
 Second-Depth Shadow Mapping

Yulan Wang and Steven Molnar

Department of Computer Science
University of North Carolina
Chapel Hill, NC  27599-3175

Abstract

Depth-map algorithms for rendering antialiased shadows are
computationally efficient and accommodate a wide variety of
primitives.  They have two drawbacks, however, that make them
impractical for everyday use:  They require the user to specify a
bias that must be optimized for each particular scene and view;
and they generally require the use of large shadow maps—
frequently much larger than the final image that is to be rendered.
This paper presents an improved depth-map shadow algorithm
that does not require a bias for scenes composed of solids and
produces accurate shadows with smaller depth maps.  It consists
of two novel changes to the basic depth-map algorithm.  First, the
depth map samples the depth values of surfaces that are second
nearest the light source.  Second, virtual samples are created on
local tangent planes of surfaces that are visible from the camera's
point of view to match real samples of the depth map.  These two
changes allow depth comparisons to be done accurately and
without the need for a compensating bias value.  They also allow
the algorithm to produce superior results when using small depth
maps.  The new algorithm incorporates percentage-closer filtering
to antialias shadow boundaries and can be accelerated using z-
buffer hardware in the same manner as previous algorithms.

1 INTRODUCTION

Shadows are a ubiquitous feature of our visual environment.  In
computer graphics, shadows help us understand the spatial
relationship between objects, offer depth cues, and enhance the
realism of synthetic imagery.  Unfortunately, computing shadows
is a global illumination problem; shadows cast by any object can
affect any other object in the scene.  Although many algorithms
for rendering shadows have been published [Crow77, Max86],
most either are restricted to a limited class of modeling primitive
or else are computationally too expensive to use in interactive
systems.

Ray tracing algorithms [Whitted80] compute shadows naturally,
but are computationally expensive.  In order to produce anti-
aliased shadows, multiple secondary rays must be traced.
Although many ray tracing acceleration techniques have been
published [Arvo89], none of them yet offers interactive
performance on substantial scenes, even running on large
multiprocessors.

Shadow volumes [Crow77, Bergeron86] and area subdivision
algorithms [Atherton78] are restricted to polygonal data.  They
also are inefficient for complex environments because the number
of polygons to be rendered increases rapidly with the size of the
scene.

Depth-map shadow algorithms, introduced by Williams
[Williams78], have many advantages: they support all types of
primitives; they are relatively efficient; and they can be
accelerated using standard z-buffer hardware.  Williams' original
algorithm has limitations, however:  it is prone to aliasing and
requires the careful selection of a bias when doing z comparisons
to avoid incorrect self-shadowing.

Subsequent depth-map algorithms have attacked the aliasing
problem by testing for shadow at multiple points in each pixel and
filtering the results, so-called percentage-closer filtering
[Reeves87].  These algorithms, however, still require large depth
maps to avoid aliasing and require a scene-dependent bias.

This paper attacks the remaining problems.  It introduces second-
depth shadow rendering, a novel twist to Williams’ original
algorithm that eliminates the need for a bias when rendering
scenes composed of solids.  It also introduces virtual sampling,
computing samples on a tangent-plane approximation to the
surface that align with samples in the shadow depth map.  Virtual
sampling reduces approximation errors in depth values, allowing
shadows to be computed accurately with lower-resolution depth-
maps.  The new algorithm accommodates percentage-closer
filtering to antialias shadow boundaries and, like previous
algorithms, can make use of fast z-buffer hardware.

The remainder of the paper is organized as follows:  Section 2
summarizes related work and explains the bias problem.  Section
3 introduces the new algorithm.  Section 4 discusses
implementation issues and contains sample images.  Section 5
summarizes the paper and presents conclusions.

2 RELATED WORK AND THE BIAS PROBLEM

The depth-map shadow algorithm developed by Williams operates
in two passes, as shown in Figure 1.   In the first pass, the scene is
rendered from the light source's point of view to obtain a depth
map containing the depth of the surface nearest the light source at
each pixel.  In the second pass, the scene is rendered from the
camera's point of view.  For each pixel in the camera image, the
(x, y, z) location of the sample point on the visible surface is
transformed into the light-source coordinate system.  This
transformed depth value is then compared against the depth value
with the nearest (x, y) coordinates in the light-source depth map.
If the stored depth is nearer the light source, the pixel color is
attenuated—it is in shadow.

Shadows determined from a single depth comparison at one point-
sample exhibit aliasing artifacts at shadow boundaries.  Reeves’
percentage-closer filtering algorithm improves this dramatically
by looking up multiple depth values in the neighborhood of each



2

= contents of depth map = visible surfaces in shadow

Region 
enlarged 

below

Pass 1:  Render scene 
from lightsource view, 
store depth values in 
depth map.

Pass 2:  Render scene 
from camera view.  Com- 
pare depth at pixels with 
value in map. 

Figure 1:  Basic depth-map shadow algorithm.

Camera
samplesLightsource  

(depth map) 
samples

zc

z1z0

biasbias

⇒z1 + bias zc illuminate≤
z0 + bias z c ⇒ illuminate≤

Object surface

Figure 3:  Eliminating self-shadowing using a bias.

transformed camera-image sample point, doing a depth
comparison with each of these, and computing a fractional shadow
value based on the number of comparisons that indicate the
sample point is in shadow.  This smooths shadow boundaries and
produces a penumbra-like effect.

Both Williams’ and Reeves’ algorithms suffer from a tendency for
surfaces to falsely cast shadows on themselves.  This arises
because pixel samples in the camera image, when transformed
into lightsource coordinates, do not align with samples in the
lightsource image.  Even if both samples lie on the same surface,
the depth values may differ, as shown in Figure 2.

z 0 z c z1

⇒z 1zc ≤ illuminate

⇒zc z 0> shadow

Camera 
samplesLightsource  

(depth map) 
samples

Object surface

X

Figure 2:  Self-shadowing due to sample mismatches.

Self-shadowing normally is countered using a bias, a small
constant added to the depths of lightsource samples stored in the
depth map to ensure that they lie behind nearby samples in the
camera image (Figure 3).  Unfortunately, a bias indiscrimately
moves shadow boundaries away from the lightsource by the
amount of the bias.  Choosing a bias, therefore, is a tradeoff
between eliminating self-shadowing artifacts and moving shadows
from their true positions.

The choice of bias value depends on the scene, including the
metric of objects within the scene, the position of the lightsource
and the camera, and the resolution of the shadow depth map.
Reeves, et. al., claimed that they were always able to find an

acceptable bias for images they rendered.  We have found the
opposite to be true:  simple scenes exist for which no acceptable
bias can be found.  Figure 4a shows one example.  With a
512x512 depth map and a bias of 15, self-shadowing appears on
the floor while shadows move away from the legs of the table (the
legs touch the floor in the object description).  Adjusting the bias
in either direction just makes one of the two artifacts worse.
However, with a 2048x2048 depth map and a bias of 5, we
obtained the better (but still not perfect) image in Figure 4b.
Since a larger map produces smaller sampling errors, a larger
depth map means a smaller bias can be used, keeping shadow
boundaries closer to their true positions.

In our experience, to achieve an artifact-free image one has to
increase the size of the depth map until the maximum
approximation error between samples is smaller than the thickness
of the thinnest object in the scene, and then choose a matching
bias.  This increases the cost of rendering, since a high-resolution
depth map is needed, and requires a scene-specific selection of
depth-map resolution and bias value.  Percentage-closer filtering
algorithm, while reducing aliasing, compounds the bias problem:
the larger the sampling area (the more depth-map samples) used
for filtering, the larger the approximation errors that the bias needs
to offset.

Because of the drawbacks of using a bias, researchers have sought
other solutions to the self-shadowing problem.  Hourcade
[Hourcade85] described a variation of the depth-map algorithm
called the P-buffer, in which the shadow depth map contains
surface tags rather than depth values.  If the surface tag in the P-
buffer agrees with the surface tag at the current pixel, the surface
is assumed to be visible by the light source (not in shadow).  If the
tags disagree, the surface is assumed to be blocked from the light
source (in shadow).  This algorithm has problems with curved
surfaces that are tesselated, however:  if two adjacent polygons
have different tags, the algorithm will falsely shadow pixels that
lie on the edge that divides the two polygons.  If the polygons
share a common tag, the surface will not be able to cast shadows
on itself.  This algorithm, therefore, restricts the type of primitives
that can be rendered, one of the major advantages of the original
algorithm.

The algorithm described here originated in our attempts to write a
robust shadow routine for a real-time shading library.  Depth-map
algorithms were an obvious choice, but we found that the user-
intervention needed to select a bias and the need for large depth
maps makes them burdensome in practice.  The new algorithm
overcomes these disadvantages using a clever twist and some
additional information that is often available at rasterization time.



3

(a)  Mapsize = 512x512, bias = 15. (b) Mapsize = 2048x2048, bias = 5.

Figure 4:  Simple scene for which no adequate bias can be found.

3 THE SECOND-DEPTH ALGORITHM

Previous depth buffer shadow algorithms operate by asking the
question:  Is the depth of the visible surface equal to the depth of
the first surface from the lightsource?  An equivalent question is
to ask:  Is the depth of the visible surface less than the depth of the
second surface from the lightsource?  The first question leads to
standard depth-map algorithms that require a bias.  The second
question leads to a new algorithm that, for a surprising reason,
does not.

3.1 First depth vs. second depth

If we ask the second question, we must store the depth of the
second surface from the lightsource in the depth buffer.  This is
striaghtforward to do.  We could use two depth buffers, one for
the first surface, and one for the second, and update them
appropriately as each primitive is rasterized.  There are more
efficient methods that are applicable to many scenes, as we will
see in Section 4.

Consider the changes that are necessary in Pass 2.  For each pixel
in the camera image, we must compute zcamera, the depth of the
transformed camera-image sample, and compare it with zsecond, the
second surface depth stored in the depth buffer.  The two possible
outcomes are:

• zcamera < zsecond.  The camera sample probably lies on the
first surface and should be illuminated.  However, it could
lie on the second surface (because of sampling errors) and
be falsely illuminated.

• zcamera ≥ zsecond.  The camera sample lies on the second or
greater surface and should be in shadow.

We now have an ambiguity on the second surface similar to the
ambiguity that causes self-shadowing in first-depth algorithms.
But here the advantage of the second-depth algorithm becomes
clear—we know more information about the second surface.  If
the dataset is constructed of solids, the second surface from the
lightsource will face away from the lightsource and illumination
calculations will indicate that it is in shadow, regardless of the
result of depth comparison. We don’t need a correct depth
comparison for points on the second surface.

We can see more clearly how the algorithm operates using an
example.  Figure 5 shows a 2D slice through a moderately
complicated environment.  The second surface from the
lightsource is represented by bold gray lines.  Visible surfaces in
shadow are represented by bold black lines.

= contents of (second)   
   depth map

= visible surface in
   shadow

Figure 5:  Example of second-depth algorithm.

Figure 6 shows a more abstract view of the difference between
first-depth and second-depth algorithms.  The ovals represent the
range of depth values that each successive surface in the
lightsource view could have if we take sampling approximation
errors into account.  The vertical wedge represents the depth value
stored in the depth map.

In first-depth algorithms, the decision point for
illumination/shadow is at the first surface.  To avoid self-
shadowing, we must translate the decision point beyond the first
surface using a bias.  But we must not translate it so far that pixels
from the second surface are wrongly classified.  Herein lies the
tricky nature of choosing a bias.  With small depth maps, the
sample errors become larger, so surfaces are harder to distinguish.



4

1st 
surface

z 
Further 
surfaces

Depth map 
value

incorrect self-shadowing

(a)  First-depth algorithm

shadow from 
illumination model

(b)  Second-depth algorithm

Without bias Without bias

No bias necessary

1st 
surface

2nd 
surface

Further 
surfaces

With bias

z 

1st 
surface

z 
Further 
surfaces

Depths of 
transformed 

points

decision point after biasbias

Depths of 
transformed 

points

Depth map 
value

Depths of 
transformed 

points

shadow

shadow

shadow

Figure 6:  Difference between first-depth and second-depth algorithms.

In second-depth algorithms, the decision point at the second
surface cleanly partitions the first surface (illuminated) from the
third and succeeding surfaces (shadowed).  Ambiguities at the
second surface do not matter because it is already known to be in
shadow.  Of course, this algorithm can misclassify surfaces too if
sampling errors are so large that the pixels from the first or third
surface cross the decision point.

So, although both algorithms have trouble distinguishing the
surface stored in the depth buffer, first-depth algorithms must do
so (and therefore require a bias), whereas second-depth algorithms
do not.  Since the second-depth algorithm is nearly as easy to
implement as the first-depth algorithm, we conclude that it is the
superior choice.

Camera 
sample

Lightsource 
samples

Figure 7:  Ambiguity between first and second surface
of a thin object.

3.2 Virtual samples

Depth comparisons without a bias depend on an adequate
separation between first and second surfaces.  This can be violated
for very thin primitives, as shown in Figure 7.  Here a camera
sample on the (first) surface of a thin object lies behind a
lightsource sample on the second surface of the object, falsely
indicating that the pixel is in shadow.

If we knew the orientation of the surface at each pixel, we might
be able to prevent this kind of artifact.  We could perturb the (x, y)

coordinates of the pixel sample to line up with lightsource samples
and adjust the depth values accordingly.

Fortunately, this information often is available.  Shading models
typically require knowledge of a surface-normal vector.  In some
cases (e.g. Phong shading) this information is available at each
pixel, but in other cases (e.g. flat or Gouraud shading), an
approximation to the surface-normal is available at each pixel.
The normal vector, together with the (x, y, z) location of the
sample point define a tangent plane that touches the surface at the
sample point and closely approximates it in the neighborhood of
the sample point.

Tangent 
plane

Sample rays 
from lightsource

Virtual 
samples

Camera 
sample

Figure 8:  Virtual samples on local tangent plane.

We can resample this tangent-plane approximation to obtain
approximate depth values at points near the pixel sample.  In
particular, we can resample at points to match samples in the
depth map. We call these points “virtual samples” because they
sample a virtual (tangent-plane) surface (Figure 8).

For planar primitives (polygons, etc.), the tangent plane coincides
with the actual surface, so the depths computed at virtual samples
are exact.  For curved surfaces (splines, NURBS, or finely
tesselated polygonal surfaces), the surface may deviate from the
tangent plane, leading to errors in depth values.  These errors
normally are small, but can become large if the tangent plane is
almost parallel to the light sample ray, as shown in Figure 9.



5

Sample rays 
from lightsource

Camera 
sample

Bad virtual 
sample

Figure 9:  Potential error when virtual
sampling.

Note that in this case, virtual sampling is not required to get the
correct result—normal depth comparisons indicate the surface is
in shadow.  To prevent errors like this, we have adopted the
heuristic of only computing virtual samples for pixels whose
normal depth comparisons are ambiguous.  We use the following
rules to process each pixel:

• If zcamera < zsecond for all nearby samples, the pixel is fully
illuminated.

• If zcamera ≥ zsecond for all nearby samples, the pixel is fully
in shadow.

• If comparisons are mixed, compute tangent plane and
virtual samples; compare depth at virtual samples with
depth at corresponding location in depth map; do
percentage filtering on the results.

This scheme does not use all the information that is potentially
available for each pixel, so it may cause errors that a more
sophisticated heuristic could catch.  It has the advantage of
minimizing the number of pixels that need virtual sampling,
however, which reduces the cost of the algorithm.

3.3 Non-solid primitives

Thus far we have assumed that all objects that can cast shadows
have thickness.  We can extend the algorithm to non-solids by
considering them to be solids with infinitesimal thickness—the
“first” and “second” surface are the same.  By virtual sampling,
we can detect such two-sided surfaces if they are planar.  We
change the ‘less-than’ comparison in the illumination test to ‘less-
than-or-equal’.  If the surface is planar, the depth value at virtual
samples will be the same as the ones in the depth map.  If two-
sided surfaces are curved, however, we will need a bias to achieve
the correct answer.

This removes one of the main advantages of the algorithm.  In
fact, for scenes composed entirely of non-solids, the second-depth
algorithm degenerates to a first-depth one.

All is not lost, however. We can implement the second-depth
algorithm with a bias parameter that defaults to zero.  If a scene is
composed of solids, it can be rendered without further attention.
If the scene contains non-planar, non-solids, the user must select
an appropriate bias.  Therefore, a single routine can compute
shadows for any type of scene.

3.4 Implementation details

The two passes in the second-depth algorithm are similar to the
two passes in conventional depth-map shadow algorithms.   Only
now the first pass computes the depth of the second surface from
the lightsource view and the second pass performs a more
complicated set of depth comparisons.

Pass 1:  Computing the second-depth map

The only modification to this pass is that the depth map must store
the second surface from the lightsource point of view.  This can be
done in at least two ways.  The most straightforward is to maintain
two depth buffers when rendering this image:  one stores the depth
of surface closest to the lightsource; the other stores the depth of
the second surface.  Each time a primitive is rasterized, one or
both of these depth buffers may need to be updated.  At the end of
the pass, the front surface can be discarded.

An alternate method, useful on scenes composed of polygons, is to
cull out polygons that face the lightsource before they are
rasterized and perform a standard z-buffer algorithm on the
remaining polygons.  In scenes composed of solids, the resulting
surface will be the first shadowed surface, or the second surface
overall.  This method of front-face culling can be adapted to
scenes with curved surfaces if surface-normal vectors are
available at each pixel; only pixels whose normal vectors face
away from the lightsource (N•L < 0) should participate in z-buffer
calculations.  If the scene contains two-sided surfaces, the side
facing away from the lightsource must be rendered in Pass 1, and
the side facing the lightsource rendered in Pass 2.

// Return percent illumination for a pixel
float percent_illumination()
{

int IllumCnt     = 0;
int VirtIllumCnt = 0;

// Do normal depth comparisons (test is ≤
// to handle two-sided polygons correctly)
for each nearby sample in depth map

if (zcamera ≤ zsecond)
IllumCnt++;

// Do trivial shadow/illuminate test
if (IllumCnt == 0)

return(0.0);
if (IllumCnt == NUM_SAMPLES)

return(1.0);

// Compute virtual samples and filter
Fit local tangent plane to surface;
Transform plane to lightsource coords;
for each nearby sample in depth map

if (depth at virtual sample < zsecond)
VirtIllumCnt++;

// Percentage closer filtering
return(VirtIllumCnt / NUM_SAMPLES);

}

Figure 10:  Algorithm for determining percent
illumination for a pixel.



6

World 
coordinates

Camera 
coordinates

Camera 
screen 

coordinates

Lightsource 
coordinates

Lightsource 
screen 

coordinates

M L

MPL

M C

M PC
Perspective

transformation

Viewing 
transformation

Figure 11:  Coordinate systems for shadow
calculations.

Pass 2:  Computing the camera view

In the second pass, the shadow test is modified to do depth
comparisons with the second surface and to compute virtual
samples when necessary.  Figure 10 gives the algorithm for
determining the percent illumination for a given pixel.

For pixels that require virtual sampling, the first step is to fit a
local tangent plane to the surface at the pixel.  It is most
convenient to do this in the coordinate system in which surface
normal vectors are defined.  Assume for now that normal vectors
are defined in world space and that 4x4 transformation matrices
for transforming points from world space into camera and light
coordinates are as shown in Figure 11.  (Certain details of the
algorithm vary slightly if different normal vectors are defined in a
different coordinate system, but the essence of the algorithm
remains the same).

If a pixel has camera-space screen coordinates PC = (xC, yC, zC)
and a world-space normal vector NW = (nXW, nYW, nZW), the first
step is to transform PC into world coordinates.  This is done by
transforming it by the inverse of the world-to-camera screen
coordinate matrix:

PW = MPCMC( )−1
PC .

The local tangent plane in world coordinates satisfies the
equation:

aW x + bW y + cWz+ dW = 0,

where aW = nXW,  bW = nYW, cW = nZW, and dW = – aW•xW – bW•yW
– cW•zW.  The plane can be written as a column vector:

TW =

aW

bW

cW

dW



















.

The next step is to transform TW into lightsource coordinates.  We
know from linear algebra that if M is a point transformation
matrix, (M-1)T is the corresponding plane transformation matrix.
The composite matrix MPLML transforms points from world
coordinates to lightsource screen coordinates, so the matrix

MPLML( )−1( )T

transforms a plane from world to lightsource screen coordinates.
The tangent plane in lightsource screen coordinates, therfore, is
given by:

TL = MPLML( )−1( )T
TW .

To determine depth values at virtual sample points (xL, yL), we
solve the following equation for zL, the depth of the virtual
sample:

aLxL + bLyL + cLzL + dL = 0.

The solution is a linear expression in (xL, yL):

zL = −aL
cL





 xL + −bL

cL





 yL + −dL

cL





 ,

We can evaluate this linear expression for each virtual sample, or,
since lightsource samples lie on a regular grid, we can evaluate
this expression for one virtual sample and use forward differences
to calculate the remaining virtual samples using only additions.
Using this formulation, the arithmetic needed to compute virtual
samples reduces to two matrix-vector multiplies, three divisions,
and just a few additions and multiplications per pixel.

4 DISCUSSION AND EXAMPLES

4.1 Robustness

This new shadow algorithm is still a discrete sampling algorithm
and can produce errors when the scene is under-sampled—for
example, if the depth map is too small or if objects in the scene fit
between depth-map samples.  Storing the second rather than the
first depth helps, as does virtual sampling.  When artifacts still
occur, the only solution is to increase the size of the depth map.

4.2 Efficiency

The new algorithm requires very little extra computation
compared to previous algorithms.  If front-face culling is used, the
first pass costs precisely the same as the first pass in first-depth
algorithms.

In the second pass, virtual sampling is invoked only when the
camera sample lies between the minimum and maximum depths
of neighboring samples in the depth map.  This only happens near
object silhouettes or when objects are very thin—generally a small
fraction of the pixels in the entire scene.  Decreasing the size of
the depth map increases the fraction of pixels that require virtual
sampling, so this can be considered a tradeoff of computation for
space.

4.3 Depth map size

The new algorithm allows us to reduce the size of depth maps
compared to previous algorithms.  This occurs for two reasons:

• Depth comparisons are generally between surfaces (first
and second) that are disjoint in z, a bias is not required.
There is no hard threshold at which self-shadowing takes
place.



7

(a)  512x512 depth map. (b)  256x256 depth map. (c)  128x128 depth map.

Figure 12:  Degradation of image quality with decreasing size of depth map.

• Virtual sampling increases the precision of depth
comparisons.

With the new algorithm, depth maps of moderate size can produce
quite good images, as shown in Figure 12a, a 512x512 image
generated with a depth map of 512x512.  As the depth map
becomes smaller and smaller, shadows begin to leak out and
image quality degrades slowly.  Figure 12b was generated with a
depth map of 256x256.  Figure 12c was generated with a depth
map of 128x128.  We think the image quality is acceptable
considering the small size of the depth map.

4.4 Sample images

Figures 13, 14, and 15 are sample images rendered with the
second-depth/virtual sampling shadow algorithm.  Figure 12 is a
1kx1k image of a procedural dataset.  Figure 13 is a 1kx1k scene
from an architectural walkthrough.  Figure 14 is a 640x512 still
from a video sequence designed to demonstrate the real-time
shading performance of PixelFlow, the experimental graphics en-
gine we are building.  All of these images were rendered without a
bias.

5 CONCLUSION

The second depth-map shadow algorithm has many features that
make it appealing as a utility shadow routine:  It is general and
efficient like previous depth-map algorithms.  It is more conve-
nient to use, since no bias is required for most scenes.  Finally, it
reduces depth map size compared to previous algorithms.

The new algorithm derives from the observation that most objects
that cast shadows are solid. This allows us to transfer the
unavoidable depth ambiguities from a discrete sampling algorithm
from the first surface of objects to the second surface, where they
can be resolved with the assistance of the illumination model.
Virtual sampling further increases the robustness of the algorithm
by matching virtual camera samples to real samples in the depth
map, rather than attempting to reconstruct depth values from the
discrete depth-map samples.

The new algorithm is efficient, since the second-surface depth
map can usually be computed as easily as a first-surface depth
map.  The additional computation cost for virtual sampling is
small, since we take advantage of the fact that the screen-space
representation of the local tangent plane is still a linear equation.

Furthermore, we do virtual sampling only when it is likely to help.
Percentage closer filtering is easily incorporated into the algorithm
to generate anti-aliased shadow boundaries.  The algorithm has
proven to be more robust and easy to use in our real-time shading
library.

ACKNOWLEDGEMENTS

We wish to thank  Gary Bishop, Anselmo Lastra, Turner Whitted,
and the members of the PixelFlow team for their ideas and
comments.  We wish to thank Lee Westover, the UNC Walkthru
project, and Pixar for the use of their datasets.  Finally, we wish to
acknowledge our sponsors, NSF (Grant No. MIP-9306208) and
ARPA (ISTO Order No. A410).

REFERENCES

[Arvo89] J. Arvo and D. Kirk, A Survey of Ray Tracing
Acceleration Techniques, in An Introduction to Ray Tracing, ed.
A.S. Glassner, Academic Press, San Diego, (1989), 201-262.

[Atherton78] P. R. Atherton, K. Weiler and D. P. Greenberg,
Polygon Shadow Generation, Computer Graphics (SIGGRAPH
'78 Proceedings) 12, 3 (1978), 275-281.

[Bergeron86] P. Bergeron, A General Version of Crow's Shadow
Volumes, IEEE CG&A, 6, 9 (Sept. 1986), 17-28.

[Crow77] F. C. Crow, Shadow Algorithms for Computer
Graphics, Computer Graphics (SIGGRAPH '77 Proceedings) 11,
2 (1977), 442-448.

[Hourcade85] J.C. Hourcade and A.Nicolas, Algorithms for
Antialiased Cast Shadows, Computer & Graphics, 9, 3 (1985),
259-265.

[Max86] N.L. Max, Atmospheric Illumination and Shadows,
Computer Graphics (SIGGRAPH '86 Proceedings) 20, 4 (1986),
269-278.

[Reeves87] William T. Reeves, David H. Salesin, Robert L. Cook,
Rendering Antialiased Shadows with Depth Maps, Computer
Graphics, SIGGRAPH '87 Proceedings), 21, 4 (1987), 283-291.

[Whitted80] T. Whitted, An Improved Illumination Model for
Shaded Display, CACM, 23, 6 (June 1980), 343-349.

[Williams78] L. Williams,  Casting Curved Shadows on Curved
Surfaces, Computer Graphics (SIGGRAPH '78 Proceedings), 12,
3 (1978), 270-274.



8

Figure 13:  Procedural pipes model.   1024x1024
resolution.  512x512 depth map.  (Dataset courtesy of
Lee Westover, Sun Microsystems, Inc.)]

Figure 14:  Scene from architectural walkthrough.
1024x1024 resolution.  2048x2048 depth map.
Dataset courtesy of Building Walkthrough Project,
UNC-CH).

Figure 15:  Still from bowling video sequence rendered on PixelFlow simulator.   640x512 resolution.  512x512 depth
map.  (Textures courtesy of Pixar).


