
A Proportional Share Resource Allocation Algorithm for

Real-Time, Time-Shared Systems

Ion Stoica � Hussein Abdel-Wahab y Kevin Je�ayz Sanjoy K. Baruah x

Johannes E. Gehrke { C. Greg Plaxton k

Abstract

We propose and analyze a proportional share re-
source allocation algorithm for realizing real-time per-
formance in time-shared operating systems. Processes
are assigned a weight which determines a share (per-
centage) of the resource they are to receive. The re-
source is then allocated in discrete-sized time quanta
in such a manner that each process makes progress at
a precise, uniform rate. Proportional share allocation
algorithms are of interest because (1) they provide a
natural means of seamlessly integrating real- and non-
real-time processing, (2) they are easy to implement,
(3) they provide a simple and e�ective means of pre-
cisely controlling the real-time performance of a pro-
cess, and (4) they provide a natural mean of policing
so that processes that use more of a resource than they
request have no ill-e�ect on well-behaved processes.

We analyze our algorithm in the context of an ideal-
ized system in which a resource is assumed to be granted
in arbitrarily small intervals of time and show that our
algorithm guarantees that the di�erence between the
service time that a process should receive in the ide-
alized system and the service time it actually receives
in the real system is optimally bounded by the size of a

�Supported by GAANN fellowship. Dept. of CS, Old Domin-
ion Univ., Norfolk, VA 23529-0162 (stoica@cs.odu.edu).

ySupported by NSF grant CCR 95{9313857. Dept.
of CS, Old Dominion Univ., Norfolk, VA 23529-0162
(wahab@cs.odu.edu).

zSupported by grant from the IBM & Intel corps and NSF
grant CCR 95{10156. Dpt. of CS, Univ. of North Carolina at
Chapel Hill, Chapel Hill, NC 27599-3175, (jeffay@cs.unc.edu).

xSupported by NSF under Research Initiation Award CCR{
9596282. Dept. of CS, Univ. of Vermont, Burlignton, VT 05405,
(sanjoy@cs.uvm.edu).

{Dpt. of CS, Univ. of Wisconsin-Madison, Madison, WI
53706-1685 (johannes@cs.wisc.edu).

kSupported by NSF grant CCR{9504145, and the Texas Ad-
vanced Research Program under grant No. ARP{93{00365{461.
Dpt. of CS, Univ. of Texas at Austin, Austin, TX 78712-1188
(plaxton@cs.utexas.edu).

time quantum. In addition, the algorithm provides sup-
port for dynamic operations, such as processes joining
or leaving the competition, and for both fractional and
non-uniform time quanta. As a proof of concept we
have implemented a prototype of a CPU scheduler un-
der FreeBSD. The experimental results shows that our
implementation performs within the theoretical bounds
and hence supports real-time execution in a general
purpose operating system.

1 Introduction

Currently there is great interest in providing real-
time execution and communication support in general
purpose operating systems. Indeed, applications such
as desktop videoconferencing, distributed shared vir-
tual environments, and collaboration-support systems
require real-time computation and communication ser-
vices to be e�ective. At present the dominant approach
to providing real-time support in a general purpose op-
erating system is to embed a periodic thread or process
model into an existing operating system kernel and
to use a real-time scheduling algorithm such as rate-
monotonic scheduling to schedule the processes. In
such as system, aperiodic and non-real-time activities
are typically scheduled either as background processes
or through the use of a second-level scheduler that is
executed quasi-periodically as a server process by the
real-time scheduler.

In general, this framework can be quite e�ective
at integrating real-time and non-real-time computing.
However, we observe that this approach has yet to be
embraced by the larger operating systems community.
We believe that this is due in part to the rigid distinc-
tions made between real-time and non-real-time. Real-
time activities are programmed di�erently than non-
real-time ones (e.g., as periodic tasks) and real-time
activities receive hard and fast guarantees of response
time (if admission control is performed). Non-real-time

1

activities are subservient to real-time ones and receive
no performance guarantees. While this state of a�airs
is entirely acceptable for many mixes of real-time and
non-real-time activities, for many it is not. Consider
the problem of supporting real-time videoconferencing
on the desktop. This is clearly a real-time application,
however, it is not one for which hard and fast guaran-
tees of real-time performance are required. For exam-
ple, it is easy to imagine situations in which one would
like to explicitly degrade the performance of the video-
conference (e.g., degrade the rate at which the video
is displayed) so that other activities, such as search-
ing a large mail database for a particular message, can
complete quicker. Ideally, a general purpose operating
system that supports real-time execution should not a
priori restrict the basic tenor of performance guaran-
tees that any process is capable of obtaining.

To address this issue we investigate an alternate
approach to realizing real-time performance in time
shared operating systems, namely the use of propor-
tional share resource allocation algorithms for proces-
sor scheduling. In a proportional share allocation sys-
tem, every process in the system is guaranteed to make
progress at a well-de�ned, uniform rate. Speci�cally,
each process is assigned a share of the processor | a
percentage of the processor's total capacity. If a pro-
cess's share of the processor is s then in any interval of
length t, the process is guaranteed to receive (s� t)� �
units of processor time where 0 � � � �, for some con-
stant �. In a proportional share system, resource al-
location is
exible and the share received by a process
can be changed dynamically. In this manner a process's
real-time rate of progress can be explicitly controlled.

Proportional share resource allocation algorithms
lie between traditional general purpose and real-time
scheduling algorithms. On the one hand, proportional
share resource allocation is a variant of the pure proces-
sor sharing scheduling discipline, in which during each
time unit each process receives 1=n of the processor's
capacity, where n is the number of active processes.
(Thus each process appears as it is making uniform
progress on a virtual processor that has 1=n of the ca-
pacity of the physical processor.) On the other hand,
traditional real-time scheduling disciplines for periodic
tasks can be viewed as coarse approximations of pro-
portional share allocation. For example, if a periodic
task requires c units of processor time every p time
units, then a rate-monotonic scheduler guarantees that
for all k � 0, in each interval [kp; (k+1)p], the periodic
task will indeed receive a share of the processor equal
to c=p. Speci�cally, in each of the above intervals, the
process will receive pc=p = c units of processor time.

Our proportional share resource allocation policy

di�ers from traditional methods of integrating real- and
non-real-time processes in that here all processes, real-
and non-real-time, are treated identically. In a propor-
tional share system, real-time (and non-real-time) pro-
cesses can be implemented very much like traditional
processes in a time-shared operating system. Thus in
terms of the process model, no \special" support is re-
quired to support real-time computing | there is only
one type of process. Moreover, like many scheduling
algorithms used in time-shared systems, our algorithm
allocates resources in discrete units or quanta which
makes it easier to implement than traditional real-time
policies which are typically event-driven and require
the ability to preempt processes at potentially arbi-
trary points. In addition, because resources are allo-
cated in discrete quanta in a proportional share system,
one can better control (and account for) the overhead
of the scheduling mechanism as well as tune the sys-
tem to trade-o� �ne-grain, real-time control for low
scheduling and system overhead. Finally, proportional
share algorithms provide a natural means of uniformly
degrading system performance in overload situations.

In this paper we present a proportional share
scheduling algorithm and demonstrate that it can be
used to ensure predictable real-time response to all
processes. Section 2 presents our process model and
formally introduces the concepts of a share and the
requirement for predictable execution with respect to
a share. Section 3 discusses related work in schedul-
ing. Section 4 presents a deadline-based, virtual-time
scheduling algorithm that is used to ensure processes
receive their requested share of the processor. Section
5 introduces a key technical problem to be solved in
the course of applying our algorithm, namely that of
dealing with the dynamic creation and destruction of
processes. Section 6 outlines the proof of correctness
of our algorithm and Section 7 presents some experi-
mental results using our proportional share system in
the FreeBSD operating system, and demonstrates how
\traditional" real-time processes such as periodic tasks
can be realized in a proportional share system.

2 The Model

We consider an operating system to consist of a set
of processes (real-time and non-real-time) that com-
pete for a time shared resource such as a CPU or a
communications channel. To avoid confusion with ter-
minology used in the experimental section of the pa-
per we use the term client to refer to computational
entities (i.e., processes). A client is said to be active
while it is competing for the resource, and passive oth-

erwise. We assume that the resource is allocated in
time quanta of size at most q. At the beginning of each
time quantum a client is selected to use the resource.
Once the client acquires the resource, it may use it
either for the entire time quantum, or it may release
it before the time quantum expires. Although simple,
this model captures the basic mechanisms traditionally
used for sharing common resources, such as processor
and communication bandwidth. For example, in many
preemptive operating systems (e.g., UNIX, Windows-
NT), the CPU scheduler allocates the processing time
among competing processes in the same fashion: a pro-
cess uses the CPU until its time quantum expires or an-
other process with a higher priority becomes active, or
it may voluntarily release the CPU while it is waiting
for an event to occur (e.g., an I/O operation to com-
plete). As another example, consider a communication
switch that multiplexes a set of incoming sessions on
a packet-by-packet basis. Since usually the transmis-
sion of a packet cannot be preempted, we take a time
quantum to be the time required to send a packet on
the output link. Thus, in this case, the size q of a time
quantum represents the time required to send a packet
of maximum length.

Further, we associate a weight with each client that
determines the relative share of the resource that it
should receive. Let wi denote the weight associated to
client i, and let A(t) be the set of all clients active at
time t. We de�ne the (instantaneous) share fi(t) of an
active client i at time t as

fi(t) =
wiP

j2A(t)wj

: (1)

If the client's share remains constant during a time in-
terval [t; t+�t], then it is entitled to use the resource
for fi(t)�t time units. In general, when the client share
varies over time, the service time that client i should
receive in a perfect fair system, while being active dur-
ing a time interval [t0; t1], is

Si(t0; t1) =

Z t1

t0

fi(�)d� (2)

time units. The above equation corresponds to an ideal

uid-
ow system in which the resource can be granted
in arbitrarily small intervals of time1. Unfortunately,
in many practical situations this is not possible. One of
the reasons is the overhead introduced by the schedul-
ing algorithm itself and the overhead in switching from
one client to another: taking time quanta of the same
order of magnitude as these overheads could drasti-
cally reduce the resource utilization. Another reason is
that some operations cannot be interrupted, i.e., once

1A similar model was used by Demers et al [4] in studying
fair-queuing algorithms in communication networks.

started they must complete in the same time quantum.
For example, once a communication switch begins to
send a packet of one session, it cannot serve any other
session until the entire packet is sent. As another ex-
ample, a process cannot be preempted while it is in
a critical section. Thus, in the �rst example we can
choose the size of a quantum q as being the time re-
quired to send a packet of maximum length, while in
the second example we can choose q as being the max-
imum duration of a critical section.

Due to quantization, in a system in which the re-
source is allocated in discrete time quanta it is not
possible for a client to always receive exactly the ser-
vice time it is entitled to. The di�erence between the
service time that a client should receive at a time t, and
the service time it actually receives is called service time
lag (or simply lag). Let ti0 be the time at which client
i becomes active, and let si(ti0; t) be the service time
the client receives in the interval [ti0; t] (here, we as-
sume that client i is active in the entire interval [ti0; t]).
Then the lag of client i at time t is

lagi(t) = Si(t
i
0; t)� si(t

i
0; t): (3)

Since the lag quanti�es the allocation accuracy, we
use it as the main parameter in characterizing our pro-
portional share algorithm. In particular, in Section
6 we show that our proportional share algorithm (1)
provides bounded lag for all clients, and that (2) this
bound is optimal in the sense that it is not possible to
develop an algorithm that a�ords better bounds. To-
gether, these properties indicate that our algorithmwill
provide real-time response guarantees to clients and
that with respect to the class of proportional share al-
gorithms, these guarantees are the best possible.

3 Related Work

Tijdeman was one of the �rst to formulate and an-
alyze the proportional share allocation problem [15].
The original problem, an abstraction of diplomatic pro-
tocols, was stated in terms of selecting a union chair-
man every year, such that the accumulated number of
chairmen from each state (of the union) to be propor-
tional to its weight. As shown in [2], Tijdeman's results
can be easily applied to solve the proportional share al-
location problem. In the general setting, the resource is
allocated in �xed time quanta, while the clients' shares
may change at the beginning of every time quantum.
In this way dynamic operation can be easily accommo-
dated. Tijdeman proved that if the clients' shares are
known in advance there exists a schedule with the lag
bound less or equal to 1�1=(2n�2), where n represents

the total number of clients. (Note that when n ! 1
the lag bound approaches unity.) Although he gives
an optimal algorithm for the static case (i.e., when the
number of clients does not change over time), he does
not give any explicit algorithm for the dynamic case.
Furthermore, we note that, even in the general setting,
the problem formulation does not accommodate frac-
tional or non-uniform quanta.2

Recently, the proportional share allocation problem
has received a great deal of attention in the context of
operating systems and communication networks. Our
algorithm is closely related to weighted fair queueing
algorithms previously developed for bandwidth alloca-
tion in communication networks [4, 5, 10], and general
purpose proportional share algorithms, such as stride
scheduling [17, 18]. Demers, Keshav, and Shenker were
the �rst to apply the notion of fairness to a
uid-
ow
system that models an idealized communication switch
in which sessions are serviced in arbitrarily small incre-
ments [4]. Since in practice a packet transmission can-
not be preempted, the authors proposed an algorithm,
called Packet Fair Queueing (PFQ), in which the pack-
ets are serviced in the order in which they would �n-
ish in the corresponding
uid-
ow system (i.e., in the
increasing order of their virtual deadlines). By using
the concept of virtual time, previously introduced by
Zhang [19], Parekh and Gallager have analyzed PFQ
when the input tra�c stream conforms to the leaky-
bucket constraints [10, 11]. In particular, they have
shown that no packet is serviced Tmax latter than
it would have been serviced in the
uid-
ow system,
where Tmax represents the time to transmit a packet of
maximumsize. However, as shown in [3, 13, 18], the lag
bound can be as large as O(n), where n represents the
number of active sessions (clients) in the system. More-
over, in PFQ the virtual time is updated when a client
joins or leaves the competition in the ideal system, and
not in the real one. This requires one to maintain an
additional event queue, which makes the implementa-
tion complex and ine�cient. As a solution, Golestani
has proposed a new algorithm, called Self-Clocked Fair
Queueing (SCFQ), in which the virtual time is updated
when the client joins/leaves the competition in the real
system, and not in the idealized one [5]. Although this
scheme can be more e�ciently implemented, this does
not come for free: the lag bounds increase to within a
factor of two of the ones guaranteed by PFQ.

Recently, Waldspurger and Weihl have developed
a new proportional share allocation algorithm, called

2The di�erence between fractional and non-uniform quanta
is that while in the �rst case the fraction from the time quan-
tum (that the client will actually use) is assumed to be known
in advance, in the non-uniform quanta case this fraction is not
known.

stride scheduling [17, 18], which can be viewed as a
cross-application of fair queueing to the domain of pro-
cessor scheduling. Stride scheduling relies on the con-
cept of global pass (which is similar to virtual time) to
measure the work progress in the system. Each client
has an associated stride that is inversely proportional
to its weight, and a pass that measures the progress of
that client. The algorithm allocates a time quantum
to the client with the lowest pass, which is similar to
the PFQ policy. However, by grouping the clients in a
binary tree, and recursively applying the basic stride
scheduling algorithm at each level, the lag is reduced to
O(logn). Moreover, stride scheduling provides support
for both uniform and non-uniform quanta.

Goyal, Guo and Vin have proposed a new algorithm,
called Start-time Fair Queueing (SFQ), for hierarchi-
cally partitioning of a CPU among various application
classes [6]. While this algorithm supports both uni-
form and non-uniform quanta, the delay bound (and
implicitly the lag) increases linearly with the number
of clients. However, we note that when the number of
clients is small, in terms of delay, this algorithm can be
superior to classical fair queueing algorithms.

In contrast to the above algorithms, by making use
of both virtual eligible times and virtual deadlines,
the algorithm we develop herein achieves constant lag
bounds, while providing full support for dynamic op-
erations. We note that two similar algorithms were
independently developed (in parallel to our original
work [13]) by Bennett and Zhang in the context of
allocating bandwidth in communication networks [3],
and by Baruah, Gehrke and Plaxton in the context of
processor scheduling for �xed time quanta [2]. In addi-
tion to introducing the concept of virtual eligible time
(which was also independently introduced in [2] and [3])
our work makes several unique key contributions.

First, by \decoupling" the request size from the size
of a time quantum we generalize the previous known
theoretical results [10]. Moreover, our analysis can be
easily extended to preemptive systems, as well. For ex-
ample, we can derive lag bounds for a fully preemptive
system, by simply taking time quanta to be arbitrarily
small. Similarly, by taking the size of a time quantum
to be the maximum duration of a critical region, we
can derive lag bounds for a preemptive system with
critical regions. Finally, this decoupling gives a client
possibility of trading between allocation accuracy and
scheduling overhead (see Section 6).

Second, we address the problem of a client leaving
the competition before using the entire service time it
has requested. This is an important extension since in
an operating system it is typically not possible to pre-
dict exactly how much service time a client will use for

the next request. We note that this problem does not
occur and consequently has not been addressed in the
context of network bandwidth allocation; in this case,
the length of a message and therefore its transmission
time is assumed to be known upon its arrival. The only
previous known algorithms that address this problem
are lottery and stride scheduling [17, 18]. However,
the lag bounds guaranteed by stride scheduling are as
large as O(n), where n represents the number of active
clients (being a randomized algorithm, lottery does not
guarantee tight bounds). In comparison, our algorithm
(described next) guarantees optimal lag bounds of one
time quantum.

Third, we propose a new approximation scheme for
maintaining virtual time, in which update operations
are performed when the events (e.g., client leaving,
joining) occur in the real system, and not in the ideal
one. This simpli�es the implementation and eliminates
the need to keep an event queue. It is worth mention-
ing that unlike other previous approximations [5], ours
guarantees optimal lag bounds.

Besides the class of fair queuing algorithms, a sig-
ni�cant number of other proportional share algorithms
have recently been developed [1, 9, 12, 16]. Although
none of them guarantees constant lag bounds in a
dynamic system, we note that the PD algorithm of
Baruah, Gehrke, and Plaxton [1] achieves constant lag
bounds in a static system.

The idea of applying fair queueing algorithms to pro-
cessor scheduling was �rst suggested by Parekh in [11].
Waldspurger and Weihl were the �rst to actually de-
velop and implement such an algorithm (stride schedul-
ing) for processor scheduling [17, 18].3 Finally, to our
best knowledge we are the �rst to implement and to
test a proportional share scheduler which guarantees
constant lag bounds.

4 The EEVDF Algorithm

In order to obtain access to the resource, a client
must issue a request in which it speci�es the duration
of the service time it needs. Once a client's request is
ful�lled, it may either issue a new request or become
passive. For uniformity, throughout this paper we as-
sume that the client is the sole initiator of the requests
For
exibility we allow the requests to have any dura-
tion. Note that a client may request the same amount
of service time by generating either fewer longer re-
quests, or many shorter ones. For example, a client
may ask for one minute of computation time either by

3We note that they have also applied stride scheduling to
other shared resources, such as critical section lock accesses.

issuing 60 requests with a duration of one second each,
or by issuing 600 requests with a duration of 100 ms
each. As we will show in Section 6, shorter requests
guarantee better allocation accuracy, while longer re-
quests decrease system overhead. This a�ords a client
the possibility of trading between allocation accuracy
and scheduling overhead.

We formulate our scheduling algorithm in terms of
the behavior of an ideal,
uid-
ow system that exe-
cutes clients in a virtual-time time domain [19, 10].
Abstractly, the virtual
uid-
ow system executes each
client for wi real-time time units during each virtual-
time time unit. More concretely, virtual-time is de�ned
to be the following function of real-time

V (t) =

Z t

0

1P
j2A(�)wj

d�: (4)

Note that virtual-time increases at a rate inversely
proportional to the sum of the weights of all ac-
tive clients. That is, when the competition increases
virtual-time slows down, while when the competition
decreases it accelerates. Intuitively, the
ow of virtual-
time changes to \accommodate" all active clients in one
virtual-time time unit. That is, the size of a virtual-
time unit is modi�ed such that in the corresponding

uid-
ow system each active client i receives wi real-
time units during one virtual-time time unit. For ex-
ample, consider two clients with weights w1 = 2 and
w2 = 3. Then the rate at which virtual-time increases
relative to real-time is 1

w1+w2

= 0:2, and therefore a
virtual-time time unit equals �ve real-time units. Thus,
in each virtual-time time unit the two clients should re-
ceive w1 = 2, and w2 = 3 time units.

Ideally we would like for our proportional share al-
gorithm to approach the behavior of the virtual
uid-

ow system. Thus, since in the
uid-
ow system, at
all points in time a client is best characterized by the
service time it has received up to the current time, to
compare our approach with the ideal, we must be able
to compute the service time that a client should receive
in the
uid-
ow system. By combining Eq. (1) and (2)
we can express the service time that an active client i
should receive in the interval [t1; t2) as

Si(t1; t2) = wi

Z t2

t1

1P
j2A(�) wj

d�: (5)

Once the integral in the above equation is computed,
we can easily determine the service time that any client
i should receive during the interval [t1; t2), by simply
multiplying the client's weight by the integral's value.
Next, from Eq. (5) and (4) it follows that

Si(t1; t2) = (V (t2)� V (t1))wi: (6)

To better interpret the above equation consider a
much simpler model in which the number of active
clients is constant and the sum of their weights is
one (

P
i2Awi = 1), i.e., the share of a client i is

fi = wi. Then, in this model, the service time that
client i should receive during an interval [t1; t2) is sim-
ply Si(t1; t2) = (t2 � t1)wi. Next, notice that by re-
placing the real times t1 and t2 with the corresponding
virtual-times V (t1) and V (t2) we arrive at Eq. (6).
Thus, Eq. (6) can be viewed as a generalization for
computing the service time Si(t1; t2) in a dynamic sys-
tem| one in which clients are dynamically joining and
leaving the competition.

Our scheduling algorithms uses measurements made
in the virtual-time domain to make scheduling deci-
sions. For each client's request we de�ne an eligible
time e and a deadline d which represent the starting
and �nishing time respectively for the request's service
in the corresponding
uid-
ow system. Let ti0 be the
time at which client i becomes active, and let t be the
time at which it initiates a new request. Then, a re-
quest becomes eligible at a time e when the service
time that the client should receive in the correspond-
ing
uid-
ow system, Si(t

0; e), equals the service time
that the client has already received in the real system,
si(t

0; t), (i.e., Si(t
i
0; e) = si(t

i
0; t)). Note that if at time

t client i has received more service time than it was
supposed to receive (i.e., lagi(t) < 0), then it will be
the case that e > t and hence the client should wait
until time e before the new request becomes eligible.
In this way a client that has received more service time
than its share is \slowed down", while giving the other
active clients the opportunity to \catch up". On the
other hand, if at time t client i has received less service
time than it was supposed to receive (i.e., its lag is pos-
itive), then it will be the case that e < t, and therefore
the new request is immediately eligible at time t. By
using Eq. (6) the virtual eligible time V (e) is

V (e) = V (ti0) +
si(t

i
0; t)

wi

: (7)

Similarly, the deadline of the request is chosen such
that the service time that the client should receive be-
tween the eligible time e and the deadline d equals the
service time of the new request, i.e., Si(e; d) = r, where
r represents the length of the new request. By using
again Eq. (6), we derive the virtual deadline V (d) as

V (d) = V (e) +
r

wi

: (8)

Notice that although Eq. (7) and (8) give us the vir-
tual eligible time V (e) and the virtual deadline V (d),
they do not necessarily give us the values of the real
times e and d! To see why, consider the case in which
e is larger than the current time t. Then e cannot be

computed exactly from Eq. (4) and (7), since we do not
know how the slope of the virtual-time mapping will
vary in the future (it changes dynamically while clients
join and leave the competition). Therefore we will for-
mulate our algorithm in terms of virtual eligible times
and deadlines and not of the real times. With this,
the Earliest Eligible Virtual Deadline First (EEVDF)
algorithm can be simply stated as follows:

EEVDF Algorithm. A new quantum is allocated to
the client which has the eligible request with the earliest
virtual deadline.

Since EEVDF is formulated in terms of virtual-
times, in the remaining of this paper we use ve and
vd to denote the virtual eligible time and virtual dead-
line respectively, whenever the corresponding real el-
igible time and the deadline are not given. Let r(k)

denote the length of the kth request made by client i,
and let ve(k) and vd(k) denote the virtual eligible time
and the virtual deadline associated to this request. If
each client's request uses the entire service time it has
requested, then by using Eq. (7) and (8) we obtain the
following recurrence which computes both the virtual
eligible time and the virtual deadline of each request:

ve(1) = V (ti0); (9)

vd(k) = ve(k) +
r(k)

wi

; (10)

ve(k+1) = vd(k): (11)

Next, we consider the more general case in which
the client does not use the entire service time it has
requested. Since a client never receives more service
time than requested, we need to consider only the case
when the client uses the resource for less time than
requested. Let u(k) denote the service time that client
i actually receives during its k-th request. Then the
only change in Eq. (9){(11), will be in computing the
eligible time of a new request. Speci�cally, Eq. (11) is
replaced by

ve(k+1) = ve(k) +
u(k)

wi

: (12)

Example. To �x the ideas, let us take a simple exam-
ple (see Figure 1). Consider two clients with weights
w1 = w2 = 2 that issue requests with lengths r1 = 2,
and r2 = 1, respectively. We assume that the time
quantum is of unit size (q = 1) and that client 1 is the
�rst one which enters competition at real time t0 = 0.
Thus, according to Eq. (9) and (10) the virtual eligible
time for the �rst request of client 1 is ve = 0, while
its virtual deadline is vd = 1. Being the single client
that has an outstanding eligible request, client 1 re-
ceives the �rst quantum. At real time t = 1, client

2 enters the competition. Since during the interval
[0; 1) the only active client in the system is client 1,
from Eq. (4), the value of virtual-time at real-time 1

is V (1) =
R 1
0

1
w1

d� = 0:5. Thus, virtual-time increases
at half the rate of real-time. In this way, in an ideal
system, during every virtual-time time unit, client 1
receives w1 = 2 real time units. Next, after the second
client enters the competition, the rate of virtual-time
slows down further to 1

w1+w2

= 0:25. Hence, in the
ideal system, during one virtual-time time unit, each
client will receive 2 real time units (since w1 = w2 = 2).
Next, assume that client 2 issues its �rst request just
before the second quantum is allocated. Then at real
time t = 1 there are two pending requests: one of client
1 with the virtual deadline 1 (which waits for another
time quantum to ful�ll its request), and one of client
2 which has the same virtual deadline, i.e., 1. In this
situation we arbitrarily break the tie in favor of client
2, which therefore receives the second quantum. Since
this quantum ful�lls the current request of client 2,
client 2 issues immediately, at real time 3 (virtual-time
1), a new request. From Eq. (11) and (10) the vir-
tual eligible time and the virtual deadline of the new
request are 1 and 1.5, respectively. Thus, at real time
t = 2 (virtual-time 0.75) the single eligible request is
the one of client 1, which therefore receives the next
quantum. Further, at real time t = 3 (virtual-time 1)
there are again two eligible requests: the one of client
2 that has just become eligible, and the new request
issued by client 1. Since the virtual deadline of the
second client's request (1.5) is earlier than the one of
the �rst client (2), the fourth quantum is allocated to
client 2. Further, Figure 1 shows how the next four
quanta are allocated.

Note the uniform progress of the two clients in Fig-
ure 1. Although the uniformity is perfect in this con-
trived example, we show in Section 6 that in fact the
deviation of a client's progress from the perfectly uni-
form rate (i.e., its rate of progress in the ideal
uid-
ow
system) is bounded and that these bounds are the best
possible. This shows that for a given quanta q, the
EEVDF algorithm provides the best possible guaran-
tees of real-time progress.

5 Fairness in Dynamic Systems

In this section we address the issue of fairness in
dynamic systems. Throughout this paper, we assume
that a dynamic system provides support for client join-
ing and leaving the competition4. To understand the

4Note that with these two operations, changing a client's
weight can be easily implemented as a leave followed by a re-

(0, 1) (1, 2) (2, 3)

0 0.5

0 1 2 3 4 5 6 7

client 1

client 2

virtual time

time

(2, 2.5)(0.5, 1) (1, 1.5) (1.5, 2)

1 1.5 2

Figure 1. An example of EEVDF scheduling in-
volving two clients with equal weights w1 = w2 =
2. All the requests generated by client 1 have
length 2, and all of the requests generated by client
2 have length 1. Client 1 becomes active at time
0 (virtual-time 0), while client 2 becomes active
at time 1 (virtual-time 0:5). The vertical arrows
represent the times when the requests are initi-
ated (the pair associated to each arrow represents
the virtual eligible time and the virtual deadline
of the corresponding request). The shaded regions
in the background show the the durations of ser-
vicing successive requests (of the same client) in
the
uid-
ow system.

main issues of implementing dynamic operations, �rst
recall that the client's lag represents (see Eq. (3))
the di�erence between the service time that the client
should receive and the service time it has actually re-
ceived. An important property of the EEVDF algo-
rithm is that at any time the sum of the lags of all active
clients is zero (see Lemma 2 in [14]). Thus, if a client
leaves the competition with a negative lag (i.e., after
receiving more service time than it was supposed to),
the remaining clients should have received less service
time than they were entitled to. In short, a gain for one
client translates into a loss for the other active clients.
Similarly, when a client with positive lag leaves, this
translates into a gain for the remaining clients. The
main question here is how to distribute this loss/gain
among the remaining clients. In [13] we answered this
question by distributing it in proportion to the clients'
weights. In the remaining of this section we show that
the same answer is obtained by approaching the prob-
lem from a di�erent angle.

The basic observation is that this problem does not
occur as long as a client with zero lag leaves the compe-
tition, because there is nothing to distribute. Since in
the corresponding
uid-
ow system the lag of any client
is always zero, a simple solution would be to consider
the time when the client leaves to be the time when
it leaves in the corresponding
uid-
ow system, and

join operation [13].

not in the real system. Unfortunately, this solution
has two major drawbacks. First, in many situations,
such as scheduling incoming packets in a high speed
networking switch, maintaining the events in the
uid-

ow system is too expensive in practice [5]. Second
and more important, this solution assumes implicitly
that the service time that a client will use is known
in advance. While this is generally true in the case
of the communication switch, where the length of a
message (and consequently its service time) is assumed
to be known when the packet arrives, in the proces-
sor case this is not always possible. To see why this
is a potential problem, consider the previous example
(see Figure 1) in which the �rst client leaves the com-
petition after using only 1.1 time-units of the second
request, i.e., at time 6.1 in the real system and the cor-
responding virtual time 1.775. However, according to
Eq. (12), in the ideal system the client should com-
plete its service and therefore leave the competition at
virtual time 1.55 (= ve(2) + u(2)=w1), which in our ex-
ample corresponds to the real time 5.2. Unfortunately,
since at this point we do not know for how long client
1 will continue to use the resource (we know only that
it has made a request for two time-units of execution
and has actually executed for only one time unit) we
cannot update the virtual time correctly!

Next, we present our solution to this problem for
a dynamic system in which the following two (reason-
able) restrictions hold: (1) all the clients that join the
competition are assumed to have zero lag, and (2) a
client has to leave the competition as soon as it is �n-
ished using the resource (i.e., when a client terminates
it is not allowed to remain in the system). We con-
sider two cases depending on whether the client's lag
is negative or positive. From Eq. (3), (4), (6) it fol-
lows that the client's lag increases as long as the client
receives service time, and decreases otherwise. Thus,
when a client with negative lag wants to leave, we can
simply delay that client (without allocating any service
time to it) until its lag becomes zero. This can be sim-
ply accomplished by generating a dummy request of
zero length. However, note that since a request cannot
be processed before it becomes eligible, and since the
virtual eligible time of the dummy request is equal to
its deadline (see Eq. (8)), this request cannot be pro-
cessed earlier than its deadline. In this way, we have
reduced the �rst case to the second one, in which the
client leaving the competition has a positive lag. Our
solution is based on the same idea as before: the client
is delayed until its lag becomes zero.

For clarity, consider the example in Figure 2(a),
where three clients become simultaneously active.
Next, suppose that at time t1, client 1 decides to leave

the competition while having a positive lag. Then the
client will be simply delayed, while continuing to re-
ceive service time, until its lag becomes zero, i.e., until
time t01. If we assume that the slope of virtual-time
with respect to real-time does not change between t1
and t01, then from Eq. (5) and (6) we obtain S1(t1; t

0
1) =

(V (t01)� V (t1))w1 = w1(t
0
1 � t1)=(w1 +w2+ w3). Fur-

ther, by using Eq. (3) and (5), and the fact that
s1(t1; t

0
1) = t01 � t1 we can compute the virtual-time

at t01 as

V (t01) = V (t1) +
lag1(t1)

w2 +w3
(13)

The main drawback of this approach is that client 1
continues to receive service time between t1 and t01, al-
though it does not need it (since it has already �nished
using the resource)! Thus, this service time will be
wasted, which is unacceptable. Our solution is to sim-
ply let any client with positive lag leave immediately,
while correctly updating the value of virtual-time to
account for the change (see Figure 2(b)). In this way
the virtual-times corresponding to the times when a
client decides to leave and when it actually leaves are
the same in both systems. More precisely consider a
client k leaving the competition at time tk with a pos-
itive lag (i.e., lagk(tk) > 0). Then, by generalizing Eq.
(13), the value of virtual-time is updated as follows

V (tk) = V (tk) +
lagk(tk)P

j2A(tk)nfkg
wj

; (14)

where A(tk) represents the set of all active clients just
before client k leaves. For example, in Figure 2(b)
A(t1) = f1; 2; 3g. Thus, A(tk) n fkg represents the set
of all active clients just after client k leaves the compe-
tition. Further note that according to Eq. (3) the lag
of any remaining client i 2 A(tk) n fkg changes to

lagi(tk) = lagi(tk) +wi

lagk(tk)P
j2A(tk)nfkg

wj

: (15)

Thus the lag of client i is proportionally distributed
among the remaining clients, which is consistent with
our interpretation of fairness in dynamic systems, i.e.,
any gain or loss is proportionally distributed among
the remaining clients.

Since virtual-time is updated only when the events
actually occur in the real system (as opposed to when
they occur in the ideal one), the EEVDF algorithm can
be easily and e�ciently implemented. Even in a sys-
tem in which the service times are known in advance,
it is theoretically possible to update virtual-time as in
the ideal system, however, in practice this is hard to
achieve. Mainly, this is because we need to implement
an event queue which has to balance the trade-o� be-
tween timer granularity and scheduling overhead. As

1 1t’ t t’2 2t time

vi
rt

ua
l t

im
e

1t time1

client 1
client 2
client 3

client 1
client 2
client 3

2 1t + (t’ − t)

vi
rt

ua
l t

im
e

(a) (b)

Figure 2. Three clients become active at the same time, after which client 1 and client 2, both with positive
lags, leave the competition. In (a) clients are allowed to leave only after their lags become zero; in (b) clients
are allowed to leave immediately. The shaded regions in (a) represents the time intervals during which the
system allocates service time to the clients until their lags become zero. In both cases the virtual-time just
before a client wants to leave and just after it has actually left are equal.

we have shown in [13] all the basic operation required
to implement the EEVDF algorithm, i.e., inserting and
deleting a request, and �nding the eligible request with
the earliest deadline can be implemented in O(logn),
where n represents the number of active clients.

We note that in the worst case it may be possible
that all the dummy requests occur at the same time. In
this situation, the scheduler should perform O(n) dele-
tions before the next \real" request is serviced. Al-
though, this is a potential problem in the case of a
communication switch, where the selection of the next
packet to be serviced is assumed to be done during
the transmission of the current packet, it does not sig-
ni�cantly increase the complexity of CPU scheduling.
This is mainly because a processor, besides servicing
the active clients (processes), also executes the schedul-
ing algorithm, as well as other related operating system
functions (e.g., starting a new process, or terminating
an existing one). Consequently, in a complete model we
need to account for these overheads anyway. A simple
solution would be to charge each process for the related
overheads. For example, the time to select the next
process to receive a time quantum should be charged
to that client. In this way, from the processor's per-
spective, a dummy request is no longer a 0-duration re-
quest since it should account at least for the scheduling
overhead (and eventually for the process termination).
In the current model we ignore these overheads, which,
as the experimental results suggest (see Section 7), is
an acceptable approximation for many practical situa-
tions. However, we plan to address this aspect in the
future.

6 Fairness Results

The proportional share scheduling algorithm we
have proposed executes clients at a precise rate. One
can determine if a client has a desired real-time re-
sponse time property by simply computing the amount
of service time it is to receive during the interval(s) of
time of interest using either Eq. (5) or (6). However,
because service time is allocated in discrete quanta, this
computation is o� by the client's lag. Thus, in order
to use our proportional share algorithm for real-time
computing, we must demonstrate that the lag incurred
by any client is bounded at all times. This is done next.

The problem is stated as that of demonstrating that
the EEVDF algorithm is fair in the sense that all clients
make progress according to their weights. By demon-
strating that the lag of each client is bounded at all
times we conclude that our algorithm is fair. Here we
sketch the argument that lags are bounded. The com-
plete proof of each result are given in the extended
version of this paper [14].

Theorem 1 shows that any request is ful�lled no
latter than q time units after its deadline in the cor-
responding
uid-
ow system, where q represents the
maximum size of a time quantum. Theorem 2 gives
tight bounds for the lag of any client in a system in
which all the clients that join and leave the competi-
tion have zero lags. Similarly, Theorem 3 gives tight
bounds for the client's lag in a system in which a client
with positive lag may leave at any time. Finally, as a
corollary we show that in a dynamic system in which
no client request is larger than the maximum size q of
a time quantum the lag of any client is bounded by
q. Moreover, this result is optimal with respect to any
proportional share algorithm. We begin by de�ning

formally the systems we are analyzing.

De�nition 1 A steady system (S-system for short)
is a system in which the lag of any client that joins, or
leaves the competition is zero.

The next de�nition is a formal characterization of the
system described in Section 5 (see Figure 2(b)).

De�nition 2 A pseudo-steady system (PS-system
for short) is a system in which the lag of any client
that joins is zero, and the lag of any client that leaves
is positive. Moreover, when a client with positive lag
leaves, the value of virtual-time is updated according to
Eq. (14).

The following theorem gives the upper bound for the
maximum delay of ful�lling a request in an S-system.
We note that this result generalizes a previous result
of Parekh and Gallager [10] which holds for the partic-
ular case in which a request is no larger than a time
quantum.

Theorem 1 Let d be the deadline of the current re-
quest issued by client k in an S-system with quantum
q, and let f be the actual time when this request is ful-
�lled. Then

1) the request is ful�lled no later than d + q, i.e.,
f < d+ q, and

2) if f > d, for any time t 2 [d; f), lagk(t) < q.

The next theorem gives tight bounds for a client lag in
an S-system.

Theorem 2 Let r be the size of the current request
issued by client k in an S-system with quantum q. Then
the lag of client k at any time t while the request is
pending is bounded as follows

�r < lagk(t) < max(r; q);

Moreover, these bounds are asymptotically tight.

Notice that the bounds given by Theorem 2 apply
independently to each client and depend only on the
lengths of their requests. While shorter requests o�er
a better allocation accuracy, the longer ones reduce the
system overhead since for the same total service time
fewer requests need to be generated. It is therefore
possible to trade between accuracy and system over-
head, depending on client requirements. For example,
for a computationally intensive task it would be ac-
ceptable to take the length of the request to be on the
order of seconds. On the other hand, in the case of a
multimedia application we need to take the length of a

request to be no greater than several tens of millisec-
onds, due to the delay constraints. Theorem 2 shows
that EEVDF can accommodate clients with di�erent
requirements, while guaranteeing tight bounds for the
lag of each client, which are independent of the other
clients. As the next theorem shows this is not true for
PS-systems. In this case the lag of a client can be as
large as the maximum request issued by any client in
the system.

Theorem 3 Let r be the size of the current request
issued by client k in a PS-system with quantum q. Then
the lag of client k at any time t while the request is
pending is bounded as follows

�r < lagk(t) < max(Rmax; q);

where Rmax represents the maximum duration of any
request issued by any client in the system. Moreover,
these bounds are asymptotically tight.

The following corollary follows directly from Theo-
rems 2 and 3.

Corollary If no request of client k is larger than a
time quantum, then at any time t its lag is bounded as
follows:

�q < lagk(t) < q:

Finally, we note that according to the following sim-
ple lemma (the proof can be found in [13]) the bounds
given in the above corollary are optimal, i.e., they hold
for any proportional share algorithm.

Lemma Given any system with time quanta of size q
and any proportional share algorithm, the lag of any
client is asymptotically bounded by �q and q.

7 Experimental Results

As a proof of concept we have implemented a CPU
scheduler prototype based on our EEVDF algorithm
under FreeBSD v 2.0.5. All the experiments were run
on a PC compatible with a 75 MhZ Pentium and 16
MB of RAM. The scheduler time slice (quantum), and
the duration of any client's request were set to 10 ms.

Excepting the CPU scheduler, we did not alter the
FreeBSD kernel.5 Our scheduler coexists with the orig-
inal FreeBSD scheduler [7]. All the processes that re-
quest proportional share or reservation services are as-
signed a reserved (user-level) priority, and are handled

5Indeed, the fact that we could perform these experiments
on top of a largely unmodi�ed general purpose operating system
indicates the good �t between proportional share resource alloca-
tion scheme we advocate and general purpose operating system
design.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Time (msec.)

N
um

be
r

of
 It

er
at

io
ns

client 1

client 2

client 3

(a)

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

45

50

Time (msec.)

N
um

be
r

of
 It

er
at

io
ns

Reg. 3Reg. 1 Reg. 2 Reg. 4

client 2

client 1

client 3

(c)

0 100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5

10

15

20

Time (msec.)

La
g

(m
se

c.
)

client 1 −x− client 2 −*− client 3 −o−

(b)

0 200 400 600 800 1000 1200
−20

−15

−10

−5

0

5

10

15

20

Time (msec.)

La
g

(m
se

c.
)

client 1 −x− client 2 −*− client 3 −o−

(d)

Figure 3. Experiment 1: The number of iterations (a) and lags (b) of three clients with weights 3, 2, and
1 over 1 sec period. Experiment 2: The number of iterations (c) and the lags (d) for the same clients, when
client 3 is delayed for 300 ms and each client performs 50 iterations.

by our scheduler. All the other processes are scheduled
by the regular FreeBSD scheduler. In this way, the ker-
nel processes are scheduled over any process in the pro-
portional share or the reservation class. Since FreeBSD
lacks real-time support, such as preemptive kernel or
page pinning, in our experiments we tried to avoid as
much as possible the interaction with the kernel. For
example, we make sure that all the measurements are
performed after the entire program is loaded into mem-
ory Also, with the exception of gettimeofday function
used for time measurements, we do not use any other
system function while running the experiments (all the
data are recorded in memory and saved at the end of
each experiment). Addressing these issues in a �rst-
class manner would only serve to improve our (already
good) results.

To measure the allocation accuracy we have writ-
ten a simple iterative applications which performs some
arithmetic computations. Each iteration takes close to
9 ms. In each experiment we run several copies of the
program, by assigning to each copy (client) a di�erent
weight.

In the �rst experiment we run three clients (pro-

cesses), with weights 3, 2, and 1, respectively. All
clients are synchronized via shared-memory to start
the actual computation at the same time. Figure 3(a)
shows the number of iterations executed by each client
during the �rst second. The solid lines depict the ideal
number of iterations for each client. As it can be seen,
the number of iterations actually performed by each
client is very closed to the ideal one. In particular,
note that the client with a weight of 1 executes 1/2 the
number of iterations as the client with a weight of 2 and
at 1/3 the rate as the client with weight 3. Figure 3(b)
depicts the lag of each client over the same interval.
Note that the lags are always between -10 and 10 ms,
which is consistent with the bounds given by the corol-
lary in Section 6. Thus, each client is executing at a
rate which is precise enough to a�ord one the ability
to predict its performance in real-time (modulo 10 ms.)
over any interval.

In the second experiment we consider again three
clients with weights 3, 2, and 1, respectively, but in a
more \dynamic" scenario. While clients 2 and 3 begin
execution at the same time, client 1 is delayed for 300
ms. Each client performs 50 iterations after which it

leaves the competition. As shown in Figure 3(c) there
are four distinct regions. In the �rst region (i.e., be-
tween 0 and 300 ms) there are only two active clients:
2 and 3. Therefore client 2 (having weight 2) receives
66% percent of the CPU, while client 3 (having weight
1) receives 33% from the CPU. Consequently, after 300
ms client 2 completes 22 iterations, while client 3 com-
pletes only 11 iterations. After 300 ms, client 1 joins
the competition and therefore in the second region (be-
tween 300 and 998 ms) all three clients are active. Fur-
ther, at time t = 998 ms client 2 �nishes all its iter-
ations and leaves the competition. Thus, in the next
region only clients 1 and 3 remains active. Finally, at
time t = 1128 ms, client 1 �nishes, and client 3 re-
main the only one active (in region four). Figure 3(d)
depicts the clients lags, which are again between the
theoretical bounds, i.e, -10 and 10 ms.

8 Conclusions

We have described a new proportional share resource
allocation scheduler that provides a
exible control,
and provides strong timeliness guarantees for the ser-
vice time received by a client. In this way we provide
a uni�ed approach for scheduling \�rm" real-time, in-
teractive, and batch applications. We achieve this by
uniformly converting the application requirements re-
gardless of their type in a sequence of requests for the
resource. Our algorithm guarantees that the di�erence
between the service time that a client should receive
in the idealized system and the service time it actu-
ally receives in the real system is bounded by one time
quantum and that this bound is optimal. At our best
knowledge, this is the �rst algorithm to achieve these
bounds in a dynamic system that provides support for
both fractional and non-uniform quanta. As a proof
of concept we have also implemented a prototype of a
CPU scheduler under the FreeBSD operating system.
Our experimental results shows that our implementa-
tion performs within the theoretical bounds.

References

[1] S. K. Baruah, J. E. Gehrke and C. G. Plaxton, \Fast
Scheduling of Periodic Tasks on Multiple Resources",Proc.
of the 9th Int. Par. Proc. Symp., April 1995, pp. 280{288.

[2] S. K. Baruah, J. E. Gehrke and C. G. Plaxton, \Fair On-
Line Scheduling of a Dynamic Set of Tasks on a Single
Resource", Technical Report UTCS-TR-96-03, Dpt. of CS,
Univ. of Texas at Austin, February 1996.

[3] J. C. R. Bennett and H. Zhang, \WF2Q : Worst-case Fair
Queueing", Proc. of INFOCOM'96, San-Francisco, March
1996.

[4] A. Demers, S. Keshav and S. Shenkar, \Analysis and Simu-
lation of a Fair Queueing Algorithm", Journal of Internet-
working Research & Experience, October 1990, pp. 3{12.

[5] S. J. Golestani, \A Self-Clocked Fair Queueing Scheme for
Broadband Applications", Proc. of INFOCOM'94, April
1994, pp. 636{646.

[6] P. Goyal, X. Guo and H. M. Vin, \A Hierarchical CPU
Scheduler for Multimedia Operating Systems", to appear
in Proc. of the 2nd OSDI Symp., October 1996.

[7] S. J. Le�er, M. K. McKusick, M. J. Karels and J. S. Quar-
terman. \The Design and Implementation of the 4.3BSD
UNIX Operating System," Addison-Wesley, 1989.

[8] C. L. Liu and J. W. Layland, \Scheduling Algorithms
for Multiprogramming in a Hard-Real-TimeEnvironment",
Journal of the ACM, Vol. 20, No. 1, January 1973, pp. 46{
61.

[9] U. Maheshwari, \Charged-basedProportionalScheduling",
Technical Memorandum MIT/LCS/TM-529, Laboratory
for CS, MIT, July 1995.

[10] A. K. Parekh and R. G. Gallager, \A GeneralizedProcessor
Sharing Approach To Flow Control in Integrated Services
Networks-The Single Node Case", ACM/IEEE Trans. on
Networking, Vol. 1, No. 3, 1992, pp. 344{357.

[11] A. K. Parekh, \A GeneralizedProcessor Sharing Approach
To Flow Control in Integrated Services Networks", Ph.D
Thesis, Department of EE and CS, MIT, 1992.

[12] I. Stoica, H. Abdel-Wahab, \A new approach to implement
proportional share resource allocation", Technical Report
TR-95-05, CS Dpt., Old Dominion Univ., April 1995.

[13] I. Stoica, H. Abdel-Wahab, \Earliest EligibleVirtual Dead-
line First: A Flexible and Accurate Mechanism for Propor-
tional Share Resource Allocation", Technical Report TR-
95-22, CS Dpt., Old Dominion Univ., Nov. 1995.

[14] I. Stoica, H. Abdel-Wahab, K. Je�ay, S. K. Baruah, J.
E. Gehrke and C. G. Plaxton, \A Proportional Share Re-
source Allocation Algorithm for Real-Time, Time-Shared
Systems", Technical Report TR-96-38, CS Dpt., Univ. of
North Carolina, September 1996.

[15] R. Tijdeman, \The Chairmain Assignment Problem",Dis-
crete Mathematics, vol. 32, 1980, pp. 323{330.

[16] C. A. Waldspurger and W. E. Weihl. \Lottery Scheduling:
Flexible Proportional-ShareResource Management,"Proc.
of the 1st OSDI Symp., November 1994, pp. 1{12.

[17] C. A. Waldspurger and W. E. Weihl. \Stride Scheduling:
Deterministic Proportional Share Resource Menagement,"
Technical Memorandum, MIT/LCS/TM-528, Laboratory
for CS, MIT, July 1995.

[18] C. A. Waldspurger. \Lottery and Stride Scheduling: Flexi-
ble Proportional-Share Resource Management,"PhD The-
sis, Technical Report, MIT/LCS/TR-667, Laboratory for
CS, MIT, September 1995.

[19] L. Zhang, \VirtualClock: A New Tra�c Control Algorithm

for Packet-Switched Networks", ACM Trans. on Comp.

Systems, vol. 9, no. 2, May 1991, pp. 101{124.

