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Abstract Depth-map shadow algorithms, introduced by Williams
[Williams78], have many advantages: they support all types of

Depth-map algorithms for rendering antialiased shadows areprimitives; they are relatively efficient; and they can be

computationally efficient and accommodate a wide variety of accelerated using standartuffer hardware. Williams' original

primitives. They have two drawbacks, however, that make themalgorithm has limitations, however: it is prone to aliasing and

impractical for everyday use: They require the user to specify arequires the careful selection of a bias when daingmparisons

bias that must be optimized for each particular scene and view;to avoid incorrect self-shadowing.

and they generally require the use of large shadow maps

frequently much larger than the final image that is to be rendered.Subsequent depth-map algorithms have attacked the aliasing

This paper presents an improved depth-map shadow algorithmproblem by testing for shadow at multiple points in each pixel and

that does not require a bias for scenes composed of solids anfiltering the results, so-calleghercentage-closer filtering

produces accurate shadows with smaller depth maps. It consistfReeves87]. These algorithms, however, still require large depth

of two novel changes to the basic depth-map algorithm. First, themaps to avoid aliasing and require a scene-dependent bias.

depth map samples the depth values of surfaces thaeeoad

nearest the light source. Secomitfual samples are created on This paper attacks the remaining problems. It introduces second-

local tangent planes of surfaces that are visible from the camera'slepth shadow rendering, a novel twist to Williams’ original

point of view to match real samples of the depth map. These twoalgorithm that eliminates the need for a bias when rendering

changes allow depth comparisons to be done accurately andgcenes composed of solids. It also introdudgsal sampling

without the need for a compensating bias value. They also allowcomputing samples on a tangent-plane approximation to the

the algorithm to produce superior results when using small depthsurface that align with samples in the shadow depth map. Virtual

maps. The new algorithm incorporates percentage-closer filteringsampling reduces approximation errors in degthues, allowing

to antialias shadow boundaries and can be accelerated zising shadows to be computed accurately with lower-resolution depth

buffer hardware in the same manner as previous algorithms. maps. The new algorithm accommodates percentage-closer
filtering to antialias shadow boundaries and, like previous
algorithms, can make use of fadbuffer hardware.

1 INTRODUCTION
The remainder of the paper is organized as follows: Section 2
Shadows are a ubiquitous feature of our visual environment. Insummarizes related work and explains the bias problem. Section
computer graphics, shadows help us understand the spatial introduces the new algorithm. Section 4 discusses
relationship between objects, offer depth cues, and enhance thémplementation issues and contains sample images. Section &
realism of synthetic imagery. Unfortunately, computing shadows summarizes the paper and presents conclusions.
is a global illumination problem; shadows cast by any object can
affect any other object in the scene. Although many algorithms
for rendering shadows have been published [Crow77, Max86],2 RELATED WORK AND THE BIASPROBLEM
most either are restricted to a limited class of modeling primitive
or else are computationally too expensive to use in interactive The depth-map shadow algorithm developed by Williams operates
systems. in two passes, as shown in Figure 1. In the first pass, the scene i
rendered from the light source's point of view to obtain a depth
Ray tracing algorithms [Whitted80] compute shadows naturally, map containing the depth of the surface nearest the light source a
but are computationally expensive. In order to produce anti each pixel. In the second pass, the scene is rendered from the
aliased shadows, multiple secondary rays must be tracedcamera’s point of view. For each pixel in the camera image, the
Although many ray tracing acceleration techniques have been(x, y, ) location of the sample point on the visible surface is
published [Arvo89], none of them yet offers interactive transformed into the light-source coordinate system. This
performance on substantial scenes, even running on largdransformed depth value is then compared against the depth value
multiprocessors. with the nearest y) coordinates in the light-source depth map.
If the stored depth is nearer the light source, the pixel color is
Shadow volumes [Crow77, Bergeron86] and area subdivision attenuated—it is in shadow.
algorithms [Atherton78] are restricted to polygonal data. They
also are inefficient for complex environments because the numberShadows determined from a single depth comparison at one point-
of polygons to be rendered increases rapidly with the size of thesample exhibit aliasing artifacts at shadow boundaries. Reeves’
scene. percentage-closer filtering algorithm improves this dramatically
by looking up multiple depth values in the neighborhood of each
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acceptable bias for images they rendered. We have found the
N _ opposite to be true: simple scenes exist for which no acceptable
= contents of depth map === = visible surfaces in shadow bias can be found. Figure 4a shows one example. With a
512x512 depth map and a bias of 15, self-shadowing appears or
Figure 1: Basic depth-map shadow algorithm. the floor while shadows move away from the legs of the table (the

legs touch the floor in the object description). Adjusting the bias

in either direction just makes one of the two artifacts worse.
transformed camera-image sample point, doing a depthHowever, with a 2048x2048 depth map and a bias of 5, we
comparison with each of these, and computing a fractional shadowobtained the better (but still not perfect) image in Figure 4b.
value based on the number of comparisons that indicate theSince a larger map produces smaller sampling errors, a larger
sample point is in shadow. This smooths shadow boundaries andlepth map means a smaller bias can be used, keeping shado\
produces a penumbra-like effect. boundaries closer to their true positions.

Both Williams’ and Reeves’ algorithms suffer from a tendency for In our experience, to achieve an artifact-free image one has to
surfaces to falsely cast shadows on themselves. This arise#crease the size of the depth map until the maximum
because pixel samples in the camera image, when transforme@pproximation error between samples is smaller than the thickness
into lightsource coordinates, do not align with samples in the of the thinnest object in the scene, and then choose a matching
lightsource image. Even if both samples lie on the same surfacebpias. This increases the cost of rendering, since a high-resolution
the depth values may differ, as shown in Figure 2. depth map is needed, and requires a scene-specific selection o
depth-map resolution and bias value. Percentage-closer filtering
algorithm, while reducing aliasing, compounds the bias problem:

Liohtsource Camera the larger the sampling area (the more depth-map samples) uset
9 ~ samples for filtering, the larger the approximation errors that the bias needs
(depth map)
i’ e to offset.
samples  ~ o7 .
7
N N . Because of the drawbacks of using a bias, researchers have sougl
> < Object surface other solutions to the self-shadowing problem. Hourcade
"/ & /z [Hourcade85] described a variation of the depth-map algorithm
S\O G 1 called theP-buffer, in which the shadow depth map contains
A - surface tags rather than depth values. If the surface tag in the P
z_ <z,.0 illuminate . .
c 1 buffer agrees with the surface tag at the current pixel, the surface
2, >20 shadow X is assumed to be visible by the light source (not in shadow). If the
tags disagree, the surface is assumed to be blocked from the ligh
Figure 2: Self-shadowing due to sample mismatches. source (in shadow). This algorithm has problems with curved

surfaces that are tesselated, however: if two adjacent polygons
have different tags, the algorithm will falsely shadow pixels that

constant added to the depths of lightsource samples stored in thI e on the edge that divides the two polygons. If the polygons

cepth map to crsure ha they i behind nearby samples in tng" 21 TGN e, 1 surece wl ot e able o cast shadon
camera image (Figure 3). Unfortunately, a bias indiscrimately : g ’ ' yP P

moves shadow boundaries away from the lightsource by thetk;agr(i:tahr:nbe rendered, one of the major advantages of the origina
amount of the bias. Choosing a bias, therefore, is a tradeoffag :

between eliminating self-shadowing artifacts and moving shadows
from their true positions.

Self-shadowing normally is countered usingbas, a small

The algorithm described here originated in our attempts to write a
robust shadow routine for a real-time shading library. Depth-map

The choice of bias value depends on the scene, including thealgorithms were an obvious choice, but we found that the user-

metric of objects within the scene, the position of the lightsource 'r?];er\slergg?(gsnfﬁgﬁdbtgrjg:les%rgeb;gs ?quf:hee n.?ﬁg ;%ua;?eogfhprg
and the camera, and the resolution of the shadow depth map P P : 9

: ) overcomes these disadvantages using a clever twist and some
Reeves, et. al., claimed that they were always able to find ANadditional information that is often available at rasterization time.



(@) Mapsize =512x512, bias = 15. (b) Mapsize = 2048x2048, bias = 5.

Figure 4: Simple scene for which no adequate bias can be found.

We can see more clearly how the algorithm operates using an
3 THE SECOND-DEPTH ALGORITHM example. Figure 5 shows a 2D slice through a moderately
) ) ) complicated environment. The second surface from the
Previous depth buffer shadow algorithms operate by asking thejightsource is represented by bold gray lines. Visible surfaces in
question: Is the depth of the visible surface equal to the depth ofshadow are represented by bold black lines.
the first surface from the lightsource? An equivalent question is
to ask: Is the depth of the visible surféessthan the depth of the

secondsurface from the lightsource? The first question leads to = contents of (second)

standard depth-map algorithms that require a bias. The second depth map <
question leads to a new algorithm that, for a surprising reason, — - visible surface in S

does not. shadow S

3.1 First depth vs. second depth

If we ask the second question, we must store the depth of the
second surface from the lightsource in the depth buffer. This is
striaghtforward to do. We could use two depth buffers, one for
the first surface, and one for the second, and update them
appropriately as each primitive is rasterized. There are more
efficient methods that are applicable to many scenes, as we will
see in Section 4.

Consider the changes that are necessary in Pass 2. For each pixel
in the camera image, we must compatg, ... the depth of the
transformed camera-image sample, and compare itzayjfhy the
second surface depth stored in the depth buffer. The two possible
outcomes are:

Figure 5: Example of second-depth algorithm.

*  Zeamera< Zsecond The camera sample probably lies on the

first surface and should be illuminated. However, it could Figure 6 shows a more abstract view of the difference between
lie on the second surface (because of sampling errors) and  first-depth and second-depth algorithms. The ovals represent the
be falsely illuminated. range of depth values that each successive surface in the

lightsource view could have if we take sampling approximation
errors into account. The vertical wedge represents the depth value
stored in the depth map.

*  Zeamera= Zsecond 1HE Camera sample lies on the second or
greater surface and should be in shadow.

We now have an ambiguity on the second surface similar to the

ambiguity that causes self-shadowing in first-depth algorithms. In  first-depth algorithms, the decision point for
But here the advantage of the second-depth algorithm becomeflumination/shadow is at the first surface. To avoid self-
clear—we know more information about the second surface. If shadowing, we must translate the decision point beyond the first
the dataset is constructed of solids, the second surface from theurface using a bias. But we must not translate it so far that pixels
lightsource will face away from the lightsource and illumination from the second surface are wrongly classified. Herein lies the
calculations will indicate that it is in shadow, regardless of the tricky nature of choosing a bias. With small depth maps, the
result of depth comparisoWe don’t need a correct depth  sample errors become larger, so surfaces are harder to distinguish
comparison for points on the second surface.
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Figure 6: Difference between first-depth and second-depth algorithms.

In second-depth algorithms, the decision point at the secondcoordinates of the pixel sample to line up with lightsource samples

surface cleanly partitions the first surface (illuminated) from the and adjust the depth values accordingly.

third and succeeding surfaces (shadowed). Ambiguities at the

second surface do not matter because it is already known to be ifrortunately, this information often is available. Shading models

shadow. Of course, this algorithm can misclassify surfaces too iftypically require knowledge of a surface-normal vector. In some

sampling errors are so large that the pixels from the first or third cases €.g.Phong shading) this information is available at each

surface cross the decision point. pixel, but in other casese(y.flat or Gouraud shading), an
approximation to the surface-normal is available at each pixel.

So, although both algorithms have trouble distinguishing the The normal vector, together with thg, ¢, z) location of the

surface stored in the depth buffer, first-depth algorithms must dosample point define a tangent plane that touches the surface at th

so (and therefore require a bias), whereas second-depth algorithmsample point and closely approximates it in the neighborhood of

do not. Since the second-depth algorithm is nearly as easy tahe sample point.

implement as the first-depth algorithm, we conclude that it is the

superior choice.
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Figure 8: Virtual samples on local tangent plane.

We can resample this tangent-plane approximation to obtain
approximate depth values at points near the pixel sample. In
particular, we can resample at points to match samples in the
depth map. We call these points “virtual samples” because they
3.2  Virtua samples sample a virtual (tangent-plane) surface (Figure 8).

Figure 7: Ambiguity between first and second surface
of a thin object.

Depth comparisons without a bias depend on an adequatdor planar primitives (polygons, etc.), the tangent plane coincides

separation between first and second surfaces. This can be violatedith the actual surface, so the depths computed at virtual samples

for very thin primitives, as shown in Figure 7. Here a camera are exact. For curved surfaces (splines, NURBS, or finely

sample on the (first) surface of a thin object lies behind a tesselated polygonal surfaces), the surface may deviate from the

lightsource sample on the second surface of the object, falselytangent plane, leading to errors in depth values. These errors

indicating that the pixel is in shadow. normally are small, but can become large if the tangent plane is
almost parallel to the light sample ray, as shown in Figure 9.

If we knew the orientation of the surface at each pixel, we might

be able to prevent this kind of artifact. We could perturbxhs) (
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Figure 9: Potential error when virtual
sampling.

Note that in this case, virtual sampling is not required to get the

34 Implementation details

The two passes in the second-depth algorithm are similar to the
two passes in conventional depth-map shadow algorithms. Only
now the first pass computes the depth of the second surface from
the lightsource view and the second pass performs a more
complicated set of depth comparisons.

Pass 1: Computing the second-depth map

The only modification to this pass is that the depth map must store
the second surface from the lightsource point of view. This can be
done in at least two ways. The most straightforward is to maintain
two depth buffers when rendering this image: one stores the depth
of surface closest to the lightsource; the other stores the depth ol
the second surface. Each time a primitive is rasterized, one or
both of these depth buffers may need to be updated. At the end of
the pass, the front surface can be discarded.

correct result—normal depth comparisons indicate the surface isAn alternate method, useful on scenes composed of polygons, is tc
in shadow. To prevent errors like this, we have adopted thecull out polygons that face the lightsource before they are
heuristic of only computing virtual samples for pixels whose rasterized and perform a standarduffer algorithm on the
normal depth comparisons are ambiguous. We use the followingremaining polygons. In scenes composed of solids, the resulting

rules to process each pixel:

o If Zgmera< ZecongfOr all nearby samples, the pixel is fully

illuminated.

o If Zeamera2 ZsecongfOr all nearby samples, the pixel is fully

in shadow.

e If comparisons are mixed, compute tangent plane and
virtual samples; compare depth at virtual samples with
depth at corresponding location in depth map; do

percentage filtering on the results.

This scheme does not use all the information that is potentially
available for each pixel, so it may cause errors that a more
sophisticated heuristic could catch. It has the advantage of
minimizing the number of pixels that need virtual sampling,

however, which reduces the cost of the algorithm.

3.3 Non-solid primitives

Thus far we have assumed that all objects that can cast shadows
have thickness. We can extend the algorithm to non-solids by

surface will be the first shadowed surface, or the second surface
overall. This method ofront-face cullingcan be adapted to
scenes with curved surfaces if surface-normal vectors are
available at each pixel; only pixels whose normal vectors face
away from the lightsourcé\N¢éL < 0) should participate irbuffer
calculations. If the scene contains two-sided surfaces, the side
facing away from the lightsource must be rendered in Pass 1, and
the side facing the lightsource rendered in Pass 2.

// Return percent illumnation for a pixel
float percent_illum nation()
{

int |1l umnt 0;

int Virtll!luntnt 0;
/1 Do nornal depth conparisons (test is <
/1 to handl e two-sided pol ygons correctly)
for each nearby sanple in depth map
if (zcanera < zsecond)
111 unnt ++;

// Do trivial shadow illumnate test
if (I1lumnt == 0)

considering them to be solids with infinitesimal thickness—the
“first” and “second” surface are the same. By virtual sampling,
we can detect such two-sided surfaces if they are planar. We
change the ‘less-than’ comparison in the illumination test to-‘less
than-or-equal’. If the surface is planar, the depth value at virtual
samples will be the same as the ones in the depth map. -If two
sided surfaces are curved, however, we will need a bias to achieve
the correct answer.

This removes one of the main advantages of the algorithm. In
fact, for scenes composed entirely of non-solids, the second-depth
algorithm degenerates to a first-depth one.

All is not lost, however. We can implement the second-depth
algorithm with a bias parameter that defaults to zero. If a scene is
composed of solids, it can be rendered without further attention.

}

return(0.0);
if (I'1TumOnt == NUM SAWPLES)
return(l1.0);

/1l Conpute virtual sanples and filter
Fit local tangent plane to surface;
Transform pl ane to |ightsource coords;
for each nearby sanple in depth map
if (depth at virtual sanmple < zsecond)
Virtll | umOnt ++;

/1 Percentage closer filtering
return(VirtlllunOnt / NUM SAVPLES);

Figure 10: Algorithm for determining percent

If the scene contains non-planar, non-solids, the user must select illumination for a pixel.

an appropriate bias. Therefore, a single routine can compute
shadows for any type of scene.
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calculations. The solution is a linear expression i,(y,):
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In the second pass, the shadow test is modified to do deptt\N
comparisons with the second surface and to compute virtual
samples when necessary. Figure 10 gives the algorithm for
determining the percent illumination for a given pixel.

e can evaluate this linear expression for each virtual sample, or,
since lightsource samples lie on a regular grid, we can evaluate
this expression for one virtual sample and use forward differences
to calculate the remaining virtual samples using only additions.
Using this formulation, the arithmetic needed to compute virtual
samples reduces to two matrix-vector multiplies, three divisions,
and just a few additions and multiplications per pixel.

For pixels that require virtual sampling, the first step is to fit a

local tangent plane to the surface at the pixel. It is most
convenient to do this in the coordinate system in which surface
normal vectors are defined. Assume for now that normal vectors
are defined in world space and that 4x4 transformation matrices
for transforming points from world space into camera and light 4  DISCUSSION AND EXAMPLES
coordinates are as shown in Figure 11. (Certain details of the

algorithm vary slightly if different normal vectors are defined ina 4.1 Robustness

different coordinate system, but the essence of the algorithm

remains the same). This new shadow algorithm is still a discrete sampling algorithm

and can produce errors when the scene is under-sampled—fot
example, if the depth map is too small or if objects in the scene fit
between depth-map samples. Storing the second rather than th
first depth helps, as does virtual sampling. When artifacts still

occur, the only solution is to increase the size of the depth map.

If a pixel has camera-space screen coordingtes (Xc, Yo, Zo)
and a world-space normal vectdy, = (N, Nyw» Nzw), the first
step is to transforrP¢ into world coordinates. This is done by
transforming it by the inverse of the world-to-camera screen
coordinate matrix:

4.2 Efficiency

Pw = (MpcMc) P,
w ‘( PC C) c- The new algorithm requires very little extra computation
compared to previous algorithms. If front-face culling is used, the

The local tangent plane in world coordinates satisfies the gg; hass costs precisely the same as the first pass in first-dept

equation:

algorithms.
ayX+byy+cyz+dy =0, In the second pass, virtual sampling is invoked only when the
- - - _ . . camera sample lies between the minimum and maximum depths
whereay = M, B = My, G = Nawy, 3Ny = — 3Ky — DYy of neighboring samples in the depth map. This only happens near

~ CweZy- The plane can be written as a column vector: object silhouettes or when objects are very thin—generally a small

fraction of the pixels in the entire scene. Decreasing the size of

(Aw L the depth map increases the fraction of pixels that require virtual

Ebw C sampling, so this can be considered a tradeoff of computation for
Ty =0 "L space.

Pw

EdW E 4.3 Depth map size

The next step is to transforfy, into lightsource coordinates. We  The new algorithm allows us to reduce the size of depth maps
know from linear algebra that ¥ is a point transformation  compared to previous algorithms. This occurs for two reasons:
matrix, (l\/I'l)T is the corresponding plane transformation matrix.
The composite matriMp M, transforms points from world e« Depth comparisons are generally between surfaces (first
coordinates to lightsource screen coordinates, so the matrix and second) that are disjoint Zna bias is not required.
There is no hard threshold at which self-shadowing takes
place.



(@) 512x512 depth map. (b) 256x256 depth map. (c) 128x128 depth map.

Figure 12: Degradation of image quality with decreasing size of depth map.

¢ Virtual sampling increases the precision of depth Furthermore, we do virtual sampling only when it is likely to help.

comparisons. Percentage closer filtering is easily incorporated into the algorithm
do generate anti-aliased shadow boundaries. The algorithm has
roven to be more robust and easy to use in our real-time shading
ibrary.

With the new algorithm, depth maps of moderate size can produc
quite good images, as shown in Figure 12a, a 512x512 imag
generated with a depth map of 512x512. As the depth map
becomes smaller and smaller, shadows begin to leak out and
image quality degrades slowly. Figure 12b was generated with aACK NOWLEDGEMENTS
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Figure 13: Procedural pipes model. 1024x1024 Figure 14: Scene from architectural walkthrough.

resolution. 512x512 depth map. (Dataset courtesy of 1024x1024 resolution. 2048x2048 depth map.

Lee Westover, Sun Microsystems, Inc.)] Dataset courtesy of Building Walkthrough Project,
UNC-CH).

Figure 15: Still from bowling video sequence rendered on PixelFlow simulator. 640x512 resolution. 512x512 depth
map. (Textures courtesy of Pixar).



