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Surface definition, a process of defining three dimensional surface from volume data, is essential in three 
dimensional volume data rendering. The traditional method applies a three dimensional gradient operator to the 
volume data to estimate the strength and orientation of surface present. Applying this method to ultrasound volume 
data does not produce satisfactory results due to noisy nature of the images and the sensitivity of certain signals 
to the direction of insonation. We propose a Bayesian approach to the surface definition problem of ultrasound 
images, and study this approach in two dimensions. We formulate the problem as the estimation of posterior means 
and standard deviations of Gibbs distributions for boundary believability and normal direction. A set of filters of 
directional derivatives of Gaussians are used to measure the edge strength and orientation at multiple scales. The 
likelihood function is based on the measurement at the smallest scale. The prior distribution reflects shape properties 
at multiple scales. It uses a pyramid algorithm for contour analysis where the lengths of contours are computed and 
contour gaps are closed at multiple scales. The outcome of the pyramid algorithm is the length and weight global 
attributes for each pixel. These attribute values are incorporated into the Gibbs prior using a data augmentation 
scheme. The design and implementation of such an approach are the subject of this paper. 
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1. INTRODUCTION 

Three dimensional arrays of digital data are being generated in many areas of medical imaging 
in ever increasing number. Multiple 2D slices of computed tomography (CT), magnetic resonance 
(MR), and single-photon emission computed tomography (SPECT) create volume data. A research 
project currently conducted in the Duke/UNC Engineering Research Center on Emerging Cardiovas­
cular Technologies includes building a new generation transducer that can capture a three dimensional 
volume of ultrasound data in real time (von Ramm et al, 1988), (Shattuck et al, 1984). These volume 
data represent complex anatomy or functional process under study. Effective visualization of these 
volume data helps physicians in diagnostic interpretation or treatment planning. 

Volume rendering, a method of direct rendering of volume data, has been successfully applied 
in visualizing volume data of CT, MRI, and PET images. The operational principle of volume 
rendering is to render the volume data directly instead of fitting geometric primitives and then 
rendering the primitives. This direct rendering is done by compositing images from the results 
of two separate and parallel processes. The first process performs surface classification to obtain a 
partial opacity for every voxel. The second process performs surface shading at every voxel of volume 
data with a locally computed surface normal. Non-binary classification increases the likelihood that 
small or poorly defined features are perserved (Levoy 1988). 

Successful application of volume rendering depends heavily on the estimation of the local 
surface normal and surface classification. Usually one tries to take advantage of knowledge about 
the relationship of voxel values with surfaces and their normals. For example, in CT image studies 
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one can make the assumption that CT numbers represent the percentages of material contained in 
voxels; hence the surface normal and surface classification can be obtained from the local gradient of 
an approximate percentage measure. Unfortunately this simple technique can not be satisfactorily 
applied to ultrasound volume data since ultrasound images suffer from serious speckle phenomena due 
to the coherent radiation source. Common speckle phenomena include random speckles spots from 
within soft tissues and broken contours on organ boundaries. Applying the above simple classification 
technique serves to pick up boundaries of random speckle spots as surfaces and to miss boundaries 
at contour gaps. The locally computed surface normals tend to be incorrect. 

In this paper we study the surface classification and normal estimation problem from a 
Bayesian perspective in two dimensions. We formulate the problem as the estimation of poste­
rior means and standard deviations of Gibbs distributions for boundary believability and normal 
direction. We show that the Gibbs distribution can be extended to model global structures by using 
a data augmentation scheme. We apply this method on ultrasound images in two dimensions and 
show the results. The remainder of this paper is organized as follows. The next section presents 
the Bayesian approach. The following two sections describe our filter design for producing edge­
related measurements of ultrasound images to which Gibbs-compatible likelihood functions pertain. 
Then the design of Gibbs priors reflecting shape-related knowledge about object boundaries is pre­
sented, followed by a summary of the complete algorithm. We then present results and close with a 
discussion. 

2. METHODS 

2.1 Approach 

Given an observed image we can apply measurements on the voxel values to determine whether 
a given voxel is on a boundary and, if it is, the associated normal direction. A representation of the 
target boundaries and normal directions on a grid can then be determined from the measurements. 
However, this representation will not always be the true representation of the boundaries and normal 
directions of underlying targets due to the image noise. Instead, there is a certain strength of 
conviction or believability associated with this representation. 

The believability is obviously dependent on the measurements and is generally different in 
different parts of an image. We usually have strong conviction as to the representation of a part of 
an image when the measurements on that part show relatively high values and weak conviction when 
the measurement values are low. For example, the output of an edge detector affects our conviction 
about the presence of an edge the higher the output value the stronger the conviction. This 
conviction is also affected by the measurements in the neighboring voxels. For example, the believ­
ability concerning the existence of a boundary at two neighboring voxels increases when their normal 
direction measurements are aligned and conform to the assumed boundary orientation but decreases 
when the normal directions are not aligned or contradict to the assumed boundary orientation. 

Putting this dependency of believability on measurements and consistency into a mathematical 
form produces a Bayesian formulation for the conviction. In other words, the believability is really 
the posterior odds of a representation given measurements. It depends on a likelihood function, 
which is a distribution of measurements conditioned on a boundary representation, and a prior, 
which models the consistency in a representation, that is, the geometry of the situation. 

Under the Bayesian framework we can define a random field with the same dimensions as 
the input image. Each site of the random field has two components: a boundary value, whose value 
is either zero or one, representing whether the corresponding voxel is on a boundary or not, and a 
normal which is the normal vector associated with the boundary. A representation of object boundary 
and normal direction is thus a sample drawn from the random field. In regard to this representation 
there is an associated posterior odds between zero and one, and the value is monotonic with the 
believability of this representation. 

We compute the posterior means and standard deviations of boundary value and normal 
directions for each voxel. This produces a summary representation of the ensemble of all possible 
representations. This summary representation provides information useful for volume-rendering. For 
example, the mean of the normal direction of a voxel can be used as the surface normal for shading. 
The standard deviation of normal direction can be used to make the mean normal direction fuzzy 
before it is used as the surface normal. As a result a shiny surface might show a high confidence about 
the local surface normals while a dull surface show a low confidence. The mean of the boundary value 
can be used to modulate the opacity of the voxel and the standard deviation of the boundary value 
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can be used to modulate the color. Here the color of a. surface would show the relative confidence 
about our judgement of the presence of a. local surface. Idea.lly this creates an image portraying the 
target shapes with additional visual information of confidence about the shapes. 

Later we will show that under certain assumptions this random field has the Markovian 
property. By the equivalence theorem of Markov random fields and Gibbs distributions due to 
Geman and Gema.n (1984), the posterior distributions of this random field is a Gibbs distribution. 
The Gibbs sampler can then be used to draw samples from the random field repeatedly. We thus 
can compute the ensemble posterior mean and standard deviation. 

2.2 Filter Design for Boundary Measurement 

We take as our likelihood function the distributions of edge measurements conditioned on the 
presence or absence of boundaries and, in the case of boundary presence, the true normal direction. 
The edge measurements, including edge strength and edge orientation, are outputs of applying a edge 
fileter to the observed image. They should have well separated edge stength distributions between 
the cases of boundary presence and boundary absence, with the edge orientation distribution peaking 
at the true boundary normal direction. 

The design of the edge measurement filter is application dependent. In this paper we shall 
concentrate on ultrasound images in two dimensions. We shall discuss briefly the properties of 
ultrasound image noise and then introduce a set of filters for measuring boundary and associated 
normal directions based on those properties. We shall then present our measured distribution of the 
filter outputs and approximations to the filter output distributions. 

Ultrasound imaging is an unusual imaging modality in that it uses a coherent radiation source. 
A sound beam is produced at a transducer and directed into targets. Echoes are generated when 
the incident beam hits reflectors along the path of sonic transmission. Basically there are two 
types of reflection, the specular reflection and the non-specular reflection. The specular reflection is 
responsible for major organ outlines seen in diagnostic ultrasound examinations. These reflections 
usually appear to be very bright in the image and they form mostly continuous boundaries. We 
shall call this kind of boundary the specular boundary. Specular boundaries tend to be broken where 
the boundary orientation is parallel to the beam direction and the reflection is directed away from 
the transducer, a phenomenon called echo drop-outs. Specular boundaries also appear to be broken 
where the random scatterers around the boundary happen to produce a destructive component echo 
which is out of phase with the specular reflection. 

Non-specular reflections originate from random inhomogeneous continuum. They appear in 
the image as a texture of random bright spots, called speckles. These echoes are mostly due to density 
and elasticity variations in soft tissues (Wa.ag et al, 1989), (Nassiri and Hill, 1986). The intensity 
distribution of these echoes usually approximates Rician distributions with different mean intensities 
for different tissue types. The interface of different tissues also forms a boundary and sometimes can 
be visually detected in the image. We shall call this kind of boundary the texture boundary. We are 
interested in both specular boundaries and texture boundaries. 

We wish to design a set of filters which provide accurate edge response and orientation for both 
specular and texture boundaries. We have selected directional derivatives of anisotropic Gaussians 
as the filter kernels (Korn, 1988), (Canny, 1986). The rationale for this is as follows. Suppose we 
know the local boundary orientation. We can compute the average intensities on the two sides of 
the hypothesized boundary. The absolute value of the difference of the two averages then is a good 
measure of edge strength. We would like to get as many samples as possible on either side to get 
reliable statistical averages. But at the same time we would like to avoid the problem of mixing 
intensities from other nearby image structures. The directional derivatives of anisotropic Gaussians 
with the elongated side oriented along boundaries satisfy these constraints. In our implementation 
we use such filters of fixed widths but increasing lengths at multiple scales. The purpose of more 
elongated filters, which will be detailed in the section describing the prior specificaton, is to aid 
closing broken boundaries of different gap sizes. The shape of such a filter is shown in Figure 1. 

Notice that these filters work for specular boundaries as well as texture boundaries. The edge 
measurements from the smallest size filter is the basis of the likelihood function. The size of the 
smallest filter is chosen such that 2u's is roughly the speckle size. That gives roughly two speckle 
spots on either side and should be large enough for good statistical averages. For specular boundaries 
smaller filters can be used to get better localization of edges. In current implementation we use the 
same filter sizes for both kinds of boundaries. (Strictly speaking, the filter size should change with 
the orientations of edges since the speckles are themselves anisotropic and always lie perpendicularly 
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Figure 1: The shape of our filters for measuring edge strengths and orientations. The filters are directional 
derivatives of Gaussians. Multiple such filters of fixed widths and increasing lengths are applied at every pixel. 

to the beam direction.) 
We apply the filters in several orientations and averaging the responses from all orientations. 

In the current implementation we use four orientations at 0, 45, 90, and 135 degrees. The response 
from each filter is taken to form a vector in the polar coordinate system with its corresponding 
angle. These vectors are transformed to a new vector by doubling their angles, averaging by vector 
summation, and then halving the angle of resulting vector. This angle doubling and halving before 
and after the vector summation averaging is necessary because we do not distinguish inner normals 
from outer normals for shading's purpose. 

2.3 Empirical Approximation of the Likelihood Function 

The likelihood function that we need to estimate is p(Jb(i,j),j.,.(i,j)JB(i,j),N(i,j)), i.e. 
the filter response at voxel (i,j) given the true boundary situation at voxel (i,j). fb and /.,. are 
the magnitude and phase of the smallest scale filter response, B(i,j) is either 1 or 0 representing 
boundary presence or not, respectively, and N(i,j) is the normal direction in the case of boundary 
presence. Both /.,. and N(i,j) are modulated by 180 degrees, since inner normals are not distin­
guished from outer normals for shading's purpose, and quantized to 16 discrete orientations for 
computational efficiency. Here We shall assume that fb(i,j) is independent of N(i,j) to simplify 
the mathematical treatment, although We recognize its limitation on purely specular reflections. 
It then follows that we need only estimate p(Jb(i,j)JB(i,j)) and p(f.,.(i,j)Jfb(i,j),N(i,j)) since 
p(fb(i,j), /.,.(i,j)JB(i,j), N(i,j)) = p(f,.(i,j)Jfb(i,j), B(i,j), N(i,j))p(fb(i,j)JB(i,j), N(i,j)) 
and p(fb(i,j)JB(i,j),N(i,j)) = p(fb(i,j)JB(i,j)) due to the assumption. 

Three test images were used as the training set for determining these conditional distributions. 
These three images are a slice through a cone phantom simulating a diffuse target, a slice through 
a liver, and a slice of a baby doll hanging in a water tank, as shown in Figure 2. Contours in these 
images have been manually drawn as reference ground truth. 

The histograms of fb on the contours are computed and plotted in Figure 3. Regions in the 
images containing no boundaries were randomly selected to gather samples for computing the his­
tograms of fb in the absence of boundaries. These regions are marked in Figure 2 and the histograms 
are plotted in Figure 3. We have empirically fitted these histograms by normal distributions after a 
cube root transform. Figure 4 shows the transformed histograms and the fitting normal distributions. 
In these plots !b is linearly scaled to between zero and one by normalizing by the maximal fb in each 
image. 

P(f,.(i,j)JN(i,j),fb(i,j)) is estimated by the error in /.,.(i,j) with respect to N(i,j), i.e., 
p(h(f.,.(i,j), N(i,j))lfb(i,j)), where h(·, ·)is a distance measure of normal angles. N(i,j) is computed 
from the drawn boundaries by fitting a straight line through five neighboring boundary voxels with 
least-square error. Figure 5 shows the histograms of h(f.,.(i,j),N(i,j)). These histograms all peak 
at zero, indicating that our filters give approximately unbiased normal directions. These histograms 
also suggest normal distribution approximations. 

Figure 6 shows scatter-plots of h(f.,.(i,j), N(i,j)) versus fb(i,j). It appears that there is an ex­
ponential dependency relationship. We have approximated this dependency with an exponential func­
tion using a least-square-fit. Such an exponential function is shown in Figure 6 for the liver data set. 
The circular phantom does not show such a strong correlation between h(f.,.(i,j), N(i,j)) and fb(i,j). 
This could be due to the facts that this image consists of speckles only and that there are relatively 
fewer sample points for this image. In summary, we have approximated p(h(f.,.(i,j),N(i,j))J!b(i,j)) 
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(a) (b) 

(c) 

Figure 2: Test images: (a) Cone phantom, (b) Liver, and (c) Baby doll. 
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Figure 3: (a), (b), and (c): Histograms of !b measured on boundaries of cone phantom, liver, and baby doll. (d), 
(e), and (f): Histograms of /b measured on no boundary regions of cone phantom, liver, and baby doll. 
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Figure 4: Histograms of /b after cube root transform and normalization and the fitting normal distributions. Graph 
order is the same as in Figure 3. 
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Figure 6: Scatter-plots of tTn vs. b shows an exponential dependency. A least-square-fit gives 

tTn = 1.8 * exp(-b/0.41), where /b is the normalized edge strength measurement, for the liver data set. 
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with zero mean normal distributions with the variances depending exponentially on /b(i,j). 
Finally, we have 

if B(i,j) = 1 
if B(i,j) = 0 

(1) 

where l'bl>ttb2,ub1, and O'bz are all estimated from the test data set. u., = O'n(fb(i,j)) is computed 
from the approximating exponential function. 

2.4 Prior Specification 

The prior defines the distribution of object shapes. Due to the enormous possibilities of object 
shapes projecting onto the random field it is difficult to directly specify the joint distribution of the 
large number of random components in the random field. However, since local object shapes do 
not have absolute correlation with distant parts of global shapes, it seems reasonable to assume a 
Markovian property for the random field. In other words, we assume that the values of a given site 
depend only on values of nearby sites. 

Random fields having Markovian property are called Markov Random Fields (MRFs). Geman 
and Geman (1984) have shown that for a MRF an equivalent Gibbs distribution can be defined on 
the field. Let S = { 81, 8z, • • • , 8 N} be the set of grid points on a MRF. A neighborhood system, 
g = {9., s E S} for S, is any collection of subsets of S for which 1) s rf. g, and 2) s E gr #rEg., 
where g, is the set of neighbors of s. A subset C ~ Sis a clique if every pair of distinct sites inC are 
neighbors. A Gibbs distribution relative to { S, g} is a probability measure 1r on n, the state space 
of the random field, with the following representation: 

1 7r(w) = -e-U(w) z (2) 

where w is an outcome of the random field, Z is a constant and U, called the energy function, is of 
the form 

U(w) = L Vc(w) (3) 
cec 

where Cis the set of cliques for g. Each V0 is a function on n with the property that V0 (w) depends 
only on those components x. of w for which s E C. Sucll a family { Vc, C E C} is called a potential. 
Z is the normalizing constant: 

Z ~ l e-U(w) (4) 

and is called a partition function. 
We used a nearest-pair neighborhood system in modeling the local shape probability. There 

are four kinds of cliques in this neighborhood system: (s;J, s;+I,;), (s;,;, 8;,;+1), ( 8;,j, si+I,j+t), and 
(s;,j, si+1,;_1). For each kind of pair there are three combinations for the boundary values on the two 
grid points: both on boundaries, exactly one on a boundary, or neither on a boundary. For each case 
there are constraints on the normal directions for the points on boundaries: if both points are on 
boundaries the normal direction should change smoothly, while if only one point is on a boundary 
its normal direction should be oriented such that the assumed boundary direction does not point to 
the other point. The latter condition effectively penalizes blindly ending boundaries. Specifically, 
we have the following potentials for horizontal cliques: 

V,2 B(i,j) * B(i + 1,j) * h(N(i,j),N(i + l,j))Z/<1~1 
+ (1- B(i,j)) * B(i + l,j) * h(N(i + 1,j),0)2/u~2 
+ B(i,j) * (1- B(i + l,j)) * h(N(i,j),0)2/u~2 (5) 

where B(i,j) and N(i,j) are the boundary value and normal direction at location (i,j), and h(·, ·)is 
the distance measure of two angles modulated by 180 degrees. uh1 and uh2 are scale parameters, which 
control how strongly the object shapes conform to the corresponding shape constraints. Potential 
functions for the other three cliques are similarly defined. 
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Figure 7: An example of current boundary estimation and the global attribute values. Please see text for the values 
of the global attributes. 

This set of cliques can effectively capture the smooth property of surface normals and the 
unlikeliness of blindly ending boundaries. Nevertheless, it is insufficient for distinguishing true object 
surfaces from ones induced from erroneous filter response of random speckles. Furthermore, the 
broken surface speckle phenomenon may cause the filter to miss boundaries due to destructive echoes 
received at transducers. In either case we need to look beyond local neighboring properties to 
correctly determine the presence of true boundaries. 

These problems can be overcome by analyzing object shapes in multiple scales to find support 
from increasing neighborhoods. Local boundary points suggested by the smallest scale filter are not 
to be regarded as true boundaries unless enough support is found from extended neighborhoods. 
Local non-boundary points are not to be regarded as non-boundaries if the global shape structures 
in some extended neighborhood strongly suggest that they are on broken boundaries. 

The prior is designed with a component to capture global shape structures in multiple scales. 
It uses a parallel algorithm for the multiscale analysis and infers two global shape attributes, length 
and weight, for all points. The length attribute is the length of the boundary fragment of a boundary 
point. Boundary points induced from random speckles should have rather short length attribute 
values while those from true object boundaries should have longer length attribute values. 

The weight attribute is designed to address the destructive echo problem on continuous sur­
faces. The weight of a point suggests the chances that point is actually on a boundary, and its 
value is between zero and one. The weight values are one for current boundary points and zero 
for non-boundary points not on boundary gaps. The weights of those points on boundary gaps are 
determined in two steps. First, a stochastic· decision of whether to close the gap is made based on 
the configurations of the two matching ends and the filter measurements inbetween the matching 
ends. Then, if the decision is to close the gap, all points on the trajectory of the gap receive the 
same weight which is inversely proportional to the gap size. However, if the decision is not to close 
the gap, all points on the gap receive weight zero. The choice of a stochastic decision to close gaps, 
instead of a deterministic one, provides the capability to capture different closing alternatives when 
there are multiple possibilities. 

Figure 7 gives an example of the length and weight attribute values. Curves A and B are part 
of a continuous curve with a gap while curves C, D, and E are random boundaries from speckles. 
The length attribute values are about 11 for all pixels covered by A, 13 for those pixels covered by 
B, 3 for those pixels covered by C, D, and E, and 0 for all other pixels. All pixels covered by any 
curve have a weight value 1. All other pixels have weight value 0, except those on the gap between 
curves A and B. For those pixels on the gap trajectory ((8,j) ... (8,n)), they will have the same weight 
value between 0 and 1. Our current implementation uses 1/(log(s/2) + 1.7) to compute this value 
where s is the gap size. 

'rhere are many choices for the gap-closing decision function and trajectory-computing al­
gorithm. We propose a method to address the gap-closing and trajectory-computing problems in 
one unified approach. The idea is based on the active contour model where an energy-minimizing 
contour is sought given the image and internal constraints (Kass et al, 1988). For each potential gap, 
a spline is born to connect the two matching ends. The optimal positions of the spline is governed 
by the image energy, i.e., the filter measurements at the scale corresponding to the gap size and 
the internal bending and stretching energies of the spline itself. The filter measurements constrain 
the spline such that the spline is pulled towards pixels where the edge strength measurements are 
strong and the normal direction measurements conform to the local spline normal directions and is 



293 

pushed away from pixels where the edge strength measurements are strong but the normal direction 
measurements contradict to the local spline normal directions. 

This algorithm not only finds the gap trajectory, but also provides the energy at stable state 
as the basis of gap-closing decision. Whenever the algorithm detects a potential gap a spline is 
generated and the optimal positions of the spline is computed. The total energy of the spline at the 
optimal positions is taken as a score, s. Then a random value, r, between zero and one is uniformly 
drawn and compared to e-•. If r < e-•, the gap is closed; otherwise the gap is not closed. When 
there are multiple possible matching ends for an end, each will have a chance.to be closed with the 
chances decrease with increasing scores. This seems reasonable since the score inversely reflects the 
conviction of a boundary present at a gap where the likelihood function shows relative low confidence. 
Notice that this choice of the total energy is in favor of closing small gaps over large gaps when there 
are multiple choices. 

The algorithm computes length and weight attribute values by building a pyramid of cells of 
6 by 6 overlapping receptive fields (Shneier, 1981), (Meer et al, 1990). At the base of the pyramid 
is a "thinned" version of the current boundary estimations of the Gibbs random field. A thinning 
procedure is applied to reduce the boundary thickness to one pixel in order to correctly compute 
length and weight values in the pyramid operation. At each level in the pyramid, boundary fragments 
in child cells are joined together in the parent cell and their lengths are summed. Potential gaps 
between a pair of boundary fragments within the same receptive field are closed according to the 
active contour algorithm. A gap is closed at a level corresponding to its gap size. This algorithm then 
makes a downsweep of the pyramid, tracing down the exact boundary locations while propagating 
the length and weight attributes at the same time. Please see (Lin, 1991) for details of the thinning, 
gap-closing and pyramid algorithms. 

With the values of the length and weight attributes, L(i,j) and W(i,j), we define the following 
potential function: 

( .. ) ( ALl Aw1 ) ( .• )) (L(i,j) W(i,j)) 
Vc6 = B t,J * L(i,j) + CL + W(i,j) + Cw + 1 - B(t,J * AL2 + Aw2 (6) 

where AL11 Aw1 ,AL~,Aw2 are scaling factors, and Cw,CL are positive constants introduced to pre­
vent infinite potentials when the attribute values are zeros. Although this potential function looks 
like a single element clique, it is actually derived from extended neighborhoods. The L and W in this 
potential are global shape attributes computed from the extended neighborhood, and serve as latent 
data in our data augmentation scheme to be described in detail in the following section. Without 
computing the L and W explicitly and viewing them as latent data, it would have been difficult to 
model the long range correlation in the Gibbs prior. By incorporating global attributes in a data 
augmentation scheme we have extended the use of Gibbs distribution to modeling global structures. 

The parameters in the prior are determined empirically. There are two parameters in the local 
shape potential functions, i.e., 0',.1 and O'hz, and four parameters in the global attribute potential 
functions, i.e., AL1 , AL2, Aw1 , and Aw2. Their values are determined by assuming fixed energies for 
some typical configurations and are further fine-tuned by evaluating the results. 

2.5 Architecture of the Solution Algorithm 

Let X be the random field X {x;i = (B(i,j), N(i,j)), Vi,j}. Let Y be the output of the 
smallest filter from the input image, i.e. Y = {Y;; = (Jb(i,j),fn(i,j)), Vi,j}. We shall assume the 
conditional distribution p(y;jiX) of observing filter output Yii at voxel (i,j) given X depends only 
on X;j and that the values of Yii are independent of each other. We have made these assumptions 
to simplify the model. It follows from our prior specification and likelihood function that the data 
augmented posterior p(XIY, L, W) is a Gibbs distribution with the energy function: 

U(w) = L L ~;(w) (7) 
C;eCi=l,6 

where ~1 comes from the likelihood function, ~2 , Vca, ~4 , ~5 come from the local shape constraints, 
and Vc6 comes from the global shape attributes. The L and W act as latent data. They are not 
observed but have a distribution under the observed data Y. This distribution, P(L, WIY), is called 
a predictive distribution. 

What we are really interested in is p(XIY). We use a data augmentation scheme, which is 
similar to an EM algorithm (Dempster et al, 1977), to iteratively calculate p(XIY) from the aug­
mented posterior p(XIY,L, W) and the predictive di!'t,ribution p(L, WIY) by alternatively sampling 
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these two distributions (Tanner and Wang, 1987), (Gelfand and Smith, 1990). The idea. is as follows. 
First, we note the following relationship between the posterior density and the predictive density: 

p(XIY) 

p(L,WIY) 

= l p(X!Y,L, W)p(L, WIY)dL, w 
flL,W 

= { p(L, WIX, Y)p(XIY)dX 
lnx 

(8} 

(9} 

where !h,w is the sample space of the latent data., L and W, and Ox is the sample space of X. 
Substituting Eq. (9) into Eq. (8) and interchanging the order of integration, we obtain the following 
relationship for p(XIY) = g(X): 

g(X) 

K(X,X') 

= { K(X,X')g(X')dX', where 
lnx 

= { p(XIY,L, W)p(L, WIX', Y)dL, w. 
JnL,W 

(10) 

This is an integral transformation and can be solved by the iterative method: start with any initial 
approximation g0 (X) to p(XIY), and successively calculate 

9i+I(X) = (Tg;)(X) {11) 

using Eq. {10). 
The integral transform in Eq. (11) is usually difficult to calculated analytically. Monte Carlo 

method can be used here to perform the integration. Putting all the above together we obtain the 
following iterative scheme: given the current approximation 9; to p(XIY), 

(a) Generate a sample (L, W)<1l, · · ·, (L, W)(m) from the current approximation to the 
predictive density p(L, W!Y). 

(b) Update the current approximation to p(XIY) to be the mixture of conditional 
densities of X given the augmented data patterns generated in (a.), i.e., 

m 

9i+l(X) = m-1 _Ep(XI(L, W)m, Y). 
i=l 

In step (a.), the sample (L, W) values can be generated in two steps: 

(a.1) Generate X from g;(X). 
(a2) Generate (L, W) from p(L, WIX', Y), where X' is the value obtained in (a.1). 

(12) 

When m is large, the two steps (a.) and (b) in the above iterative algorithm provide a close 
approximation to one iteration of Eq. (11). However, even when m is as small as 1, the iteration is 
still "in the right direction" in the sense that the average of p(XIY, L, W) over the augmented data 
patterns generated across iterations will converge to the true p(X!Y). 

In a typical Markov Random Field only the interactions among the neighboring sites are 
explicitly formulated. Remote sites have influence among each other only through a chain of inter­
mediate sites. The interaction among remote sites can not be readily apprehended from a chain of 
local interactions. Thus it is difficult to model a desired global interaction through the specification 
of local interactions. 

The data augmentation scheme provides a. mechanism to employ Markov Random Field with 
global information. The global interaction among remote sites can be specified through an interme­
diate representation which encodes the global information from the observed data. This intermediate 
representation serves as the latent data and facilitates the analysis of the estimated quantities. 

The operation of the complete algorithm is shown in Figure 8. The current boundary values 
and normal directions to be estimated are shown in the shaded area. The initial boundary values are 
obtained by applying a threshold on fb(i,j), and the initial values of normal directions are fn(i,j). 
The algorithm then makes repeated updates on the whole field. Each iteration includes successive 
updates to each voxel. A sample from p(L, WIY) is drawn by performing the pyramid operation 
on the the current configuration. The Gibbs sampler is used to produce a new sample X;j for each 
voxel. It involves first computing the augmented marginal posterior p(x;j!Xs{ii• Y, L, W), where Xsfij 
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Multiple Edge Fihers Multlscale Structural Analysis 

Filter Size 
Resolution 

Levei7128X128 
• • 

21X7 Level4 Fill Gaps.., • • 
Level4 16X16 

15X7 Level3 Fill Gaps.,. 
Level3 8X8 

11X7 Level2 Fill Gaps .. Level 2 4X4 

7X7 Level1 Fill Ga~ .. Level 1 2X2 

Likelihood Gnd Level 1X1 Function 

Figure 8: Operation of the Solution Algorithm. 

denotes the neighborhood of X;j· Each p(x;j!Xsfii• Y, L, W) is computed from Eqs. (2), ( 4), and (7) 
with only those cliques including voxel (i,j). A sample is then randomly drawn accordingly and 
replaces the old Xij· 

In the current implementation we compute the pyramid only up to the sixth level. At this 
level each cell covers a 32 by 32 pixel region. This size is considered large enough to compute reliable 
global attributes to reveal false boundaries. The gap-closing operation is only performed up to the 
fourth level. At this level, the maximal gap size that can be closed is roughly 45 pixels. The values 
of B(i,j), N(i,j) and squared values of them are accumulated during each iteration. They serve to 
compute the means and variances of the boundary and normal estimations. 

3. RESULTS 

Figure 9 shows the magnitude output from the smallest scale filter, contrasted with those 
from a Sobel filter, which is a typical filter used in volume rendering. These pictures show our filter 
gives more accurate boundary measurements on the boundaries of the diffuse phantom and smooths 
out broken boundaries of the baby doll image. 

Figure 10 shows the three test images and their corresponding mean boundary values displayed 
as images. The mean boundary values are obtained by averaging over 150 samples of binary boundary 
values. These samples are generated by the Gibbs sampler with the data augmentation scheme 
described in the previous section. The original images are displayed on the left and the mean 
boundary values on the right. 

The boundaries in these result images seem to be quite thick. This is due to two factors. 
First, the filter is designed to produce correct boundary measurements on texture boundaries. It 
has a large support and produces significant magnitudes near boundaries. Second, these significant 
magnitudes near boundaries have higher magnitude than those measured on random speckles. The 
likelihood function thus tends to suggest those pixels as on true boundaries. These thick boundaries 
can be thinned by a thinning algorithm. 

The result of the baby doll image (Figure lOa) shows enhancement of some weak boundaries 
which can not be clearly seen in the original images. Unfortunately, these boundaries are mostly 
acoustic artifacts. They can he removed by selecting a higher mean magnitude values in the likelihood 
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(b) 

(d) 

Figure 9: Our filter outputs: (a) Cone phantom, (b) Baby doll. Sobel filter outputs: (c) Cone phantom, (d) Baby 
doll. 

image f!bl l'b2 (Tbl (Tb2 (Thl (Th2 ALl AL2 Aw1 Aw2 CL Cw 

doll 0.70 0.18 0.137 0.118 2 3 3 4 0.4 0.3 0.001 0.001 
cone 0.73 0.51 0.137 0.118 2 3 3 4 0.4 0.3 0.001 0.001 
liver 0.70 0.40 0.137 0.118 2 3 3 4 0.4 0.3 0.001 0.001 

Table 1: The parameter values used to generate the results in Figure 10. 

function. Figure lOb shows that the algorithm detects gaps (pointed to by the white arrows) and 
tries to close them. The algorithm also detects the gap in the liver image (Figure lOc), but the 
stable state energy of the snake associated with that gap is so high that it is closed with a very low 
probability. Thus only a few samples out of the 150 have this gap closed and the averaging result 
does not show this clearly. This suggests that the parameters in the gap-closing algorithm are not 
optimal and further fine-tuning is necessary. The values of the parameters used in producing these 
results are shown in Table 1. 

4. DISCUSSION 

Due to the large size of our filter, the localization of boundaries is not optimal. Particularly, 
the filter can not produce correct boundary strength on corners. As a results, small features or 
corners tend to be missed. In the future reasearch we wish to use a 'multiscale likelihood function in 
which filter outputs of different scales are weighted by types of boundary and boundary curvatures. 
This will allow us to use a smaller filter or filters specially designed to measure corners and should 
help produce more accurate measurements. 

The local shape constraints seem to be the least important factors, compared with the global 
shape attributes and the likelihood function, in determining the final results. The results from 
the algorithm without the local constraints do not appear different. The results are sensitive to the 
estimated mean magnitudes of the filter measurement. An over-estimated p61 results in low boundary 
probabilities for weak boundaries and an under-estimated p.62 results in high boundary probabilities 
for strong speckles. 

A related problem is that the standard deviations of the filter measurements, o-61 and o-62 , 

might be fairly large and the means, p.61 and p62 , might not be well separated. The likelihood 
function can not resolve ambiguous features and the results tend to have more errors even though 
the estimations of these parameters are correct. This happens when there are low contrast targets 
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(a) 

(b) 

(c) 

Figure 10: Test images and the mean boundary values displayed as images: (a) Baby doll, (b) Cone phantom, (c) 
Liver. The mean boundary values are obtained by averaging over 150 samples. 
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in the scene. 

Current implementation takes about 25 seconds to produce the initial filter measurements at 
four scales and 4 seconds to produce one sample for a 128 by 128 images on a DEC3100 workstation 
with unoptimized code. Approximately 50 percent of the running time is spent on sampling, which 
can be optimized since most pixels are not on boundaries and have very small boundary strength 
measurement. About 15 percent of the running time is spent on gap-closing procedures and 35 
percent on the pyramid algorithm and the rest of the algorithm. 

5. CONCLUSIONS 

We have described a Bayesian framework for estimating surfaces in noisy images. This frame­
work generates samples of ensemble scenes for an observed image in the form of a random field of 
binary boundary value and normal directions. It computes posterior means and standard deviations 
of the ensemble at each pixel and produces a reference image of surface representation which can be 
further mapped to opacity for volume rendering. 

We have applied this approach to two dimensional ultrasound images and have shown its 
usefulness in producing meaningful boundary representations. This boundary representation not 
only can be used in visualization but also can be the basis of image segmentation. We believe 
segmenting via this boundary representation will produce better results than segmenting via the local 
edge measurements only. We have implemented an active contour model using Gibbs distributions 
and are ready to test this idea using this model. 

The Gibbs prior has also been extended to incorporate important properties of global shapes 
via multiscale analysis. By incorporating the global attributes in a data augmentation scheme we 
ha.ve extended the use of Gibbs distribution on modeling global structures. Future research includes 
quantitative evaluation of the algorithm and results and extending this model to three dimensions. 
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