaining or backward chaining phase. Some control should be enforced to
limit it. Another reason is that the old solutions will be used later during the course of the proof. A larger
number of solutions indicates a greater possibility 1o have larger expansion at the later phases. Hence, it
seems o be reasonable to control the search space based on the number of solutions generated, In this

experiment, we control the goal size depending on the number of new solutions generated in this phase.

23

SIZE if §>P

SIZE x(2— %) otherwise

Sizelimit=

where § is the number of solutions generated so far since the current forward chaining phase or backward
chaining phase starts; P is maximum (20,0.5xN) where N is the number of solutions already generated
when the current forward chaining phase or backward chaining phase stants; SIZE is the current search
bound,

6.3, Overall Comments

We modified the prover to implement the above ideas, Although the prover does extremely well for a
few problems, more often than nol, it fails 10 get the proofs for some problems. Closer examinations reveal
that all the methods above seem to disciminate some parts of the search space. By examining the trace of
the prools, we discover that the prover proceeds normally at the beginning of each phase. After some point,
a large number of subgoals are rejected because the goal size limit has been decreased. This is the scenario
for all the methods above. Because of the Prolog-style depth-first search sprin performs and the predeter-
mined order of the input clauses, some pans of the search space will be explored by the prover with smaller
goal size limits, This explains the unsicady performance of the prover, For some problems, the prover can
find proofs withont searching those parts of the search space that would have been searched with smaller
goal size limits, For some problems, the prover always search some parts of the search space with smaller
goal size limits and these parts happen 1o be relevant for the proof. The prover is forced 10 search deeper
into the relevant parts of search space, while wasting a lot of effort search the irrelevant parts with large
goal size limits. We think a carefully chosen constant goal size limit will help the most in achieving rca-

sonably good and constant performance.

7. Conclusion

Sprin wms out to be a quite respectable theorem prover. The compaciness of the prover and the ease

of understanding it enable us 1o modify the prover casily to test different ideas. The prover can get many

relatively non-trivial theorems using the default setup. For harder problems, however, the user may nesd to
adjust the parameters and set the flags based on the characieristics of the problem to cbtain the proofs.
Some important characteristics of problems are the possible length of the proof, the possible branching fac-
wr of the search space, the relative importance of the input clauses and subgoals, the distribution of the
subgoals in the search space, etc. To nobody's surprise, the prover stll fails 1o obtain proaofs for some hard

problems,

During our research on the prover, we have appreciated the importance of "syntactc intelligence” in
theprem proving, i.e., king into consideration the syntactic properties of the problems such as the size of
subgoals, the number of vanabies and the number of function symbois in the subgoals. We have achieved
the most dramate improvements by adding some simple syntactic refinements like maxsize flag into the
prover. The parameter, solution_size_multiplier, is another example. In another extensive research, we
investigated the effect of dynamically reordering the subgoals during the proof process based on these syn-
tactic characteristics of subgoals on the performance of the prover. We have obained some interestng

results. However, we will not have room (o detail this research in this report.

More complex refinements, on the other hand, have failed 1o offer the improvements we have hoped.
The rescarch described in last section is an ¢xample. The lack of success in that resesrch is due to the fact
that the nature of the problems varies. Some of them can be solved more efficiently by backward chaining;
some, by forward chaining. There are probably as many patterns of search space expansion as there are
problems, Any scheme to control and balance forward chaining and backward chaining based on anything

less than the properties of individual problem is not likely Lo offer any improvemenis on a large scale. That

is the lesson we have learned.

We will bricfly mention gur current and future work on sprin. At present, we are working on includ-
ing semantics into the prover. Although some preliminary results have been obtained. more substntial
work needs w be done in this area. We feel that we need a better prionity scheme for the subgoals and the
solutions in the prover. At present, the prover uses the old solutions in the order they are stored, What we

need is some methods to identify the more promising solutions and prefer those solutions (o others. Beter

methods 1o use forward chaining are also one of the rescarch topics. We are also looking for possible appli-

cations for the prover.
References

[1] Plaisted, D.A. "A Simplified Problem Raduction Format™ Antificial Intelligence, 18 (1982) pp. 227-
261

[2] Plasied, D.A. "Non-Hom Clause Logic Programming without Contrapositives™

[3] Stckel, M.E <<A PROLOG Technology Theorem Prover: Implementation by an Extended PROLOG
Compiler>> Proceedings of the Eight International Conference in Automated Deduction, Oxford, England,
July 1986, pp. 573-587

[4] Stickel, MEE & Tyson, W.M. <<An Analysis of Consecutively Bounded Depth-First Search with

Applications in Automated Deduction>> IJCAT 1983, 1073-1075

[5] Loveland, D.W. <<Automated Theorem Proving: A Logical Base>> Chapter 6, North-Holland Pub-

lishing Company, 1978

[6] Plaisied, D.A <<Another Extension of Hom Clause Logic Programming to Non-hom Clauses>> Lec-

ture Notes, 1987

[7] Chang, C & Lee, R << Symbolic Logic and Mechanical Theorem Proving=> Academic Press, New
York, 1973

26

Appendix A -- Prolog code for the third implementation of discrimination Net

% top-level call o do insertion
%
dn_insert{{Term, Tag)) :-
copy(Term, Term1), numbervars(Term1,1, _j,
struct{Term, List), struct(Term1, Listl), ini{List1, List, Tag).

% top-level call o search a term.
%
dn_search{(Term. Tag)) :-
struct{Term, List), sel(List, Tag).

% top-level call to mitalize the discrimination net,

]
dn_init :-
clean_up(1},
{retract{nodeid(_)): wue), !, assert(nodeid(2}),
assert({in1({GLIGB], [LIB], T) :-
retract{nodeid(M}),
assembly(se, 1, [LIA], T1, 51), % scarch clause
assembly(se, M, A, T1. 52), assert((51 :- S2)),
assembly(in, M, GC,C, T1, 8}, % insen clause
asserta((inl{{GL1IGC], [L1IC), T1) :-
GL1=%GL. 1,8
IR :
; ingert(GB, B, T, M)
%
set_up(M) :-

assembly(in, M, [GLIGB], (LIB], T, S1),

assembly(se, M, [LIA], T1, 52),

assert((51 :- reraci{nodeid{M1)),
assembly(se, M1, A, T1, 53),
assert((52 :- §3)),
assembly(in, M, [GL1IGC], [L1IC], T2, §5),
assembly(in, M1, GC, C, T2, 54),
asserta((S5 :- GL1 = GL, L, §4)),
insen(GB, B, T, M1)

).

insert([GLIGB], [LIB], T, M) :-
set_up(M), M1 is M+1,
assembly(se, M, [LIA], T1, 1),
assembly(se, M1, A, T1, 52), assert{(51 :- 52},
assembly(in, M, [GL1IGB1], [L1IB1], T2, 83),
assembly(in, M1, GB1, B1, T2, $4),
asserta((83 :- GL1 =GL, !, §4)),
insert(GB, B, T, M1),

mserti[], [], T, M) :-
sel_up(M), M1 is M+1, asser(nodeid(M1)),
assembly(in, M, [], [1, T1, §1),
assembly(se, M, [], T1, §2),

27

asserta((S1 :- assent{52))),
assembly(sz, M, [, T, 53}, assert(S3).

clean_up(M) :-
nodeid(N), M < N,
name(se, L1),name(M, L.2)append(L1, L2, L3), name(S, L3), abolish(S.2),
name(in, J1)name(M, 12).append(J1, J2, 13}, name(], J3), abolish(1,3),
Ml isM + 1, clean_upiM1).
clean_up(_),

struct((L :- B), [LIB]).

% utility functions.

%

% yield a ground instance of a term.

%

numbervars("SVAR'(L), L, M) :- 1.
MisL+l.

numbervarsiTerm. K, M) :-
functor(Term, _, N),
numbervars(D, N, Term, K, M).

numbervars(N, N, Term, M, M) - L.
numbervars(l, N, Term, K, M) :-
Tis 141, arg(], Term, Arp),
numbervars(Arg, K, L), 1,
numbervars(], N, Term, L, M),

% make a copy of a term
%

copy(Old, New) :-
asserta(copy(Old)),

retract{copy(Mid)), !,
Mew = Mid.

assembly(Pre, 1d, Al, A2, A3, T) :-
name(Pre, L1), name(ld, L2}, append(L1, L2, L3), name(F, L3),
funcion(T, F, 3),
arg(1, T, Al), arg(2, T, A2), arg(3, T, A3),

assembly(Pre, 1d, A1, A2, T) :-
name(Pre, L1), name{Id, L2}, append(L1, L2, L3), name(F, L3),
functor(T, F, 2);
arg(1, T, Al), arg(2, T, AZ)

Appendix B -- The Performance Statistics

Five 1ables are given in this section, These tables contains the performance data of the prover using
the different parameters, flags and data structures. Most of the problems are from [3]. Included are also the
9 problems form [8]. Three different versions of the prover are used to obtain these data. Although the
most recent vession does not give the best performance for all the problems, it does obiain proofs for a
larger number of problems. The two earlier versions have failed 1o do so. Data in Table 1 are obtained
using the earliest version of sprin where only a small amount of forward chaining was performed, Data in
Table 2 are obtained using a more recent version, with the maxsize flag set. It should be pointed out that the
marsize Nag contibuted the most 10 the beautiful performance of this version of the prover, Data in other
tables are obtained using the most recent version of the prover. The machines on which tests are run are

indicated in the tables,

29

N VAX-
Yemwm Version 111

14.88 1322
29.52 2445
1688.37 375585
1.30 1.2
3.37 302
35 a7
755 3.68
8922 .40 I8T195
398 3.00
14.78 FL17
835 633
16.50 13.13
.23 127
20728 135.85
. 230 213
1s106 1.2 250 240 218
lsill 1.2 .40 240 213
1517 19.65 3528 1145 325
1523 56.52 99,15 8.7 6175
26 10 28,00 26.27 2545
=28 1103.82 1123.63 111590 1101.85
o35 024 30.01 26,08 23.00
ls4] 14,78 2697 2475 2153

1s5 2.12 M2 S 3.00 2
1155 42.18 68,42 60.55 34.57
1363 36.42 63.25 56.41 5025
g w in B 10 583 412
nerm 439 6.70 623 550
prim 6.57 10.56 03z Bsg
qw 27 4,35 4.40 3.82
rob L2 1.35 1.35 1.43
rakl 10,55 17.57 607 13.60
schubert, abst &77.10 1168322 1067 .50 297,50
shonburst 737 14.55 1342 10:52
wosll) | 645,55 231913 1930.50 180130
wasll 4,75 6,82 6.85 392
wosl] 48,71 98.93 §7.55 £1.25
won 14 43.22 64.67 61497 50.30
wiosd 1.63 1.87 1.80 153
Wil 20857 3662.00 3233.61 280283
wor T 468.07 me? 528.83 S00.47
woid 4238 9723 96.26 90.35

Average slowdown with respect 1o prover without discrimination net:

Version 1: 56.17%. Version 2: 45.98%. Version 3: 27 38%

30

Thearem

cpu time(VAX) | Cached Goals || cpu time(VAX) | Cached Goals
ances] 16.50 53 17.30 24
barstall 835 27 9.7 &
dhabbp 851374 144 8591.79 107
&m £33 8 7 4
ewl v 9 295 5
ewl 302 10 47 5
ewd .40 19 733 3
cil 1173 8 13,00 4
ol 11.50 12 12.45 3
cl3 £.20 10 6.60 4
cl4 B2 9 6,60 4
cls 0.67 0 072 i
cl6 693 -] 197 3
cI7 4.20 11 4.57 5
cl8 13.62 27 14.65 1]
ci% 10.83 26 11.58 12
example 5503 108 59 44
groupl 64.12 9 70.50 5
groupl 11.23 12 1195 x|
hasparis] 467 10 4.45 4
haspartsd 15715 32 16.02 7
151040 112 2 1.18 r
15103 33.38 63 3.5 36
Is105 1.90 5 1.90 5
I=106 175 4 .77 4
Isiil 1.90 5 1.95 X
k17 18.02 9 1873 10
1323 161.55 16 169.27 g
1526 308] B.34 3
[s28 86,23 . I8 86,85 6
1535 78.05 7 A31.45 3
1541 4.12 5 4,27 3
a5 N B 15 3
1s55 TO2x2 b TL72 4]
=68 45.12 21 4908 11
mgw 233 8 in 3
oum1 417 1 451 5
prim 11.58 1}] 11.85 3
gw .83 7 2.90 4
rob] 3.67 g 4,07 3
rab2 1223 12 13.23 3
schubert.absi 247.56 185 23847 109
shartburi 352 1.1 4.20 13
wos 3252 14 34.53 B
was 10 101.13 %0 105.45 7
wosl2 188 102 4.15 10
wosll 578 7 618 3
wosld 4003 23 4200 8
wos2 16.07 24 16.67 &
wosd i 3 1.85 3
Wit 430,07 33 46548 12
wosT 168,07 32 17210 15
wish 072 15 10.80 5

Average slowdown with clause elimination: 5.68%.

Average ratio between the numbers of cached goals: 0,46,

kil

I defanis proves prover v b_only set
! epuime(SUN3) | wference | sorage(KD) | i |_socsee{Kb) |
ETENE palici

| ances] 1227 | n 5.0 857 a i1e
burnall TR a3 .7 9292 3%)
zhabhp 445 190 9.7 158,08 imn 1449
4m 113 5 153 L.18 & £53
ewl 193 8 ET 1.43 & 855
awl 128] 243 55 4 842
ewl 4.62 15 L1 %) 260 T £65
el LT |] i3 L7 & 857
cl2 19,30 259 6.2 20 288 584
M 1.4 p] 851 297 o) 86.2
al4 347 W 554 L3 prac] £6.3
als g2 4 154 42 4 55
clf L 57 §5.0 1.53 8 5.9
el? 157] LI 1.60 5 6.5
cld 9.60 =] 49,3 593 -] 502

| el iz80 0 W1 628 16 8.3
uu?h 4584 236 .3 a4 [il a3
fead 25062 [o0z 199 018 1478 266,38
groupl 1Li7 | (] i1 115 -1 841
groun? mie | 4.1 712 288 383
haspara | £8T | b] £7.3] 7 69
Rasparal 340 5 L9 iy 15 92
T T2 4 T4 0 a 361
103 3050 i3] 12155 m 1142
T8 L £ 9.7 L.10 5 w7
wiig 1.0 5 07 L! 5 98
Bill Lo 5 208 112 5 599

| ulls £3.53 200 k] aon 110 042
u17 1660 76 0y £90 26 0.5

| a23 41.58 235 LRE] 5157 253 919
La28 24.67 199 5.6 1.3 7 877
e s 1117 214.0 31,03 155 1007
e 57783 a4l .4 168,72 451 125.3
(FEL] 41.88 115 RE.1 20,80 12 590
st 1208 il - 91,5 1292 50 915
115 1.95 5 457 1.57] R5.6
la55 S0.72 169 18 50,42 169 1025
Lol 4408 1 10,7 &7, 80 91 101.7
la75 1OTA95 e 170:2 124,10 5082 nan
iy 208] 14.2 1.67 5 g6
fml 252 17 B4.0 1.3 6 859
pam 5.20 v 8455 15 M §3.3
g = 1 §5.2 17 11 f41
mbl () 3 B4l 155 3 856
bl 1968 9 (213 4.1 o) L
schubert.atal N0z 353 1215 169.592 474 vk
shomba 155 2 865 1.5% T 166
— 168.57 583 1172 165.09 57 1163
woalll 52192 478 165.0 I6TTA B0 2065 4.6
wosll 150257 2001 1989 1850.63 386 1518
woa |2 18 3 LIRS 1] 320
woald 176588 ks 176 L o) 362 1167
wosld 169802 4104 1336 164,17 HET 170
woad TLEE a1 105.6 nmn FL]| 948
wand 123 g 903 LA 9 S5
wosh 546,93 TEdG 551.8 570 671 981
won 11LAS 143 117.3 1273,50 086 1667
wonk | Bke. 70 4120 1320 11,57 115 94.8

| woa 13843 |67h 149.5 296,57 1671 1314

| Leti3 Aot found 132,85 i 1Ly

Three average ratios between the pariormance data of the default prover and the performance data of
the prover with b_only set: for cputime, 1.33; for inference, 0.95; and for memory, 1.06. When b_only is
sct, the prover performs better on 31 out of 39 probiems with the average speedup of 53.8%: it performs
worse on 10 out of 59 problems with the average slowdown of 135.6%; it performs the same as the default

prover does on the remaining 18 problems.

32

T% % %E data with
- | prver prover wilh MaLITE ot
cputime(SUNY) | inference | proof sive | inference | proof sire |

sl 1247 n 18 14,63) 18
urmzall T.08 %] T 722 50 7
dhating 26,45 150 3 5997 ny 14
dm 133 6 5 88.22 35 4
owl 1.92] 7 215 & 7
cwl 1.2 - 7 145 5 ¥
ewld 462 15 it 51 15 11
eil 117 & 5 5594 250 11
o2 19.30 = 9 1237 e 9
eld !] b | 7 5355 F- g
ke 347 0 T 43 = L
cls 5 4 5 E) 4 5
i 14.20 157 T .00 n ¥
o? 157 16 i 7. = 1
] .60 L] 1L 1.2 &4 11
ol 1280 40 9 1488 an 3

45 44 i’ 14 £5.40 236 e
fextid 830,62 1002 18 340,53 436 14
groupl LT & -1 198,12 55 i
groupd 1590 e @ 1298 127 9
hasparis! 4.87 i 9 148 0 ¥
hagpariad 940 54 i1 1392 " 13
Ls1 00 a2 4 5 §2 4 5
Ls103 050 1w L4 1094 w 14
105 103 3 5 11 5 5
Lol 0% 110 5 5 e 3 -] 5
il 110 5 L] .52 5 5
115 | 15 xn 11 47.72 ™ 1
7 ! 16.60 76] 1778 &0]
is33 4154 i T £R4.67 1608 9
Is26 6T) T 457 b 1§ o
128 s 1y T .25 253 14
1825 T3 Bl 7 8,00 m 14
1535 4148 k] 3 §5.42 786 1l
] 1298 1] 5 162 n 5
1§ 1,95 i T r g 5 7
33 50.72 e 5 044,98 22484 g
] 25,03 b 1 5 S187 139 T
7% 1076.95 3aa 7 9 1855 5
e Lis 5 7 L33 5 7
ourml 152 17 T &65 £ 41
i 520 12 9 &13 - 4
qu 325 1 9 in n 9
robl 1.0 k T imn | i3
b2 1968 e] 2 1168 132 9
schubert abst .02 953 24 24130 247 -
shambarn 155 24 T 165 19 T
wis | 169,17 653 7 150157 a2 4
woald §21.92 W78 7 66,82 438 9
win 2 3.8 36 5 258 26 5
w1 [765.89 Rl 7 517 s 7
o 14 160802 4104 T M2 252 11
woal To88 ad) T 1363 a7 ¥
wond i] 5 1.5% 9 5
wond 554693 7596 7 21200 1138]
wos] EEEl L] 1431 7 915496 21075 il
womd 165670 4120 1 1 By T
——— 8342 Y 1 1953 571 ki
1355 nox 11132] 3
wom] 150287 | asmy | 7 o found

Three average ratios between the performance data of the default prover and the performance data of
the prover with maxsize set: for cpulime, 1.33; for inference, 5.30; and for proof size, 1.25, When maxsize
is set, the prover performs better on 27 out of 58 problems with the average speedup of 51,1%: it performs
worse on 15 out of 58 problems with the average slowdown of 1753.1%; it performs the same as the

default prover does on the remaining 16 problems.

33

S&lmﬂ.ﬂ}

Theoress
Cparime{STINF} | Inference

mnces| 1247 n 1473 n ha3 14
‘burstall 7.08 43 1353 129 752 (]
dbabkp 645 190 9702 553 2333 99
dm 113 & 113 L] e 4
awl 192 [1.50 & 152 &
ewl 128 5 128 5 128 s
ewd 462 15 458 15 458 15
el LI7] Li2 L] 547 as
ez 19.30 ot] b1 % - 508 572 123
el i - | 330 = in w
e 147 k] 345 k1] 345 30
= 5 4 52 4 32 4
Bt 1420 L] 1412 157 5025 T
a7 57 16 5 16 242 i
cif .60 - 1nn §1] 648 L=}
9 1250 40 11.58 3% 1018 2
example 45 54 il 250,07 m 6127 mn
feadi2 15062 1002

gropl 117 L] .15 L] 1953 20
groupd 19.30 9 %82 S0 268 1
hasparts] 487 bl 447 30 433 2
haspans? f.40 4 575 1% 830 28
1=100 i | 4 & 4 a0 4
5303 050 1% nn G 1182 147
1n10% 1.03 5 110 L ! 1.13 5
1ki06 1.10 5 1,10 5 112 5
sill 1.10 3 1.03 5 1.10 5
18115 §3.53 . 1] 1] 157 £1.85 9
w17 16.60 76 .00 j 1) 1683 78
23 415 pal 3 .3 2 SA.10 an
152A 67 199 MR 16 32440 1722
1528 Ti5.22 1117 195,75 Sl

1a20 §77.03 1 182,00 453

1835 4148 136 R LE:5 152 12 £76
Is4{ 1204 L1} 1312 T3 9.95 a4
15 1.5 § §50 5 1.90 5
1455 50.72 o “n T 5657 ans
1a65 92750 3007

1868 48.0% 1| 4400 it | 41,32 270
1575 176,95 Hug 55077 1566 3038.50 5318
mqw 214 [} 218 % I8 5
aurnl 152 17 2145 1 247 7
prim 520 n e 162 b4 35
qw 128 1 T.43 40 320 1t
robl 1.O¥ 3 1.08 3 .07 3
b 19,60 9 3922 508 968 133
schubertabat 208,02 953 B2 1710 22350 977
Aharimimg 155 Y 168 bl 145 %
was] 16917 £33 171593.50 12192

won 0 2192 TR $571.55 21081
woall 1502.87 4901 31928] 1287 126
woill iz 5 37 1 113 15
wos 13 1785558 L2 1n 509

wosld 189802 2104 117 5430

wos? L8 243 15.40 wm £1478 247
w3 1.2] 1.18 L] 118 %
womi 154693 TROA (L b] T

w7 MES 1431 1370 T4 5166 9516
wond 16596, 70 4120 12267 i64

word ME4Z 1676 14360 932 15670 1392

No average data will be calculated because of the many cases of failure.

34

