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Marc Levoy. Display of Surfaces from Volume Data (Under the direction of Henry Fuchs.)

ABSTRACT

Volume rendering is a technique for visualizing sampled scalar fields of three spatial
dimensions without fitting geometric primitives to the data. A color and a partial transparency
are computed for each data sample, and images are formed by blending together contributions
made by samples projecting to the same pixel on the picture plane. Quantization and aliasing

artifacts are reduced by avoiding thresholding during data classification and by carefully resam.

pling the data during projection. This thesis presents an image-order volume rendering algo-
rithm, demonstrates that it generates images of comparable quality to existing object-order algo-
rithms, and offers several improvements. In particular, methods are presented for displaying iso-
value contour surfaces and region boundary surfaces, for rendering mixmres of analytically
defined geometry and sampled fields, and for adding shadows and textures. Three technigues for
reducing rendering cost are also presented: hierarchical spatial enumeration, adaptive termination
of ray macing, and adaptive image sampling. Case studies from two applications are given: med-
ical imaging and molecular graphics.
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CHAPTER I
INTRODUCTION

Visualization of scientific and medical data is a rapidly growing feld within computer
graphics. A large subset of these applications involve sampled scalar fields, also known as
volume data, Surfaces are commonly used to visualize volume data because they succinctly
present the 3D configuration of complicated objects present in the data. In this thesis, we explore
the use of isovalue contour surfaces to visualize molecuiar electron density maps and the use of
region boundary surfaces to visualize computed tomography (CT) and magnetic resonance (MR) .
data. Although we focus on display of surfaces, the algorithms described in this thesis can be
modified to render partially transparent volumes as well.

Previous techniques for displaying surfaces from volume data fall into two broad
categories: surface-based techniques in which geometric surface primitives are fit 1o the sample
array, and binary voxel techriques in which the sample array is converted into a binary voxel
representation and projected directly onto the picture plane. Both approaches require making a
binary classification of the incoming data. In the presence of small or poxxly defined features,
error-free binary classification is often impossible. Errors in classification manifest themselves as
visual artifacts in the generated image. These anifacts are ubiquitous, distracting, and have hin-
dered acceptance of these visualizations by the user community.

This thesis explores a visualization technique called volume rendering which is closely
related to the binary voxel techniques, but does not require binary classificaton of the data.
Images are formed by compuling a color and partial transparency for all data samples and blend-
ing together contributions made by sampies projecting to similar points on the picture plane. The
omission of a binary classification step does not preclude the dispiay of surfaces as will be
demonswated. . The key improvement offered by volume rendering is that it provides a natural
mechanism for representing classification uncertainty and thus for displaying small, weak, or
fuzzy features.!

Chapter 2 surveys previous techniques for displaying surfaces from volume data, presents a
new volume rendering algorithm based on ray tracing, demonstrates that it generates images of
comparable quality to other volume rendering algorithms, and describes techniques for displaying
isovalue contour surfaces and region boundary surfaces using the new algorithm. The material in
this chapter first appeared in (Levoy87). In its present form, it represenis the union of
{Levoy88a) and [Levoy88b).

Chapter 3 presents two techniques for waking advantage of spatial coherence in volume data
to reduce the cost of tracing a ray: hierarchical spatial enumeration and adaptivé termination of
ray tracing. The speedups obtained using these optimizations are highly dependent on the depth
complexity of the scene. For the datasets studied, combined savings of up o an order of

UThere is currently some confusion in the literature regarding the terminology used to describe these Lechniques.
Volume rendering has been defined in the image processing field to encompass any display method based on overpainting
of voxels. In the computer graphics literaiure, it has came to denote only techniques based on blending of semi-
transparent voxels. This thesis follows computer graphics usage A more specific term, volumelric compositing, is
reserved for that portion of & volume rendering algonthm specifically related 1o the blending caleulagons. Funher disaus-
sion of this issue can be found in [Reynolds89, Levoy89b).




magnitude over brute-force algorithms have been observed. These techniques were first reported
in [Levoy88c) and are summarized in [Fuchs89a) and [Fuchs89¢].

Chapter 4 discusses the use of adaptive image sampling for taking advantage of spatial
cohersnce in images generated from volume data to reduce the number of rays raced. The tech-
nique can also be used o progressively refine image quality over an interval of time. Using this
approach, speedups of up o an order of magnitude with little degradation in subjective image
quality have been observed. The technique first appeared in [Levoy88d], will appear in revised
form in [Levoy89d), and is summarized in [Fuchs8%a] and [Fuchs89¢c).

Chapter 5 presents two techniques for extending volume rendering 1o handle polygonally
‘defined objects. The first method employs a hybrid ray tracer capable of handling both geomewic
and volume data. The second consists of 3D scan-converting the geometric primitives into the
volume dataset and rendering the resulting ensemble. Techniques are also described for casting
shadows through mixtures of geometric and volume data and for adding texmre to volume
renderings. This material was first reporied in (Levoy88e] and is summarized in (Fuchs89a] and
[Fuchs89¢]. :

Chapter 6 compares the algorithm presented in this thesis with the approach taken by
researchers at Pixar, discusses some of the unsolved problems in volume rendering, and suggests
topics for future research. Portions of this material first appeared in [Levoy89a) and will appear
in revised form in [Levoy89c¢c, Fuchs89a, Fuchs89b, Fuchs89c].




CHAPTER I
DISPLAYING SURFACES FROM VOLUME DATA

2.1. Background

The curmrently dominant technique for displaying surfaces from volume data consists of
applying a surface detector W the sample array, fitting geometric primitives to the detected sur-
faces, then rendering the resulting geometric representation. These swrface-based techniques
differ from one anather mainly in the choice of primitives and the scale at which they are
defined. In the medical imaging field, 2 common appreach is to apply thresholding to the
volume data. The resulting binary array can be rendered by ueating 1°s as opague cubes having
six polygonal faces [Herman79). -This approach has been termed the cuberille model [Chen85).
Alternatively, edge tracking can be applied on each slice 0 yield a set of contours defining
features of interest, then a mesh of polygons can be constructed connecting the contours on adja-
cem slices [Fuchs77, Pizer86]. For displaying isovalue surfaces, polygons can be fit to an
approximation of the continuous scalar field within each voxel [Lorensen87, Cline88]. Other
techniques based on fitting of geomewric primitives are surveyed in (Herman82].

Another broad category of methods for displaying surfaces from volume data are the birary
voxel techniques in which data sampiles are mapped directly to image pixals, omitting the inter-
mediate geometric representation. Hidden-surface removal is commonly implemented by thres-
holding the data and painting voxels in back-to-front [Frieder5) or front-io-back {Gardon35)
order., Allernatively, rays can be mraced from an observer position through the data, stopping
when an opaque object is- encountered (Goldwasser8S, Goldwasserfi6a, Schiusselberg86,
Trousse®7, Hochne87, Hoehne§8a), Because volume data samples, unlike geometric primitives,
have no defined extent, resampling becomes an important issue. Zeroth or first order interpola-
tion is commonly used. If the binary representation is augmented with the local grayscale gra-
dient at each voxel, substantial improvements in surface shading can be obuined [Hoehne86,
Goldwasser86b, Schiusselberg86, Tronsset87].

All of these techniques suffer from the common problem of having t0 make a binary
classification decision at some stage of the rendering process: either 2 surface passes through the
current voxel or it does not. Since classification is performed on a bandlimited representation of
the original scene, small or poorly defined features are often incorrectly classiied When the
results of the erroneous classification are displayed, they appedr as image artifacts, specifically
spuricus surfaces (false posidves) or erroneaus holes in surfaces (false negatives).

To aveid these problems, researchers have begun exploring volume rendering, a variant of
the binary voxel techniques in which a color and a partial opacity is assigned to each voxel.
Images are formed from the resulting colored semi-transparent volume by blending wgether vox-
els projecting to similar points on the picture plane. The omission of binary classification does
not preclude the display of surfaces. The key improvement offered by volume rendering is that it
eliminates the necessity of making & binary classification of the data, thus providing 2 mechanism
for displaying poorly defined feawres,

Early predecessors of this technique include the use of structured systems of particles or
poinis 10 model smoke [Csuri79], fire [Reeves83], vegetation [Reeves83), and geometnically




defined surfaces (Catmull?74, RubinB0, Levoy85]. More closely related to the present technique
is the use of spatially ordered volume densities to mode! clouds (Blinn82] and other atmosphcnc
phenomena (Kajiya84).

Researchers at Pixar, Inc. of San Rafael, Califomnia appear to be the first to use volume
rendering. Their technique was demonstrated publicly at NCGA "85, described in general terms
in [Smith87], and presented in detail in [Drebin88). It consists of estimating occupancy fractions
for each of a set of materials that might be present in a voxel, computing from these fractions a
color and a pamal opacity for each voxel, geometncally wransforming each slice of voxels from
object-space o l.mage-space projecting it onto the image plane, and blending it together with the
projection formed by previous slices.

The algorithm presented in this chapter was developed independenty of Pixar’s. It is simi-
lar in general approach, but computes colors and opacities directly from the scalar value of each
voxe! and renders the resulting volume by tracing viewing rays from an observer position through
the dataset. It is not clear that omission of an explicit intermediate material occupancy represen-
tation imposes any fundamental timitations. The use of an image-order rather than an object-
order rendering algorithm hag significant advantages, however, as will be demonstrated in
chapters 3 and 4. A more comprehensive comparison of these two approaches is given in chapter
6. : ‘ _ :

Recent advances in volume rendering include alternative shading models for displaying sta-
tistical properties of datasets [Sabella88], more accurate visibility calculations for displaying
numerical simulation daia [UpsonB88], a paralielizable object-order volume rendering algorithm
[Westover89], and application of volume rendering techniques 1o dmgnosuc udxology [Scoti87,
Fishman87].

22. Brute-force rendering algorithm

The remainder of this chapter is devoted to consideration of the brute-force volume render-
ing algorithm outlined in figure 2.1. We begin with & 3D array of scalar values. Depending on
the application, preparation of this amray may require a aumber of pre-processing steps such as
correction for non-orthogonal sampling grids in electron density maps, correction for padent
motion in computed tomography (CT) data, contrast enhancement, and interpolation of additional
samples. For simplicity, let us assume that the array forms & cube measyring N voxels on a side.
In this thesis, we treat voxels as point samples of a continrous function rather than as volumes of
homogeneous value. Voxels are indexed by a vecior § = {(ijk) where ijk=1,... N, and the
value of voxel i is denoted AI). This array is used as input 10 the shading model described in
‘section 2.2.1, yielding a color C(i} for each voxel. Coler is either a scalar (producing a mono-
chrome image) or a three-component vector (red, green, blue); both are used in this thesis. In a
separate sizp, the array is used as input to one of the classification procedures described in sec-
ton 2.2.2, yielding an opacity ai) for each voxel.

Parallel rays are then traced into the data from an observer position as shown in Ggure 2.2,
Let us assume that the image is a square measuring P pixels on a side, and that one ray is cast
per pixel. Pixels and hence rays are indexed by a vector u = (u,v) where uy=1,... P, For
each ray, a vector of colors and opacities is computed by resampling the data at W evenly spaced
locations along the ray and trilinsarly interpolating from the colors and opacities in the sight vox-
els surrounding each sample location as shown in figure 2.3. Samples are indexed by a vector
U= (u,v,w) where (i,v) identifies the ray, and w= 1, ... ,W corresponds to distance along the
ray with w= ] being clossst to the eye, The color and opacity of sample U are denoted C(U)
and a(U) respectively. Finally, a fully opaque background is draped behind the dataset, and the
resampled colors and opacities are composited with each other and with the background as
described in section 2.2.3 to yield a color for the ray. This color is denoted C(u).




2.2.1. Calculation of voxel colors

Using the rendering algorithm presented above, the mapping from scalar value to color pro-
wides 3D shape cues, but does not participate in the classification operation. Accordingly, a
shading model was selected that provides a satisfactory illusion of smooth surfaces at a reason-
able cost. The model chosen is due to (Phong75):

1

Ly
i) = ek dd [ Coky + E C [k.(N(I)'L:) + k{N(i)H, "] 2.0

for parallel light sources s=1,, .. .S where
(i) = color of voxel i,

€, = color of ambient light -source.

C, = color of light source s,

k, = ambient reflection coefficient of surface,

ky = diffuse reflection coefficient of surface,

k, = specular reflection coefficient of surface,

r = ¢xponent used W approximate specular highlight,

k,, k; = constants used. in linear approximation of depth-cueing,
d(l) = perpendicular distance from voxel i to the observer,
N(@) = surface normal at voxel i, |

L,= non'né.lized vector in direction of light source s,
H,= surf#ce normal yielding maximum highlight due to light source 5.

Since parallel light sources are used, the L,'s are constants. Furthermore,

V+L,
H,= V+L,1
where

V = normalized vector in direction of observer.

Since an orthographic projection is used, V and hence each H, is constant. Finally, the surface

normal is given by
()
N® = T




where the gradiant vector VAi) is approximated using the operator
VA = VAijL =

[-2‘- (i1 = =170, + [0 - fi-10). % [ -ﬂi#-l)]]-

2.2,2. Calculation of voxel opacities

The mapping from acquired data to opacity performs the essential task of surface
classification. We will first consider the rendering of isovalue contour surfaces in electron den-
sity maps, i.e. surfaces defined by points of equal clectron density., Next, we will consider the
rendering of region boundary surfaces in computed tomography (CT) and magnetic resonance
(MR) data, i.e. surfaces bounding tissues of constant CT or MR number.

2.2.2.1. Isovalue contour surfaces in electron density maps

Determining the structure of large molecules is a difficult problem. The method most com-
monly used is ab iniio interpretation of electron density maps, which represent the averaged den-
sity of a molecule’s electrons as a function of position in 3-space. These maps are obtained from
X-ray diffraction studies of crystallized samples of the molecule [Glusker8S}. Current methods
for visualizing electron density maps include stacks of isovalue contour lines, ridge lines arranged
in 3-space s0 as 10 connect local maxima [WilliamsSZ] and basket meshes representing isovalue
contour surfaces (Purvis86).

One obvious way to display isovalue contour surfaces directly from a sample array is to
opaquely render all voxels having values greater than some threshold. This produces 3D regions
of opague voxels the outermost layer of which is the desired isovalue surface. Unfortunately,
this solution prevents display of multiple concentric semi-transparent surfaces, a very useful capas
bility. Using a window in place of a threshold does not solve the problem. If the window is too
narrow, holes appear. If it too wide, display of multiple surfaces is constrained. In addition, the
use of thresholds and windows introduces artifacts into the image that are not present in the data.

The classification procedure employed in this thesis begins by assigning an opacity a, to
voxels having selected value f,. and assigning an opacity of zero to ali other voxels. In order to
avoid aliasing artifacts, we would also like voxels having values close to f, to be assigned opaci-
ties close 0 a,. The most pleasing image is obwined if the thickness of this transition region
stays constant throughout the volume, We approximate this effect by having the opacity fall off
as we move away from the selected value at a rate inversely propomonal to the magnitude of the
local gradient vector,

This mapping is implemented using the expression

1 if IVADI = 0 and A) = £,
: v )
o) =0, {1- -~ :f fo(fgu | i 19701 > 0 and 1) = AVADI S £, S0 + AV (22)
0 otherwise

where r is the desired thickness in voxels of the transition region and the gradient veclor is
approximated using the operator given in section 2.2.1. A graph of a(i) as a funcuon of f{i) and
IVAi)l for typical values of f,, o, and 7 is shown in figure 2.5.




If more than one isovalue surface is 1o be displayed in a single image, they can be
classified separately and their opacities combined. Specifically, given selected values
foon=1... N N2I, opacities ©x, and transition region thicknesses r,, we can use equation
(2.2) to compute @, (i), then apply the relation

N
G} = 1 = [T (A = &) (2.3)

|

2.22.2. Region boundary surfaces in 3D medical data

From a densitometric point of view, the human body is a complex arrangement of biologi-
cal tissues each of which is fairly homogeneous and of predictable composition. Clinicians are
mostly interested in the boundaries between tissues, from which the sizes and spatial relationships
of anatomical features can be inferred.

Although many rescarchers use isovalue contour surfaces for the display of 3D medical
data, it is not clear that they are well suited for that purpose. The reason can be explained
briefly as follows. Given an anatomical scene containing two tissue types A and 8 having values
f,‘ and f;' where f',. < f.,,. dawa acquisition will produce voxels having values fli) such that
£  SAD s/, Thin features of tissue type 5 may be represented by regions in which all voxels
bear values less than £, . Indeed, there is no threshold value greater than f, guaranteed w0 detect
arbitrarily thin regions of type B, and ihresholds close to f,,d are as likely to detect noise as sig-
nal. '

The procedure employed in this thesis is based on the following simplified model of ana-
tomical scenes and the CT (or MR) scanning process. We assume that scenes contain an arbi-
trary number of tissue types bearing CT numbers falling within a small neighborhood of some
known value. We further assume that tissues of each type touch tissues of at most two other
types in a given scene. Finally, we assume that, if we order the types by CT number, then each
typs touches only types adjacent 1o it in the ordering. Formally, given N tissue types bearing CT
numbers f,,a=1.... N,N21 such matf.~<f,__l,m= 1.... . N-l, then no tissue of CT
number f.,_l touches any tissue of CT number f.&. Ing~ngl > 1.

If these criteria are met, each tissue type can be assigned an opacity and a piecewise linear
mapping can be constructed that convens voxel value f, to opacity «, , voxel value f, 10 opa-
city a, ., and intermediate voxel values to intermediate opacities. Note that all voxels are typi-

cally mapped to some non-zér opacity and will thus contribute to the final image. This scheme
insures that thin regions of tissue will sull appear in the image, even if only as faint wisps. Note
also that violation of the adjacency criteria leads to voxels that cannot be unambiguously
classified as belonging to one region boundary or another and hence cannot be rendered correcuy
using this method.

The superimposition of multiple semi-transparent surfaces such as skin and bone can sub-
stantially enhance the comprehension of CT or MR data. In order 10 obtain such effects using
volume rendering, we would like 10 suppress the opacity of tissue interiors while enhancing the
opacity of their bounding surfaces. We implement this by scaling the opacities computed above
by the magnitude of the local gradient vector.

Combining these two operations, we obtain a set of expressions
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- forr=l,... N=-1,N 21l The gradient vector is approximated using the operator given in sec-

gon 2.2.1. A graph of a(i} as a function of f{i) and IV/G)! for three tssue types A, B, and C,
having typical values of f, , fu,. fos O, O, 30d @, is shown in figure 2.6.

2.23. Volumetric compositing

The blending of colors and opacities along a viewing ray is performed. using volumetric
compositing, an approximation to the visibility calculations required to render a semi-transparent
gel. The following deveiopment is sdopied loosely from [Blinn82), The visibility method
derived in [Sabella83] for a varying density emitter follows similar lines. Let us define a gei as a
tranisparent medium in which .2 large number of opaque spherical particles of fixed radius, non-
uniform distribution, and varying reflectance are suspended Our approximation considers the
effect of inter-particle studowmg along the line of sight, but ignores mter-pamcle shadowing
along lines of illumination and ignores inter-particle scatiering,

Figure 2.4 shows the rectangular beam defined by projecting a pixel through image space.
Let us decompose this beam into slabs numbered 1 through W, front-to-back, each having unit
volume. Let us furthdr assume that the density and brightness of particles in a single slab is
fixed, i.e. slab w in the figure contains exactly a,, randomly distributed particles of radius p and
brightness B,.. Let us now consider the brightness due (o 2 a cylindrical sub-beam of radius p as
shown in the figure. The intersection of each slab with the sub-beam defines a sub-siab having
volume V,. If the density of particles in each slab is low, and we consider a particle to lie in a
sub-siab. only if the parucle center lies within the sub-slab boundaries, then the probability that
‘one or more particles occupies sub-slab w is given by the Poisson density

POOV) =1~ POV) =l =™, 25

If there are one or more particies in sub-slab w and no particles in sub-siabs 1 through w1, then
the brightness seen at the top of the cylinder will be brightness 8, Since each slab is indepen-
dent, the joint probability of this event is given by

POOVLOV,, .. . Vo) = POV PEOV,) - - - PQOVi) = (1 = e""")f[‘le"""‘. 28
The expected brightness due to the entire rectangular beam is then given by
B= ): [B..(l - }:[le ] ' oXe)
Volume ierms drop out because they sum (o unity.

We can simplify this expression slightly by defining the opacity a,, of unit volume slab w
using the exponeneial relation [Johns83]

Go=l-eg, 2.8
Substinzting, the expected brightness is now given by
W w={

8=3, {B..G. [Ta- Ou)] (2.9}
wa| ol
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wOL =B el O et B =y, ) (2.10a)

where
w=qy el + aw(l -qa,..., u—l) (2-1%)

.....

This formula appears frequently in the image compositing literature [Levoy78, Wallace81,
Porter84] as a method for combining colored partially transparent 2D images. The laner two
papers derive alternative formulations for compositing from back to front or from front 1o back
(as above) with equivalent results, The volume rendering algorithms in [Levoy88b] and [Dre-
bin88] process data from back to front, while the algorithms in [Sabella88] and [Upson88]
operate from front to back. In the present algorithm, we work from front to back, compositing
the color and opacity at each sample location under the ray in the sense of [Porier84).
Specificaily, the color C,(w;U) and opacity ©,.(u:U) of ray u after processing sample U is
related to the color C{u;U) and opacity o, (u;U) of the ray before processing the sample and the
color C(U) and opacity a(U) of the sample by the relation

CouuiU) = Cin(u:U) + CUXI = i (ui L)) (2.11a)
and
A lUiU) = o) + aUX1 - a, (i) (2.11b)
where Ciy(uiU) = Cin(uiU)0; (), Con(iU) = Coul ;U)o (i), and E(U) = CADGAD.
After all samples along a ray have been processed, the color C(u) of the ray is obtained
from the expression C(u) = C, (W) / a, (u;W) where W = (u,v,W), If a fully opaque back-
ground is draped behind the dataset at w' = W+ 1 and composited under the ray after it has

passed through the data, then @,,(u;W’) = 1 where W’ = (u,v,w"), and this normalization step can
be omitted.

2.3. Implementation detaiis
The compiete brute-force rendering algorithm is summarized in péeudo-code as follows:

procedure RenderVolume,( ) begin 7
{Compute color and opacity for each voxel in dataset)
for all i in Dataset do begin

ComputeOpacity(i):

if a(i) » 0 then

ComputeColor(i);

end
{Trace ray from each pixel in image}
for all ¢ in /mage do

TraceRay;(u);
Displaylmage ( );

end RenderVolume,.
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procedure TraceRay,(u) begin

Clu) = 0;
ofu) = 0;
x; = First{u);
x5 = Last(u);
U= [Imge(xl)l:
Up = I_(mse(xz)J:
{Loop through all samples falling within data)
for U := U; to U, do begin
- x := Object{U);
{If sample opacity > 0,}
{then resample color and composite into ray}

afU) = Sample{ax);
if a(U) > Q then begin

C(U) = Sample(C x);
Cu) = Cu) + CUXL - aw));
afu) = a(u) + alU)(1 - a(u))
end
end
end TraceRay,.

The ComputeOpacity procedure calculates the opacity of a voxel using one of equations
{2.2) or (2.4) and leads it into an array. The ComputeColor procedure calculates the color of a
voxel using equation (2.1} and loads it into another amray., The TraceRay, procedure races a ray
into the arrays of colors and opacities loads the resulting color into an image armay. The Display-
Image, procedure displays the image amray.

The First and Last procedures accept a ray index and retumn the object-space coordinates of
the points where the ray enters and leaves the data respectively. These coordinates are denoted
by real vectors of the form x = (x,.2) where 1 S xy2 S N. The Object and fmage procedures
convert between object-space coordinates and image-space coordinates. Although these calcula-
tions normaily require matrix multiplications, they can be simplified for the restricted case of an
orthographic viewing projection by retaining the coordinates computed in the previous invocation
and using differencing. The Sample procedure accepts a 3D array of colors or opacities and the
object-space coordinates of a point, and returns an approximation to the color or opacity at that
point by trilinearly interpolating from the eight surrounding voxels.

The minimum memory required for the algorithm is 2V? byies to hold a monochrome color
and opacity for each voxel and P? bytes to hold a monochrome output image. The time required
1o calculate voxel opacities is proportional to the number of voxels in the dataset. Given scalar
value i) and gradient magnitude VA, the computation of each opacity a(i) can be imple-
mented with one lookup table reference. The time required to calculate voxel colors is propor-
tional to the number of non-empty voxels (voxels whose opacity is non-zero). Given scalar value
i), surface normal vector N(i), and a pre-computed table of depth cueing atienuation fractions,
the computation of each color C(i) requires ten muliiplications, six additions, and one exponentia-
tion per light source.
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The cost of finding all non-empty samples along a viewing ray is proponional to the length
of the ray clipped to the boundaries of the dataset. If we assume an onthographic viewing projec-
tion, in which case sample coordinates can be efficiendy calculated using differencing, the testing
of each sample opacity a(U) requires three additions, one trilinear interpolation, and a com-
parison. The cost of compositing non-empty samples is proportional to the number found. Since
sample opacity a(l)) has already been computed, the computation of sample color C{U) and new
ray color C(u) requires only one additional trilinear interpolation and two linear interpolations.

2.4. Simple techniques for reducing computational expense

This algorithm consists of several steps: shading, classification, ray tracing, resampling, and
compositing.  Each ‘step is controlled by user-selectable parameters and .produces as ouut a
sampled scalar or vector-valued volume. For animation sequences in which only a subset of the
conuolling parameters change from frame to frame, these intermediate results can be stored in
arrays, and only those calculations whose parameters change nesd be repeated on each frame.

A common type of sequence is one in which the object and light sources are fixed and the
observer moves. If specular reflection is removed from the shading model, voxel color becomes
invariant and need be computed only once. This optimization substantially reduces image gen-
eration time, but the consequent lack of continually changing surface reflections makes it difficult
to reliably distinguish surface orientation from surface albedo.

If the light sources move relative to the object, but the observer stays motionless, the depth
along each viewing ray at which the first non-empty voxel is encountered does not change. This
depth can be recorded in an array during generation of the first frame in a sequence and ysed to
speed generation of subsequent frames. Hochne reports success using a similar depth buffer in
his own work [Hoehne88b). If the shading model includes multiple light sources only one of
which is moving, the contribution made by the stationary sources can be pre-computed and added
on cach frame to the contribution computed for the moving source (assuming that multple
scattering effects are ignored).

Angther common type of sequence is one in which the cbject, light source, and the
observer are all fixed, and only voxet opacities are changed. For example, users frequently ask
for some means of highlighting and interactively moving a 3D region of interest. The notion of
reating the voxels inside a defined region differently from the rest of a dataset has been explored
extensively by Hochne {Hoehne87, Hoehne88a). In the context of volume rendering, one way o
highlight such a region is to increase the opacity of voxels inside the region and 1o decrease the
opacity of voxels outside the region. In some cases (such as figures 2.13 and 2.14), it is prefer.
able to perfarm the inverse transformation, decreasing the opacities of voxels inside the region of
interest.

As a final note, the local gradient vector at each voxel is a function only of the input data
and does not depend on any of the conwrolling parameters. If this vector is pre-computed for alf
voxels, calculation of new opacities following a change in classification parameters entails only
generation of a new lookup table followed by one table reference per voxel,

2.5. Simple techniques for improving image quality

Although the notation used in equation (2.11) has been bormrowed from the literature of
image compositing, the analogy is not exact, and the differences are fundamental. Volume data
consists of samples taken from a bandlimited 3D scene, whereas the data acquired from an image
digitizer consists of samples taken from a bandlimited 2D projection of a 3D scene. Unless we
reconstruct the original scene that gave rise to our volume data, we cannot compute an accurate
projection of it. Volume rendering reconstructs only the bandlimited scene, not the original. The

)
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surfaces that appear in volume rendered images are therefore renditions of fuzzy surfaces present
in the bandlimited scene, not anti-aliased renditions of surfaces present in the onginal scene.

Within the context of the present algorithm, blurring and supersampling are useful tools for
improving surface renditions. If the ammay of acquired values are blurred slightly during data
preparation, the oversharp surface silhouettes occasionally exhibited by volume renderings are
softened. Alternatively, we can apply blurring to the opacities generated by the classification
procedure, but leave the shading untouched. This has the effect of softening silhouettes without
adversely affecting the crispness of surface detail.

The decision to reduce aliasing at the expense of resolution arises from two conflicting
goals: generating artifact-free images and keeping rendering costs low. In practice, the slight loss
in image sharpness might not be disadvantageous. Indeed. it is not clear that the accuracy
afforded by more expensive visibility caiculations is useful, at Jeast for the types of data con-
sidered in this study. Blurry sithouettes have less visual impact, but :.hey reflect the true impreci-

sion in our knowledge of surface locations,

An alternative means for improving image quality is supersampling. The basic idea is 1
interpolate additional samples between the acquired ones prior to compositing. If the interpola-
tion method is a good one, the accuracy of the visibility calculations is improved, reducing some
kinds of aliasing. Another option is to apply this interpolation during data preparation. Although .
this alternative substantially increases computational expense in the remainder of the pipeline, it
improves the accuracy of shading and classification as weii as visibility calculations.

2.6, Case studies

To illustrate how this algorithmi behaves on typical datasets, let us consider several exam-
ples. The first is & 113 x 113 x 113 voxel portion of an electron density map for the proiein
cytochrome BS. Figure 2.7 shows four slices spaced 10 voxels apart in this dataset. . Each whit-
ish cloud represents a single atom. Using the shading and classification calculations described in
sections 2.2.1 and 2.2.2.1, ¢olors and opacities were computed for each voxel in the expandsd
dataset. These calculations required 30 seconds on a Sun 4/280. Ray tracing, resampling, and
compositing were performed as described in the introduction to section 2.2 and in section 2.2.3
and ook 30 seconds, yielding the image in figure 2.8.

Figures 2.9 and 2.10 were generated from a computed tomography (CT) study of 2 cadaver
acquired as 113 slices of 256 x 256 samples each. Using the shading and classification calkcula-
tions described in sections 2.2.1 and 2.2.2.2, two sets of colors and opacities were computed, one
showing the air-skin interface and a second showing the tissue-bone interface. The computation
of each set required 2 minutes. Two views were then computed from each set of colors and opa-
cities, producing four images in all as shown in figure 2.9, The computation of each view
required an additional 2 minutes, The horizonwal bands through the patient’s tecth in these
images are artifacts due to scattering of X-rays from dental fillings and are present in the
acquired data. The bands across her forehead and under her chin in the air-skin images are
gauze bandages used to immabilize her head during scanning. Her skin and nose cartilage are
rendered semi-transparently over the bone surface in the tissue-bone images.

Figure 2,10 was generated by combining halves from each of the two sets of colors and
opacites already computed for figure 2.9. Heightened transparency of the temporal bone and the
bones swrounding the maxillary sinuses - more evident in moving sequences than in a static view
- is due to gencralized osteoporosis. It is worth noting that rendering techniques employing
binary classification decisions would likely display holes here instead of thin, wispy surfaces.

The dataset used in figures 2.11 and 2.12 is of the same cadaver, but was acquired as 113
slices of 512 x 512 samples each. Figure 2.11 was generated using the same procedure as for
figure 2.9, but casting four rays per slice in the verucal direction in order to correct for the aspect
ratio of the dataset. Figure 2.12 was generated by expanding the dataset to 452 slices using a
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-cubic B-spline in the vertical direction, then generating an image from the larger dataset by cast-

ing one ray per slice. As expected, more detail is apparent in figure 2.12 than fgure 2.11.

Figures 2.13 and 2.14 exemplify some of the types of animation sequences discussed in
section 2.4. In these two figures, the dataset used in figure 2.9 has been rendered in color o
show bath bone and soft tissue, and the opacities of all voxels inside a cube-shaped region above
ihe right eye have been scaled down to neardy zero. To avoid aliasing anifacts, the transition
from scaled to unscaled opacities has been spread over a distance of several voxels. To further
improve the visualization, voxels in the transition zone have been shaded as if the region of
interest contained air rather than tissue, The effect of this exra step is 0 cap off anatomical
structures where they enter the region of interest. Figure 2.14 is identical 10 figure 2.13 except
that the region of interest and light source have been moved. More evident in a moving
sequence than in stll images, moving the light source helps resolve ambiguities in 3D shapes and
abject relationships,

Features not meeting the adjacency criteria described in section 2.2.2.2 include internal soft
tissue organs in CT swdies and most structures in MR studies. Figures 2.15 and 2.16 illustrate
one possible strategy for rendering these features, The left pair of images in figure 2.15 show a
slice and a volume rendering from 2 256 x 256 x 156 voxel magnetic resonance (MR) study of a
human head. The apparent motiling of the facial surface in the volume rendering is due to noise
in the acquired data. In ocder to display the cortical surface, the overlying tissues were mmoved
by manually egasing selected voxels on each slice. The right pair of images and figure 2.16 show
a slice and two volume renderings from the edited dataset. Since the boundary between erased
and unerased voxels falls within tissues that are rendered transparently, the boundary is not seen
in the volume rendering and need ‘not be specified precisely. In other words, the user is not
called upon 1o define surface geometry, but merely to isolaie a region of interest

2.7. Summary and discussion

Volume rendering has bsen shown to be an effective modality for the display of surfaces
from sampied scalar fields of three spatial dimensions. As demonstrated by the figures, it can
generate images exhibiting approximately equivalent resotution, yet fewer interpretation errors,
than echniques relying on geometric primitives or binary voxel representations.

Despite its advantages, volume rendering has several problems. The omission of an inter-
mediate geometric representation makes selection of appropriate shading parameters critical to
the effectiveness of the visualization. Slight changes in opacity ramps or interpolation methods
radically aiter the features that are seen as well as the overall quality of the image. For example,
the thickness of the transiton region surrounding the isovalue contour surfaces described in sec-
tion 2.2.2.1 siays constant only if the local gradient magnitude stays constant within a radius of 7
voxels around each point on the surface. The time and ensemble averaging inherent in X-ray
crysiallography usually yields soitable dawm, but there are considerable variations among datasets,
Algorithms are needed that avtomatically select an optimum value for » based on the characteris-
tics of a particular dataset.

Volume rendering is also very sensitive to anifacts in the acquisition process. For exam-
ple, CT scanners generally have anisotropic spatial sensitivity. This problem manifests itself as
striping in images. With live subjects, patient motion is also a serious problem. Since shading
calculations are sirongly dependent on the orientation of the local gradient, slight misalignments
between adjacent slices produce swrong striping.

An alternative solution for features not meeting the adjacency criteria described in section
2.2.2.2 would be 10 combine volume rendering with high-level object definition methods such as
[Gauch88] in an interactive setting. Initial visualizations, made without the benefit of object
definition, would be used to guide scene analysis and segmentation algorithms, which would in
tumn be used to isolate regions of interest, producing a beuer visualization. If the output of such
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segmentation algorithms included confidence levels or probabilities, they could be mapped o
opacity and thus modulate the appearance of the image.
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Figure 2.7: Representative slices from 113 x 113 x 113 voxel
electron density map of cytochrome BS

Figure 2.8: Volume rendering of isovalue contour surface
from dataset shown in figure 2.7
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Figure 2.9: Volume renderings of region boundary surfaces
from 256 x 256 x 113 voxel CT dataset of human head

Figure 2.10: Rotated view of same dataset




Figure 2.12: Rendering of same dataset '
after interpolation to 512 x 512 x 452 voxels
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Figure 2.13: Color rendering of CT dataset showing bone, soft tissus, and
3D region of interest formed by scaling down opacity of selected voxels

Figure 2.14: View of same dataset following repositioning of
regton of interest and light source
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Figure 2.15: Original and edited slices and volume renderings
of 256 x 256 x 156 voxel MR dataset of human head

Figure 2.16: Rotated view of edited dataset
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CHAPTER Il
REDUCING THE COST OF TRACING A RAY

3.1 Background

One of the principal drawbacks of the volume rendering algorithm presented in the previ-
ous chapter is its cost Since all voxels paricipate in the generation of each image, rendering
time grows linearly with the size of the dataset. This chapter presents two techniques for reduc-
ing the expense of tracing a ray through volume data,

The first optimization is based on the observation that many datasets contain coherent
regions of empty voxels. In the context of volame rendering, a voxel is defined as empey if its
opacity is zero. Techniques for encoding coherence in volume data include octree hierarchical
spatial enumerations [Meagher82], polygonal representations of bounding surfaces [Fuchs77,
Pizer86], and octree representations of bounding surfaces [Gargantini86). The algorithm
presented in this chapter employs an octree enumeration similar to that of Meagher, but
represenis the enumeration by a pyramid of binary volumes or complete cctree [Yau33] rather
than by a condensed representation. The present algorithm also differs from the work of
Meagher in that it renders data in image order, i.e. by tracing viewing rays from an observer
position through the octree, while Meagher renders in object order, i.e. by traversing the octree
in depth-first manner while following a consistent direction through space.

The second optimization is based on the observation that once a ray has struck an opaque
object or has progressed a sufficient distance through a semi-transparent object, opacity accumu-
lates 10 a level where the color of the my stabilizes and ray tracing can be terminated. Many
algonithms for displaying medical data stop after encountering the first surface or the first opaque
voxel. In this guise, the idea has been reported in {Goldwasser86b, Schlusselberg86, Trousset87]
and perhaps elsewhere. In volume rendering, surfaces are not explicitly detected. Instead, they
appear in the image as a namral byproduct of the stepwise accumulation of color and opacity
along each ray. Adaptive termination of ray tracing can be added to the present algorithm by
stopping each ray when its opacity regches a user-selected threshold level.

The speedup obtained using these optimizations is highly dependent on the depth complex-
ity of the scene. In this thesis, we focus on visualizations consisting of opaque or semi-
transparent surfaces. A plot of opacity along a line perpendicular to one of these surfaces typi-
cally exhibits a bump shape several voxels wide, and voxels not in the vicinity of surfaces have
an opacity of zero. For these scenes, savings of up to an order of magnitude over the brute-force
algorithm described in the previous chapter has been observed. For scenes consisting solely of
opaque surfaces, the cost of generating images has been observed to grow nearly linearly with
the size of the image rather than linearly with the size of the dawset.
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3.2. Two optimization techniques

3.2.1. Hierarchical enumeration of dataset

The first optimization technique we consider is hierarchical spatial enumeration. For a
dataset measuring N voxels on 2 side where N = 2%+1 for some integer M, we represent this
enumeration by a pyramid of M+1 binary volumes as shown in figure 3.1 for the case of ¥ = §,
Volumes in this pyramid are indexed by a level number m where m=a 0, ., . M, and the volume
at level m is denoted V,,. Volume V, measures N=1 cells on a side, volume V| measures (N—-1)2
cells on a side, and so on up to volume V,,, which is a single cell. Cells are indexed by a level
number m and & vector § = (i k) where ijk=1,... N~I], and the value contained in cell § on
levei m is denoted V(). We define the size of cells on level m to be 2™ times the spacing
between voxels. Since voxels are treated as points, whereas cells Gl the space between voxels,
each volume is one cell larger in each direction than the underlying dataset as shown in the
figure. We also place voxel (1,1,1) at the fromt-lower-right comer of cell (1,1,1). Thus, for
example, cell (1,1,1) on level zero encloses the space berween voxels (1,1,1) and (2.2,2).

We construct the pyramid as follows. Cell § in the base volume V, contains a zero if all
cight voxels lying at its vertices have opacity equal to zero. Cell i in any volume V,,m> 0,
coniains a zero if all eight cells on level m~ 1 that form its octants contain zeros. In other
words, let {1,2,...k)* be the set of all a-vectors with entries {1.2....k}. In particulas, {1,2,...k)°
is the set of all vectors in 3-space with integer entries between 1 and & We then define

! ifa(i+Al) = 1 fori € (1,2,...N~1)Y and any Al ¢ {0,1)}
Vo(i) =
ol {0 herwise (3.1a) |
and _
- = - 3 3
V_@_{l €V 2i-A) = 1 fori @ (12,00 ~1y(m+ 1) and any Ai € (0,1 a1b)
0 otherwise
form=1,... M.

We now reformulate the ray tracing, resampling, and compositing steps of our rendering
algorithm 10 use this pyramidal data structure, For each ray, we first compute the point wherte
the ray eniers the single cell at the top level.: We then traverse the pyramid in the following
manner. When we enter a cell, we test its value. If it contains a zero, we advance along the ray
to the next cell on the same level. If the parent of the new cell differs from the parent of the old
cell, we move up to the parent of the new cell. We do this because if the parent of the new cell
is unoccupied, we can advance the ray further on our next iteration than if we had remained on a
lower level. This ability to advance quickly across empty regions of space is where the algo-
rithm saves its time. If, however, the cell being tested contains a one, we move down one level,
entering whichever cell encloses our current location. If we are already at the lowest level, we
know that one or more of the eight voxels lying at the vertices of the cell have opacity greater
than zero. We then draw samples at evenly spaced localions along that portion of the ray falling
within the cell, resample the data at these sample locations, and composite the resulting color and
opacity into the color and opacity of the ray,

3.22. Adaptive termination of ray tracing

The second optimization technique we consider is adaptive termination of ray tracing. Our
goal is to quickly identify the last sample location along a ray that significantly changes the color
of the ray. Returning to equation (2.11a), we define a significant color change as one in which
Coudtil) = Ciy(u:U) > £ for some small € > 0. Since o, (u;U) increases monotonically along the
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3.4. Comparisoen to ray tracing of geometrically defined scenes

The tracing of rays through coherent regions of empty voxels in volume data is analogous
to the tracing of rays through expanses of empty space in geometrically defined scenes. This
problem has received much attention in the computer graphics literature (see [Arvo88) for an
excellent survey), and it is useful to compare the present algorithm to strategies for speeding up
ray tracing of geometric scenes.

One such strategy is o place bounding volumes around primitives or groups of primitives.
Rays are tested first against these voiumes, and if a volume is hit, then against its contents.
Bounding volume schemes that have been tried include spheres [Whited80], parallelepipeds
[Rubin80], extruded extents [Kajiya83], and convex hulls {Kay86). This technique can be
applied to volume data by fiting geometric primitives to the sample array. Primitives that have
been used for this purpose include opaque cubes [Herman79], polygonal meshes constructed from
2D contours (Fuchs77, Pizer86], and voxel-sized polygons genecrated directly from 3D data sam.
ples [Lorensen87, Cline88]. The principal drawback of this approach is that fitting of primitives
requires making a binary classification of the data, leading to artfacts in the generated images.

An alternative strategy is to subdivide space into disjoint cells and to associate with each
cell a list of primitives that fall wholely or partially inside it Rays are advanced incrementally
through the scene, moving from ceil to cell. When a ray enter a cell that contains primitives, the
ray is tested against those primitives; when a ray enters a cell marked as empty, the ray is simply
advanced to the next cell. Variants of this technique include uniform subdivision of space into a
regular 3D grid of cubic cells (Fujimoto86], adaptive subdivision into paralielepipeds, generalized
cubes, or tetrahedra [Dippe84), and adaptive hierarchical subdivision into cubic cells of varying
size using octress (Glassner84], These techniques can be applied to a geometric description of
the volume data by fiting primitives as described above, or they may be applied directly to the
sample array, Specifically, if we treat sach data sample as a cell, the resulting regular 3D grid of
cells is analogous to uniform subdivision of a geometric scene. Similarly, octree representations
of volume data are an=logous to adaptive hierarchical spatial subdivisions of geometric scenes.

The analogy between spatial enumeration of volume data and spaual subdivision of a
geometric scene is not exact, however, and comparisons made in the literature between compet-
ing schemes for subdividing geometric scenes do not scale well when applied to volume data. In
particular, spatial subdivisions of geometric scenes typically consist of hundreds of cells each
containing many primitives [Cleary88], whereas volume datasets consist of tens of millions of
spatially ordered cells each containing a single data sample, Several researchers (Fujimoto86,
Amantides87, Cleary88] have reported that, for the geometric scenes they have tested, uniform
subdivision outperforms hierarchical subdivision. For the volume datasets considered in this
thesis, a hierarchical data structure seems o work better,

3.5, Case studies

To understand how the algorithm behaves on typical scenes. let us consider some exam-
ples. The characteristics of three datasets are given in table 3.1. The first is a computed tomog-
raphy (CT) study of a human skull mounted in a lucite head cast. To demonstrate the effect of
semi-transparent surfaces on the performance of the algorithm, this datasst was rendered twice,
once with a semi-transparent air-lucite boundary surface (figure 3.3), and once with a completely
wansparent boundary surface (figure 3.4). The second dataset is a portion of an electron density
map of Staphylococcus Aureus ribonuclease. A volume rendering of an isovalue contour surface
from this map is shown in figure 3.5. The polymer backbone crosses the image from bottom to
op, and two Tyrosine residues with their characteristic six-atom benzene rings can be seen
exiending to the left and right sides of the backbone. To study the growth of rendering cost with
respect o dataset size, this dataset was rendered at three different spatial resolutions, the largest
of which is shown in the figure. The last dataset is a CT study of a complete human head, a
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- volume rendering of which is shown in Ggure 3.6.

For the 256 x 128 x 113 voxel jaw with semi-transparent skin (figure 3.3), calculation of
voxel colors and opacities took 1 minute on a Sun 4/280, and calculation of the pyramid of
binary volumes tock another 30 seconds. The combined costs of ray tracing. resampling, and
compositing for afl thres datasets are summarized in table 3.2. Separate entries are provided for
the brute-force algorithm, the optimized algorithm with adaptive termination of ray tracing dis-
abled by setting £ = 0, and the fully optimized algorithm with £ = 05. As the tabie shows,
hierarchical enumeration reduced rendering time by a factor of between 2.0 and 5.0 for this data,
and adaptive termination of ray tracing added another factor of between 1.3 and 2.2, We also
cbserve that adding a semi-transparent surface to the rendering of the skull fragment decreased
the amount of time saved, but did not eliminate the savings completely. We finally nota that
doubling the width of the electron density map increased rendering time by roughly a factor of
eight for the brute-force algorithm and five for the opumized algorithm,

To help us interpret these resuits, the cost of generating figure 3.6 has been broken down
into its constituent parts, Using the brute-force rendering algorithm described in chapter 2, the
cost of finding all non-empty samples along a ray is proportional to the leagth of the ray clipped
to the boundaries of the dataset For the observer position used in figure 3.6, a visualization of
this cost is shown in figure 3.7a. Brighter pixels represent more work, The image is essentially
an X-ray of a cube of uniform density. The cost of resampling and compositing the non-empty
samples along a ray is proportional 10 the number found along the ray. For the dataset under con-
sxdemuon.amualmonofm:scosusshownmﬁgm37b This image is essentially an X-ray
of a binary representation of the data. As expected, it is brightest along silhouettes where rays
pass through large amounts of bony material. The total cost of rendering ﬁgure 3.6 using the
brute-force algorithm is & weighted sum of figures 3.7a and 3.7b.

Using hierarchical enumeration, the cost of finding all non-empty sampies along aray is
proportional o the number of iterations through the outer loop in the TraceRay, procedure plus
the number of tests of level zero cells performed in the RenderCell, procedure. A visualization of
this cost is shown in figure 3.82. This image is essentially an X-ray of an octree. The cost of
resampling and compositing the non-empty samples is shown in figure 3.8b. Since hierarchical
enumeration does not reduce the number of non-empty samples, figure 3.8b is identical to figure
3.70. The total cost of rendering figure 3.6 using hierarchical enumeration is a weighted sum of
figures 3.8a and 3.8b.

Adaptive termination of ray tracing reduces the number of non-empty sampies which must
be found. For & = .08, a visualization of the reduced cost is shown in figure 3.9a. In regions
where fewer samples are processed, resampling and compositing costs drop as well, as shown in
figure 3.9b. The total cost of rendering figure 3.6 using both of the optimization techniques is a
weighted sum of figures 3.9a and 3.9b,

3.6. Summary and discussion

Two techniques for reducing the expense of tracing rays through volume data have been
described, hierarchical spatial enumeration of the dataset and adaptive termination of ray tracing.
Any opacity assignment operator that partitions a volume dataset into coherent regions of opaque
and transparent voxels is a candidate for this algorithm. The amount of time saved depends on
the depth complexity of the partitioned scene.

A strategy used to speed up ray tracing of geometrically defined scenes that has not been
addressed here is 10 group together rays emanating from similar locations and traveling in similar
directions, Specific techniques include the light buffer of {Haines86] and the ray classification
algorithm of [Arvo87]. In the present algorithm, an orthographic viewing projection is used, and
shadowing, reflection, and refraction are not supported. All rays consequently travel in the same
direction. Many volume rendering sysiems offer a perspective viewing projection, however, and
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chapter 5 describes algorithms for casting shadows through volume data. Directional data struc-
tures might be useful in these cases. Other ray tracing techniques that might be applicable 1o
volume rendering include generalized rays such as beams {Heckbert34], cones [Amantides84],
and pencils (Shinya87], statistical optimizations such as distributed ray tracing (Cook86), and
frame-to-frame coherence {Bad:88).
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Figure 3.3: Rendering of 256 x 128 x 59 voxel CT dataset of human jaw
with lucite skin after interpolation to 256 x 128 x 113 voxels

Figure 3.4: View of same dataset with skin rendered transparently
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'Figure 3.5 Randaring of 24 x 20 x 11 voxael electron density map
of ribonuciease after interpolation to 288 x 244 x 132 voxels

Figure 3.6: ‘Rendering of 256 x 256 x 113 voxe!' CT dataset
of human head after interpoiation to 256 x 256 x 226 voxels
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Figure 3.7a and 3.7b: Constituent costs of rendering figure 3.6
using brute-force algornthm

Figure 3.8a and 3.8b: Constituent costs of rendering figure 3.6
using hierarchical enumeration
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Fi%ure 3.9a and 3.9b: Constituent costs of rendering figure 3.6
using hierarchical enumeration and adaptive termination of ray tracing




35

. acquired | scaling | size after [samples|samples|,
name fig size factor scaling “ drawn witha>0 %
ey = e
jaw with skin 256x128x59] 1x1x2| 256x 128 x 113[ 3,541,851 | 594,472 |17
jaw W/0 skin [3.4]f 256x128x59] 1x1x2| 256x 128 x 113[) 3,541,851 | 335751 | 9
ribonuclease|s.s 24x20x11{12x12x 12| 288 x 244 x 132/] 7,067,842 | 810,542 |1
ribonucieasel- I 24x20x11| 6x6x8| 144x120x66] 825485 | 180,747 |19
ribonucieasel . 24x20x11] 3x3x3 72x60x33|| 92724 25531 |27
head 3.6{[256 x 256 x 113|  1x1x 2| 256 x 256 x 226 14,081,917 | 1,249,458 | 9

Table 3.1: Characteristics of datasets shown in figures 3.3 through 3.6

. . enumaeration ficol. 1|col. 2| col. 1

name ~ fig| brute-force g,:ﬁﬁg;’;g’n and adaptivell / | / | /
termination jlcol. 2|/ col. 3(col. 3

jaw with skin 94 secs 57 secs a1 1.6 | 5.1
jaw w/o skin [3.4| 288 61 % 47 | 16 | 74
ribonuciease 3.5! 571 146 75 3.9 19 7.6
ribonuclease] - 68 27 15 25 1.8 45
ribonuclease| - 8 4 3 2.0 1.9 2.7
head :fu 1183 238 105 5.0 22 {113

Table 3.2: Rendering times for datasets characterized in table 3.1
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CHAPTER IV
REDUCING THE NUMBER OF RAYS TRACED

4.1. Background

This chapter presents a technique for reducing the number of rays that must be traced to
render a volume dataset. The technique can also be used 1o progressively refine image quality
over time. A survey of progressive refinement techniques for polygonal environments is given in
(Bergman86]. These techniques have three principal characteristics: they dismibute work accord-
ing 1o where it makes the most difference, they form intermediate images from partial informa-
tion, and they minimize the amount of work discarded after formation of each image.

-- Conventional ray tracing algorithms are not well suited for use in a progressive refinement
system. Although numerous techniques exist for distributing rays according to local image com-
plexity [Whitted80, Lee85, Dippe8S, Cook86, KajiyaB6], these techniques cast large numbers of
rays per pixel, resulting in long image generation times. They also complete the rendering of
one pixel before moving on to the next, preciuding the display of images from partial informa-
tion. These limitations are necessary when rendering analyticaily defined objects; undersampiing
_of such scenes produces objectionable aliasing artifacts.

Volume data, unlike analyticaily defined objects, is assumed to be bandlimited to the
Nyquist frequency prior to sampling. The transfer function of many acquisiion processes fail off
well below the Nyquist frequency as in the case of computed tomography (CT) and electron den-
sity maps obtained from X-ray diffraction data {Herman80, Glusker85]. Certain amorphous
phenomena occurring in astronomy and physics are even more bandlimited {Upson86]. This pro-
perty allows subjectively acceptable images to be generated from partial information and there-
fore images 1o be displayed as they are being refined.

In the present algorithm, an initial image is generated by casting a uniform but sparse grid
of rays into the volume data, inwerpolating between the resuiting colors, and resampling at the
display resolution. A samptiing rate of one ray per four pixels, corresponding 10 a data sampling
rate of one ray per four voxels, is typical. Subsequent images are generated by discarding inter-
polated colors, casting more rays, and repeating the interpolation and resampling steps. Recur-
sive subdivision based on color differences is used to concentrate these additional rays in regions
of high image complexity, and recursive bi-linear interpolation is used to form images from the
resulting non-uniform array of coiors. The approach is similar 1o that described by Whitted
{WhittedBO), but it is exiended to allow sampling rates of less than one ray per pixel and
modified to provide a mechanism for progressive refinement.

The cost of computing each image in a refinement sequence is equal to the sum of the
costs of recursive subdivision, ray tracing, and recursive interpolation. Of these, only ray tracing
would be required if intermediate images were not displayed. In the current implementation, this
cost dominates the others by two orders of magnitude. Nearly all the work expended generating
intermediate images therefore also contributes oward generating the final image.

Using this algorithm, crude images of many datasets can be obtained in few scconds. Gra-
dually better images are obtained at intervals of a few seconds each, culminating in a high
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quality image in less than a minute,

4.2, Adaptive volume rendering algorithm

Figure 4.1 oudines the adaptive rendering algorithm. It begins as in previous chapters with
a 3D array of scalar values which is shaded and classified to yield a color and an opacity for
each voxel, Parallel viewing rays are traced into the array from an observer position as before,
but this time the image plane is divided into squars sample regions measuring ®p,, pixels on a
side, and rays are cast only from the four comer pixels of each region as shown in figure 4.2.

The colors returned by these four rays are then used to estimats local image complexity.
Methods that have been used to measure this complexity include color diffsrences [Whited80)
and statistical variance [Lee85, Kajiya86). Since 2 sample size of four is 100 low 1o justify sta-
tistical methods, color differences are used in the present algorithm. If the range of colors
retwned by the four rays in a sample region is less than some g, no further processing is per-
formed on the region. Otherwise, the region is divided into four subregions and more rays are
cast. Subdivision continues untl the range of colors falls below e or the size of the region
reaches SOME Wpz, WHEr® My € Oma. U Omiy < 1, the image is effectively supersampled, but
due 10 the bandlimited nature of the incoming data and the limited accuracy of operators
employed in the present rendering algorithm, such supersampling has not bean found to be use-
ful.

When all sample regions have been processed, an' image is formed by interpolating
between the available colors and resampling. To insure continuity despite the non-uniform distri-
bution of colors, a recursive technique similar to the algorithm employed during ray tracing is
used. The image plane is again divided into square regions measuring g, pixels on a side.
Pixels are interpolated at the midpoints of the four sides and at the center of each region. The
region is then divided into four subregions and the prucess is repeated. Subdivision continues
until the region contains a single pixel.

When all pixels have been filled in, the resulung image is dxsplayed. To continue the
refinement process, the image is cleared of all interpolated colors, the level of detail is raised by
decreasing Wiy, Wmes. OF €, the image plane is again divided into sample regions, and ray tracing
begins anew. The refinement process alternates between casting rays and forming images, fer-
minating when @p,, = 1, when the user changes a rendering parameter, or when the observer
moves.

4.3. Implementation details

Pseudo-code replacing selected procedures from sections 2.3 and 3.3 and incorporating the
adaptive rendering algorithm follows:

procedure RenderVolume,( ) begin
{Compute color and opacity for each voxel in dataset}
for all i in Dataset do begin
ComputeQOpaciry(i),
if a(i) > 0 then
ComputeColor(i);
end
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{Inidalize level-of-detail parameters and flag arrays)
Ormay = First®e,( ) Omin = FirstOna ) € := Firse( );
for all u in /mage do begin

F(u) =0; G(u):=0;
end

{Loop until image is fully refined)
while w,,, > | do begin
{Divide image into sample regions and cast some (more) rays}
for u = {10, . .. P}  do
Ray‘rmcekegwnl(u.mm RO )
(Redivide image into regions and interpolate any missing pixels)
for u = (1.0, ... .P)% do :
!merpotauRegmu:(u,m....);
{Display image, then clear all mterpomed colors}
Displaylmage,( );
for all u in Image do
i not F(u) ther G(u) := O;
{Increment level-of-detail parameters)
Wiae = NeXOpas( )i i 1% Nextal % -Nwe().
end
end RenderVolume,

procedure RayTraceRegion(u,m,0y, ) begin 7

{Cast rays from four comners of region}
for v = {0,w}2 do
if u+v in /mage and not F(u+v) then begin
TraceRay,(u+v), Fluev) =1;
end '
(If region is larger than @y, by @, pixels and color difference > threshold, }

{divide into four subregions and continue ray tracing}
il © > WOy, and Difference(u.w.2) then

for v = [0,0/2)? do
RayTraceRegion (u+v,0¥2,0pin £):

end RayTraceRegion,
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procedure [nterpolateRe gion,(u,w) begin

{Interpolate colors at midpoints of sides and at center of region)
for v = {(0,0/2){0.0/2)(av2,0),(w/2,w).(w/2.a/2)] do
if u+v in Image and not F(u+v) and not G(u+v) then begin
Interpolate{u,u+v); Glu+v) = I3
end

(If region is larger than 2 x 2 pixels,)

{divide into four subregions and continue interpolation)
if w2 > | then

for v := {0,ur2)% do
InterpolateRegion,(u+v,uv2);
end /aterpolateRegion,.

The First and Next procedures respectively initialize and increment the level-of-detail
parameters accordmg some user-selected sequence, The syntax
for u = (ALnz, ... .1)° do sramrmu is adopted from the nolation in secuon 3.2.1 and means
perform statement exacdy & times with the 2.vector u = (,v) equal to successive members of
the set of 2-space vectors with integer entries in the specified list. The syntax
for v := [(u),v),(u2,v2), . . . (V) do statemen: means perform statement exactly k uimes with
the 2-vector v = (u,v) equal to successive vectors from the specified list.

The Difference procedure decides if, for the pixels at the four comers of a square sample
region specified by its lower-left comer and width, the range of intensities for any color com-
ponent (red, green, or blue) exceeds some threshold. The Jaterpolate procedurs computes from
the pixels at the four comers of a sample region a color for the specified pixel using linear inter-
polation (in the case of region boundary midpoints) or bi-linear interpolation (in the case of
region centars) and loads it into the image array.

Since the colors associated with traced rays are retained throughout the refinement process,
some means is needed to avoid tracing the same rays repeatediy. In the current algorithm, this is
implemented by maintaining a flag F for each pucel Rays are traced only from pixels whose
flags are clear. Once a ray has been traced from a given pixel, its flag is set. It is worth noting
that the rewention of colors has the useful side effect of allowing rays 1o be shared by ad;acem
sample regions, This reduces the number of rays that must be traced, thereby unprovlng the
efficiency of the algorithm.

Some means is also needed to distinguish pixels whose colors are interpolated from pixels
whose colors are computed by ray macing. This is implemented in the cumrent algorithm by
maintaining another flag G for each pixel. Colors are interpolated only a¢ pixels whose F and G
flags are both clear. Once a pixel has been interpolated, its G flag is set. After display of each
intermediate image, all & flags are cleared before additional rays are cast

4.4. Case studies

To demonstrate the performance of this algorithm, two case studies are presented. The first
is a 123 x 123 x 123 voxel porion of an elecron density map of cytochrome BS. Using
methods described in section 2.2.2.1, an isovalue contour surface was selected for display. Using
the algorithm described above, a four-frame progressive refinement sequence was then generated.
The resulting images are shown in figure 4.3 with the sequence running from top-left o botiom-
right Each image measures 256 x 256 pixels.
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Performance statistics for this sequence are given in table 4.1, For each image, the table
gives values for the three level-of-detail parameters, incremental and total ray counts, and incre-
mental and otal elapsed times. Timings are for a Sun 4/280.

A visualization of the F array showing where rays were cast is given in figure 44, Each
white pixel in this figure corresponds 10 a single ray. Thus, any pixel in figure 4.3 whose
corresponding pixel in figure 4.4 is white was computed by ray tracing, whereas any pixel in
figure 4.3 whose figure 4.4 pixel is black was computed by interpolation. As expected, ray densi-
ties are highest along surface silhouettes where color differences are highest, and the overall
number of rays increases from the first to the last frame of the sequence. Since Wy, = 1 in the
last frame, rays are cast from every pixel, and the F array is completsly white.

The second datwaset is a computed tomography (CT) study of a human head and was
acquired as 113 slices of 256 x 256 samples each. Using methods described in section 2.2.2.2,
the bone surface was selecied for display. A four-frame progressive refinement sequence was
then generated, the first frame of which is shown in figure 4.5 and the last frame of which is
shown in figure 4.6, Each image measures 512 x 512 pixels. Performance statistics for this
sequence are summarized in table 4.2,

The last daraset is a 256 x 256 x 156 voxel magretic resonance {(MR) smudy of 2 human
head, edited to remove tissues overlying the cortical surface as described in section 2.6. The first
512 x 512 pixel image in a four-frame sequence is shown in figure 4.7 and the last frame is
shown in figure 4.8. Performance statistics are summarized in table 4.3.

As the tables show, ¢lapsed time is nearly proportional to the number of rays cast This
holds for all datasets and all levels of detail. On the other hand, the effect of changing a particu-
lar level-of-detail parameter on the number of rays cast varies considerably between datasets,

4.5. Summary and discussion

A technique for reducing the number of rays required w render a volume datases has been
described. The algorithm casts fewer rays than conventional ray tracers, reflecting the bandlim-
ited nature of volume data, and casts them in an order that allows display of intermediate images.

In this study, vaiues for the three level-of-detail parameters (Op., (g, and & were selected
mzanually. Generally speaking, high values of y,, cause features 1o be missed, high values of e
cause features to be ignored even if they are not missed, and high values of Wy, causes features
to be poorly resolved even if they are neither missed nor ignored. Inappropriate values for these
parameters cause suboptimal presentation of the data as well as unequal intervals between succes-
sive frames in refinement sequences. Algorithms are needed that automatically select an
optimum sequence of values based on the characteristics of a particular dataset N
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Figure 4.3: Adaptive rendering of electron density map,
state of image after 5, 12, 17, and 26 seconds of computation

Figure 4.4: Visualization of where rays were cast to generate figure 4.3
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Figure 4.5: Adaptive rendering of CT dataset,
state of image after 13 seconds of computation

Figure' 4.6: Continuation of same rendering,
state of image after 104 seconds of computation




" “Figure 4.7: Adaptive’rendering of MR dataset,
state of image after 18 seconds of computation

" Figure 4.8: Continuation of same rendering,
state of image after 120 seconds of computation
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additional o, i total | time | |

rays ® |l time {intaryaljj max“min| £
ezt

3,870 a2

2 || 430 | 440 9,047 8,077 32

3 || 43¢ | 44c || 14459 4512 16
I

4 ) 430 | 440 || 19209 4,830 moU 25.7 8.6 1] t] -

Table 4.1: Performance statistics for adaptive rendering of electron density map

image rays || total dditional ., | total | time :

frame| "5 1 fig || rays [ rays | 7 {| time |intervall®max®min| €
% —— ======PF=====

1 45 | - 5179 5179 | 16 | 13secs| 13secs|l 16 | 2 | 16

i

2 - - | 18138 10957 | 82 || 41 28 81 1|16

3 . - 21,625 5489 | 70 |l &3 22 21 1|12

4 4.6 - 30,603 8978 | 100 || 104 41 t -

Table 4.2: Performance statistics for adaptive rendering of CT dataset
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total
rays

additiona %
rays

time

interyal|j®max|@min

18secs|| 16 | 2 | 16
39 16 1 |16
. 26,841 26 4] 18
48 31,535 s34 |100 || 120 17 11 1] -

Table 4.3: Performance statistics for adaptive rendering of MR dataset
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CHAPTER V

RENDERING MIXTURES OF GEOMETRIC AND VOLUME DATA

5.1, Background

Many scientific problems require sampled functions and analytcally defined objects to
appear together in a single visualization. This chapler addresses the problem of extending
volume rendering to handle such objects.

Most previous effonts in this area have used polygonal meshes or binary voxel representa-
tions to display both the geometric and volume data, Fuchs et al. {Fuchs77] and Pizer et al.
[Pizer86] track edges on each slice of a computed tomography (CT) dataset to yield a set of con-
tours, tile berween contours on adjacent slices, suppiement the resulting polygonal mesh with
analytically defined objects, and render the ensembie using conventional hidden-surface algo-
rithms. Lorsensen and Cline [Lorensen87, Cline88] apply surface detectors at each sample loca-
tion to produce a large collection of voxel-sized polygons which can be supplemenied with
analytically defined objects and rendered using conventional algorithms. Kauftman (with others)
thresholds volume data to produce a binary voxel representation, use 3D scan-conversion to add
polygons [Kaufman87b],.polyhedra [Kaufman86b], and cubic parametric curves, surfaces, and
volumes [Kaufman87a) to the array, and render the resulting ensemble using custom-designed
hardware [Kaufman88a]. All of these approaches require a binary classification of the volume
data, leading to artifacts as described in chapter 2. Kaufman's use of a binary voxel representa-
tion for analytcally defined objects gives rise to additional arntifacts, although a solution to this
problem has apparently been worked out [Kaufman88b).

Although many researchers have suggestzd methods for extanding volume rendering to
handle analytically defined objects, no implementations have yet appeared in the literature. Sun
Microsystems has extended a conventicnal ray tracer to handle volume data {Mosher88]. In a
paper currently in review, Goodsell et al. [Goodsell88] describe a muiti-pass approach that com-
bines a Z-buffer algorithm for rendering polygonaily defined atomic structure, a ray tracer for
rendering volume data, and a depth-buffer enhanced image compositor such as described in
(Duff85}. Although their method produces satisfactory visualizations in many cases, it cannot
eificiently handle semi-transparent polygons. Furthermore, the division of labor into two passes
necessitates rendering all polygons even though they might be obscured by volume data,

This chapter presents two methods for rendering mixtures of volume data and polygonally
defined objects. The first method employs a hybrid ray tracer. Rays are simultaneously cast
through the volume data and the polygonal objects, sampies of each are drawn at equally spaced
intervals along the rays, and the resulting colors and opacities are composited together in depth-
sorted order. To avoid errors in visibility, volume samples lying immediately in front of and
behind polygons are given special treatment. To avoid aliasing of polygonal edges, adaptive
supersampling is used. The second method employs 3D scan-Conversion with analytic anti-
aliasing. Polygons are shaded, filiered, sampled, and combined with the volume data The
resulting composite dataset can then be rendered using the algorithm described in chapter 2. If
the polygonal data is sufficiently bandlimited prior to sampling, this method also produces images
free from aliasing artifacts.
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To compare the relative versatility of these two methods, techniques for adding shadows
and texwures will also be presented.  Nelson Max has written a brief but excellent survey of algo-
rithms for casting shadows [Max86). The present study employs a two-pass approach [Willi-
ams78, Reeves87], but stores. shadow information in a 3D light strength buffer instead of a 2D
shadow depth buffer. The amount of memory required for a 3D buffer is obviously much
greater. but the representation has several advantages. By computing a fractional light strength at
every point in space, penumbras and shadows cast by semi-ransparent objects are correctly ren-
dered. Moreover, the shadow aliasing problem encountered by Williams is reduced, but without
resorting 10 expensive resampling methods such as are proposed by Reeves et al, Finally, the
prasent algorithm also correctly handles shadows cast by volumetrically defined objects on them-
selves as well as shadows cast by polygons on volumetric objects and vice versa.

There are several kinds of texture mapping that might be useful when rendering mixtures
of geometric and volume data, Wrapping textures around volumetrically defined objects requires
knowing where their defining surfaces lic - a hard problem. Projecting texuures through space
and onto these surfaces is much easier and can be handled by a straightforward extension of the
shading calculations described in chapter 2. Mapping textures onto polygons embedded in
volume datasets is also relatively simple. The two latter technigues will be described in this
chaprer.

5.2. Two rendering algorithms

5.2.1. Hybrid ray tracer

The first rendering method we will consider is the hybrid ray wacer shown in figure 5.1. It
begins as before with a 3D array of scalar values whmhtsslmdedandclass:ﬁedtoyteldacolor
C(l) and an opacity o) for each voxel. Parallel viewing rays are then traced into the data
from an observer position. For each ray, a8 vector of colors Ci(U) and opacities a{(U) is com-
puted by resampling the volume data at equally spaced positions along the ray and tri-linearly
interpolating from the colors and opacities in the eight voxels surrounding each sample location.
Independently, all intersections between the ray and polygons in the envisronment are computed
and shaded, yielding a color Cp(x) and opacity op(x) for each point of intersection, which is
denoted by a real vector of the form x = (x,y,2) where 1 £ xyz S N. For simplicity, we assume
that all polygons lie stricdy within the boundaries of the volume dataset. Finally, the resampled
volume colors and opacities are composited with each other and with the polygonal colors and
opacities in depth-sorted order to yield a color C(u) for the ray.

As discussed in section 2.2.3, volumerric compositing correctly renders the appearance of a
gel composed of many small slabs each of idenncal size and homogeneous color and opacity.
The thickness of each slab is equal to the spacing between samples along a viewing ray, and the
width of the slab is equal to the spacing between adjacent rays as shown in figure 5.2a. If both
spacings are set roughly equal to the spacing berween voxels in the volume data, and tri-linear
interpolaiion is used 10 compute the color and opacity of each slab as described in the previous
paragraph, the resulting image will generally be free of aliasing artifacts.

When a polygon is embedded in the volume data as shown in figure 5.2b, it passes through
some of these slabs, obscuring some portion of the gel in each slab and being obscured by the
remainder. An exact solution of the hidden-volume problem inside every slab would be very
expensive. Supersampling is an alternative, but also expensive. A solution of less accuracy and
expense that has proved satisfactory in practice is to treat 3 polygon locally as a plane perpendic-
ular to the ray and placed at the point of intersection as shown in figure 5.2c. An exact soluton
of the hidden-volume problem for this restricted case is simpie. Rephrasing equation (2.8) for
the opacity aw(U) of a slab of homogeneous material in terms of its density d{U) and thickness
1(U), we obtain the relation
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a(U) = | = ¢ O (5.1)

where 0 < a{U) < 1 and a{U) = | signifies complete attenuation. Let the thicknesses of those
portions of the slab lying immediately in front of and behind an embedded plane perpendicular to
the viewing ray be denoted (<(U) and rg(U) respectively. Solving equaton (5.1) for opacities
asU) and aa(U) in terms of opacity a{U) and thicknesses {(U} and £(U) gives

arU) = 1 - (1 - e {U) ¥ (5.22)
and
ap(U) = 1 = (1 = ay (), (5.2b)

Working from front to back, we first composite C/{U) and axs(1J) into the ray, followed by Ca(x)
and ap(x), and finally by C/{U) and op(U). If the ray intersects more than one polygon within a
slab, the contribution made by each polygon and each sliver of volumetric gel must be computed
and composited separately.

At polygonal edges, polygon-polygon intersections, and polygon shading highlights, such
an approximation does not suffice to prevent aliasing. Therefore, the number of rays cast per
_pixel is increased in these regions using adaptive supersampling [Whined80]. One difficulty with
this approach is disunguishing whether the color difference observed in a sample region is due to
volume data or geometric data, since supersampling is only appropriate in the latter instance for
reasons given in section 4.2. The problem is solved by computing two additional colors during
ray tracing as shown in figure 5.1. The frst, denoted Cg(u), contains contributions only from
polygons. (obtained by setting o{U) = 0 for all' volume samples). . The second, denoted C,(u),
contains contributions only from polygons, but auenuated by passage through the volume data
(obtained by setting C\{U) =0 for all volume samples). If the range of C,(u) within a sample
region exceeds some £ but the range of Cg{u) does not, the observed color difference is due to
spatially varying volume data rather than a geometric event {such as a polygonal edge). Super-
sampling is not required in this case. If the range of Ce{u) exceeds & but the range of C,(u)
does not, the region contains a geometric event, but that event is hidden from view by overlying
opaque volume data. No supersampling is needed in this case either. Only if the ranges of both
colors exceed &, signifying that the region contains a visible geometric event, should more rays
be cast.

5.2.2. 3D scan-conversion

The second rendering method we will consider is 3D scan-conversion of the geometric data
as shown in figure 5.3. We begin by shading and classifying the volume data to yield a color
C(i) and opacity a{i) for each voxel. Independently, each polygon is shaded, filtered, and sam-
pled at the resolution of the volume data to yield a color Cg(i) and opacity ag(i) for each voxel,
The polygons used in the present studies are of homogeneous color and are filtered by convolu-
tion with a 3D Banlett window 4 voxels in diameter. The cost of scan-converting a polygon
using this algorithm is proportional to its surface area.

These two sets of colors and opacities are combined using volume matting [Drebin88],
specifically the over operator described in (Porier84), 1o yield a composite color Cc(i) and opa-
city ac(l) for each voxel. Since this operator is not commutative, the order in which polygons
are scan-converted and whether polygons are matied over or under volume data must be con-
sidered. The composite dataset is then ray traced, resampled, and composited without giving
further consideration to the geometric data it contains. Since the polygons have already been
filtered, an image sampling rate of one ray per pixel usually suffices to prevent aliasing arnfacts,
even along polygonal edges.
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§.3. Extensions to the rendering algorithms

%.3.1. Shadow calculations

Both of the rendering methods described above can be modified to cast shadow rays toward
a light source from cach non-empty sample position on a8 viewing ray. Opacity accumulated
along such a shadow ray can be used to compute the strength of the light reaching the sample,
which can in rum be used o shade the sample. Since the number of non-empty samples on a
viewing ray may be high, this solution is expensive. [t also requires that at least part of the
shading calculatons (given in equation 2.1) be delayed undl image generation time.

A less computationally expensive solution would be 0 cast illumination rays into the data
as a pre-processing siep prior to image generation. The opacity accumulated at each sample
position on such a ray represents the light strength at that point in space. This information can
be stored in a 3D buffer. To generate an image, the buffer is resampled at each non-empty view-
ing ray sample position and used to shade the sample as in the previous soluton. For § light
sources, the cost of generating an image with shadows using this algorithm is S+1 times the cost
of generating an image without shadows. Altematively, the buffer can resampled ar each non-
empty voxel position and used to shade the voxel prior to image generation, thus moving the
computauona] burden from the image generation phase to the pre-processing phase of the render-
ing pipeline.

In view of its relatively low computational expense, the last solution has been chosen for
implementation here. If used in conjunction with the hybrid ray wacer, a difficulty arises in that
the passage of light through analytically defined polygons may give rise to sudden drops in light
strength between successive sample positions on an illumination ray. These discontinuites must
beﬁlwredbefaemeycanbempmwdm:he30hghtmgmwfer For this reason, the
pre-filiered represeniation of polygons employed by the scan-coaversion mexhod makes it the
more convenient starting point.’

Figure 5.4 summarizes the modified algorithm, leﬁrststqlsmshadmg and
classification of the volume data, shading and scan-conversion of the polygons, and matting to
vield for each voxel a set of compasite colors C,(i), . . . .C(l) for light sources s=1,....5 and
a composite opacity ac(i). The contribution Cy (i) by the volume data in voxel i to the compo-
site color C(1) for light source s is computed by separating equation (2.1) into equations of the
form ,

Cof® = CJLNOL) + NG HY] (53)

where C,, kg k., 1, N(i}, L,, and H, are as defined in section 2.2.1.

Paralle! illumination rays are then cast into the data from each light source as shown in
figure 5.5. Let us assume that light source s is a square measuring £, illumination rays on a side.
Rays are indexed by a vector u, = (u,v,) where u,.v, = 1, ... P, For each ray, we assume some
initial light strength B(u,), draw samples of the volume data at equally spaced posidons along
the ray, cornpute an opacity at each location by tri-linearly interpolating from the nearest eight
voxels, and attenuate the strength of the ray in proportion to the computed opacities. Samples
are indexed by a vector U, = (u,v.w,) where (u,v,) identfies the illumination ray, and
w,=1,... W, coresponds to distance along the ray with w, = 1 being closest to the light
source, The opac:ty of sample U, is denoted a(U,) and the set of strengths at sample U, are
denoted B;(U). ... Bs(U).

Aucnuauon of light strength along a my is inversely proportional to accumulation of opa-
city along the ray and can be approximated using volumetric compositing. Working from the
light source toward the data and adopling the notation of equation (2.11), the strength B,.(u,:U,)
of illumination ray u, after processing sample location U, can be computed from the strength
Bia(u;:U,) before processing the sample and the opacity a(U,) of the sample by the relation
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Bou(u.n'U:) = B..(Il,:U,)(I = G(U:)) (54)

Afier this computation, the opacity is discarded, but the light strength is stored in a 3D
light strength buffer. When all color and light strength volumes have been computed, a total
colar Cr(i) for each voxel is computed as the weighted swn

1 J ‘
AU S i

where the B,(i)'s are obtained from the f,(U,)'s by mapping from voxel indices i o 3-space
indices U, in the coordinate system of light source s and tri-linearly interpolating from the
nearest eight light strength values. The arrays of total color Cr{(i) and composite opacity o(i}
are then ray traced, resampled, and composited as usual.

One problem that arises when using a sampled shadow representation is the tendency of
surfaces to shadow themselves. The use of a 3D light strength buffer rather than a 2D shadow
depth buffer reduces the severity of these artifacts, but does not eliminate them entirely., In the
above algorithm, this problem applies to both naturally occurring surfaces (such as tissue boun-
daries) and those introduced using 3D scan-conversion. The solution adopted is to translate the
3D light strength volume a few voxels away from the light source just before computing the
CHiy's (Williams78, Reeves§7). While biasing of shadows in this manner necessarily reduces the °
accuracy of shadowing within small objects, it avoids intreducing distracting aliasing artifacts.

5.3.2. Texture mapping

Projecting textures through space and onto volumetrically defined surfaces can be added to
the shading and classification calculations described in chapter 2 simply by mapping from voxel
coordinates to a 2D texture array and resampling the information at that location. Suitable
resampling methods are described in {Feibush80] and (Heckbent86]. Such a texture can be used
to modify surface reflection coefficients, voxel opacity, or any other rendering parameter
{Cock84]. A 3D texture array, alsa known as a solid texture [Peachey85], can be used in place
of a 2D texture, thus simuitaneously visualizing two 3D datasets,

Both of the rendering methods described in section 5.2 can be modified to support textured
polygons, The pre-filtered representation of polygons that made the scan-conversion method of
section 5.2.2 well suited to shadow casting would severely blur any texture applied to the
polygons prior to scan-conversion.  For this reason, texture mapping is better handled by the
hybrid ray tracer described in section 5.2.1. As pant of the shading calculations performed at
¢ach point of intersection between a ray and a polygon, a mapping is performed from object
space w0 a 2D or 3D texture array as shown in figure 5.5. The texwre array is then resampled
and used 10 modify the shading calculations as described above.

Assuming that the texture array is properly fillered during resampling, image supersampling
in the interior of textured polygons is not necessary. To prevent the addition of textures from
triggering the casting of excessive number of rays, the adaptive supersampling procedure
described in the last paragraph of section 52.1 must be modified. Specifically, those aspects of
the polygon shading model that are analytic and might give rise to sudden changes in polygon
color Cp(x) or opacity ap(x) should be included in the supersampling decision, whereas conmribu-
tions by sampled functions, which are assumed bandlimited, should not. In the current imple-
mentation, this rule is satisfied by including directional shading and depth cueing but not texture
mapping in the computation of colors Cg{u) and C,(u).
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$.4. Optimization of the rendering algorithms

The hierarchical spatial enumeration described in section 3.2.1 is readily integrated with the
3D scan-conversion method described in section 5.2.2 by constructing a pyramid of binary
volumes from the array of composite opacities a{i). This solution speeds the tracing of rays
through both volume and geometric data. The resulting pyramid depends on both the volume
and geometric data, however, and must re<computed if either changes, For the hybrid ray tracer
described in section §.2.1, a pyramid can be used to speed the tracing of rays through segments
of volume data lying batween successive polygon intersections in the hybrid ray tracer. The
pyramid is independent of the polygon geometry and need not be recomputed if the latter
changes. This method does not, however, reduce the cost of computing intersections between
rays and polygons, The addition of a separate data stwructure to handle polygonal data (e.g.
bounding volumes or spatial subdivision - see section 3.4), or the use of a single data structure to
represent both polygons and volume data, are among the possible solutions to this problem.

Adaptive termination of ray tracing as described in section 3.2.2 is readily integrated with
both of the rendering methods described in this chapter. In the case of the hybrid ray tracer,
adaptive termination reduces both the number of voxeis that must be resampled and the number
of ray-polygon intersections that must be shaded. Note that this optimization must be applied
independently in the computation of each of Cg(u) and Cy(u) (see section 5.2.1) so as not o
adversely affect the adaptive supersampling process.

The progressive refinement algorithm described in chapter 4 is well suited to the scan-
conversion method in which polygons are filtered prior to ray tracing, It may also be integrated
with the adaptive supersampling employed in the hybrid ray racer, but one runs the risk of miss-
ing small polygons if the initial sampling rate is too low.

5.5, Implementation details

Of the two rendering algorithms, two extensions, and thres optimizations described in the
foregoing sections, one has been selecied for description in detail: the optimized hybrid ray tracer
without extensions. Pseudo-code for this algorithm, which replaces all pseudo-code in sectons
2.3, 1.3, and 4.3, follows;

procedure RenderVolumey( ) begin

{Compute color and opacity for each voxel in dataset}
for all i in Daraser do begin

ComputeQpacity(i);

if a(i) > O then

ComputeColor(i);

end
(Initialize level-of-detail parameters and Rag arrays)
WOpngy = FiPst@Ome( ); Oy 12 Firsiod ); g = Firstwg ); € = Firste( );
for all u in /magePlane do begin

Flu)y =0, Glu):=0;
end
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{Loop untl image is fully refined)
while Gy, > WG do begin

end

(Divide image plane into sample regions and cast some (more) rays)
for u = {1.Qneps . - - )% do

RayTraceRegion (U, Wy SOvig.E):
{Redivide image plane into regions and interpolate any missing pixels}
for u = {10, ....S}3do

InterpolateRe gions(u, 0y, 0v);
(Gather contributions from all samples lying in 2wy by 2wy}

{open region centered on each pixel}
for u = (1,wp, ... .5}* do begin

for v := {0,0p)3 w := {wp,0)% do
C(v) = AverageRegion(u=(w,@)+v,0p,W);
Clu):= 3, C(vya;
end
{Display image, then clear all interpolated colors)
Displaylmage( );
for all u in /magePlane do
if not F(u) then G{u) = 0;

{Increment level-of-detail parameters)
Wrnge = NeXtOma,( )i Oy i3 NextowW ); Og i= Nextwog( ); & := Nexre( );

end RenderVoluwme,

procedure RayTraceRegion,(u,0,wy,0g.€) begin

{Cast rays from four corners of region}
for v = (0,0} do

if u+v in /magePlane and not F{u+v) then begin
TraceRayy(u+v), Fluty) = 1;

end

{If region is larger than wy by wy pixels and color difference > threshold,)
{or if region is larger than wg by wg)

{and C; and C, color differences > threshold,)

(divide into four subregions and continue ray tracing)

ir [m > Wy and Difference {u.0.£)| or {© > W and D::é“erencea{u.m.s)] then

for v := {0,wr2)% do
RayTraceRegion {(u+v,u¥2,0y,0q,E):

end RayTraceRegion,
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procedure /nierpolateRegions(u 0.0,) begin
(Interpolate colors at midpoints of sides and at center of region)
for v = {{0.w/2),(w,00/2),{ev2,0).{a)/2,0),(c/2,62)} do
if u+v in /magePlane and not F(u+v) and not G(u+v) then begin
Interpolate(u,@u+v); G(u+y) = 1;
end
(If regioa is larger than wp by wp pixels, )
(divide into four subregions and continue interpolation)
if /2 > @p then -
for v ;= (0,02} do
InterpolateRe gions(u+v,av2,0v);
end [nterpolateRegion,

procedure AverageRegion(u,w,w) begin

{If region is larger than g by g}

{and was subdivided during ray tracing or interpolation,)

{divide into four subregions and continue gathering contributions)

if © > wg and | Flur{w2,w/2)) or Glur{w2,0¥2)) | then begin
for v := (0,av2)2 do :

C(v) = AverageRegion(u+v,0/2,w/2);

return 3, C(vyd;

end

(Else return comer closest to display pixel as color of region)
else return Clu+w);
end AverageRegion.

procedure T'raceRayu) begin

Xp, = NextPoly(x,u);

(Loop through volume dataset,)

(terminating early if polygon-only opacity g > threshold}

while x in Dataset and a{u) S 1 - & do begin
{Loop through volume data lying between)
{eurrent position and next ray-polygon intersection,)
{terminatng early if volumetric+polygon opacity a > threshoid)
Xp, = NmPaly(:.upl):

while x < x», and a(u) < 1 - € do begin
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{If level zero cell conwins a one, render it,]
{but only portion lying between ray-polygon intersections)
if V(i) then RenderC ellz(u.x.J‘\’ex:(m.x.l.l).x,»l Xp.);

{Advance w0 next cell and maybe jump to higher level,}
{but advance no farther than next ray-polygon intersection}

x = min(Nexi(mx.u).xp.);

end
RenderPoly(uxp):;
Py = Xpgi
end
 end TraceRay,

procedure RenderCell;(u.xl.x;.xpl,xp) begin
Us = | max( tmage(x,). Imagetxs,) - 00120 |

U= lrmh( Image(xs}, Image(xp) + (0,0,1/2)) J :
Up, = Image(x: );

Up, = Image(xp RH

{Loop through all samples falling within cell}

{and lying between ray-polygon mr.ersecuons}
for U = U, to U, do begin

x ;= Object(Uy;

{If any of eight surrounding voxels have opacity > 0,)
(then resample color and opacity and composite into ray,) .
{including only portion lying between ray-polygon intersections,)
If Vo(Index(0.x)) then begin

Uy = Sample(C x);

(U} = Sample{ax);

t=1;

if Up, > U ~ (0,0,1/2) then

ti=t=Up - U+ (00.1/2);
if Upz < U + (0,0,1/2) then
te=t-U+(00,12) - Up;
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a(U) =1 - (1 - a(Ups

Clu) = Cu) + CQUXI - afu));

afu) = au) + a(UX1 - afu));
end

end
end RenderCell,

procedure RenderPoly(ux;s) begin
C(u) := C(u) + CalxpX1 - afu));
a(u) = a(u) + ap(xa)(1 - afu));
Catw) = Cylu) + Colxp)(1 - alu));
Cofu) = Cu) + Coxp)(1 = ag(u));
ag(u) = ag(u) + aa(xp)(1 - og(u));
end RenderPoly.

wy in this implementation is equivalent o wW., in section 4.3, wp is the size of a display
pixel (assumed to be | in section 4.3) where wp S Wy, and W is the minimum region size during
adaptive supersampling where g S @p. To allow rays to be shared by adjacent sample regions,
thus minimizing the number of rays traced, the image array in section 4.3 has been replaced with

an image plane array measuring § samples on a side where S = %GEP. The additional storage

allows rays all traced during supersampling to be retained throughout the refinement process. An
open region of size 2wy by 2wp centered on each pixel is used during averaging down because it
encloses the largest number of image samples (in the vicinity of polygonal edges) without every-
where blumring the rendition of volume data (samples of which are spaced @, apart in the
absence of a polygonal edge). The Displayimage, procedure displays the image formed by
entries spaced wp apart in the image plane amray. The Differencey procedure is equivalent to the
Difference procedure in section 4.3, The Difference; procedure decides if the range of both
Col{u) and C,(u) as described in section 5.2.1.

The NextPoly procedure computes the object-space coordinates of the next polygon inter-
sected by a ray starting at the specified object-space location and moving in the specified direc-
tion. The RenderCell, procedure composites the contribution made to a ray by the specified
interval of volume data, but only that portion lying berween the specified ray-polygon intersec-
tions. The ReaderPoly procedure composites the contribution made to a ray by the specified
polygon, and also updates computes Co(u) and C.(u) as described in section 5.2.1.

The memory required for the hybrid ray tracer is equal to that of the algorithm given in
chapter 3 plus a relatively small amount of storage o hoid the polygonal database. The time
required to perform shading, classification, and pyramid conmstruction are also similar to those
given in chapter 3. The time required to generate an image using the hybrid ray tracer is approx-
imately equal to the sum of the times required to separately render those portions of the
geometric and volume data that are visibie in the composite image. Since the present implemen-
tation includes no means for reducing the cost of compuling ray-polygon intersections, the cost of
computing each intersection is proportional (o the number of polygons in the database.
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£.6. Case studies

In order to compare the two rendering methods described in this chapter, let us consider a
simple test environment consisting of three mutually perpendicular polygons embedded in a 256
% 256 x 113 voxel compuwd tomography (CT) study of a human head. Figures 5.6a and S5.6b
are 380 x 380 pixel views of this data rendered with the hybrid ray tracer described in section
5.2.1 and the scan-conversion method described in section 5.2.2 respectively.

Shading and classification of the volume data took about 2 minutes on a Sun 4/280. Scan-
conversion of the large polygons used here wok about 1 second apiece. Conmstruction of a
pyramid of binary volumes from the array of voxel opacities (for the hybrid ray wacer) or com-
posite opacities (for the scan-conversion method) tock about 1 minute. Ray tracing, interpola-
tion, and averaging down (for the hybrid ray tracer) to generate figures 5.6a and 5.6b took 80
seconds and 70 seconds respectively. Slightly less than one ray per pixel was traced on average.
By coatrast, the volume data without the polygons can be rendered with the same level of
refinement in about 50 seconds.

Figures 5.7a and 5.7b show details from figures 5.6a and 5.6b. In general, polygon edges
produced by the hybrid ray tracer are sharper than those produced by 3D scan-conversion,
although a higher image generation cost is paid for the better rendition. The slight aliasing
noticeable in the bory tissue in these and other figures is due to insufficient bandlimiting during
CT scanning and is not a result of the rendering process.

A visualization of where rays were cast during generation of figures 5.6a and 5.6b is given
in figures 5.8a and 5.8b. Each pixel in these visualizations corresponds to one position in the
image plane array, and each 4 x 4 block of pixels corresponds to a single pixel in figure 5.6.
White pixels in the visualizations correspond to cast rays, and black pixels to samples filled in by
interpolation, As expected, the number .of rays per unit area is lowest in the interiors of homo-
geneous regions, higher along the silhouettes of volumetrically defined objects, and in the case of
the hybrid ray tracer, higher still along polygonai edges.

Figure 5.9 shows the effect of casting shadows using the algorithm described in section
~5.3.1. The scene contains two light sources: a low-intensity light shining over the observer's
right shoulder and a high-intensity light shining up from below and to the left. To insure that the
shapes of shadowed objects are not completely obscured, shadows were only computed for the
high-intensity light. While this is not strictly comect, the goal is enhanced insight, not photo-
realism. Inital light strengths for the high-intensity source were assigned from a texture contain-
ing a filtered rectangular grid. The effect is to project this texture through the dataset and onto
all illuminated surfaces, including the five scan-converted polygons. The addition of shadows
roughly doubles the time required to compute the amay of total voxel colors Ci), but does not
affect the time required to generate each frame in a rotation sequence (assuming fixed object and
light sources and moving observer as discussed in section 2.4).

Figure 5.10 shows the effect of mapping a texture onto embedded polygons using the algo-
rithm described in section 5.3.2. The effect on image generation time of adding textures depends
on the number and size of textured polygons. For this exampie, image generation time increased
from 80 seconds lo 120 seconds. Although a whimsical texmre has been used here, the tech-
nique may be used to display measurement grids or secondary datasets.

Figure 5.11 suggests one possible way in which these techniques might be applied to the
probiem of radiation treatment planning. A polygonally defined wreatment volume (enclosing the
tumor - in purple) and treatment beam (in blue) have been added to the color visualization on a
CT dataset shown in figures 2.13 and 2.14. Scaling the opacities of all voxels inside a region of
interest down to nearly zero helps clarify the 3D relationships between the various objects.

Figure 5.12 illustrates how scan-converted backdrop planes and cast shadows can be used
1o enhance comprehension of an isovalue contour surface from the Staphylococcus Aureus
ribonuciease electron density map used in chapter 3. In this visualization, a2 color-coded stick
representation of the molecular structure has been superimposed on the image to aid in its
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interpretation,
5.7. Summary and discussion

Two methods for readering mixmres of geomegic and volume data have been dascribed.
Although both are reasonably efficient and produce images free from aliasing artifacts, each have
advantages and disadvantages in terms of cost, image quality, and versaiility. In particular, it
was found that the 3D scan-conversion method was beuer suited than the hybrid ray tracer for
rendering shadows, while the converse seems to hold for rendering textured polygons. A single
algorithm capable of rendering both shadows and textured polygons has not yet been developed.

A number of ifnprovements to these methods can be suggested. The current implementa-
tion makes frequent use of tri-linear interpofation for resampling 3D data. A beusr fiter would
reduce the amount of blurmring required during 3D scan-conversion, yielding sharper polygonal
edges.  In a similar vein, the shadow casting algorithm includes three successive resampling
steps. By reorganizing the order of operations, one resampling can be eliminated, yielding
crisper shadows, Finally, the solution proposed for handling volume sampies near ray-polygon
intersections treats the polygons locally as a plane perpcndxcular io the ray. Proper consideration
of the angle the polygon makss with the ray would mcrem the accuracy of these cal¢ulabons
while adding only modestly to their expense

These studies have led w several welcome but unexpected results. Polygons rendered
using 3D scan-conversion appear 1 have a finite .thickness when rotted. Their opacity also
varies with their angle relative to the view direction, as would a real slab of semi-transparent gel.
Far from being distracting, these effects enhance the viewer's undersianding of their shape and
crientation, The embedding of polygons in volume data also seems 1 improve comprehension of
the taner. For exampie, whmﬂncrsmdyatmeheadubmcwd by a gridded, coronaily-
ariented (in the plane of the face) polygon and the ensemble is rotated, the presence of a back-
drop of known shape and patiern improves appreciation of the fine structure of the sinuses and
eye orbits. This suggesis that, in addition to their primary mle rcpresemmg man-made or
abstract entities, zeomemc pnmmves may be useful a8 diagnostic tools in the study of volume
datasets.

Several strategies for mreating mixtyres of geometric and volume data remain unexplored,
For example, geometric objects defined by extrusion of 2D profiles can be readsred using the
shadow casting algorithm. If the profile is loaded into the amray of initial light strengths, and ail
voxels in the volume data are assigned a slightly non.zero opacity, ‘one obtains the effect of
scuipted shafts of light passing through a dust-filied room. This technique could be used 1 visu-
alize a radiation beam for cancer treamment,
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Figure 5.6a: Color rendering of CT dataset and smbedded polygons.
generated using hybrid ray tracer

N

Figure 5.6b: Color rendering of CT dataset and embedded polygons,
generated using 3D scan-conversion method
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Figures 5.7a and 5.7b: Details from figures 5.6a and 5.6h, comparing
image quality of hybrid ray tracer and 3D scan-conversion methods

Figures 5.8a and 5.8b: Visualization of where rays were cast
to generate figures 5.6a and 5.6b
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Figure 5.9: Color rendering with shadows of CT dataset and embedded
polygons, generated using modified 3D scan-conversion method

‘ 'Figdré' 5.10: Color renderi'hgwdf CT dataset and textured
polygons, generated using modified hybrid ray tracer
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Figure 5.11: Color rendering of CT dataset showing bone, soft tissue,
tumor (purple}, and radiation treatment beam (blue)

Figure 5.12: Coior rendering with shadows of
electron density map and embedded peiygors
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_ CHAPTER VI
FINAL SUMMARY AND TOPICS FOR FUTURE RESEARCH

Surface-based and binary voxel techniques for displaying sampled scalar fields of three spa-
tal dimensions have been in use forabomwnyemandlmvebwnapphedmavanety of
scientific, medical, and engineering problems. The most prominent disadvantage of these tech-
niquss is: poor image quality. Theygmmﬂymbythuboldingmemmmgdma.apmss
dmoﬁmhmdammfammﬂwgmmdmge.

W;mmemtwoorthmyears. me_pmblemoﬂawmagequahtyhasbeenlargely
salved with the development of volume rendering. The key characteristic of this approach is its
use of partial object opacity, which eliminates the necessity of making a binary classification of
u:emcommgdauandthuseiunmmemanyofmmfxuphsmnzuwmbawchmqm

Dethsadvmages, volumerendennghsspmmwmﬂ‘e&omanumbuofmblem
Hngh on this list is the technique’s computational expense. Since all voxels participate in the
generation ofmhunage rendering time grows linearly with the size of the dataset. Published
techniques take minutes Or even hours (o generate a single view of a large dataset using currendy
available workstation technology. Slow imgge generation has also constrained the design of con-
venient user interfaces for volume rendering. Yet another drawback of volume rendering is its
lack of versaulity, Many scientific problems require that sampled functions and analytically
defined geometry appear in a single visualization, Strategies for rendering such mixtures have
been suggested by various researchers, but none have yet been reported in the literature,

This thesis offers practical solutions to many of these problems. - It presents an image-order
vojume rendering algorithm, demonstrates that it prodeces images of high quality, and proceeds
" to- show how its computational expense can be reduced by taking advantage of spatial coherence
in the 3D data and in its 2D projections. For the applications studied, these improvements speed
up volume rendering by two orders of magnitude. For the special case of scenes consisting
solely of opaque surfaces, image generation time has been observed to grow nearly linearly with
the size of the image rather than lincarly with the size of the dataset. This thesis aiso presents
algorithms for mixing polygons and volume daia in a single visualization, for casting shadows
through volume data, and for embedding 2D texwres in volume renderings in a variety of ways.

61, Compar&on to Pixar volume rendering algorithm

Since the volume rendering aigomhm developed by :esurchcrs at Pixar predates the algo-
rithm described in this thesis, and becguse their volume rendering engine, the Pixar Image Com-
puter, is widely used, it seems useful 1 briefly compare the two approaches. Pixar has not
addressed the problem of displaying isovalue contour surfaces, so comparisons in this regard are
impossible, We therefore concentrate on their technique for dwphymg region boundary surfaces
as described in [Drebin88) and in the documennuou accompanying their ChapVolumes software
package. :

Pixar’s algorithm, like the one described in lhis thesis, consists of a shading and
classification phase whose output is a 3D array of colors and opacities, and an image formation
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phase whose output is a 2D image. Their shading and classification phase begins by estimating
from the scalar value in each voxel an occupancy fraction for each of a set of materiais that
might be present in the voxel. A color, an opacity, and a density are then computed for the
voxel by adding together the fraction of each material present in the voxel multiplied by a color,
opacity, and density assigned to that material. Material density need not be related to physical
density or to material opacity. It arises from an approximation of physical optics whose details
are not important here. Its practical significance is that gradient vectors in the density array
serve as surface normals during shading, and the magnitude of these vectors is used to scale the
opacity of surfaces relative to the opacity of surrounding voxels,

The notion of explicitly computing material occupancy and matenal density is elegant, but
" the actual computations are not necessary. Pixar's shading and classification model and the
‘model presented in chapter 2 are capable of producing identical resulls given appropriate parame-
ter selections, Furthermoce, the applicability of their technique o any particular dataset is con-
strained by the same material adjacency criteria as is described in secdon 2.2.2.2. Unfortunately,
many details of their shading mode! are propristary, and the ChapVolumes software package
hides key shading parameters from the user, making verification of this hypothesis difficult Sub-
jective comparison of images suggests that Pixar usually assigns a lower opacity to surfaces and
a higher opacity to voxels lying between surfaces than the examples in this thesis, and that they
usually render their surfaces with less specular reflection than is used here.

One significant difference between the two approaches is that Pixar's surface normals are
computed from classified data (their density array) whereas surface nommal N(i) in equation (2.1)
is computed directly from the original data. The application of a non-linear operaior prior to sur-
face normal estimation in their technique has the potential for distonting apparent surface orienta-
tion, This is particularly true if the material occupancy classification contains errors. In the algo-
rithm described in this thesis, shading and classification are entirely independent. Classification
errors may produce surfaces that are 100 transparent or {00 opaque; but their apparent orientation
will be correct.

‘ Image formation in the Pixar algorithm is performed in object order. Specifically, they
geometrically transform’ each slice of voxels from object space to image space using two-pass
resampling techniques [Caimull80), project the slice onto the image plane, and blend it together
with the projection formed by previous slices using compositing. The algorithm presented in this
thesis operates in image order, tracing viewing rays from an observer position through the
dataset. Once again, the details of their resampling algorithm are proprietary, making comparis-
ons difficult. In a series of informal experiments, images generated by the two algorithms start-
ing from identical arrays of color and opacity were found to be visually indistinguishable.

The use of an image-order rather than an object-order algorithm has significant computa-
tional advantages, however, as was demonstrated in chapters 3 and 4. Since Pixar's volume
rendering technique is implemented on specialized hardware whereas the present algorithm is
implemented in the C language on a general- purpose compute engine, experimental performance
comparisons are nearly impossible. Shading and classification of a 256 x 256 x 113 voxel dataset
on the Pixar Image Computer using ChapVolumes software takes about two minutes, and genera-
tion of a single image from the resulting array of colors and opacities takes about one minule.
These timings are roughly equal to the resuits reported in this thesis, It is presumed that the Pixar
Image Computer makes up in hardware and optimized firmware the time it loses by employing a
fundamentally less efficient algorithm,

6.2. Real-time volume rendering

The near-term prospects for real-time volume rendering are encouraging. Kaufman has
writien an excellent survey of architectures designed for rendering voxel data [Kaufman86a),
including his own CUBE (CUbic frame Buffer) system currently under development
(Kaufman88a}. Most of the machines he surveys start by thresholding the incoming data. At
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this writing, the fasiest system based on volumetric compositing is probably the Piar Image
Computer. Using a four channel SIMD processor [Levimhal34] and Pixar’s ChapVolumes
software package, the Image Computer can generate high-quality images in 12ns of seconds or
minutes, depending on the size of the dataset. Algorithms for ray wacing geometrically defined
scenes have been developed for a number of parallel machine architectuses including the Connec-
tion Machine (Delaney88)] and the MPP [Dorband88], but none of these implementations support
the display of volume dataz. A parallelizable object-order volume rendering algorithm is
presem in [Westover89], but no implementation achieving real-time update rates has yet been
auem:

In (Levoy85c], a design is presented for a workstation capable of rendering arbitrary mix-
tures of analytically defined geometry and sampled scalar fields of three spatial dimensions in
real-time or near real-ime. The design is based on the algorithms presented in this thesis,
Speedups of two additional orders of magniwde are obtained by implementing these algorithms
on Pixel-Planes 3, a massively paralie! raster display engine incorporating custom logic-enhanced
memory chips {Fuchs89b] curendy under development at the University of North Carolina and
scheduled for completion during the fall of 1989. Although Pixel-Planes § was not explicitly
desighed for volume rendering, its fexibility makes it swrprisingly well suited 0 the task.
According to preliminary estimates, the proposed workstation will provide opdate rates of
between | and 20 frames per second (depending on the desired levei of refinement) for datasets
of useful size and complexity, _

6.3, - User interface design issues

User interfaces for existing volume rendering syswems are constrained by the inability w0
generale images in resl-time. Feedback during sclection of rendering parameters is usuaily pro-
vided by meta-visualizations such as 2D plots of color and opacity versus input value, wire-frame
representations of viewing frusoums and motion paths, ew. These ancillary dispiays complicaie
the user interface and alienats prospective users. Teaming a computer iechnician with each user
is not a satisfactory slternative, pasticularly in the medical field. Such intermediaries inhibit the
frequent and informal experimentation that leads o insight.

If the workstation proposed in {Levoy89c] operates in real-time or near real-time as
expecied, these meta-visualizations can be omitted or relegated to a supporting role. Sequences
of volume rendered images would serve as feedback o the user of changes made in rendering
parameters. [deally, the user interface should be trivial. As an example, radiological viewing
statons generally provide only one interactive control device - a wackball having two degrees of
freedom; one axis controls the the position of a density window, and the second axis contols its
width. Medical professionals who have used the volume rendering algorithms described in this
thesis suggest that in order for volume rendering workstations w0 gain acceptance in clinical set-
tings, they should have ro more than two or at most three such controls,

As an example of an interface tool that meets this criteria for simplicity, let us imagine that
the user is provided with two six-degree-of-freedom input devices such as the Pothemus Naviga-
tion Sciences's 3SPACE tracker. Oue of thess bats (3D plural of mouse, erm suggested in
[Ware88]) conwrols the position and grientation of a 3D region of interest, and the second bat
controis the position and direction of a point light source. Using the workstation proposed in
[Levoy89¢c), voxels inside (or outside) the region of interest could be highlighted dy scaling voxe!
opacities as described in section 2.4 and illustrated by figures 2.13 and 2.14. User feedback
would be provided by computing 20 crude volume rendered images per second on the proposed
warkstation.

One obvious addition 1o the above paradigm is interactive control over observer position.
Both hands are already in use, but head position and orientation are stll available as inputs to the
system. The position and orientation information returned by a third Polhemus tracker affixed 10
a head-mounted display system would allow a user to move around and through a 3D scene as if
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it were actually in the room with them. Since Pixel-Planes 5 is not expected to be capable of
rendering a moving 256 x 256 x 256 voxel dataset at 30 frames per second as required for a
head-mounted display system, either the size of the dataset must be reduced, or additional speed-
ups must be obtained through hardware or software improvements.

6.4. Visualization of multiple fields

An important problem not addressed in this thesis is how to visualize vector or muldple
scalar fields. The use of volumetic compositing rather than a binary voxel representation greatly
expands the variety of physical phenomena that can be accurately simulated. [t is theoredcaily
feasible to display surfaces having maue or reflective finishes, objects that are partially transiu-
cent, not merely partiaily transparent (the former passes light but diffuses it, making objects
appear indistinct), and so on. In [Robertson85], realistic shading models are effectively used to
visualize muitiple 2D scalar fields by assigning one dataset to surface relief and ancther to sur-
face albedo or color. Aside from the effornts of Hoehne [Hoehne87, Hoehne88a) in the medical
field, little work has been done applying these techniques to three dimensions. One obvious
approach would be to use the second dataset to modulate the color or opacity computed for vox-
els in the first dataset. A more sophisticated method would be to use the second dataset to per- °
turb the normals, shininess, or other properties of the surfaces displayed from the first dataset.
One might also use the second dataset to modulate parameters of a solid texture applied o the
first dataget during rendering.

6.5. How correct is & volume rendering?

Current p&spective suggests that the applicability of volume rendering to certain discip-
lines - diagnostic radiology in particular - hinges on answering the question: how correct is a
volume rendering?

In many applications, the data to be visualized has no visible manifestation in natore.
Iniernal anatomic surfaces are visible during surgery, but seldom in their entirety and seidom
under the lighting and viewing conditions simulated in volume rendering algorithms. If we treat
volume rendering as abstract visualization, adherence o a consistent physical mode! is not neces-
sary. On the other hand, the human perceptual system expects sensory input to arise from physi-
cally plausible phenomena and forms interpretations on that basis, To insure an unambiguous
interpretation, we should adhere to a plausible physical model.

The physical model underiying the shading and visibility calculations described in section
2.2 is a colored semi-transparent gel in which suspended reflective particles align to form the
appearance of embedded surfaces. In [SabellaB8], identical calculadons are justified by a model
consisting of varying density emitters. Neither model is particularly intuitive, Who has ever
seen a gel containing aligned reflective particles or a 3D amay of pinpoint light sources? The
question therefore arises of how valid and useful our interpretation of these visualizationg is.

A closely related issue is the concemn raised in section 2.5 that surfaces appearing in
volume rendered images are not renditions of surfaces present in the original scene, but are
instead renditions of fuzzy surfaces as they exist in a bandlimited representation of the scene.
Fuzzy surfaces having no discernible texture do not occur in daily life. Moreover, volume ren-
dered surfaces do not look fuzzy: they look precise. The danger therefore exists of interpreting
these visualizations incorrectly. In particular, features that appear to lie on anatomical surfaces
may be superficial or may be embedded and are made visible by a partially transparent rendering
of the overlying material. Along similar lines, volumemic compositing often causes surface
silhouette edges to appear unnaturally sharp and misplaced by some fraction of a voxel from
their true location. Diagnostic radiology requires making subtle judgements of feature size. The
potential exists of making these judgements incorrectly,
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One possible solution is to provide alongside each diagnostic image a calibration image
coniaining volume renderings of 3D scan-converied geometrically defined objects and surfaces.
Objects would be labeled as to density, shape, size, and onientation, and the image would be gen-
erated using rendering parameters identical to those used o generaie the diagnostic image. Clini-
cians could then make quanttatively accurate judgements from the diagnostic image by visual
comparison Lo the calibration image. With increasing experience, the clinician could be expacted
w0 make such judgements without the accompanying reference image. An altemative solution
would be 10 fit geomeric primitives to the data and anomatically quantitate anatomic features
from the geometric representation, We have eliminated fitting of geomerric primitives as unreli-
able for presentation of entire datasets, but it might work well locally if guided and verified by
volume renderings generaied directly from the sample daia,
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