
Channel Set Adaptation: Scalable and Adaptive
Streaming for Non-Linear Media

David Gotz

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2006

Approved by:

Ketan Mayer-Patel, Advisor

Leonard McMillan, Reader

F. Donelson Smith, Reader

Dinesh Manocha, Committee Member

Daniel Aliaga, Committee Member

c© 2006

David Gotz

ALL RIGHTS RESERVED

ii

ABSTRACT
DAVID GOTZ: Channel Set Adaptation: Scalable and Adaptive

Streaming for Non-Linear Media.
(Under the direction of Ketan Mayer-Patel.)

Streaming of linear media objects, such as audio and video, has become ubiquitous

on today’s Internet. Large groups of users regularly tune in to a wide variety of on-

line programming, including radio shows, sports events, and news coverage. However,

non-linear media objects, such as large 3D computer graphics models and visualization

databases, have proven more difficult to stream due to their interactive nature. In this

dissertation, I present a complete framework for the efficient streaming of non-linear

datasets to large user groups.

The framework has several components. First, I present the Representation Graph,

an abstract data representation for expressing the semantic and syntactic relationships

between elements of information in a non-linear multimedia database.

I then present a computational model for achieving multidimensional adaptation.

The model is based on a spatially defined utility metric that allows applications to

mathematically express trade-offs between different dimensions of adaptivity.

The representation graph and adaptation model serve as the foundation for the

Generic Adaptation Library (GAL). GAL defines a layered design for non-linear media

applications and provides an implementation for the middle adaptation layer.

The representation graph, adaptation model, and GAL can be combined to support

adaptive non-linear streaming. I evaluate the performance of an experimental prototype

based on these principles and show that they can effectively support the adaptive

requirements of dynamic and interactive access to non-linear media.

I also define Channel Set Adaptation (CSA), an architecture for scalable delivery

of non-linear media. CSA maps concepts from the representation graph to a scalable

subscription-based network model. CSA provides, in the ideal case, an infinitely scal-

able streaming solution for non-linear media applications. I include a evaluation of

CSA’s performance on both multicast and broadcast networks.

In addition, I develop a performance model based on results from the experimental

evaluation. The performance model highlights several key properties of the underlying

communication model that are most important to CSA performance.

iii

iv

ACKNOWLEDGMENTS

This document represents the end of a long and windy road through my graduate

studies, my formal education, and my sheltered life in the halls of academia. As I reach

the end, I find myself upon a hill. Unfolding before me, I can see the open landscape

of my future, waiting to be conquered.

However, before I progress into the next stage of my life, I would like to take a

moment to turn around and look back at where I’ve been, what I’ve attempted to

achieve, and who has helped me along the way.

When I first arrived at the University of North Carolina at Chapel Hill, I was unsure

of my own desires. I did not know what I was looking for out of my time here. With

the strong support of my loving parents Ben and Bernice, I was simply here to learn,

to experience, and to grow. Thanks to there example, I have within me a respect for

knowledge, a need to understand how things work, and that respect has led me to

where I now stand. Mom and Dad: For all of your love, kindness, and support, thank

you.

Shortly after my arrival, the most important event to take place during my graduate

career occurred: I met my lovely wife Anne without whom none of my achievements

would be possible. Her love and encouragement, in good times and in bad, have been

an anchor in the ups and downs that come with any significant undertaking. Her family

adopted me as one of their own, and for this I owe them a debt that can not be repaid.

Anne: For your family’s kindness, your unending dedication, and your unconditional

love, thank you.

Another critical moment occurred near the end of my second year in Chapel Hill, as

I was completing my Master of Science degree and beginning to interview for positions

in industry. It was then that Dr. Dinesh Manocha approached me in the hallway to

ask me about my plans and to encourage me to stay at the University. His simple act

proved so timely and influential that I firmly believe I would not be here today if he

had not done it. Dinesh: For your support and guidance over the years, thank you.

v

Shortly after choosing to enter the PhD program and remain at UNC, I began

working with Dr. Ketan Mayer-Patel. At first, it was a loose association as I continued

to work under the direction of Dinesh. However, as time progressed, my research

became closer and closer to Ketan’s interests until he officially became my adviser

several months before my proposal. From that point forward, Ketan has been at my

side for every major hurdle, supporting me when I needed his help and encouraging me

to stand on my own when I needed to most. Ketan: For your mentorship and advice,

thank you.

For the rest of my committee, Daniel, Don, and Leonard: Thank you all for your

advice and discussions. To my family and friends, both at UNC and beyond, thank

you for making me who I am. I could not have reached the top of this hill without you.

And now, as I take my next step forward to the hill beyond, let me say one last

time to all those who have helped me travel this far: Thank You.

vi

TABLE OF CONTENTS

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xix

1 Introduction 1

1.1 Digital Media Streaming . 2

1.2 Linear and Non-Linear Media . 3

1.3 Thesis Statement . 6

1.4 Major Contributions . 6

1.5 Dissertation Organization . 9

2 Related Work 11

2.1 Digital Media Representations and Encoding Techniques 12

2.1.1 Representation Tools and Techniques 12

2.1.2 Application-Specific Media Representations 14

2.1.3 Data Representation Recap . 17

2.2 Adaptation . 18

2.2.1 Ad Hoc Policies . 18

2.2.2 Generalized Adaptation . 20

2.3 Media Communication Techniques . 21

2.3.1 Linear Streaming Techniques 21

2.3.2 Linear Streaming to Large User Groups 22

2.3.3 Non-Linear Media Streaming 23

2.3.4 Scalable Database Access . 24

2.4 Summary . 24

vii

3 A Graph-Based Model for Data Representation 26

3.1 Universal Data Representation Concepts 28

3.1.1 Dimensionality . 28

3.1.2 Elements of Information . 29

3.1.3 Data Clusters . 29

3.1.4 Representation Index . 30

3.2 A Generic Representation Abstraction 31

3.2.1 Illustrative Example . 31

3.2.2 Utility Space . 32

3.2.3 Nodes . 34

3.2.4 Edges . 37

3.2.5 Cluster . 42

3.3 Mapping Application-Specific Data Structures to the RG Model 43

3.3.1 Computer Graphics Models . 43

3.3.2 Audio and Video Streaming . 45

3.4 Summary . 47

4 Adaptation 49

4.1 Challenges in Multidimensional Adaptation 50

4.2 Ad Hoc Solutions to Adaptation . 50

4.3 General Models for Adaptation . 51

4.4 Adaptation as Maximization . 51

4.5 Adaptation Structures . 52

4.5.1 Data Structures . 52

4.5.2 Preference and Constraint Structures 53

4.6 Utility and Cost Metrics . 56

4.6.1 Utility Metric . 57

4.6.2 Cost Metric . 60

4.7 The Utility-Cost Ratio . 62

4.7.1 UCR Formulation . 62

4.7.2 Iterative UCR Evaluation . 63

4.8 Expressing Application-Level Preferences 63

4.8.1 Using the Prediction Vector . 63

4.8.2 Using the Alpha Vector . 65

4.9 Node States and State Transitions . 66

viii

4.9.1 Node States . 67

4.9.2 The Availability Front . 69

4.9.3 Node State Invariants . 69

4.9.4 State Transitions . 71

4.9.5 Proof of State Transition Stability 74

4.10 Iterative Adaptation Algorithm . 75

4.10.1 The Active Cluster Set . 75

4.10.2 The Adaptive Control Loop . 75

4.11 Summary . 78

5 The Generic Adaptation Library 81

5.1 Assumptions . 81

5.2 Layered System Design . 82

5.3 Layer-to-Layer Interfaces . 83

5.3.1 Application-Adaptor API . 83

5.3.2 Communicator-Adaptor API . 85

5.3.3 Application Layer Template . 85

5.3.4 Communication Layer Template 86

5.3.5 The Metric Plug-ins . 88

5.4 Summary . 89

6 Experimental Prototype and Evaluation 91

6.1 Prototype Application . 92

6.1.1 Motivating Example . 92

6.1.2 Sea of Images . 92

6.1.3 Streaming SOI . 94

6.1.4 Data Representation . 96

6.1.5 Mapping the Dataset to GAL 99

6.1.6 Merging SWIM with GAL . 100

6.1.7 Specifics for the Input Dataset 102

6.2 Experimental Testbed and Methodology 102

6.2.1 The Emulab Testbed . 103

6.2.2 Network Model . 103

6.2.3 Experiment Topologies . 103

6.2.4 The SUM Metric . 105

6.3 Performance Evaluation using TCP Data Delivery 106

ix

6.3.1 Experiment Description . 106

6.3.2 Negligible Impact of Path Choice on Performance 107

6.3.3 Adaptation Performance Over Time 108

6.3.4 Bottleneck Link Impact on Adaptation Performance 109

6.3.5 Impact of Clustering on Performance 111

6.3.6 Scaling to Large User Groups 113

6.4 Summary . 115

7 Scalable Delivery Architecture 116

7.1 Achieving Scalability . 118

7.1.1 Simple Server Design Philosophy 118

7.1.2 Spectrum of Delivery Solutions 119

7.2 Channel Set Adaptation . 122

7.2.1 CSA and the RG Data Representation 122

7.2.2 Media Communication Model 124

7.2.3 Client-Driven Adaptation . 128

7.3 Experimental Testbed and Methodology 132

7.3.1 Prototype Application . 132

7.3.2 Experimental Testbed . 133

7.3.3 The SUM Performance Metric 133

7.3.4 Network Models . 134

7.4 Performance Evaluation using Broadcast-based CSA 134

7.4.1 Broadcast Network Topology 135

7.4.2 Ideal Scalability of CSA . 135

7.4.3 A CSA Performance Model . 139

7.5 Performance Evaluation using Multicast-based CSA 140

7.5.1 Multicast Network Topology . 140

7.5.2 Practical Scalability of CSA . 141

7.5.3 CSA Congestion Control . 143

7.5.4 Congestion Control with Cross Traffic 144

7.5.5 Impact of Channel Cycle Size on Performance 146

7.5.6 Impact of Leave Latency on Performance 147

7.5.7 Impact of Symmetric Join and Leave Latencies 151

7.5.8 Interaction Between Cluster Count and Subscription Latency . . 152

7.5.9 Performance Model Implications 154

x

7.6 Summary . 156

8 Summary and Conclusion 157

8.1 Research Contributions . 158

8.2 Future Work . 161

8.2.1 Relaxing the Communication Model 161

8.2.2 Moving Beyond Emulation . 162

8.2.3 Improving Multicast . 162

8.3 Summary . 163

BIBLIOGRAPHY 165

xi

xii

LIST OF TABLES

3.1 Notation for the Representation Graph (RG) model. 37

4.1 Notation for adaptation-related structures 54

xiii

xiv

LIST OF FIGURES

1.1 Example of manual bandwidth selection for audio streaming from WCPE. 4

1.2 End-to-End Diagram of a Non-Linear Media Streaming System. 5

3.1 An example of several universal data representation concepts. 30

3.2 A one dimensional computer graphics sample application. 32

3.3 A Simple Representation Graph . 35

3.4 Mapping Geometric Objects to RG Nodes 36

3.5 The Properties of a Typical Edge . 38

3.6 A Node’s Departing Edge Set . 39

3.7 The Properties of a Self Edge . 40

3.8 The Properties of a Split Edge . 41

3.9 A Representation Graph for an Audio/Video Application 46

4.1 A prediction vector with two predictions 55

4.2 A simple Euclidean utility metric . 58

4.3 Using a relational dimension in an audio/video application 61

4.4 Impact on utility of a moving prediction vector 65

4.5 Using the alpha vector . 66

4.6 Promotion transitions . 72

4.7 Transitioning from Idle to Active . 73

4.8 Demotion transitions . 74

4.9 Adaptation algorithm pseudocode . 80

xv

5.1 GAL’s three layered library model and interfaces 83

5.2 Adaptive application pseudocode . 87

6.1 The Sea of Images Algorithm . 93

6.2 A Naive Approach to a Streaming IBR Application 95

6.3 Experimental Prototype Data Representation 97

6.4 The Network Model for Evaluation. 104

6.5 A Sixty Client Topology from Emulab 105

6.6 Adaptation Performance Over Time . 109

6.7 Bottleneck Link Impact on Adaptation Performance 110

6.8 Impact of Clustering on Performance 112

6.9 Scaling TCP to Large User Groups. 114

7.1 XML-based File Format for the CSA Index 124

7.2 An Overview of the CSA Communication Model 125

7.3 A simplified version of the CSA adaptation algorithm. 130

7.4 ACS Evolution Over Time. 131

7.5 A Sixty Client Broadcast Topology from Emulab 136

7.6 Scalable Performance of Broadcast-based CSA. 137

7.7 Scalable Performance of Multicast-based CSA. 142

7.8 CSA Congestion Control. 143

7.9 Congestion Control in Response to HTTP Cross Traffic. 145

7.10 Impact of Cluster Size on CSA Performance. 147

7.11 Impact of Leave Latency on CSA Performance. 149

7.12 Impact of Long Leave Latencies on Congestion Control. 150

xvi

7.13 Performance Impact of Symmetric Subcription Operation Delay. 152

7.14 Interaction Between Cluster Count and Subscription Latency. 153

xvii

xviii

LIST OF ABBREVIATIONS

ACS Active Channel Set

ALM Application Layer Multicast

API Application Programming Interface

CAD Computer-Aided Design

CSA Channel Set Adaptation

DCT Discrete Cosine Transform

FFT Fast Fourier Transform

GAL The Generic Adaptation Library

GIS Geographic Information Systems

HLODs Hierarchical Levels of Detail

IBR Image-Based Rendering

MPC Multiple Predictor Coding

RG Representation Graph

RLM Receiver-driven Layered Multicast

SOI Sea of Images

SUM The Summed Utility Metric

SWIM Streaming Walk-throughs of Image-based Models

UCR Utility-Cost Ratio

xix

xx

Chapter 1

Introduction

Two pronounced trends have become evident over the the past decade of computing

history. First, digital media techniques have become integral to an enormous number

of applications. Ranging from feature films to scientific endeavors, digital media has

changed the way we work, relax, and learn. In the ten years since Toy Story became

the first feature length computer animated movie in 1995 (Rickitt, 2000), computer

graphics have become a staple of Hollywood films for everything from special effects to

synthetic characters (Kerlow, 2003).

The video game market has seen similar growth as console makers such as Nintendo,

Sony and Microsoft introduce generation after generation of new gaming platforms

(Black, 2001). Similarly, game developers have been creating games that set new

standards for visual realism and interactive game play.

The digital media movement extends far beyond interactive computer graphics.

Personal media devices, such as digital cameras and Apple’s iPod digital music player,

have been among the most popular products in consumer electronics sales (Salkever,

2003). The popularity of these devices has led to entirely new business models in

both the photography and music industries (Stice, 2005). The products have also

led to several new challenges, ranging from digital rights management to storing and

accessing massive personal digital media libraries.

Digital media has also had a dramatic impact on business and science. From digital

documents to complex scientific visualization techniques, digital technology has become

an essential component in everything from oil exploration to real estate to medicine

(Kharif, 2002).

At the same time, a second trend in computing has had a similarly large impact on

our way of life. The proliferation of broadband data networking has had a profound

influence on how we value location, information, and communication. Since the dawn

of the Internet, new communication and data dissemination tools have changed nearly

every facet of life, from military communications to road maps (Wildstrom, 2005).

The past decade has seen a swift progression of technology from analog telephone

modems to broadband network connectivity using DSL and cable modems. These

changes have ushered in an era of widely available high-speed digital communication

capabilities. Wireless network technology is now commonly available at coffee shops,

hotels, and airports. Cellular phone networks now provide high-speed data access to

their networks via third-generation mobile phone technology (Kharif, 2005).

The growing ubiquity of broadband technology has opened to door to a host of new

applications. Massive libraries of information have been digitized and made available

on-line, allowing users to access academic papers, rare artifacts, and historical archives

from the comfort of their home. In depth news coverage is available on-line from nearly

every media outlet, from minor newspapers to major television stations. Telecommuting

is now commonplace among information technology professionals (Rendleman, 2002).

1.1 Digital Media Streaming

At the intersection of these two trends, where digital media and broadband networking

meet, there is the broad application space that combines the power of both technologies.

Included in this application space is digital media streaming: a technique for efficiently

distributing large media datasets to interested receivers.

Unlike traditional downloading of data, which requires an entire file to be received

before it can be utilized, streaming employs continuous transmission to allow immediate

access to received information. Within a typical network-based application, a recipient

first initiates a download and stores a large block of data in a local disk or memory

space. Only then, after the entire data file has been locally stored, can the application

make use of the data in its operations.

In contrast, recipients in a streaming application receive a continuous flow of data

which has been carefully arranged to allow the application to make use of the data

as it arrives, rather than waiting for the data to arrive in its entirety. The streaming

transmission model allows applications to utilize data that arrives “just in time” to

meet application-level requirements.

Streaming has been widely deployed to support access to multimedia objects because

these objects are typically large in size and multimedia applications benefit greatly from

2

the reduced access time afforded by the technique. In addition, the critical role played

by time in many media applications means that any errors or omissions of data that

may occur during the streaming process are immediately obviated by newly arriving

data.

Together, these properties make multimedia an ideal candidate to benefit from

streaming technologies. Today, radio program streams are available on-line from a

variety of sources ranging from major market music broadcasts to small college radio

stations. Video streams from CSPAN to live Major League Baseball telecasts are

received by legions of on-line consumers.

1.2 Linear and Non-Linear Media

Despite the technological and commercial successes of digital media streaming, the

application space remains quite restricted. To date, media streaming has largely been

limited to linear media. Linear media objects, such as audio and video, consist of

data arranged in a fixed and linear ordering. For example, video consists of a linear

sequence of frames arranged along the time dimension. Similarly, audio consists of

a linear sequence of sound samples. Every user that accesses a linear media stream

receives the same flow of information.

The dominance of linear media in the context of on-line streaming matches the

long time dominance of linearity in more traditional media, including books, film, and

television. Linear media is inherently well suited for large audiences. The linear nature

of theater, for example, is what allows entire audiences to be satisfied by observing a

common stage performance.

However, recent advances in computing and interactive technology have led to the

growing importance of non-linear media. Non-linear media objects, such as video

games, interactive visualizations, and virtual environments, provide individual data

orderings to each user in response to their local requirements and interactions. Non-

linear objects are therefore best suited for individual interaction. It is the non-linearity

of video games, for example, which makes the idea of the same theater crowd gathering

to play a video game seem so unreasonable.

Linear and non-linear media are fundamentally different in the experience they pro-

vide to consumers. Non-linear media experiences require unique presentations to each

participating user. For example, every user of an interactive visualization is presented

with a different flow of information in response to their individual interactions.

3

Figure 1.1: This figure shows the choice of streams available to listeners of the public
radio station WCPE. Users choose the most appropriate stream when they start a
new session and the bit-rate remains constant for the life of that session. Ideally, the
transmission bit-rate for streamed data would adapt over time to match the available
bandwidth for individual users. However, this adaptation is not easily achieved. As
an alternative, content providers often provide a selection of streams, each of which is
encoded at a different bit-rate.

The differences between linear and non-linear media pose new challenges to media

streaming techniques. In particular, the need to deliver a custom data flow to each

member of a large group of independent users can not be solved using traditional media

streaming techniques which typically rely on the common data requirements inherent

in linear media to provide efficient delivery.

Even the relatively simple adaptive application of controlling an audio stream’s bit-

rate to match a client’s available bandwidth is not widely supported. Instead, streams

are typically transmitted at a static, predefined rate to all users. If there is any choice

at all in bit-rate, content providers will typically furnish a selection of static streams

and require a human user to make the choice of which stream should be received, as

shown in Figure 1.1.

For fully interactive non-linear media applications, the task of adapting data flows

to match individual resource requirements and preferences is far more challenging then

the audio bit-rate example. Adaptation for non-linear media requires both bit-rate

control and content control: the ability to control both how fast data is arriving and

what data is arriving.

There remain several fundamental problems that must be solved before a fully

scalable and adaptive solution for streaming non-linear media can be developed. In the

work presented in this dissertation, I begin to address some of these obstacles.

4

Non-Linear Media

CSA
Server

DSL
Client

DSL
Client

LAN
Client

LAN
Client

LAN
Client

Dial-Up
Client

Wireless
Client

Wireless
Client

Internet

Figure 1.2: A non-linear media streaming system must be able to provide custom data
flows to a large set of heterogeneously provisioned and independently operating clients.
This dissertation presents a solution for this problem called Channel Set Adaptation,
or CSA.

My work provides a complete framework that supports the streaming of non-linear

media to a large group of independently operating and heterogeneously provisioned

clients. Such a system is illustrated in Figure 1.2. As the results presented in this

dissertation will show, the proposed framework scales well for large user groups and

allows for each client to independently perform both content control (determining what

data is received) and congestion control (determining the rate at which data is received).

This is achieved via three primary formalisms: (1) an abstract representation model

for non-linear media called a Representation Graph, (2) a quantitative adaptation al-

gorithm that frames adaptation as a maximization problem, and (3) the Channel Set

Adaptation method that exploits scalable channel-based network models such as broad-

cast and multicast to provide highly scalable non-linear media streaming.

My research addresses a number of critical questions. How should large non-linear

media data sets be organized to best facilitate scalable and adaptive streaming? How

can servers support large independently operating user populations, particularly when

data sizes are large and require significant amounts of bandwidth for transmission?

How can clients adapt their data flows to changing application needs and resource

allocations? How can this be done without negatively impacting the scalable properties

of the server? Which communication models can support the competing needs for

5

scalable delivery and custom per-client data flows? How can applications efficiently

express and evaluate adaptation policies?

Throughout this dissertation, I will present a unified framework to address all of

these questions along with several other related issues. This framework is based upon

a static and scalable channel-based transmission scheme which allows for dynamic and

independent client adaptation through channel subscription operations.

1.3 Thesis Statement

The scalable streaming of non-linear media to a large group of independently adapting

clients is enabled through Channel Set Adaptation: a framework that maps a parti-

tioned media representation to a set of relatively thin multicast communication channels

to provide scalable congestion and content control.

Scalable and adaptive non-linear media streaming can be achieved via three steps.

The first step is mapping the non-linear data set to a simple generic data model capable

of expressing semantically similar clusters of data.

Second, using the data model, an interactive utility-driven adaptation algorithm can

be designed as an optimization problem, enabling an efficient, quantitative approach

to multidimensional adaptation.

Finally, the data representation and adaptation algorithm support Channel Set

Adaptation, a framework which can deliver custom data flows to individual users in a

highly scalable fashion via standard multicast subscription operations. This approach

moves all per-client operations away from the server, leaving only static transmission

tasks which are independent of group size.

1.4 Major Contributions

This research has produced several research contributions. These include both practical

software contributions, as well as more formal conceptual and algorithmic research

contributions.

The research contributions include:

• A Graph-based Model for Data Representation: I have developed a graph-

based abstraction that can be used to represent complex multidimensional and

multi-resolutional non-linear media data sets. The model represents semantic

6

data relationships and syntactic dependencies through a structure called a Rep-

resentation Graph. The abstraction can map to a very broad class of data repre-

sentations and several examples are presented throughout this dissertation.

A representation graph abstraction uses nodes to represent individual elements of

information and edges to represent the available means of resolving an individual

node as well as any syntactic dependencies between nodes. Nodes are positioned

within a multidimensional utility space to represent semantic relationships be-

tween elements of information. I represent access-level restrictions through the

coloring of nodes into clusters.

I use this generic abstraction as the core representation in my work. This enables

the incorporation of the remaining contributions of this thesis into any application

which can map its dataset to the Representation Graph abstraction.

• Utility-Driven Multidimensional Adaptation Algorithm: Data adapta-

tion is a critical system task in any non-linear media streaming system. The flow

of data from source to receiver must be controlled to satisfy both the receiver’s

application-level requirements and the limited communication resources available

to supply the receiver with the needed data.

In this dissertation, I present a general framework for expressing multidimen-

sional adaptation. The framework regards adaptation as a maximization problem

in which the goal is to maximize the utility of the received data while simulta-

neously minimizing the access cost. The framework provides efficient algorithms

for determining the appropriate behavior, as well as mechanisms for expressing

application-specific data requirements.

• Simple Server Design Philosophy: I propose a driving philosophy for design-

ing scalable distribution systems. This philosophy states that in order to achieve

true scalable performance, all per-client tasks must be pushed away from any

centralized resources and placed as close to the individual clients as possible.

This design philosophy is embraced by the design of Channel Set Adaptation

to provide truly scalable streaming of non-linear media. The server model em-

ployed by Channel Set Adaptation removes all per-client work from the central

server resulting in a constant level of work independent of the size of the client

pool. Thanks to the simple server design philosophy, this leads to a streaming

architecture that is, theoretically, infinitely scalable.

7

• Channel Set Adaptation: I propose a channel-based communication frame-

work for scalable and adaptive streaming of non-linear media. A combination

of the multidimensional adaptation algorithm and the simple server design phi-

losophy, Channel Set Adaptation uses a novel method of channel subscription

management to exploit the scalable nature of multicast and broadcast networks

for non-linear media distribution.

Typically such scalable channel-based network models are used to distributed

identical flows of information to large audiences. Channel Set Adaptation aggres-

sively utilizes subscription operations to deliver unique data flows to each client

in a highly scalable approach.

• Performance Model: I develop a performance model that expresses the impact

on application performance of a number of important system parameters. The

performance model is based on the results of a thorough evaluation of a non-

linear media streaming application prototype built upon the concepts presented

throughout the dissertation. The experiments, through network emulation, pro-

vide a realistic look at how underlying system properties can impact overall per-

formance. The performance model highlights how current multicast technologies

can be best improved in the future to support novel application-level technologies

such as Channel Set Adaptation.

The practical contributions in my dissertation include:

• A Library for Generic Adaptation:

I have implemented a C++ library, The Generic Adaptation Library (GAL),

based on the representation abstraction and multidimensional adaptation algo-

rithms presented in this dissertation. The library has direct support for multime-

dia and multi-dimensional adaptation.

• Motivating Application Prototype: As part of my evaluation, I have im-

plemented a scalable non-linear media streaming infrastructure designed for an

image-based rendering application that reconstructs entire spaces for virtual ex-

ploration. One possible application of this technology is in digital museums,

where a centrally stored image-based model of a physical space can be streamed

to a large number of virtual visitors.

8

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows:

Chapter 2 reviews research most related to this dissertation and provides a context

for my dissertation work.

Chapter 3 defines the representation graph generic data representation abstraction.

It begins with an overview of common universal data properties. It then presents the

formal structure of the representation graph and describes how the universal proper-

ties map to this structure. The chapter concludes with two use cases describing the

application of the abstract model to concrete application scenarios.

Chapter 4 describes the multidimensional adaptation algorithm. After discussing

the general problem of data adaptation, the chapter presents a framework for expressing

adaptation as a maximization problem. The framework allows for the iterative evalu-

ation of adaptation decisions via a quantitative formula. This makes adaptation more

efficient and adaptation policies easier to express when compared to complex rule-based

adaptation systems.

Chapter 5 details the Generic Adaptation Library, a library for multidimensional

and multimedia adaptation. The library is a C++ implementation of the concepts

presented in both Chapter 3 and Chapter 4. This chapter presents both a description

of the overall design of the library and a high-level overview of the library’s application

program interface.

Chapter 6 begins with a description of the experimental prototype application used

throughout the experimental evaluation. The prototype is an implementation of an

image-based rendering streaming system designed for digital libraries. It then describes

the experimental testbed and evaluation methodology. Finally, it covers a series of

experiments evaluating the performance of the adaptation algorithm’s performance

under realistic application conditions. The results include a discussion of why the

straightforward prototype design employed in this chapter falls short of the goal of

scalable streaming.

Chapter 7 describes Channel Set Adaptation, a novel architecture for supporting

truly scalable and adaptive streaming of non-linear media. This chapter presents the

results from several experiments evaluating the improved performance of Channel Set

Adaptation. A performance model is developed from both broadcast and multicast-

based experiments that highlights which system parameters have the greatest impact

on overall performance.

9

Chapter 8 concludes my dissertation with a summary of my research contributions

and discussion of some areas for future work.

10

Chapter 2

Related Work

My dissertation research integrates concepts from a variety of research areas as it aims

to support scalable and adaptive streaming of non-linear media. In this chapter, I

present an overview of the most relevant research in each of these areas in the order in

which they appear in this dissertation.

The chapter begins with an overview of related work in digital media representations

and coding techniques. The vast array of application-specific data representations based

on a common core of techniques motivates development of a generic data model in

Chapter 3.

This is followed by a discussion of both ad hoc adaptation techniques as well as more

generic attempts to model the adaptation problem. The adaptation solutions covered

here serve as the foundation upon which the multidimensional adaptation algorithm of

Chapter 4 is built.

Finally, I provide a brief sampling of related work in the area of media streaming,

both linear and non-linear. This includes a review of both the underlying network-

ing techniques as well as some application-level projects related to my thesis. These

technologies describe the current tools available for media streaming and highlight the

novel aspects of the Channel Set Adaptation technique presented in Chapter 7.

Taken together, these areas of related work provide a context for the remainder of

my dissertation and frame my research contributions within the existing body of related

work.

2.1 Digital Media Representations and Encoding

Techniques

This section provides an overview of a wide range of encoding techniques and data

representations employed by digital media applications. The individual encoding tech-

niques form a toolbox from which complex data representations can built. This section

first covers a series of encoding tools and representation techniques. It then covers a

range of specific digital media representations.

The range of application-specific representations presented here are all built upon a

common core of encoding tools. It is this common ground across data representations

that both motivates and enables the creation of a generic data representation model in

Chapter 3.

2.1.1 Representation Tools and Techniques

Across a range of media representations, from MPEG (ISO/IEC, 1993) to the Pro-

gressive Mesh (Hoppe, 1996), there exists a common set of tools that are combined in

various ways to build efficient domain-specific data representations. These tools include

transform coding, differential coding, and multi-resolution or hierarchical organization

techniques.

Transform Coding

One of the most common techniques used for the encoding of digital media is transform

coding. Transform coding is a mathematical operation that transforms a series of signal

samples into a set of coefficients of the transform’s basis functions. Because the goal is

data compression, the basis functions are chosen such that the transformed coefficients

can be stored more compactly than the original samples.

Several basis functions have been developed over the years for use with digital media.

One of the earliest transforms is the Fast Fourier Transform (FFT) (Cooley and Tukey,

1965). The FFT is based on an efficient algorithmic implementation of the well known

Fourier Transform. The FFT uses a set of sine functions as the basis functions.

More recently, alternative transforms have been widely employed including the Dis-

crete Cosine Transform (DCT) (Rao and Yip, 1990) in a number of MPEG (ISO/IEC,

1993; ISO/IEC, 1995a) formats. Most recently, the Wavelet transform (Vetterli and

12

Kavacevic, 1995) has received a great deal of attention due to its inherently multi-

resolutional properties.

While transform coding can be extremely effective at reducing the storage space

required to represent a set of samples, it is typically applied only to relatively small

region of digital media object. For example, the MPEG video formats apply a DCT to

8x8 blocks of pixels.

Regions encoded via a single transform are essentially atomic units of data. The

block of coefficients must be transformed as a whole to recover the original samples.

Differential Coding

While transform coding allows data to be stored more compactly over a small neigh-

borhood, differential coding aims to exploit similarities within the data that occur

over larger distances. Differential coding techniques rely on coherence: the similarity

between regions in a media dataset.

Perhaps the best example of differential coding is its use in video encoding. Because

videos consist of a sequence of images taken closely in time, regions of successive frames

ft and ft+1 are often extremely similar. Because of the similarity, it is often more

efficient to encode the difference ft+1 − ft rather than ft+1 itself.

This simplified example from video coding is indicative of the common technique of

differential coding. This technique aims to create a more efficient data representation

by encoding the difference between two data regions instead of the region itself.

Differential coding is often highly effective at increasing a representation’s storage

efficiency. However, the improvement comes at the expense of increased data depen-

dence. These dependencies reduce the flexibility of data access.

Multi-resolution Or Hierarchical Organization Techniques

Media representations often employ multi-resolution or hierarchical data organizational

techniques to provide more flexible data access to applications. Unlike monolithic data

structures, these flexible techniques allow access to the same unit of data at various

levels of detail.

Some of these techniques, such as wavelets, overlap with the methods presented

earlier in this section. Wavelets (Vetterli and Kavacevic, 1995) are a transform coding

technique which are also designed to automatically create multi-resolution represen-

tations. For example, they form the basis for the JPEG2000 (ISO/IEC, 2000) image

13

compression standard for multi-resolution image compression.

Other multi-resolution or hierarchical techniques include spatial subdivision meth-

ods (such as quad-trees and oct-trees (Samet, 1984)) and multiple description tech-

niques which can encode data independently for different resolutions (such as levels-of-

detail (Lindstrom et al., 1996) and multiple descriptor video (Chakareski et al., 2003)

or audio as in Figure 1.1). Layered encodings are another multi-resolution technique

where a dataset is divided into discrete quality layers. This can be used, for example,

to provide access to video at a variety of fidelity levels (Rejaie et al., 2000).

Hierarchical or multi-resolution representations provide adaptive data access by

allowing applications to resolve the encoded data at a variety of fidelity levels. That

flexibility can be arranged along a single dimension or along multiple dimensions. A

representation that provides multi-dimensional adaptive access allows an application a

greater degree of flexibility in its data access patterns.

2.1.2 Application-Specific Media Representations

Specific media representations are designed with two primary goals in mind: efficiency

and accessibility. Because digital media datasets are typically large in size, an efficient

representation is often a critical design goal. At the same time, the representation must

provide effective access to the encoded data that reflects the supported applications’

expected behavior and requirements.

The two goals of efficiency and accessibility are often in conflict and, depending on

a specific application’s needs, a number of design decisions must be made to manage

this trade-off (Gotz et al., 2002). As a result, a vast array of application-specific data

representations have been developed that are tailored toward only a small subset of

digital media applications. These representations often combine several of the repre-

sentation tools in unique ways to exploit the application-specific properties of both the

data set and the application.

In this section, I review a number of standard representations for digital media. This

review begins with coverage of the highly standardized representations used for images,

audio, and video. It then presents several application-specific data representations that

have been developed for specific domains within computer graphics, and Image-Based

Rendering (IBR).

14

Image Representations

Digital image representations have been standardized for many years and several com-

peting formats have been proposed. These formats cover a broad range of complexity

levels, from relatively simple encodings, such as PPM and BMP, to more complex

standards such as JPEG (Pennebaker and Mitchell, 1993) and JPEG2000 (ISO/IEC,

2000).

These image representation vary widely in their design aims and applications use

whichever format is deemed most appropriate. For example, applications that have no

spare cycles to spend on decoding will opt for a less complex data representation like

PPM which can be immediately used without any decoding operations. Conversely,

an application that requires highly compressed image storage might opt for the more

space efficient JPEG format.

Some image formats provide more than just a standard data organization specifica-

tion. Lossy image formats, like JPEG, often provide a quality parameter which can be

used by an application to determine how closely an encoded image should match the

original. The quality parameter is used to configure the DCT-based transform coding

algorithm. Additional encoding accuracy comes at the expense of additional storage

space.

The quality parameter provides an important dimension of adaptive behavior at the

point of encoding. However, decoding applications remain limited to access the image

at the quality level specified at the time of encoding.

Other formats, such as the newer JPEG2000 standard, provide flexibility for both

encoding and decoding applications. In particular, JPEG2000 uses a Wavelet transform

which is inherently multi-resolutional. The transform creates a progressive ordering of

the encoded image data. A decoding application can use any number of bytes, starting

from the front of the image data stream, to decode the image. As more bytes are

incorporated into the decoding process, the image quality improves. This provides a

dimension of adaptivity to both the encoding and decoding processes.

Audio Representations

Audio encoding formats have also received a lot of attention from the standardization

community. Early formats, such as the WAV standard (IBM Corporation and Microsoft

Corporation, 1991), enabled high-fidelity digital audio representations but required

significant data storage.

15

More recently, the MP3 standard (ISO/IEC, 1995b) has enabled a revolution in dig-

ital audio by reducing the storage requirement for audio files by an order of magnitude.

This is done via carefully tuned transform coding and quantization techniques tailored

to optimizing an encoding to match the abilities of the human auditory system.

With the advent of the Internet, additional audio formats have been developed

aimed at delivery high quality audio over variable bit rate communication channels via

streaming technologies. These efforts include proprietary formats from RealNetwork’s

Real Audio, Microsoft’s Windows Media effort, as well as other techniques such as

the open-source Ogg Vorbis and applications that stream MP3 data. I will cover the

streaming of audio and other media from a networking perspective in Section 2.3.

Video Representations

As with audio formats, a huge effort has been made at standardizing video representa-

tions. However, even with video a wide range of formats have been developed, each of

which have properties that make it a good choice for specific applications.

For example, low bit-rate video, as often used for video conferencing applications,

can be encoded with the H.261 format (Union, 1993). Alternatively, higher bit-rate

video can be encoded by one of the many generations of MPEG video formats (ISO/IEC,

1993; ISO/IEC, 1995a).

As with the image and audio formats presented earlier, these formats employ com-

binations of the basic encoding techniques to create application-specific data represen-

tations. They employ both transform coding and differential coding between sequential

frames to create highly dependent representations that are extremely space efficient.

This enables relatively small files sizes for the otherwise massive amounts of data re-

quired for video applications.

Multi-resolutional techniques have also been used for video encoding. In particu-

lar, layered video representations (Taubman and Zakhor, 1994) have been designed to

produce video formats that allow access at several discrete quality levels.

Computer Graphics Representations

Standardized data representations have made significantly less inroads in the computer

graphics application space. This is due in part to the wide range of application areas

that require specific data representation properties.

Several data representations have been designed to accommodate flexibility in model

16

accuracy. The rendering of extremely complex geometric objects requires simplification

techniques (Luebke, 2001) that generate multi-resolution models that can be selectively

rendered by the application. For example, a simplification algorithm can generate

discrete sets of multi-resolution geometric models (Lindstrom et al., 1996) that can be

selected at render time to best allocate limited resources.

Alternatively, the progressive mesh algorithm (Hoppe, 1996) generates a progres-

sive ordering of the geometric data similar in nature to the progressive code stream

generated by the JPEG2000 image compression standard. An application utilizing this

representation can choose how many bytes of the geometric model are needed at any

given time. As more bytes of the data set are incorporated into the application, a more

accurate geometric model is obtained.

IBR Representations

The field of IBR, a specialization of computer graphics, attempts to reconstruct virtual

scenes using input sets of photographic samples rather than the traditional geometry-

based models used most often in computer graphics applications. Even within this

highly specific area, several competing data representations have been proposed, in-

cluding the Light Field (Levoy and Hanrahan, 1996) and the Lumigraph (Gortler et al.,

1996). Both of these systems develop a data representation for a set of images as a

collection of two-dimensional slices of a four-dimensional portion of the plenoptic func-

tion. Surface light fields (Miller et al., 1998) provide yet another parameterization of

the image samples and another algorithm for reconstructing the plenoptic function.

The Sea of Images (Aliaga et al., 2002) algorithm provides an alternative parameter-

ization of the plenoptic function which allows user navigation along a horizontal plane

through space, rather than the vertical plan typical of earlier IBR alogrithms. The Sea

of Images algorithm allows greater user navigation than previous IBR systems because

of the change in parameterization. The IRW representation (Gotz et al., 2002) also

addresses the data representation issues associated with the Sea of Images approach to

IBR based on epipolar geometry.

2.1.3 Data Representation Recap

Throughout this section, I have presented a long list of application-specific data repre-

sentations designed for various media types. Each of these representations is unique in

its details, but built from the same common set of tools: transform coding, differential

17

coding, and multi-resolution data organization structures.

The commonality in basic building blocks for each of these data representations

suggests that a generic data representation can be designed that captures the under-

lying structural data relationships: data dependencies, adaptive structures, and multi-

dimensional properties. The design of such a generic data representation is the topic

Chapter 3 in this dissertation.

2.2 Adaptation

Data flow adaptation is an essential component of a vast array of networked media

applications. The flow of information from source to receiver must often be controlled

to effectively utilize a constrained communication infrastructure while continuing to

meet application requirements in a timely manner.

Broadly speaking, there have been two approaches to the problem of adaptation.

Previous work has largely addressed the problem of adaptation in the context of specific

applications. These applications have employed ad hoc policies based on either simple

heuristics or more complicated rule systems. Alternatively, a few recent efforts have

attempted to identify the common elements of adaptation and develop a more general

approach. In this section, I review several research projects in both of these areas: ad

hoc policies and generalized adaptation.

2.2.1 Ad Hoc Policies

Ad hoc adaptation strategies have been employed in a number of specific application

areas. These areas include multimedia systems, computer graphics, and visualization.

These techniques attempt to develop systems of rules or heuristics that balance the

competing needs of both application and system level requirements.

Multimedia

In multimedia, adaptation is an essential task. For example, video streaming adaptation

(i.e. rate control) has been achieved through several different ad hoc mechanisms. These

include controlling the signal-to-noise ratio in video coding (Kanakia et al., 1993),

frame rate adaptation (Rowe and Smith, 1992), or combinations of the two methods

(Ramanujan et al., 1997).

18

The layered video coding techniques discussed earlier in this chapter have also been

used to achieve adaptive rate control (Rejaie et al., 1999). In this work, complex rules

have been developed that govern when additional layers should be added or removed

to maintain adequate performance..

More general approaches to multimedia adaptation include quality of service se-

mantics (Walpole et al., 1999) and augmentation and substitution models (Boll et al.,

1999). Both of these research efforts have attempted to move toward a more generic

quantitative approach to expressing multimedia adaptation. They reduce the need to

develop complex sets of rules, but fall short of the generic models covered in Section

2.2.2.

Of the work covered so far in this section, the effort by Walpole et al. to develop a

quality of service model based on a spatial metric is most closely related to the generic

framework for multi-dimensional adaptation I present in Chapter 4. In their model,

Walpole et al. define a presentation space. This construct represents the space of all

possible presentations of a particular media object. Within that space, they define

a single static point as corresponding to the perfect quality presentation. They then

define adaptation as an attempt to choose a presentation located most closely to the

perfect quality location within the presentation space.

Computer Graphics

In computer graphics, the complexity of geometric models is often much greater than

typical systems can handle for real-time rendering. As a result, significant effort has

been spent developing techniques for geometric simplification (Luebke, 2001). At

runtime, models of appropriate resolution are chosen based on any of a number of

heuristics, including visibility estimates (Cohen-Or et al., 2001), screen-space error

computations (Lindstrom et al., 1996), and rendering costs (Funkhouser and Sequin,

1993). These techniques are especially important for remote access to large, complex

datasets where communication bandwidth is at a premium (Gotz and Mayer-Patel,

2005a; Rusinkiewicz and Levoy, 2001; Teler and Lischinski, 2001).

Visualization

Visualization systems must also deal with databases that contain far too much infor-

mation to graphically display. As a result, adaptive mechanisms have been widely

adopted. These include multi-resolution terrain models (Floriani and Magillo, 2002),

19

multi-resolution volumetric representations (Lamar et al., 1999), and multi-resolutional

and multidimensional data query infrastructures (Beynon et al., 2000). The decision

regarding allocation of constrained resources must carefully reflect application-specific

requirements. For this reason, adaptation is most often performed via ad hoc solutions

based on domain-specific rules and heuristics. This has led to a proliferation of ad hoc

adaptation solutions.

2.2.2 Generalized Adaptation

While most adaptation techniques have been developed in the context of a specific

application, there are some notable exceptions. Some researchers have proposed sev-

eral design principles for adaptive systems (McIlhagga et al., 1998). These principles

highlight several desirable properties of adaptive applications, including the need to

identify the degrees of freedom for adaptive degradation of system performance. The

adaptive framework presented in Chapter 4 is in line with many of these principles.

Other investigators emphasize the importance of data representation in adaptation

(Policroniades et al., 2003). In their work, Policroniades et al. propose a data rep-

resentation that considers files not as monolithic objects, but rather as collections of

elements. These elements can then be chosen based on application-specific policies as

part of content adaptation. The high-level design for this work is similar to portions

of my proposed Representation Graph data structure covered in Chapter 3. However,

their model is defined using simple composite relationships between elements, while

the Representation Graph provides much more powerful structures that can express far

more complicated data relationships which are essential for effective adaptation.

Formal adaptation models such as Adaptation Spaces (Bowers et al., 2000) have

been developed to explicitly specify possible alternative application behaviors for re-

liable systems. This approach works best for systems with a small presentation state

space where enumeration of all possible states is not onerous. The state space centric

approach to adaptation is similar to the less general approach taken by Walpole et al.

for multimedia presentation adaptation (Walpole et al., 1999).

In other work, resource-centric quality-of-service models (Chatterjee et al., 1997)

are used to adapt resource allocations to compensate for changes in the system’s state.

Chatterjee et al. propose a rather complex set of rules for determining resource allo-

cation at the time an application is invoked. However, it is their method for adapting

resource allocation while the application is executing that is most closely related to the

20

adaptation algorithm of Chapter 4. They propose a multidimensional spatial benefit

function used to guide ongoing resource adaptation. The benefit function is somewhat

similar to the spatial utility metric proposed in my research. However, their function

is static and predefined and is only used to compare the relative utility of alternative

states generated by a resource manager. The utility metric proposed in my adapta-

tion framework is highly dynamic, and based on the current application and system

conditions.

2.3 Media Communication Techniques

.

This section reviews a selection of previous work most related to the Channel Set

Adaptation approach to non-linear media streaming covered in Chapter 7. The review

covers both linear and non-linear techniques.

Most of the existing research in the area of media communication technology deals

with linear media streaming for audio and video. This section begins with a very brief

overview of some of this work. It then covers the subset of linear media research that

addresses efficient streaming techniques for large user groups.

This section then reviews several efforts at addressing the unique requirements of

non-linear media streaming. These techniques have largely concentrated on single user

systems due to the individualized data flows required by the nature of non-linear media.

Finally, this section describes two efforts in scalable database access that explore issues

similar to those faced in our work.

2.3.1 Linear Streaming Techniques

Streaming technologies for linear media objects have received a large amount of atten-

tion in recent years as media streaming has matured into a fixture on today’s Internet.

Several commercial technologies, including Real Network’s RealAudio and Microsoft’s

Windows Media are now readily available and used to stream both audio and video

content.

These technologies are based on several fundamental research efforts, including

application-level framing, (Clark and Tennenhouse, 1990), forward-error correction

(Rizzo, 1997), and early research initiatives in developing successful streaming pro-

tocols (Perkins et al., 1998). This has led to several protocol standards for supporting

21

real-time streaming, including RTP (Schulzrinne et al., 1996) and RTSP (Schulzrinne

et al., 1998).

2.3.2 Linear Streaming to Large User Groups

The high bandwidth requirements for streaming audio and video have motivated several

efforts to more efficiently support the distribution of linear media data to large groups of

users. The multicast network model (Deering and Cheriton, 1990), where data streams

are efficiently distributed to groups of interested users, was developed as an efficient

alternative to unicast.

Multicast allows a user to join a group of receivers, all of whom receive an identical

flow of data. A multicast server is then able to transmit a single stream to the entire

group, rather than send individual streams to each user. The single stream is replicated

as needed within the network and delivered to the interested participants.

Problems with deployment of IP Multicast, the standardized version of infrastruc-

ture multicast, have led to significant effort in developing Application Layer Multicast

(ALM) (Banerjee et al., 2002; Begnoche et al., 2005; Castro et al., 2002; Chu et al.,

2000; Chu et al., 2001). Rather than relying upon core network resources to perform

group management and data replication, ALM performs these tasks at the application

level using the very hosts that are participating in the multicast session.

Both IP Multicast and ALM techniques deliver identical flows to all receivers, mak-

ing them ideal solutions for scalable linear media delivery. However, even for linear

data, more flexibility is often required. Several researchers have explored novel uses of

multicast protocols to provide limited flexibility in the time of access to linear media.

For example, scalable video-on-demand can be accomplished through pyramid broad-

casting (Viswanathan and Imielinski, 1996) and its many derivatives (Acharya et al.,

1995; Hua and Sheu, 1997; Juhn and Tseng, 1997).

Similarly, other work has explored using layered media delivery via multicast to im-

prove flexibility in the rate of data delivery. This includes the work on Receiver-Driven

Layered Multicast (McCanne et al., 1996) which uses a layered media representation

and multicast to support a heterogeneous set of linear media receivers. Subsequent

work, such as the Thin Streams architecture (Wu et al., 1997), has improved on the

performance of the original algorithm.

Despite this large body of previous work, scalable solutions have been largely limited

to linear media objects. Many of these techniques depend upon the predictable access

22

patterns associated with linear media applications. In our work, we explore techniques

that exploit multicast delivery for scalable and adaptive non-linear media streaming,

where data access patterns are not known a priori.

2.3.3 Non-Linear Media Streaming

Several researchers have explored techniques for single-user streaming of non-linear

datasets, particularly in the area of computer graphics. For example, streaming for

complex 3D geometric models can be accomplished by selectively transmitting multi-

resolution models of geometric objects based on the user’s navigation of the scene (Teler

and Lischinski, 2001). This work introduces an ad hoc benefit function that evaluates

the relative utility of various models to drive the selective transmission.

Progressive mesh representations, which prioritize geometric information based on

their importance to overall shape, have been used to develop geometric data streams

that are resilient to lost packets during transmission (Al-Regib et al., 2002). The data

encoding includes redundant copies of the low resolution geometric information to speed

loss recovery.

Other researchers have explored single-user streaming for alternative computer graph-

ics techniques. For example, selective transmission techniques have been applied to

image-based rendering with concentric mosaics (Zhang and Li, 2001). This work has

properties similar to standard remote file system architectures. Similar work has ad-

dressed the streaming techniques for point-based models (Rusinkiewicz and Levoy,

2001) by allowing clients to make individual requests for specific portions of the model.

These techniques, while supporting streaming access to non-linear media, are all

based on individual user requests where the streaming server performs per-client work.

As a result, the server workload and outgoing bandwidth requirements typically limit

these solutions to very small user populations.

Recognizing the need for more scalable solutions, some researchers have explored

support for broadcasting geometric data (Bischoff and Kobbelt, 2002) for scalable ac-

cess. However, this work is limited to broadcast environments and does not allow any

per-client control over the received data flow. All users receive the exact same flow of

information, making it most applicable to small datasets where last-mile bandwidth

efficiency is not a concern. Unfortunately, the Internet is not a broadcast medium and

the last-mile links are often the primary communication bottleneck link for individual

clients.

23

2.3.4 Scalable Database Access

The database community has explored scalable access frameworks that attempt to

support large numbers of simultaneous queries. Certain aspects of the scalable non-

linear media streaming problem have similarities to the problems faced by the database

community. In particular, two of these efforts use solutions that draw on concepts that

are closely related to our work.

The Datacycle Architecture (Herman et al., 1987) has been proposed for very high

throughput database systems. In this architecture, the entire database is broadcast

repeatedly over a local high-bandwidth communication network. Data filters attached

to the network then work in parallel to search the stream of data and satisfy complex

queries.

In more recent work, Broadcast Disks (Acharya et al., 1995) were developed for

asymmetric communication environments where bandwidth is abundant for down-

stream transmission but expensive for upstream queries. Data is repeatedly broadcast

over a single broadcast channel, and rates for repeating the broadcast of individual

data elements are chosen to control their expected access times.

2.4 Summary

This chapter presented an overview of several areas of research related the research pre-

sented throughout the remainder of this dissertation. The related areas include digital

media representations, adaptation techniques, and media streaming technologies.

The review began with an overview of related work in digital media representations

and coding techniques. A large number of standard media representations were pre-

sented as well as a set of common techniques that form a tool box from which standard

formats are built. Regardless of the specific encoding details, each representation cre-

ates similar data relationships and dependencies. This similarity is exploited in Chapter

3 to develop a generic data representation model.

The next area of related work covered in this chapter is adaptation. The review

addressed both ad hoc adaptation techniques as well as research efforts aiming to de-

velop a general model for the adaptation problem. The adaptation solutions covered

here will help define the concepts behind the generic multidimensional adaptation al-

gorithm presented in Chapter 4.

Finally, this chapter provided a very brief review of the extensive body of related

24

work in the area of media streaming. The review addressed work on both linear and

non-linear media types. First, a survey of several underlying network technologies was

presented. This was followed by an overview of tools that have been developed to

support application-level streaming systems for both linear and non-linear media. In

both cases, both single-user and scalable approaches were addressed.

The vast range of research topics covered in this chapter form the foundation for

the research contributions presented throughout the remainder of this dissertation.

My efforts in developing a general data representation, multidimensional adaptation

framework, and scalable delivery architecture all build upon the many innovations and

contributions of the research projects presented in this chapter.

25

26

Chapter 3

A Graph-Based Model for Data

Representation

This chapter describes the Representation Graph (Gotz and Mayer-Patel, 2004), a

graph-based data model that forms the underlying data structure in the adaptation

algorithm and communication framework presented in later chapters. Using a single

generic data representation provides a common vocabulary and allows for application-

independent solutions to both the adaptation and communication problems. Solutions

for specific applications can then be developed by providing a mapping between a

specific data representation and the abstract Representation Graph model.

I begin by presenting a number of universal data properties that are common across

a large class of adaptive multimedia applications. The discussion is focused on the

properties most critical to the adaptation and communication tasks for which the data

model is created. I then define the specific structures in a Representation Graph (RG).

A RG is a graph-based structure composed of nodes and edges embedded within a

multidimensional space. Throughout the definition, I illustrate how each component

maps to the aforementioned universal data properties.

Finally, I present two examples in which I map application-specific data structures to

the abstract model. In each of these examples, I take a well established application and

provide a step-by-step mapping between the application-specific data representation

and my graph-based abstract data model.

3.1 Universal Data Representation Concepts

There are a wide variety of adaptive media applications where flexible access to data

is essential to system performance. As a result, a large number of application-specific

data representations have been designed. These include, for example, progressive im-

age coding for still pictures in JPEG2000 (ISO/IEC, 2000), layered video coding for

motion pictures in MPEG2 (ISO/IEC, 1995a), and the progressive mesh representation

computer graphics (Hoppe, 1996).

In this section, I review a number of universal properties common to most repre-

sentations designed for adaptive multimedia applications. These properties include the

representation dimensionality, elements of information, data clusters, and the represen-

tation index.

3.1.1 Dimensionality

Adaptive multimedia data representations, regardless of application, are typically hi-

erarchical or multi-resolutional in nature. This derives from the fundamental reason

for adaptation: limited resources must be allocated in response to changing system

conditions. Without multi-resolutional representations there would be little flexibility

in data access and adaptation would be difficult.

A data representation can be characterized by the number of dimensions along

which adaptive data access is possible. I refer to this property as the representation’s

dimensionality.

A relatively simple representation may adapt across only a single dimension. This

is the case, for example, in a layered video representation. In layered video, a single

video stream is encoded as several incremental layers. The base layer contains a low

resolution video encoding and each additional layer can be incorporated to improve the

video’s image quality. An application can adapt to changes in its available resources

by changing the number of active layers. Because the number of layers is the only

controllable parameter, this representation would have a dimensionality of one.

An alternative representation could contain several adaptive dimensions. For exam-

ple, a video representation could provide direct control over three quality parameters:

color depth, frame rate, and image resolution. Such a representation would have a

dimensionality of three.

28

3.1.2 Elements of Information

A dataset can be considered to be a collection of individual elements of information.

An element is an atomic unit of information at the application level. For example, in

a layered video representation, one layer of one frame might be treated as an element.

Elements do not correspond to actual bytes of data, but only represent a conceptual

unit of information. This is an important distinction because a single element might

be encoded in several different ways. For example, a video stream, where each frame is

considered an element, can be encoded using a variety of standard video formats. Each

encoding will produce a unique data stream that represents the same sequential set of

video frames. The elemental structure of the video stream, i.e. the set of frames, is the

same regardless of the encoding.

Elements represent individual units of information, but they are not necessarily

independent from other elements within the same data representation. For example,

there are often encoding dependencies introduced between elements. Dependencies can

be introduced for several reasons, such as for specific data structural reasons (for exam-

ple, the dependence between layers in a layered video stream) or for storage efficiency

(for example, predictive coding between video frames). Data dependencies between

elements can be viewed as the syntactic relationship between elements.

There can also be semantic relationships between elements. For example, a multiple-

descriptor video stream stored at several bit-rates has a group of independent elements

for each frame. In this example, unlike a layered representation, each element is inde-

pendently encoded and there are no syntactic dependencies between different bit-rate

streams. However, there is still a logical relationship that relates the set of elements

within the bit-rate dimension. This relationship is semantic.

3.1.3 Data Clusters

When information for each element is coded as bytes of data, it is grouped into clusters.

I define a cluster as an access-level data structure which combines the encoded data of

one or more elements. Clusters are atomic units of data that must be accessed as a single

unit. For example, each quality layer in a video representation could be considered a

cluster. During video playback, data is accessed by choosing a certain number of layers.

This is in contrast to the elemental notion of individual video frames.

Given this view of a data representation, the RG models a dataset as a collection

of elements. Elements may have either semantic or syntactic relationships with other

29

B
as

e
L

ay
er

F
ra

m
e

1

B
as

e
L

ay
er

F
ra

m
e

2

B
as

e
L

ay
er

F
ra

m
e

3

B
as

e
L

ay
er

F
ra

m
e

4

B
as

e
L

ay
er

F
ra

m
e

5

B
as

e
L

ay
er

F
ra

m
e

6

B
as

e
L

ay
er

F
ra

m
e

7

B
as

e
L

ay
er

F
ra

m
e

8

E
nh

an
ce

m
en

t L
ay

er
F

ra
m

e
1

E
nh

an
ce

m
en

t L
ay

er
F

ra
m

e
2

E
nh

an
ce

m
en

t L
ay

er
F

ra
m

e
3

E
nh

an
ce

m
en

t L
ay

er
F

ra
m

e
4

E
nh

an
ce

m
en

t L
ay

er
F

ra
m

e
5

E
nh

an
ce

m
en

t L
ay

er
F

ra
m

e
6

E
nh

an
ce

m
en

t L
ay

er
F

ra
m

e
7

E
nh

an
ce

m
en

t L
ay

er
F

ra
m

e
8

A
da

pt
iv

e
D

im
en

si
on

: N
um

be
r

of
 L

ay
er

s

A
B

C

Figure 3.1: A simple layered video representation has a dimensionality of one. (A) The
single adaptive dimension corresponds to the number of layers used during decoding.
(B) Within each layer, there is a sequence of individual frames. These are the elements
in this example. (C) Groups of frames form layers, which, as groups of elements that
must be accessed together (or not at all), are considered clusters.

elements. Elements are encoded and stored, possibly with data from other elements,

as data clusters. These relationships are illustrated in Figure 3.1.

3.1.4 Representation Index

Finally, it is important to note the distinction between the actual encoded data and the

representation’s data structure. The representation structure, defined by elements and

their relationships, is used to decide which data is required during adaptation. I refer to

this as the representation index. The index may be explicit or implicit, but it is always

there. When explicitly defined, the structure has been given many names in different

fields. For example, the structure has been called a scene-graph skeleton (Varadhan and

Manocha, 2002) in graphics, a description (Gotz and Mayer-Patel, 2005a) in streaming

complex media types, and a sketch (Policroniades et al., 2003) in wireless systems.

In the layered video example of this section, the representation index would include

the specification of how each video frame relates the neighboring frames. This is in

30

contrast to the actual image data stored with each frame.

3.2 A Generic Representation Abstraction

In this section, I define the RG and its many components. The representation graph ab-

straction is a graph-based structure embedded within a multidimensional utility space.

In the following subsections, I describe the abstraction and outline the mapping between

individual components and the corresponding universal data representation properties

outlined in the previous section.

3.2.1 Illustrative Example

Throughout this section, I illustrate each component of the RG via a simplified sample

application. For each new concept, the formal definition is followed by a concrete

example. The examples are taken from a simplified computer graphics application.

The example computer graphics system consists of a virtual user navigating along

one dimension of a virtual scene. The scene is composed of a collection of geometric

objects, each of which is stored at multiple resolutions. For example, imagine a user

navigating through a virtual forest, as shown in Figure 3.2. Each object is represented

by a set of multi-resolution models. These models are layered in the sense that lower

resolution models are used as a basis for encoding higher resolution models.

At runtime, the application adapts the flow of incoming data to reflect both limited

rendering resources and a moving viewpoint within the one dimensional scene. The goal

is to render a forest as accurately as possible while working within the limited resources

of the system. As a result, the system renders high resolution models for trees located

close to the user’s position and low resolution models for far away trees. The dynamic

adaptive nature of this application can be seen by comparing Figure 3.2(A) and Figure

3.2(B).

In the remainder of this section, an representation graph for this example application

is developed one component at a time. The example is intentionally simplistic and

serves only to clarify the individual concepts in our framework. More detailed examples

from common applications are illustrated in Section 3.3.

31

A) B)

Figure 3.2: The illustrative example used throughout the generic representation defi-
nition is a simplified computer graphics application. In this application, a user moves
a virtual person through a one-dimensional scene populated with a number of trees.
Each tree is represented at multiple resolutions. (A) Trees close to the viewpoint are
rendered with high resolution models while far away trees are rendered at low reso-
lution. (B) As the position of the viewpoint changes, trees are rendered at different
resolutions.

3.2.2 Utility Space

The first component of the RG is the utility space. The representation abstraction

is embedded within a multidimensional utility space, noted as U. The utility space

is a linear space over the field <. The space U is an n-dimensional space where n

corresponds to the dimensionality of the dataset to be represented.

For example, our sample computer graphics application has two dimensions: one

to represent the navigable scene, X, and a second to represent an object’s resolution

layer, L. This defines a two dimensional utility space U = (X×L), as shown in Figure

3.3(A).

Taxonomy of Dimension Types

In general, utility space dimensions can be categorized into a taxonomy of three types.

For any instance of U, there may be zero or more of each dimensional type. The three

classifications are:

• Navigable: Dimensions in which an application maintains a dynamic point of

interest. The application adjusts the position of the point of interest based on

application conditions.

• Static: Dimensions in which there is a predefined and constant point of interest

regardless of any dynamic system conditions. The coordinate value of this point

32

is called the static value for the dimension. A static dimension is analogous to a

navigable dimension with a fixed point of interest.

• Relational: Dimensions which relate two or more distinct media subspaces (de-

fined below) to form the global utility space U. Relational dimensions provide a

mechanism to express the relative importance between two or more independent

media objects.

Of particular importance is the set of navigable dimensions. Within U, the navi-

gable subspace, N, is defined as the region of space defined by the set of all navigable

dimensions. It is within this subspace that the application can adaptively update the

points of interest for each dimension. This will be a critical in feature in the adaptation

algorithms presented in Chapter 4.

Consider, for example, the two-dimensional sample application. There is a single

navigable dimension, X, which defines the spatial position of geometric objects within

the scene. The second dimension, L, is an static dimension and is used to reflect the

resolution level of each representation of an object. The static value is zero, representing

the lowest possible level, because the system is interested in resolving low resolution

data before high resolution information.

Furthermore, there is a one-dimensional navigable subspace of U defined as N =

(X). There would be no relational dimensions in this example because there is only one

media type within the application. The meaning of relational dimensions will become

more clear during the discussion of media subspaces in the next subsection.

Media Subspaces

The overall utility space can be broken down into individual media subspaces, one sub-

space for each independent set of media objects. For example, a streaming application

with separate audio and video tracks might contain two independent media objects.

This would correspond to two media subspaces.

A single media subspace is noted as Mi. For an application with n independent

sets of media objects, a set of media subspaces is defined as M = {M1, · · · ,Mn}. By

definition, each Mi is independent and shares no dimensions with any of the other

media subspaces.

In the event where dimensions are logically equivalent across subspaces (i.e. time in

the audio/video streaming application), each media subspace requires its own instanti-

33

ation of the dimension. For example, there could be a time dimension defined in both

the audio and video subspaces of the streaming application.

The multiple time dimensions, one for each media subspace, are critical to adapta-

tion. While the detailed adaptation algorithm is presented in Chapter 4, an intuitive

explanation is provided here.

For example, a streaming application with both audio and video tracks would need

to determine how to allocate the available bandwidth across to retrieve both audio and

video data. For a particular application, it may be desirable to ensure that 10 seconds

of future audio data has been buffered locally while only pre-fetching 5 seconds of video

data. To allow this decision, the time dimension of the audio track must be treated

differently than the time dimension of the video track, even though both dimensions

reference the same notion of time.

The independence of each media subspace reflects the fact that each subspace cor-

responds to an independent set of media objects, even if they share logically common

dimensions, such as time. Therefore, the intersection of any two media subspaces is

always empty. This leads to the following equation for all i, k ∈ {1..n}, i 6= j:

Mi ∩Mj = ∅ (3.1)

However, an adaptive application must still choose how best to allocate resources

across independent media objects. As a result, it will be essential to make utility

comparisons across multiple media subspaces. These comparisons are made possible

through the use of relational dimensions which are used to join together two or more

independent media spaces into a common global utility space.

In this chapter, I simply introduce relational dimensions conceptually as added

dimensions used to compare two or more independent media subspaces. A more detailed

discussion regarding relational dimensions and their impact on the measurement of

utility is presented in Section 4.6.

3.2.3 Nodes

The primary structural component within the RG model is a node. A RG is composed

of a set of nodes, noted as S. Individual nodes correspond to the notion of elements and

represent atomic units of information as discussed in Section 3.1.2. Each node ni ∈ S

has a number of individual properties.

34

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene
a) b) c)

Figure 3.3: The Representation Graph (RG) for the illustrative application. (A) The
RG is embedded within a two dimensional utility space U = (X × L), where X is the
spatial dimension and L is the resolution level dimension. (B) Individual models of
geometric objects are represented as nodes whose position within U is determined by
their position and resolution. (C) Edges are used to represent the coding dependencies
between different resolution models of the same object.

Node Properties

Each node ni is associated with a single media object and is located at a specific point

Pos{ni} within a single media subspace Mj. A node has no defined position within all

other media subspaces {Mk}, k 6= j, and Pos{ni} is therefore more correctly described

as a hyperplane within U rather than a point. The relative positions between nodes are

used to express the semantic relationship between individual elements of information.

For example, consider Figure 3.4, which shows three nodes positioned within a single

resolution dimension. Each node corresponds to one of three tree models, each of a

different fidelity. The relative positions of the nodes express their semantic relationship

in terms of resolution.

In addition to position, each node is assigned one of four states. The state for a

particular node, State{ni}, changes over time through state transitions. Node state

is used to keep track of the flow of information during adaptation. For this reason, I

delay covering states in detail until Section 4.9 in the chapter on adaptation. However,

it is important to note here that this state is a node-specific property.

A node also maintains lists of both arriving edges, Arr{ni}, and departing edges,

Dep{ni}. The number of edges in a particular list can be expressed as |Dep{ni}|.
Edges, which connect two or more nodes, and restrictions on the number of edges in

each list for a node are discussed in detail in the next section (Section 3.2.4).

Finally, specific applications may choose to define auxiliary meta-data for each

node, Meta{ni}. Meta-data can be used to represent more specialized application

information that is not expressible through the existing structures of the generic RG

35

R
e
s
o
lu
ti
o
n

a) b)

Figure 3.4: Nodes are used to represent individual elements of information. In (A),
three nodes are shown arranged within a one-dimensional utility space. There are three
nodes which correspond to the three tree models shown in (B). There is a one-to-one
relationship between nodes and models.

model.

Nodes in the Illustrative Example

In the running example, nodes can be used to represent the model of an individual tree

at a specific resolution. Due to the multi-resolutional dataset, each tree is represented

by multiple nodes. Each node is positioned within U according to both its position

in the scene and its resolution. All nodes for a given tree share a common position in

the X dimension. However, they each have different resolution levels and are therefore

positioned differently in the L dimension.

Figure 3.3(B), illustrates the set S for the sample application. For this example,

the dataset contains a total of three trees, each with a unique position within the

X dimension. The left-most tree is modeled at three discrete resolution levels. The

remaining trees are modeled at four discrete resolution levels. This leads to a set S that

contains eleven nodes, each of which is positioned within U. In the figure, you’ll see

three vertical arrangements, each of which represents a single tree at several resolutions.

36

Variable Description

U Utility Space
Mi ⊂ U Media Subspaces
N ⊂ U Navigable Subspace

S Set of all nodes
ni A node from the set S

Pos{ni} The position of ni

State{ni} The state of ni

Arr{ni} The list of arriving edges at ni

Dep{ni} The list of departing edges at ni

Meta{ni} Application meta-data associated with ni

B The set of base nodes (nodes with a self-edge)
A The availability front (all nodes in state Available)
E Set of a edges
ei An edge from the set E

Src{ei} The source node for ei

Dest{ei} The destination node(s) for ei

Clust{ei} The cluster to which ei belongs
Data{ei} The data associated with ei

C The set of all clusters
ci A cluster from the set C

Edges{ci} The list of edges in ci

Cost{ci} The cost estimate for ci

Table 3.1: The notation used to describe the Representation Graph (RG) model is
summarized in this table. The symbols are grouped by concept.

Each node ni has a position Pos{ni} = (x, l) which uniquely identifies an individual

element of information: a particular model of a tree.

3.2.4 Edges

Data dependencies between nodes are represented by directed edges. The set of all edges

is noted as E. An edge ei ∈ E has both a source node, Src{ei}, and a list of destination

nodes, Dest{ei}, as shown in Figure 3.5. For this discussion, the destination list is

assumed to have just one member node. This is true for all edges except split-edges,

which are defined later in this section.

An edge corresponds to a depends-on relationship between nodes, where Src{ei}
depends on Dest{ei}. Edges therefore express the syntactic relationships between

nodes, regulating the order in which information can be resolved.

37

ei

Dest{ei}Src{ei}
nj nk

Figure 3.5: Edges are used to represent data dependencies. Typical edges express
relationships between pairs of nodes. For example, edge ei represents the data required
to decode node Src{ei} given that node Dest{ei} is already resolved.

Edges serve double duty in the RG model. In addition to representing data de-

pendence, an edge corresponds to the bytes of data needed to resolve Src{ei} when

Dest{ei} has already been resolved. Recall that nodes, which correspond to elements,

represent conceptual units of information. The actual data created by encoding a node

is represented as an edge. The notation for the bytes of data associated with an edge

is Data{ei}.
While the data in a particular RG is represented by edges, it is often important

to group edges into larger units to represent access-level restrictions. This is achieved

using RG clusters, which are described in detail in Section 3.2.5. Each edge is assigned

to a single cluster, noted as Clust{ei}. Multiple edges may belong to the same cluster,

but each edge belongs to exactly one cluster.

Data Versus Information

Nodes and edges can be used to represent a large number of complex data representation

and encoding concepts. The definitions of nodes and edges in the RG model were

derived to recognize the distinction between conceptual elements of information and

the raw data used to resolve those elements.

The importance of this distinction is critical in the case, for instance, of multiple-

descriptor media coding, where the same logical element of information is encoded

multiple times. For example, consider the RG illustrated in Figure 3.6. Node ni is

drawn with two departing edges: ej and ek. The pair of edges represent two distinct

paths for resolving the information at ni. If the information for node nj is already

known, then Data{ej} can be used to resolve ni. Likewise, if the information for

nk is already known, then Data{ek} can be used. The edges represent two different

sets of raw bytes of data that can be used to resolve the same conceptual element of

information.

In effect, the set Dep{ni} represents the set of options for decoding a node. In

38

ninj nkekej

Figure 3.6: Nodes maintain a list of departing edges. For node ni in this figure, the
departing edge set Dep{ni} = {ej, ek}. The two edge represent paths for decoding
node ni. If both nj and nk are already known, either edge could be used to resolve ni.
If neither nj or nk are already known, then it is not possible to resolve ni without first
resolving one of the nodes on which it depends.

Figure 3.6, there are two options. In more complex data representations, there may

be several alternatives for decoding a single node. However, for every node ni ∈ S,

there must be at least one decoding option. If not, the node would be unresolvable and

should not be included in S. This observation leads to Departing Edge Rule, expressed

in Equation 3.2. No such restriction exists on the number of arriving edges at a node,

which can be zero or greater.

|Dep{ni}| ≥ 1 (3.2)

|Arr{ni}| ≥ 0 (3.3)

Self Edges

The Departing Edge Rule states that every node must have at least one departing edge

because edges represent the actual data required to resolve a node. However, edges also

represent dependencies between nodes.

This dual role leads to conflict for independent nodes that do not depend on any

other node for resolution. An independent node ni requires a departing edge, ei, to

comply with the the Departing Edge Rule. Clearly, Src{ei} = ni. But to which node

Dest{ei} should ei point?

Using the depends-on formulation of an edge, the correct answer should be no node

at all because ni is independent. However, every edge must have a destination node. To

resolve this conflict, the RG model calls for Dest{ei} to be defined as equal to Src{ei}.
This is called a self edge, stemming from the fact that the edge implies that node ni

depends upon itself. A self-edge is shown in Figure 3.7(A).

Self-edges are required for nodes with no other edges due to the Departing Edge

Rule. However, as with any node, a node with a self-edge can include in its departing

39

e
ba

e
ca

n
a n

b

n
c

e
aa

e
bba) b)

Figure 3.7: (A) A self edge is an edge where the source and destination nodes the same.
(B) The set of departing nodes for an node can have a mixture of normal edges and
self edges, as shown by nb in the figure. If na is already known, then nb can be resolved
by either edges eba or ebb. If na is not already known, then ebb must be used.

edge list any combination of additional self-edges and traditional edges.

Figure 3.7(B) shows an example RG where node nb has two edges in Dep{nb} =

{ebb, eba}. The self-edge ebb represents the data needed to resolve nb without any

prior knowledge. The edge eba represents the data needed to resolve nb assuming na

is already resolved. This relationship could be common, for example, in applications

that use predictive coding. Using node na as the predictive base for edge eba might

be more efficient and require less data than self-edge ebb for resolving nb. However, it

requires that na be previously resolved via edge eaa. Including both edges provides the

application with a choice between two paths of resolution.

A node that contains at least one self-edge within their departing edge list is con-

sidered a base node because it can be resolved without any prior knowledge. The RG

defines the set of base nodes, B ⊂ S, as the set of all nodes with at least one self-edge.

It is defined formally in Equation 3.2.4.

B = {ni} : ∀ni ∈ S|∃ej ∈ Dep{ni}|Src{ej} = Dest{ej} (3.4)

The set of base nodes, B, is an important concept in maintaining node state. The

implications on state maintenance for nodes within B are covered in Section 4.9 where

adaptation via state transition is presented in detail.

40

ei
nj nk

ni

Figure 3.8: The RG model uses split edges to represent multiple predictor coding
relationships. The split edge ei has two destination nodes. As a result, decoding node
ni requires the information for both nj and nk, as well as the data assigned to edge ei.

Split-Edges

Edges are used to represent the dependencies between nodes within an RG. As pre-

sented to this point, edges have been used to connect only pairs of nodes, with individual

source and destination nodes. However, some representations may include more com-

plex relationships, where multiple predictors are used in combination to encode a single

node. I refer to this as Multiple Predictor Coding (MPC) .

MPC contrasts with multiple-descriptor coding in one very critical property. MPC

uses multiple predictors in combination to form a single set of bytes for encoding a node.

Multiple-descriptor representations include multiple encodings for a single node, each

using independent predictive bases. As has already be presented, multiple-descriptor

representations are supported by maintaining a list of departing edges for each node.

However, MPC requires additional support.

The RG model uses split-edges to represent MPC. A split-edge ei maintains two or

more destination nodes for a single edge. This leads to the formal definition of Dest{ei}
as a list of nodes with one or more members. A split edge is illustrated in Figure 3.8,

which shows edge ei expressing the fact that node ni can be resolved with Data{ei}
only if both nodes nj and nk have already been resolved.

Edges in the Illustrative Example

In the example computer graphics application, edges represent dependencies between

nodes. Recall that nodes correspond to different resolution models of each tree. The

sample dataset of multi-resolution trees has eleven nodes, and includes a single depart-

ing edge for each node. As shown in Figure 3.3(C), this leads to eleven edges.

For each tree, the model with the greatest error is fully encoded without any data

41

dependencies. This leads to the inclusion of a self-edge for nodes representing trees at

the coarsest level. In this example, there are three nodes with self-edges. These three

nodes make up the set of base nodes, B.

The dataset uses the nodes in B as predictive bases for encoding the more accurate

models of each tree. The predictive relationships between nodes are expressed through

the eight remaining directed edges that point from higher resolution nodes to lower

resolution nodes. The final RG shows a series of three columns of connected nodes.

Each column corresponds to the predictively coded models for a single tree, represented

at multiple resolutions.

3.2.5 Cluster

Edges are used to represent blocks of data at a very fine granularity. A typical dataset

contains a large number of nodes and the data required to resolve each node is repre-

sented as a separate edge. However, representations often restrict access to individual

edges and only allow data access at a coarser granularity for performance reasons.

Larger and less frequent data queries can usually be achieved far faster than a corre-

sponding set of small and frequent queries.

The RG model allows representations to specify the granularity of data access

through the use of clusters. Each cluster represents an atomic unit of data at the

access level.

Cluster Properties

A cluster is defined as a group of one or more edges. Each cluster ci contains a list

Edges{ci} of all edges assigned to it. The list must have one or more member edges.

Any given edge belongs to exactly one cluster.

In addition, a cluster maintains a cost estimate Cost{ci} which measures the cost

of accessing the associated edges. This is the composite cost of accessing all edges in

Edges{ci} because the cluster requires that all data associated with it be loaded as a

single unit. Costs are typically based on the size of the data associated with the cluster,

but may also reflect other resource resource requirements associated with accessing the

cluster.

Clusters are a critical component in the adaptation framework presented in Chapter

4 because they represent data at access level granularity. Adaptation is performed by

deciding which cluster is the best to access at any point in time. For this reason,

42

the grouping of edges into clusters can play an important role in the performance of

adaptive systems.

Clusters in the Illustrative Example

In the illustrative example application, the data for each edge can be accessed by the

application independently. As a result, the application is provided with very fine-

grained data access. The RG model expresses this design with eleven clusters, one for

each edge in the representation. Each edge is assigned to a unique cluster.

In a more complete example application, it might be desirable to group edges to-

gether into larger clusters. Clusters are used more aggressively in the sample mappings

provided in Section 3.3 to model to some more realistic application scenarios.

3.3 Mapping Application-Specific Data Structures

to the RG Model

The RG model is not intended to serve as a replacement for existing data representa-

tions. Rather, it is designed as a generic and flexible model upon which the adaptation

algorithms of Chapter 4 are defined. For that reason, it is expected that existing rep-

resentations will be mapped to the RG model during the design stage of application

development.

In this section, I discuss in detail the possible mappings for two pre-existing data

representations. The first example presents a mapping for a more realistic computer

graphics representation. The second mapping explores an audio and video streaming

representation with two media subspaces.

3.3.1 Computer Graphics Models

Up to this point, example mappings for the RG model have been restricted to a sim-

plified computer graphics application. In this subsection, a more realistic and fully

featured computer graphics scenario is considered.

A typical computer graphics application contains a large number of computer graph-

ics objects dispersed throughout a three-dimensional model space. The model space

is canonically defined using three-dimensional Cartesian coordinates, (X, Y, Z), often

43

called the model space. Individual models, located at specific positions within the model

space, represent physical objects using a series of geometric primitives (i.e. triangles).

Models are often stored using multi-resolution representations, such as levels-of-

detail (Luebke, 2001) or the progressive mesh (Hoppe, 1996). This added dimension

of adaptation allows the application to manage geometric complexity to match the

available computational resources during rendering. In this example, it is assumed that

the data representation contains several discrete models for each object at a number

of levels-of-detail. Furthermore, it is assumed that the various resolution models for

a given object are encoded using predictive coding techniques which improve data

compression rates by introducing encoding dependencies between the models.

Utility Space Definition

The process of mapping an existing graphics dataset as described above to the RG

model begins by defining the multidimensional utility space, U. In this example, there

is a four dimensional utility space defined by the union of the 3D model space and

the resolution level of the individual geometric models. Defining the resolution level

dimension as R, the 4D utility space becomes U = (X, Y, Z, R).

The three spatial dimensions (X, Y, Z) are all navigable because the application

will maintain the user’s viewpoint within the scene and will need to render geometric

models based on the position of that viewpoint. This defines the navigable subspace,

N = (X, Y, Z). The resolution dimension R is a static dimension with a static value of

zero representing the lowest possible resolution for a geometric model. There is only one

media type in this example, so there is only one media subspace, defined as M1 = U.

Node Definition

The second step in defining the RG is to specify the set of nodes, S. In this application,

a node is defined for every resolution model of every geometric object. These nodes

must also be positioned within U.

Assuming there are n levels of resolution for each object, the RG would include

columns of nodes, stacked vertically in the R dimension. For a given geometric object

located at position (x, y, z) within the application’s model space, there would be a series

of nodes ni, one for each of the n levels of resolution. The position of each node would

be Pos{ni} = (x, y, z, ri) where ri is the resolution value associated with node ni.

44

Edge Definition

The encoding dependencies between different levels-of-detail of the same geometric

object are represented using edges. Therefore, there is a group of edges for each vertical

column of nodes within S. Each group contains a chain of edges pointing from the very

highest resolution node down to the lowest resolution node. This corresponds to the

chain of dependencies introduced by the predictive coding techniques used in storing

the multi-resolutional models.

The node corresponding to the lowest resolution model for each object has a self

edge indicating that it forms the predictive base for the entire column of nodes. The

collection of all lowest resolution nodes forms the set of base nodes, B.

Every node ni ∈ S has exactly one departing edge. This property is common and

reflects a data representation that does not utilize any multiple descriptor techniques.

However, the number of arriving edges for each node varies. For all nodes ni ∈ B,

|Arr{ni}| = 2. For nodes corresponding to the highest resolution models, the arriving

edge list is empty. For all other nodes, the arriving list contains just one edge.

Cluster Definition

The grouping of edges into clusters can be highly variable depending upon the expected

data access patterns by the application. While every edge could be assigned to its own

cluster, in may be desirable to group edges of similar resolution models that are located

very close to each other within the application’s model space. This would enable the

application to more easily resolve groups of common resolution models from the same

location in the virtual scene. However, it would also prohibit the application from

individually resolving a specific node in the representation graph because clusters are

considered atomic.

3.3.2 Audio and Video Streaming

Quality adaptation for audio and video has often been achieved using layered repre-

sentations (McCanne et al., 1996; Rejaie et al., 2000). This case study considers a

multicast-based application with independent video and audio streams, each of which

are represented using a layered encoding.

45

Figure 3.9: A Representation Graph (RG) designed for the audio/video sample appli-
cation. The RG consists of eight nodes embedded within a three-dimensional utility
space. The relational dimension Γ is used to manage cross-media adaptation.

Utility Space Definition

The RG for this application is defined within a three dimensional utility space, U.

The first two dimensions symbolize the adaptive dimensions of the two media streams.

One dimension corresponds to the video stream’s quality layer dimension, V , while a

second dimension corresponds the audio stream’s quality layer dimension, A. Both of

these dimensions are static because a user does not actively navigate through these

dimensions. Typically, a user will always receive the lowest quality layer first with as

many additional incremental layers as possible.

The two static dimensions are each independent and form a pair of one-dimensional

media subspaces: M1 = V for the video stream and M2 = A for the audio stream.

The media subspaces are combined via a single relational dimension, Γ. The relational

dimension is used to facilitate inter-media trade-offs within the utility space.

The two static dimensions and single relational dimension form the overall utility

space U = (V × A × Γ). This utility space is somewhat unique in that none of its

dimensions are navigable. As a result, N = ∅ and U is considered unnavigable. An

unnavigable utility space is considered a special case for the RG model and, as will be

covered in Chapter 4, allows far less flexibility during adaptation.

Node Definition

In this example, both streams are encoded independently using a layered encoding.

The RG contains one set of nodes for each stream, each of which are located within a

46

single media subpace of U. Assuming the video stream has nV layers, there would be

nV nodes positioned within M1. Similarly, assuming the audio stream has nA layers,

there would be nA nodes positioned within M2. Within each subspace, there would be

a single column of nodes arranged within the corresponding layered dimension (V for

M1, A for M2).

Edge Definition

The layered encoding method used for each stream introduces a set of edges for each

media subspace. As described in Section 3.3.2, there is a set of nodes within each indi-

vidual subspace Mi. Within a subspace, these nodes are arranged in a column. Nodes

within a column are chained together with edges which correspond to the encoding

dependencies between neighboring layers of the media stream.

The node corresponding to the lowest quality layer for each media stream has a self

edge indicating that it forms the predictive base for the entire set of nodes. Following

the rules of layered encoding techniques, each stream has only a single base layer. The

set of all base layer nodes (i.e. nodes with self edges) forms the set of base nodes, B.

As in the previous example, every node ni ∈ S has exactly one departing edge.

The number of arriving edges for a node varies depending on which layer the node

represents. For all nodes ni ∈ B, |Arr{ni}| = 2. For nodes corresponding to the

highest quality layer, the arriving edge list is empty. For all other nodes, the arriving

list contains one edge.

Cluster Definition

Each quality layer must be made independently accessible to the application. This

allows the greatest amount of flexibility in choosing how many layers to access any any

point in time. The RG model expresses this design requirement by assigning each edge

to a unique cluster.

3.4 Summary

In this chapter, I described the RG data structure abstraction. The RG is a graph-based

data model that can express both the syntactic and semantic relationships between the

many individual elements of information that, as a whole, compose a larger multimedia

object.

47

The RG model employs a graph, composed of nodes and edges, embedded in a

multidimensional utility space. The dimensions of the utility space correspond to the

adaptive dimensions inherent in the media object. The position of the RG nodes

are determined by the semantic relationships between nodes within the dimensions

of the utility space. Edges are used to connect dependent nodes based on syntactic

relationships, such as encoding dependencies. In addition, edges correspond to the

actual data required to resolve their associated nodes. The RG model also defines the

notion of a cluster as a group of semantically similar edges. Clusters are units of data

that are accessed atomically.

The RG model is a powerful abstraction that can model a large number of multi-

media datasets. It is highly flexible and capable of representing a wide variety of data

relationships. At the same time, it is able to represent a number of core data represen-

tation concepts that are integral to the adaptation process presented in Chapter 4. I

highlighted this flexibility by presenting two case studies where two different real-world

data representations were mapped to the RG model.

In the following chapters, the RG model is used as the foundation on which to build

the algorithms required for both adaptation and scalable delivery. The RG is ideally

suited to these two tasks due to its power to model the semantic and syntactic data

relationships, and its generic definition which makes it relevant to a wide range of data

structures.

48

Chapter 4

Adaptation

Data adaptation is a critical system task in any non-linear media streaming system. The

flow of data from source to receiver must be controlled to satisfy both the receiver’s

application-level requirements and the limited communication resources available to

supply the receiver with the needed data.

In this chapter, I first discuss the general problem of data flow adaptation and

enumerate many of the challenges in performing adaptation in complex systems. I then

present my general framework for expressing multidimensional adaptation (Gotz and

Mayer-Patel, 2004). This framework regards adaptation as a maximization problem

in which the goal is to maximize the utility of the received data while simultaneously

minimizing the access cost. The framework provides efficient algorithms for determining

the appropriate behavior, as well as mechanisms for expressing application-specific data

requirements.

I begin by framing adaptation as a maximization problem. I then define the primary

inputs to that maximization problem: a set of adaptation structures that allow for the

expression of both data availability and application-level data requirements. After

covering the adaptation structures, I present the concept of cost and utility metrics.

These metrics are used to evaluate the utility and cost of access to individual elements

of information, respectively.

The cost and utility metrics are both used to define the Utility-Cost Ratio (UCR).

The UCR is a quantitative measure whose value serves as the quantity to be maximized

by the adaptation algorithm. I will present both a formal definition of the UCR, as

well as the iterative maximization algorithm that drives the adaptation process.

Following the discussion of the UCR, I review the tools and structures that allow

applications to express application-level preferences which can be incorporated into the

computation of the UCR. I then discuss node states and state transitions, which are

used to keep track of the dynamic system state as data is acquired by the adaptive

application.

Finally, I present a detailed review of the iterative adaptation algorithm. This al-

gorithm brings together all of the concepts and structures presented throughout this

chapter to efficiently compute the appropriate adaptive behavior based on current sys-

tem and application requirements.

4.1 Challenges in Multidimensional Adaptation

Advances in storage and processing technologies now allow scientists to capture, sim-

ulate, or create immense collections of data. Unfortunately, advances in networking

and display technologies, while impressive, have not kept pace. Although one can build

multi-gigabit networks, achieving those line speeds end-to-end remains almost impossi-

ble. Similarly, high-resolution display technologies have improved but essentially remain

within a factor of ten of the mega-pixel displays one has enjoyed for nearly twenty years.

As the gap between the amount of data one can capture, store, and process and the

resources one has to transmit and view that data increases, the problem of adaptation

becomes increasingly central to the performance of high-bandwidth and high-volume

applications such as data visualization, tele-immersion, and media streaming.

The challenge that system engineers face when tackling the adaptation problem in

whatever context it appears is twofold. First, how can one compactly and intuitively

specify adaptation policy to support specific user-level goals? Second, given a particular

adaptation policy and set of user-level goals, how can one efficiently evaluate that policy

relative to available resources and the way the data are represented and organized?

4.2 Ad Hoc Solutions to Adaptation

Adaptation techniques, algorithms, and frameworks have largely been developed within

the context of a specific application or data type. For example, Geographic Information

Systems (GIS) applications use multi-resolutional data for visualization and representa-

tion of terrain information (Floriani and Magillo, 2002). In graphics, multi-resolutional

geometry information is used to create Hierarchical Levels of Detail (HLODs) (Luebke,

2001). These are used to dynamically adjust model complexity in order to achieve a

50

target rendering rate. In multimedia, layered media encodings are used to dynamically

scale media bit-rates to match current network conditions (Rejaie et al., 1999).

While ad hoc application-specific methods may be effective when the dimension-

ality of the adaptation problem is limited, the task can become overwhelming as the

number of dimensions increases. The same is true when an adaptation decision must

negotiate between data sources of fundamentally divergent natures, as is often required

in multimedia applications.

4.3 General Models for Adaptation

The complexity of ad hoc solutions to the problem of adaptation can become very

difficult to manage in the face of both heterogeneous data types and growing degrees of

freedom in the adaptive process. Expressing adaptation policy in a rule-based manner,

for example, becomes painful as the number of possible trade-offs and permutations

grows.

For these reasons, several researchers have begun exploring more general models of

adaptation. This work ranges from a series of design principles for adaptive systems

(McIlhagga et al., 1998) to fully developed algorithmic models computing adaptive

behavior (Walpole et al., 1999). A more detailed review of previous work in developing

general models of adaptation is included in Chapter 2.

In this chapter, I present a novel framework for multidimensional adaptation that fits

within this class of general models of the adaptation problem. The framework allows for

the compact expression of adaptation policies, and provides algorithms for dynamically

and efficiently evaluating utility with respect to changing system conditions.

4.4 Adaptation as Maximization

In general, data adaptation is a process that, given a set of constraints and preferences,

attempts to obtain the most useful data available at the lowest possible cost. It is

in essence a maximization problem, where the term to be maximized is the utility of

information over the cost of accessing it.

The aim in my framework is to define an algorithm to efficiently and interactively

evaluate both the cost and utility of the available information. The evaluation must

be interactive because the system’s constraints and preferences are dynamic and their

changing values must be incorporated into the adaptation algorithm.

51

Framing adaptation as a maximization problem is not the only possible approach.

For example, many systems have developed complex sets of rules to determine a sys-

tem’s proper adaptive behavior as conditions change. However, a maximization-based

solution provides a critical benefit: reduced complexity.

The framework I present for maximization-based adaptation allows a system de-

signer to bypass the complex enumeration of rules that govern proper behavior at all

possible system states. This task can quickly become onerous in complex systems where

the number of possible states may grow exponentially.

Instead, I employ mathematical functions defined to measure both the utility and

cost of information in a far more compact and intuitive manner. At runtime, the proper

adaptive behaviors can be determined simply by iteratively evaluating quantitative

metrics, then choosing whichever action maximizes the utility of received information

per unit of access cost.

4.5 Adaptation Structures

The adaptation process determines which data is must useful and available at the lowest

cost given a set of given a set of constraints and preferences. The process must therefore

have access to two classes of information. First, the adaptive process must be aware of

the overall data structure to know which data can be resolved given the current set of

known information. This depends on the syntactic structure of the data representation.

Second, there must be data structures that express system preferences and requirements

to determine which of the available data is most useful given the current system state.

This depends on the semantic relationships between data elements on the current state.

There are a number of structures used to represent these two classes of information.

Each of these structures, used as input to the adaptation algorithm, are described in

this section. Coverage of the adaptation algorithm itself is presented in Section 4.10.

4.5.1 Data Structures

The adaptation algorithm, which decides which data to obtain given current system

conditions, must have a detailed description of the available data in order to properly

function. The description is used to determine what data is available and what its

semantic and syntactic relationships are at the current point in time. Given this infor-

mation, the adaptation algorithm can then make an intelligent choice about which of

52

the available data elements would be best to obtain.

I use the RG abstraction, defined in Chapter 3, to represent the overall dataset with

which the adaptation algorithm must work. The RG models both the semantic and

syntactic relationships between individual elements of information. These relationships

are critical inputs to the adaptation algorithm.

The adaptation process must examine the semantic value of each data element in

the dataset, deciding which is most relevant to the current application interests. This

is made possible by the embedding of semantic information within the RG. Semantic

information is expressed by the position of individual RG nodes within the utility space.

Similarly, syntactic relationships between data elements may limit the order in

which data elements can be obtained. These relationships must be respected by the

adaptation algorithm. Again, this is made possible by the embedding of syntactic

information within the RG using edges.

4.5.2 Preference and Constraint Structures

The primary motivation for developing adaptive systems is the need to match the flow

of information to dynamic application preferences and constraints. Therefore, it is

critical to provide structures that both (1) allow an application to express preferences

and constraints, and (2) allow the adaptation algorithm to incorporate them into its

decision process.

There are two structures provided by my adaptation framework for expressing ap-

plication preferences. The first structure, the prediction vector, is used to keep track

of the current application requirements and, if available, predictions of future require-

ments. The second structure is the alpha vector, used to manage trade-offs across

adaptive dimensions.

The Prediction Vector

An adaptive application will typically exhibit dynamic data requirements that change

over time. These changing requirements are communicated to the adaptation frame-

work through the prediction vector, noted as ~p.

The prediction vector is a list of one or more values that represent the current and

future application requirements. Each element ~p[i] of the prediction vector pairs a point

Pos{~p[i]} in U with a confidence value Con{~p[i]} ∈ (0, 1].

Point of Interest : The first element in the vector, ~p[0], has a special significance

53

Variable Description

RG Representation Graph
~p Prediction Vector

~p[i] Element i of ~p
~p[0] Point of Interest

Pos{~p[0]} Position of ~p[i]
Con{~p[0]} Confidence value for ~p[i]

~α Alpha Vector
~α[i] Element i of ~α

Table 4.1: The notation used to describe the structures used by the adaptation frame-
work is summarized in this table. The symbols are grouped by concept.

and is termed the point of interest. This is the only required element in the prediction

vector and is used to represent the current application preferences. The preferences are

expressed by positioning the point of interest within the semantically meaningful utility

space. Because Pos{~p[0]} corresponds to the current system conditions, Con{~p[0]} is

always set to one to signify full confidence.

For example, in the illustrative application first described in Section 3.2.1, the point

of interest would be located within the two-dimensional utility space. The position of

~p[0] would be determined by the user’s current viewpoint within the navigable dimen-

sion X, as well as the static value of zero for the static dimension L. By definition,

Con{~p[0]} = 1. As the user’s viewpoint moves through the scene, the application

would update the value of Pos{~p[0]} to reflect its changing point of interest.

Predictions: While the point of interest is sufficient to express the current appli-

cation preferences, is often desirable to anticipate future application needs. Depending

on the application, it may be possible to exploit knowledge of likely future preferences

to more effectively adapt the flow of information to meet future needs.

The adaptation framework supports the incorporation of predicted future points

of interest as part of the prediction vector. An application can have zero or more

predictions. For a prediction vector of length n, there are n− 1 predictions ~p[i], where

1 ≤ i < n. The prediction vector is ordered by confidence such that Equation 4.1 is

satisfied.

Con{~p[i]} ≤ Con{~p[i− 1]},∀i ∈ {1, · · · , n− 1} (4.1)

As with the point of interest, each ~p[i] has an associated position within U. However,

54

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Example Representation Graph

[]1pr []2pr[]0pr

Figure 4.1: A prediction vector of length three would contain the current point of
interest, followed by two locations that correspond to predicted points of interest in the
future. The point of interest, ~p[0], is known with absolute certainty. The predictions
~p[1] and ~p[2] are given with increasing uncertainty, illustrated by the larger circles in
the figure.

unlike the point of interest, the confidence value paired with each prediction is given a

value in the range (0, 1] to reflect certainty in the accuracy of the prediction.

In the illustrative application, in which a user is navigating through a one dimen-

sional computer graphics scene, the future position of the viewpoint might be predicted

from the direction and speed of the user’s movements. This technique may yield highly

accurate results when predicting the viewpoint location over a short time window, but

less accurate results at a broader time scale.

Such a system could incorporate both the long and short term predictions into

the adaptation process by adding two entries onto ~p. The position of the short term

prediction is more accurate, and following Equation 4.1 belongs in ~p[1]. Conversely, the

long term prediction is less accurate and the position and confidence values are stored

in ~p[2].

This example therefore has a prediction vector of size three which contains both

the current point of interest and two predictions of future requirements. Figure 4.1

illustrates the use of ~p in the sample application.

Alpha Vector

Adaptive applications must often manage trade-offs between multiple dimensions of

adaptivity. For example, a video streaming application may be able to adjust quality

in two ways: lower the frame rate and reduce the video’s resolution. In practice, an

application may have a large number of options for adapting the flow of data.

The number of adaptive dimensions for a particular application depends on the

55

nature of the dataset. For data that is modeled using the RG model from Chapter

3, the number of dimensions corresponds directly with the dimensionality of the RG’s

utility space. The adaptation framework takes advantage of this correspondence and

takes a spatial approach to managing inter-dimensional trade-offs.

The utility space U of a RG defines a spatial representation of the dimensions of

adaptivity. As will be presented in Section 4.6, the metric that measures the usefulness

of individual data elements within the RG is defined as a function which operates

on the space U. For this reason, inter-dimensional trade-offs are expressed as spatial

operations that scale the representation graph within U. In this subsection, I describe

the alpha vector, the structure used to store the dimensional scale factors. The power of

the alpha vector will become more clear after the discussion of utility and cost metrics

in 4.6.

The alpha vector, noted as ~α, is a list of linear scale factors to be applied to the

utility space U prior to the calculation of the utility and cost metrics. As such, ~α

contains one element for every dimension in U. A RG with a dimensionality of n will

have an alpha vector of the same length. Each element of the vector can be set to any

real number.

The identity alpha vector, where ~α[i] = 1,∀i, produces no scaling effects on U. Any

changes to individual elements of ~α scales U and introduces a change in the relative

positions the RG’s nodes. Because a node’s position defines its semantic meaning, the

alpha vector essentially warps the semantic nature of the data set to reflect the relative

importance of each dimension in U. A more through description of the alpha vector’s

impact on adaptation is presented in Section 4.8.

4.6 Utility and Cost Metrics

The adaptation framework defines the process of adaptation as a maximization problem.

The goal of adaptive data systems is to obtain the most useful data available at the

lowest possible cost. Therefore, two critical components of any adaptive system are the

metrics that define what data is useful and how much it costs to retrieve that data.

While extremely critical, these metrics are necessarily application-specific. Even two

very closely related applications may have vastly different criteria for evaluating the

utility or cost of information. For example, a video streaming application for NASA

transmitting information from a rover on Mars might require metrics that are quite

different from a video streaming application to transmit feature films for viewing on a

56

personal computer.

Recognizing the need to allow individual systems to define application-specific met-

rics, the adaptation framework specifies general models for both utility metrics and

cost metrics. These models define both the interface and conceptual design of the ab-

stract metrics, while leaving the specific implementation details to be dealt with by an

application designer.

4.6.1 Utility Metric

The adaptation framework defines an abstract utility metric, UtilMetric, used to eval-

uate the relative usefulness of individual elements of information. Recall that the RG

model expresses elements of information as individual nodes. I can therefore define the

utility metric as a function of a single node, ni. The value returned corresponds to

the utility of the information corresponding to the node in question given the current

system requirements and preferences. Given such a metric, the adaptation algorithm

can compare the relative utility of all nodes.

There are several other inputs to the UtilMetric function. It evaluates the utility

of a single node as a function of the node itself, the overall utility space (U), the set

of all nodes in the RG (S), the prediction vector (~p), and the alpha vector (~α). The

metric returns a scalar value u ∈ <.

UtilMetric(ni,U, S, ~p, ~α) = u ∈ < (4.2)

Utility and Distance

While the implementation of a utility metric is necessarily application-specific, the

UtilMetric abstraction is based on a general concept of measuring utility as a distance

within the space used to define the RG. This is the reason that the space which contains

the RG is called the utility space (see Section 3.2.2).

Recall that every element of information in a particular dataset is represented by a

unique node, ni, positioned within the utility space, U. For an individual node, Pos{ni}
places the node within U based on the semantic meaning of the data associated with

the node.

At the same time, the prediction vector, ~p, consists of a series of points, similarly

located within U, which specify the current application data interests within the seman-

tically meaningful space. In general, the distance between a node and the prediction

57

a) b)

pp

Figure 4.2: (A) The representation graph for the illustrative application includes 11
nodes in a two-dimensional utility space, U. A prediction vector ~p is positioned within
U. (B) A simple utility metric can be defined on the euclidean distance between ~p and
each node ni. Nodes located closer to ~p are considered more useful.

vector is considered inversely related to utility of the node.

The specific metric implementation can vary widely between applications. For ex-

ample, an application may employ simple Euclidean distance to measure utility. Al-

ternatively, the metric may be based on a complex non-linear function of the positions

for both ni and ~p.

However, regardless of the specifics of a particular utility metric, the general model

remains the same. The UtilMetric returns a scalar value produced as a result of an

application-specific function defined over the utility space, U.

For example, consider the illustrative application discussed throughout both this

chapter and Chapter 3. A RG has already been defined, including a utility space

(Section 3.2.2) and set of nodes (Section 3.2.3). In addition, assume that the application

is using a prediction vector of length one, containing only the current point of interest

and zero predictions. Figure 4.2(a) illustrates both the RG and ~p.

Recall that UtilMetric measures the utility of an individual node, ni. The simplest

utility metric for the sample application would be a Euclidean distance measure based

on the distance between the point of interest, ~p[0], and ni. The example UtilMetric is

shown in Equation 4.3, where the Dist function returns the Euclidean distance between

two points.

UtilMetric(ni,U, S, ~p, ~α) =
1

Dist(Pos{ni},Pos{~p[0]})
(4.3)

58

There are several important components of the proposed UtilMetric. First, the

metric returns the reciprocal of the distance, rather than the distance itself. The

inversion is due to the fact that the conceptual model of the utility metric specifies

an inverse relationship between distance in U and utility. Nodes positioned close to

the prediction vector are of the highest value, while nodes far away are of significantly

lower utility.

A second observation regarding the example metric is simplicity of the equation. In

the sample metric, utility is calculated only locally, ignoring the location of all other

nodes in S. Similarly, the equation does not make use of the alpha vector or any

predictions in ~p.

However, for more sophisticated applications, these additional UtilMetric param-

eters can be very powerful tools for expressing adaptive policies. A more thorough

discussion of these structures and techniques for incorporating them into the calcula-

tion of the UtilMetric is presented in Section 4.8.

Relational Dimensions

The utility metric is defined as a spatial function over the overall utility space for a given

dataset. As described in Section 3.2.2, a multimedia dataset’s overall utility space, U,

can be broken down into individual media subspaces, Mi, where each subspace contains

the representation graph for an independent set of media objects.

For example, an audio/video application could be represented with an RG contain-

ing a utility space composed of two media subspaces, M = {Maudio,Mvideo}. Each

media type is represented in a separate media subspace, which is by definition indepen-

dent from all other subspaces in M. The independence of each media subspace reflects

the fact that each subspace corresponds to an independent set of media objects.

However, the utility metric must be capable of determining the relative utility of

nodes in the RG across media subspaces. For example, an audio/video application

would need the ability to measure the relative benefit of obtaining additional video

data versus the benefit of additional audio data.

The essential task of cross-subspace utility evaluation is made possible by including

relational dimensions within the utility space. For a utility space with multiple media

subspaces, one or more relational dimensions, R = {R1, · · · ,Rj}, are required to specify

the relative utilities of the competing media objects.

Because they share no dimensions, individual media subspaces are detached from

one another and exist wholly independent from each other. However, the utility eval-

59

uation is a global metric that must determine the most useful node across all media

subspaces. To tie the set of independent media subspaces into a single unified space,

the set of nodes for each media subspace is given a position along a common relational

dimension.

In effect, this extra dimension ties together the subspaces Mi into a unified utility

space U. We can therefore define U as the union of all subspaces in M and all relational

dimensions R.

U = M ∪R (4.4)

Relational dimensions are especially important because they offer a direct method

for managing the often dynamic trade-offs that between the set of possible media types

that must be managed by an adaptive multimedia application.

For example, in the audio/video application discussed above, an adaptive decision

must be made by choosing to obtain additional video data or additional audio data.

The relative importance of audio versus video could be highly dynamic. Consider an

application that sends the audio and video of a classroom environment across a network.

When an instructor is writing on the board, video data will be highly critical. When

the instructor turns to face the class and begins lecturing, video data will become less

important and audio data will become critical.

Relational dimensions make it easy to express these highly dynamic relationships

between media subspaces. An application can simply map a change in relative utility to

a change in the position along the relational dimension of each subspace’s RG. The new

positions along the relational dimension directly effect the distances measured within

the utility space, thereby influencing the utility metric itself.

Figure 4.3 illustrates the use of a relational dimension to control the cross-media

adaptation policies of the audio/video application example. In Figure 4.3(A), the audio

subspace is located closer to the point of interest than the video subspace. This would

lead an application to bias its adaptation toward retrieving additional audio data. In

contrast, Figure 4.3(B) shows the video subspace located closer to the point of interest,

indicating an application-level preference for video data.

4.6.2 Cost Metric

The adaptation framework defines an abstract cost metric, CostMetric, used to eval-

uate the cost of obtaining the data needed to resolve an individual element of informa-

60

Figure 4.3: The RG in this figure shows a three-dimensional utility space containing
eight nodes with a point of interest located at the origin. The RG is defined for an
audio/video application. On the left (A), the audio stream nodes are positioned closer
to the point of interest, biasing the utility metric toward themselves. On the right (B),
the positions of the two media subspaces within Γ have swapped, leading to a utility
bias toward the video nodes.

tion. The RG model expresses elements of information as individual nodes. In order

to resolve the information associated with a given node ni, the data associated with

the node must be obtained by traversing one of the edges in the set of departing edges

Dep{ni}.
The metric is therefore defined as a function of a single node, ni. The value re-

turned corresponds to the cost of accessing the data required to resolve the information

corresponding to the node in question.

The specific implementation of this abstract metric is application specific. For

example, one application may measure cost in terms of the raw number of data bytes

to be read. In contrast, another application may be concerned about monetary costs

and would strongly prefer data from lower cost content providers.

However, regardless of the specific formulation of the cost metric, it returns a scalar

value c ∈ < which measures the relative cost of accessing the data required to resolve

node ni.

CostMetric(ni) = c ∈ < (4.5)

Any application-specific implementation of the cost metric must take into account

61

the possibility of multiple-descriptor coding techniques. The RG model supports multiple-

descriptor coding by allowing an individual node ni to maintain multiple departing

edges. Each edge ej ∈ Dep{ni} corresponds to a unique unit of data which can be

used to decode ni.

The cost of resolving node ni will vary along each edge. Furthermore, the most cost

effective edge may change dynamically with changes to the system’s state. As a result,

the CostMetric must evaluate the range of decoding options represented by the set

Dep{ni}, and returns a scalar value reflecting the alternative with the minimum cost

value.

4.7 The Utility-Cost Ratio

The adaptation process is guided by both the utility and cost metrics present earlier in

this chapter. The two metrics are combined into a larger metric which is used to drive

the maximization-based adaptation algorithm. The combined metric, which produces a

single scalar measure to drive adaptation, is called the Utility-Cost Ratio. This section

provides a formal definition of the UCR metric and outlines the iterative maximization

algorithm used to drive adaptation.

4.7.1 UCR Formulation

Adaptation is a process that must satisfy two competing aims. First, an adaptive

algorithm must maximize the utility of the information delivered to the application.

Second, it must minimize the cost of accessing the information to allow the application

to perform in the face of limited resources.

The previous section defined abstract utility and cost metrics which provide mech-

anisms for evaluating the both utility and cost of accessing an individual element of

information. In this section, the two metrics are combined to form the UCR, as shown

in Equation 4.6.

UCR =
UtilMetric(ni,U, S, ~p, ~α)

CostMetric(ni)
(4.6)

The UCR is used as the scalar value to be maximized by the adaptation algorithm.

The UCR is simply the ratio of the utility of information over the cost of accessing

it. The UCR expresses the fundamental need for adaptation: to achieve the goal of

obtaining the most useful information at the lowest possible cost.

62

The UCR is an effective metric for adaptation because it produces a numerical

expression of the cost-to-benefit trade-off that must be negotiated by any adaptive

application. For example, the UCR will give a high score to a useful and inexpensive

element of information. At the same time, an element of information that has both a

low utility value and high cost of access will be scored very poorly.

More importantly, the UCR will provide relatively similar scores to both a useful but

expensive element, and a cheap but less useful element. In this event, the maximization-

based adaptation algorithm will simply choose to resolve whichever element was scored

highest by the UCR.

In a rule-based adaptive system, this case would require specific rules designed to

decide between the two adaptive options. For large systems with multiple dimensions of

adaptive behavior, the rule set could grow exponentially in complexity. In contrast, my

computational model for adaptation simply computes the UCR for all possible adaptive

behaviors and performs that task with the highest score.

4.7.2 Iterative UCR Evaluation

The UCR is a dynamic measure which changes over time to reflect changes in an

application’s internal state and the available system resources. It must therefore be

computed iteratively, where each evaluation provides an estimate of both the utility

and cost of a potential adaptive step based on a momentary snapshot of the system’s

status. A detailed description of the iterative adaptation algorithm is provided in

Section 4.10 following the definition of node states and state transitions in Section 4.9.

4.8 Expressing Application-Level Preferences

Application-level preferences, such as trade-offs between different media objects or

changes in data interests, can be expressed via several of the data structures presented

earlier in this chapter. These include the prediction vector and the alpha vector. This

section presents an overview of the power of these two structures in the context of the

UCR.

4.8.1 Using the Prediction Vector

The prediction vector, ~p, represents both the current application preferences as well

predictions of future needs. The vector’s first element ~p[0], knows as the point of

63

interest, corresponds to the immediate system conditions.

The point of interest along with the remainder of the prediction vector serve as

the primary structure through which the application’s system conditions are mapped

to the spatial metaphor used to evaluate the utility of information. As described in

Section 4.6.1, the utility metric is defined as a spatial function that measures how

valuable individual elements of information are to the application as a function of the

distance between the current prediction vector and the position of the information’s

corresponding node.

There is great power in the primacy of the prediction vector in calculating the utility

of information. The relative utility calculated for an enormous set of RG nodes can be

quickly altered simply by changing the position of the point of interest. In addition, the

inclusion of future application preferences can be exploited to alter the utility metric

so that nodes more likely to be needed in the future are located closer to the prediction

vector.

For example, consider the prediction vector designed for the illustrative application

in Section 4.5.2. The proposed ~p includes a point of interest located within the two-

dimensional utility space corresponding to the position of the user’s current viewpoint

within the navigable dimension X. The position of ~p[0] within the static dimension L

is equal to the static value of zero. In addition, ~p contains two predictions of future

viewpoint positions with decreasing confidence values.

The sample application’s prediction vector, positioned within the utility space, is

illustrated in Figure 4.4. Notice the similarity between this figure, showing the spatial

utility model used by my adaptation framework, and the pictorial representation in

Figure 4.1. In Figure 4.4(a), the user’s viewpoint is positioned to the left of the scene,

making the left-most nodes closer to ~p. As a result, the left-most nodes would be scored

with a higher utility value.

In Figure 4.4(b), the viewpoint has transitioned to the center of the scene, increasing

the utility of the nodes near the center while decreasing the utility of the nodes on the

left. The inclusion of predictions that show that the viewpoint will continue to move

to the right allows the utility metric to favor nodes to the extreme right over nodes to

the extreme left.

64

a) b)p[0]

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene

L:
 R

es
o

lu
ti

o
n

 L
ev

el

X: Scene

p[1] p[2] p[0] p[1] p[2]

Figure 4.4: The sample application’s prediction vector ~p is located within the two-
dimensional utility space. On the left (A), ~p is positioned to reflect a user on the left
side of the scene moving toward the right. On the right (B), ~p shows the user has
moved to the middle of the scene and continues to move rightward. In each figure, the
most useful node is shaded gray

.

4.8.2 Using the Alpha Vector

The spatial nature of the utility metric can also be exploited to manage inter-dimensional

trade-offs. This is done via the alpha vector. As presented in Section 4.5.2, ~α is a list

of scale factors used to transform the utility space prior the calculation of the utility

metric. By geometrically transforming the space in which the nodes are embedded, the

alpha vector can directly the impact utility metric by changing the relative importance

of each utility dimension within the overall calculation.

Consider the illustrative application and the utility space shown in Figure 4.5(a).

The figure shows both the RG and ~p drawn using an identity alpha vector, where

~α[i] = 1,∀i. The iso-utility line shown in the diagram corresponds to a distance from

~p at which all nodes would have an equal utility value.

Changes to the alpha vector alter the positions of nodes within U, thereby changing

the locations of nodes with respect to the iso-utility line. For example, Figure 4.5(b)

shows the same RG and ~p using ~α = {1, 2}. Note that the altered iso-utility line places

a far greater importance on data in the X dimension with respect to the L dimension.

The alpha vector ~α = {1, 2} therefore increases the utility of geometric objects

located at nearby positions in the scene while decreasing the utility of higher-resolution

data. Conversely, an alpha vector of ~α = {2, 1} would alter the utility calculation to

65

p

a) b)

p

Figure 4.5: The alpha vector can be used to manage trade-offs between adaptive di-
mensions. (A) An alpha vector of ~α = {1, 1} places equal value on each of the two
dimensions. (B) Changing the alpha vector to ~α = {1, 2} transforms the RG so that
the second dimension is given less weight in the utility metric. This biases the utility
metric by altering the distances between nodes and the prediction vector.

favor resolution over spatial position.

In practice, the specific values assigned to the alpha vector have an enormous impact

on how adaptation is performed. For this reason, the values must be chosen carefully

by application designers. However, proper settings for the alpha vector are necessarily

application specific. As a result, targeted user studies may be appropriate to determine

the most effective alpha vector settings for a specific application.

4.9 Node States and State Transitions

Throughout this chapter, data structures and metrics have been defined to evaluate the

utility and cost of individual nodes of information given specific application needs and

system conditions. However, these tools alone are not enough to support the behaviors

of interactive adaptive systems.

Adaptive systems must know more than only the relative utility and cost of in-

dividual nodes, They must also know if the information corresponding to individual

nodes has already been received, is in the process of being received, or is available to

be received. The task of maintaining this information is accomplished through the use

of node states and state transitions.

66

This section describes the space of all possible node states. Several invariants re-

garding the valid state space are also defined. State transitions, used to effect the

change of a node’s state upon the arrival or disposal of information, are discussed in

this section as well. Finally, I define the availability front: the set of nodes from which

the adaptation algorithm must choose its next target for retrieval.

4.9.1 Node States

Each node in a RG is assigned to one of four possible states. A node’s state may change

over time, but it is assigned just a single state at any particular moment in time. A

node’s state reflects the current status of the information represented by that node.

For a node ni, the state is noted as State{ni}.

For example, some nodes may correspond to information that has already been

received by the application and is currently stored in a local cache. Alternatively, other

nodes may correspond to information that has not yet been received. These properties

of a node are represented by a node’s state.

There are four valid node states: idle, available, active, and resolved. The set

of possible states is considered ordered to allow relational comparisons between node

states in the adaptation algorithm to be presented in Section 4.10. The state order is

defined in Equation 4.7.

Resolved > Active > Available > Idle (4.7)

In the following subsections, I define each of the four node states. For clarity, I

present them in decreasing order, beginning with the Resolved state.

The Resolved State

The highest ranking state is that of Resolved. A resolved node is any node for which

the application has received enough data that it can resolve the information associated

with the node. For example, in the illustrative computer graphics application of Section

3.2.1, a node is said to be resolved when the geometric data required to render the object

associated with a node has been received and cached by the application.

67

The Active State

A node is in the Active state after a request has been issued to initiate the delivery of

data associated with the node, but before all of the requested data has been received.

For example, in the illustrative application, a node enters the Active state when the

application issues a request to load the data for a particular geometric object. The node

remains in the Active state until all of the geometry data has been loaded. At that

point, the node would transition to the Resolved state. State transitions are covered

in more detail in Section 4.9.4.

The Available State

Nodes in the Available state are nodes that have not yet been targeted for resolution by

the application, but that are possible to resolve without resolving some other node first.

Because edges represent a depends-on relationship, State{ni} is Available if either (1)

ni ∈ B (i.e. has a self-edge), or (2) at least one of the the edges in the set Dep{ni}
points to a node (or group of nodes for split-edges) that is either Active or Resolved.

For example, consider the illustrative computer graphics application which makes

use of multi-resolution geometric models of trees. Suppose that at a particular moment

in time, the illustrative application has resolved only the node nlowRes, corresponding

to the lowest resolution model of a particular tree in the virtual forest. The node corre-

sponding to the medium resolution tree model, nmedRes, would be marked as Available

because it is neither Resolved nor Active, and it depends upon a resolved node, nlowRes.

The Idle State

The lowest ranking node state is the Idle state. Nodes in this state have not yet

been targeted by the application for resolution. In addition, Ilde nodes are not even

available to be targeted because none of the nodes on which they depend are Resolved

or Active, nor do Idle nodes have a self-edge which would allow them to be decoded

without any prior knowledge. Such nodes are Idle because they can not be resolved

without resolving some other node first.

Once again, consider the illustrative computer graphics application. As in the

Available state example, suppose that at a particular moment in time, the illustrative

application has resolved only the node nlowRes, corresponding to the lowest resolution

model of a particular tree in the virtual forest. It was shown in the last subsection

68

that the node nmedRes, corresponding to the medium resolution tree model, would be

marked as Available.

In contrast, the node nhighRes, corresponding to the highest resolution tree model,

would be marked as Idle because the node on which it depends, nmedRes, is not Resolved

or Active, nor does nhighRes contain a self-edge. The Idle state for nhighRes indicates

that before resolving the node, the application must fist resolve the middle resolution

tree model on which the high resolution model depends.

4.9.2 The Availability Front

Every node within a RG is assigned to one of the four states. However, the set of

nodes assigned to the Available state are of particular importance in our adaptation

algorithm. These nodes, which form the availability front (noted as A), form the pool

of possible nodes from which the adaptive algorithm must choose its next target for

resolution.

The availability front has special significance during the utility evaluation stage of

the adaptation algorithm. The utility metric need only be computed for each of the

nodes within A. The adaptation algorithm then initiates an operation to promote the

node within A whose UCR is highest.

4.9.3 Node State Invariants

The overall state of an application can be described in part by the states assigned

each of the nodes in the representation graph. Taken as a whole, the state of the RG

describes which data is already resolved, actively being resolved, or available to be

resolved in the immediate future.

The ability of node states to describe the availability and resolution of data makes

them ideal for expressing adaptive data operations. The adaptation algorithm maps

both requests to activate individual nodes and the receipt of edge data to changes in

node state.

While maintaining the dynamic states in the RG, the adaptation algorithm must

adhere to three node state invariants. These invariants are defined as part of the

adaptation framework and are designed to ensure that the node state space remains

consistent throughout the life of an adaptive session.

Each of the three invariant conditions are required to be true at all times. Following

any node’s change in state, these invariants must be reinforced. Only state transitions

69

which reestablish these conditions are considered legal in our framework.

In this subsection, I cover each of the three invariants: (1) the Self-Edge Invariant,

(2) the Coherent Front Invariant, and (3) the Active Predictor Invariant.

Self-Edge Invariant

The first invariant is the Self-Edge Invariant. This rule stipulates that any node with

a self-edge may not be in the Idle state. Expressed formally, the invariant states:

State{ni} > Idle,∀ni ∈ B (4.8)

This invariant follows directly from the definition of the Idle state. A node is Idle

only when a node requires that some predictor be resolved before being activated. Nodes

with a self-edge, by definition, do not depend on any predictors, and can therefore be

activated at any time. Such nodes may therefore never be assigned to the Idle state.

It is because of this invariant that the set of base nodes (B ⊂ S) was defined in

Section 3.2.4. At the very start of a session, when an application has yet to activate or

resolve any of the nodes within its RG, all nodes are placed in the Idle state except,

because of the Self-Edge Invariant, those nodes in the base set B.

It is the Self-Edge Invariant, therefore, that cleanly initializes the availability front

(A) at the start of an adaptive session to include a initial set of nodes in the Available

state. The initial availability front, known as the set of base nodes (B), forms the

original pool from which the adaptive application can begin targeting individual nodes

for resolution.

Coherent Front Invariant

The availability front defines the span of nodes within the RG from which the adaptive

application must choose a new target for resolution. An important requirement is that

the front remain coherent throughout the large number of dynamic state transitions

that occur during adaptation.

The Coherent Front Invariant stipulates that a node’s state must be greater than

or equal to the state of all of its dependents. This rule ensures that the algorithm main-

tains a coherent front through the representation graph based on the data dependence

relationships expressed by edges. Expressed formally, the invariant states:

State{ni} ≥ State{Src{ej}},∀ej ∈ Arr{ni} (4.9)

70

Active Predictor Invariant

The third and final invariant is the Active Predictor Invariant. This rule stipulates

that a node can not be idle if it has one or more predictors that are in state Active or

greater. This again follows directly from the definition of the Idle which says a node

ni can only be idle if all of its predictors are Idle. Expressed formally, this invariant

states:

State{ni} > Idle,∀ni|∃ei ∈ Dep{ni}|State{Dest{ei}} ≥ Active (4.10)

The implication of the Active Predictor invariant is that an Idle node must tran-

sition to Available upon the transition of any of its predictors to the Active state.

The enforcement of this invariant within the RG has the potential to set off a series of

secondary transitions as covered in Section 4.9.4.

4.9.4 State Transitions

Data adaptation is performed by transitioning individual nodes between states. As data

is requested and received by the adaptive application, nodes are promoted beginning

from the Idle state eventually arriving at the Resolved state. As data is discarded,

nodes are demoted back down toward the Idle state.

This behavior defines two principal categories within which we can classify all le-

gal state transitions: (1) promotion transitions and (2) demotion transitions. State

transitions can be further categorized into one of two subcategories. Primary transi-

tions occur as a direct result of an adaptive operation. Following a primary transition,

secondary transitions may ripple through the representation graph as invariants are

reinforced.

In this subsection, I describe the set of valid state transitions, categorized as either

promotion or demotion transitions. For each transition, I discuss the conditions under

which it may be triggered. For clarity, I introduce the notation Trans(ni, StateA, StateB)

to mark a transition of node ni from StateA to StateB.

Promotion Transitions

At the start of a session, every node in a RG is set to the Idle state except those nodes

in B, which are initialized to Available. Throughout the life of the session, nodes are

71

AvailableIdle ResolvedActive

D

A B C

Available

H

Idle Active ResolvedE F G

I
J

Figure 4.6: Transitions A-D are the four valid promotion transitions. Nodes are typ-
ically promoted by one state at a time (A-C). However, nodes can skip from Idle to
Active under certain conditions (D).

targeted for resolution by the adaptation algorithm, triggering state transitions that

promote a node’s state from Idle up through Resolved. There are four valid promotion

transitions, as shown in Figure 4.6.

Nodes in the Idle state can be promoted along one of two paths. First, the transition

Trans(ni, Idle, Available) occurs as a secondary transition when one of ni’s predictors is

promoted to Active. These secondary transitions do not occur explicitly, but rather are

performed implicitly as the active predictor invariant is enforced following the transition

of one of ni’s predictors to the Active state.

The second valid promotion transition from the Idle state is Trans(ni, Idle, Active).

This transition is also a secondary transition and occurs when the adaptation algorithm

requests the data assigned to a cluster to which any edge in Dep{ni} belongs. This

transition occurs because the RG data structure considers all edges within a cluster as

an atomic unit of information. Therefore, when the adaptation algorithm determines

that a specific edge should be received, it must receive data for all edges in the cluster,

even edges for which the source node is in the Idle state. The activation of a cluster

cj results in the promotion of the source node for every ek ∈ Edges{cj}. Figure 4.7

illustrates a scenario in which this transition would take place.

The third promotion transition is Trans(ni, Available, Active). This is a primary

transition and indicates that the adaptation algorithm has targeted an Available node

for resolution along some edge. The transition occurs when the adaptation algo-

rithm begins receiving data to resolve the information represented by node ni along

one of the edges in Dep{ni}. This transition has the potential to trigger a number

of secondary transitions due to the Active Predictor Invariant. This transition can

even occur as a secondary transition itself, under under the same circumstances as

Trans(ni, Idle, Active).

The final promotion transition is Trans(ni, Active, Resloved). This occurs when a

node receives enough data to be be resolved and is no longer actively receiving data.

It is a primary transition and does not trigger any secondary transitions.

72

Figure 4.7: Suppose that edges ej and ek belong to the same cluster. As the adaptation
algorithm targets nk for resolution, the cluster Clust{ek} is activated. As a result, the
source node for edge edge in Clust{ek} must be promoted to at least the Active state.
For nj, this leads directly to Trans(nj, Idle, Active).

Demotion Transitions

During the life of an adaptive application, the primary goal of adaptation is to obtain

the most useful information given changing system and application requirements. The

receipt of information is modeled via the promotion transitions described in the section

above.

However, because data storage resources are finite, it is not possible to continuously

receive additional information without simultaneously disposing of older and less useful

data. The adaptation algorithm must therefore support not only promotion transitions,

but also demotion transitions. For example, demotion transitions are used to reflect the

flushing of data from a local cache or the deactivation of clusters which the adaptation

algorithm deems no longer useful.

Unlike promotion, which limits the valid paths through which nodes can transition

the state space, there are no restrictions for demotion. This is illustrated in Figure 4.8

which shows that all six possible paths are valid.

As the figure indicates, a node ni in the Resolved state can transition to any of

the three other states. The specific transition is determined by the state invariants.

For example, Trans(ni, Resolved,Active) is performed if a cluster containing any of

the edges in Dep{ni} is currently loading. Otherwise, ni may transition to either Idle

or Available. The specific transition to occur is determined by the Coherent Front

73

AvailableIdle ResolvedActive

D

A B C

Available

H

Idle Active ResolvedE F G

I
J

Figure 4.8: Transitions E-J are demotion transitions. Unlike promotion transitions, it
is legal to be demoted along any of the six possible transition paths.

Invariant.

The demotion transitions presented so far (i.e. transitions from the Resolved state)

are primary transitions that occur as a result of flushing a node’s data or deactivating

a cluster. The remaining demotion transitions are all secondary transitions and occur

as side effects as state invariants are reinforced. Following any demotion transition

of node ni, the nodes linked to ni through edges Arr{ni} must all be checked to

ensure compliance with the state invariants. For highly dependent datasets with a high

degree of connectivity between nodes, this has the potential to trigger a wave of state

transitions as the invariants are reinforced.

4.9.5 Proof of State Transition Stability

The potential for a chain reaction of state transitions raises an important question

surrounding the stability of state transitions: is the process of managing state transition

stable, or can a single primary transition trigger a series secondary transitions that never

concludes? The proof in this subsection shows that even in the worst case, the sequence

of state transitions is finite and the process of reinforcing invariants is guaranteed to

terminate.

As outlined in Section 4.9.4, demotion transitions trigger only other demotion transi-

tions. Nodes are strictly ordered, meaning there are at most three demotion transitions

a single node can undergo without a promotion. Since the number of nodes in S is

finite, the number of possible node transitions is bound by (3|S|). Since (1) a finite

bound on the number of demotion transitions exists and (2) demotion transitions can

only trigger further demotion transitions, the process must terminate.

The same argument applies to promotion transitions because they can only trig-

ger secondary promotion transitions. Once again, the maximum possible number of

promotion transitions is bound by (3|S|), ensuring termination.

74

4.10 Iterative Adaptation Algorithm

The building blocks for an efficient iterative adaptation algorithm have been presented

throughout this chapter. In this section, these pieces are tied together into a common

algorithm that performs adaptation as a greedy maximization process. The following

paragraphs describe the algorithm depicted in pseudocode in Figure 4.9.

4.10.1 The Active Cluster Set

The adaptation algorithm is written using the notion of an active channel set, noted

as activeChannelSet in the pseudocode. The active channel set corresponds to the set

of clusters in the RG that are actively being received by the application at a particular

point in time. The size of the active cluster set can change over time based on both

system conditions and the nature of the application itself. The size of the set can vary

from zero to activeClusterLimit inclusive, where the latter is an application-specific

parameter. This flexibility allows the same adaptation algorithm to be used across a

wide variety of adaptive applications.

For example, some applications may require the serialized arrival of data. In these

applications, all the data from a single cluster must be received before moving on to

the next most useful cluster. In this case, activeClusterLimit would be set to one, and

the application would be restricted to a active cluster set size of either zero or one.

In other applications, such as adaptive streaming applications, it may be desirable to

allow the activation of multiple clusters in parallel. In this case, the activeClusterLimit

would be set to a larger value, more than one cluster to be active at the same time. The

exact value of the activeClusterLimit could change dynamically as system conditions

change. For example, a distributed application may choose to adjust the limit in

response to changing network conditions.

As shown in Figure 4.9, the activeClusterSet is initialized to the empty set (line

1) before entering the main adaptive loop (line 2). The main adaptive loop has three

clauses, all of which operate by updating the membership of the activeClusterSet.

4.10.2 The Adaptive Control Loop

The iterative adaptation algorithm repeats a common control loop throughout the life

of an adaptive application. The body of this loop contains two sections. The first

section handles cluster activation and contains three clauses: (1) the reduction clause,

75

(2) the growth clause, and (3) stability clause. All three clauses are similar in that they

enable a change in the contents of the activeClusterSet. However, they differ in how

they handle the activeClusterLimit. The second section handles data arrival.

The Reduction Clause

The first clause in the cluster activation section of the algorithm is the reduction clause.

This clause, shown in lines 4-7 of Figure 4.9, is executed when the size of the active

cluster set needs to be reduced. A decrease in the activeClusterLimit corresponds

to a reduction in the number of active clusters. This clause will typically take place

when the available resources are insufficient to maintain the current number of active

clusters. For example, a network streaming application could reduce the number of

active clusters to reduce demand for bandwidth in the face of growing network loss.

When the system reports that a reduction in the activeClusterLimit is required, the

adaptation algorithm responds by first determining the least useful active cluster (Fig-

ure 4.9, Line 5). The algorithm uses the UCR, the RG, the alpha vector, and the pre-

diction vector to determine which of the clusters currently within the activeClusterSet

is least useful at the current point in time.

The least useful cluster, cactive, is then deactivated (i.e. the request for data is

canceled) and the cluster is removed from the activeClusterList (Figure 4.9, Lines

6-7). The deactivation is mirrored via node state transitions that can affect every node

with an edge in cactive. These transitions are demotion transitions that move nodes

from the Active state down to either Available or Idle.

The Growth Clause

The second clause in the cluster activation section of the algorithm is the growth clause.

This clause, shown in lines 8-11 of Figure 4.9, is executed when the size of the active

cluster set needs to be increased, allowing an additional cluster to be activated together

with the already active clusters in the activeChannelSet. The activeClusterLimit

increases when system resource are plentiful enough that an additional cluster can be

handled by the system. For example, a network streaming application could increase

the activeClusterLimit if it detects that additional communication resources have been

made available.

When the system reports that the activeClusterLimit can be increased, the adap-

tation algorithm responds by finding the most useful inactive cluster, cinactive, requested

76

that it be activated, and adding it to the active cluster list. Once again, the UCR, RG,

alpha and prediction vectors are used to determine which cluster is most useful.

The activation of cinactive initiates state transitions for nearly every source node of

every edge in cinactive. Each of these nodes in either the Idle or Available states is

promoted to the Active state using the appropriate transition. In addition, secondary

Trans(nj, Idle, Available) transitions can occur due to the Active Predictor invariant.

The Stability Clause

The final clause in the cluster activation section of the algorithm handles the case where

the size of the active channel set remains constant. This case, called the stability clause,

is shown in lines 12-20 of Figure 4.9. In this event, the algorithm determines both the

most useful inactive cluster (cinactive) and the least useful active cluster (cactive). When

cinactive is found to be more useful than the currently active cactive, the algorithm swaps

membership in the activeChannelSet to ensure that at any point in time, only the

most useful channels are included in the activeChannelSet.

As with both the reduction and growth clauses, any changes in the activeChannelSet

during the stability clause are mirrored by node state transitions that allow the adap-

tation algorithm to determine which portions of the representation graph are currently

Idle, Available, Active, or Resolved.

Data Arrival

Following the management of cluster activation, the adaptation algorithm must handle

the data received from the currently activated clusters. This section of the adaptation

algorithm is shown in lines 23-29 of Figure 4.9. Every unit of data received belongs to

an individual edge ei in the RG. This data can then be used to decode the information

represented by node ni = Dep{ei}. Once decoded, node ni undergoes the ultimate

promotion transition: Trans(ni, Active, Resolved).

Once node ni is resolved, the decoded information is added to a cache made available

to the adaptive application. However, because storage is finite, the algorithm must

ensure that room remains in the cache for the newly resolved node’s information (Figure

4.9, Line 25).

If there is room in the cache, the information for node ni is simply added to the

cache and the algorithm moves on to the next piece of received data. If the cache is full,

the least useful cached node, nevict, is evicted to make room for the new information.

77

Upon eviction, nevict undergoes a demotion transition from the Resolved state. The

exact transition depends on system conditions and nevict could end up in any one of

either the Idle, Available, or Active states.

4.11 Summary

In this chapter, I described my solution for multidimensional data adaptation. Adapta-

tion, which controls the flow of information from a data source to receiver, is a critical

component in any non-linear media streaming system. Data adaptation must adapt

the stream of data to reflect both the receiver’s application-level requirements and the

limited communication resources available for transmitting the data.

This chapter describes a general framework for expressing multidimensional adap-

tation. The framework regards adaptation as a maximization problem in which the

goal is to maximize the utility of the received data while simultaneously minimizing

the access cost.

The primary inputs to the adaptation algorithm are data structures that allow

for the expression of both data availability and application-level requirements. These

include the RG, the prediction vector, and the alpha vector. The RG describes the

overall structure of the dataset and defines the dimensions along which the application

can adapt. The prediction vector describes both current and possible future application-

level requirements. The alpha vector is used by the adaptation algorithm to manage

inter-dimensional trade-offs.

These data structures are then used to define the UCR metric, a ratio of the util-

ity of information and the cost of data access. The UCR is a function built on top

of application specific cost and utility metrics. This layer of abstraction allows for

the definition of a general adaptation algorithm that can be customized for specific

applications by implementing specialized cost and utility metrics.

As data is retrieved by the adaptation algorithm or flushed from an application’s

cache, it is critical that the current state of individual elements of information be

maintained. This is accomplished in the adaptation framework by augmenting nodes in

the RG structure with a state field. Throughout the life of an adaptive application, the

states of individual nodes go through state transitions. These transitions can be either

promotion transitions, which occurring during the resolution of a node, or demotion

transitions, which occur when a node is flushed from an application’s cache. In order

to maintain an a coherent node state within a RG, several node state invariants were

78

presented.

Finally, this chapter provided a detailed algorithm for data adaptation. The algo-

rithm employs the concepts presented throughout this chapter to efficiently and flex-

ibly drive adaptation. The algorithm allows for the adaptive behavior to be carefully

controlled by current system and application requirements by incorporating these con-

straints into the UCR evaluation.

79

1 activeClusterSet = {}
2 Repeat forever:
3 // Manage Cluster Activation
4 If (conditions warrant decrease in activeClusterLimit)
5 cactive = GetLeastUsefulActiveCluster(RG, activeClusterSet)
6 CancelRequestFor(cactive)
7 Remove cactive from the activeClusterSet
8 Else if (conditions warrant increase in activeClusterLimit)
9 cinactive = GetMostUsefulInactiveCluster(RG, activeClusterSet)
10 RequestDataFor(cinactive)
11 Add cactive to the activeClusterSet
12 Else
13 cinactive = GetMostUsefulInactiveCluster(RG, activeClusterSet)
14 cactive = GetLeastUsefulActiveCluster(RG, activeClusterSet)
15 If UCR(BestNode(cinactive)) > UCR(BestNode(cactive))
16 CancelRequestFor(cactive)
17 Remove cactive from the activeClusterSet
18 RequestDataFor(cinactive)
19 Add cactive to the activeClusterSet
20 End-if
21 End-if
22 // Manage Data Arrival
23 For every Data{ei} received
24 Use Data{ei} to decode node ni = Dep{ei}
25 If cache is full
26 Make room in cache by evicting cached node with lowest UCR
27 End-if
28 Store decoded ni in cache
29 End-for
30 End-repeat

Figure 4.9: Pseudocde for the iterative adaptation algorithm. The algorithm attempts
to maximized the UCR via an iterative greedy algorithm.

80

Chapter 5

The Generic Adaptation Library

In this chapter, I describe GAL, a library for multidimensional and multimedia adap-

tation (Gotz and Mayer-Patel, 2005b). GAL is a realization of the the conceptual

framework presented in Chapter 4. Implemented in C++, GAL is a middleware li-

brary for adaptive non-linear media applications that provides a fully functional im-

plementation of the iterative multidimensional adaptation algorithm and provides an

Application Programming Interface (API) through which applications can express data

requirements and adaptation preferences.

This chapter begins with a review of several underlying assumptions in the GAL

design. Second, a detailed discussion of the layered system design of GAL is presented.

Third, this chapter outlines the layer-to-layer interfaces which define the API made

available to applications employing the library. Finally, the plug-in architecture for

cost and utility metrics is described.

Throughout this chapter, I provide a detailed overview of a practical implementation

of the conceptual data representation and adaptation framework presented in earlier

chapters. The GAL implementation is then used as the basis for the experimental

prototype and evaluations presented in the remainder of this dissertation.

5.1 Assumptions

GAL is designed to support a broad class of adaptive systems. As such, it is applicable

to a wide range of application models and configurations. However, our design makes

a few assumptions which are critical to the design of the library. In particular, GAL

assumes a particular network model as described in this section.

The network model for which GAL is designed is a subscription based service where

individual clients can access data from a server through subscription operations. A

client, therefore, can employ two functions to support data access. Both of these

functions are performed on a specific communication channel, noted as ci. The two

functions are:

• Subscribe: A request to receive data is performed via a subscribe operation.

Noted as Sub{ci}, a subscribe operation initiates a flow of data to the receiver.

• Unsubscribe: A request to stop receiving data is performed via a unsubscribe

operation. Noted as Unsub{ci}, an unsubscribe operation halts the flow of data

to the receiver.

In addition, GAL assumes only best-effort delivery of data packets. Therefore, out-

of-order delivery and lost packets can be handled within the library. Any subscription-

based network model can be employed. This includes both IP Multicast and any of

several ALM variants. In addition, the layered library design of GAL allows for the

design of application-layer subscription models to be implemented over many additional

network models, including both TCP/IP and UDP/IP. As a result, GAL can be widely

deployed across most of today’s networks.

5.2 Layered System Design

The GAL library implements the multidimensional adaptation framework from Chapter

4 using a multi-layered system design. The overall philosophy in GAL’s design places

all adaptation operations on the client, which in turn drives requests for additional data

to be delivered by the server. Therefore, the GAL library sits entirely on the client

side. This design decision places all per-client work on individual clients and alleviates

the need for a server to maintain state information for each of its clients.

Given this system architecture, GAL introduces an extra system layer between the

application and communication layers. This middle layer performs adaptation with

input from neighboring layers in order to incorporate both application and network

measurements into the adaptive algorithm.

GAL’s design consists of three primary layers: (1) the application layer, (2) the

adaptation layer, and (3) the communication layer. A single client application is com-

posed of the union of these three layers. The top layer consists of the adaptive appli-

cation that requires GAL’s services. The middle layer is the GAL middleware library

82

Application Layer

Adaptation Layer

Communication Layer

Server

Internet

Describe() Subscribe() Unsubscribe() LossEst() LatencyEst()

PushPacket()

Open() Close() Run() Stop() FlushNode()

PushNode() PredVector() AlphaVector()(A)

(B)

(C)

(D)

Metric Plug-In
Plug-In Defined API

Plug-In Defined API (E)

(F)

(G)

Figure 5.1: The system model consists of three layers: the application layer, adaptation
layer, and communication layer. The Generic Adaptation Library, or GAL, is an imple-
mentation of the adaptation layer. GAL defines a number of application programming
interfaces, labeled with letters A-G in the figure. Custom cost and utility metrics are
supported as plug-ins.

itself. The bottom communication layer is a protocol-specific wrapper around the core

networking functionality. This wrapper is responsible for implementing the exact sub-

scription API required by GAL on top of the native network services. The layered

design is illustrated in Figure 5.1.

5.3 Layer-to-Layer Interfaces

The GAL library provides two primary application programming interfaces (APIs).

One API defines the application-to-adaptor interface. The second API defines the

communicator-to-adaptor interface. In addition, GAL provides templates for both the

Application and Communication layers that define a set of minimal functionality that

must be supported by each layer.

5.3.1 Application-Adaptor API

The application-to-adaptor interface defines a set of functions used by the application

to interact with the adaptor library. A simplified API is illustrated in Figure 5.1(B). An

83

application developer will use this API to interact with GAL and integrate the library

into the overall application..

The API includes several functions that allow the application to control the adap-

tation layer. These include functions that control the status of the thread of execution

responsible for adaptation, as well as a function for notifying the adaptation layer that

data has been discarded from the application’s memory space.

The first two functions provided by the Application-Adaptor API are Open{} and

Close{}. These functions initiate and terminate a new session, respectively. As an

application starts up, it calls the Open{} function to open a new session by initializing

the adaptation layer and telling it which data source the application wishes to access

adaptively. During initialization, the RG data structures are created for the specific

data set being opened and the entire node state space is properly initialized.

As it shuts down, an application calls the Close{} function to close the application’s

adaptation session. This function tells the adaptation layer that the application no

longer requires its services and allows the adaptation layer to free its allocated resources

(such as the RG data structures) and tear down any open network connections.

After a session has been opened, the application must call the Run{} function.

This function tells the adaptation layer to enter the main iterative adaptation loop.

Following a call to Run{}, the adaptation layer iterates indefinitely, continually eval-

uating UCR value for available nodes and deciding which data should be requested for

resolution.

The adaptation layer continues iterating until the application calls the Stop{} func-

tion. This function causes the adaptation layer to leave the iterative loop and cease

making new requests for data. However, the RG data structures remain intact and the

current node states are preserved. This allows the application to restart the iterative

adaptation algorithm from where it left off. The state information is not destroyed

until the application calls the Close{} function.

The final function in this portion of the API is FlushNode{}. This function is used

to notify GAL that a specific node’s data has been flushed from the application. While

the adaptation thread is executing, data is constantly arriving from the communication

layer. After the incoming data is processed and recorded within GAL, it is passed up

to the application via the PushNode{} function. At that point in time, GAL marks

the state of the node as Resolved.

However, the data does not remain with the application indefinitely. Data may be

discarded by an application for one of two reasons. First, the data may no longer be

84

needed. This could occur because an application decides that the data is no longer

relevant or perhaps the data has become invalid due to changing system conditions.

Second, there may be limited storage on the client. In this case, the client will maintain

some sort of local cache and due to the limited size, will have to evict old data to make

room for data that has newly arrived.

In either case, the application must notify GAL that the information for a node

is about to be removed from memory. This is done via the FlushNode{} function.

Once notified, the GAL library initiates the proper demotion transitions within the RG

representation to reflect application’s action.

Together, these five functions provide the bulk of the functionality required for an

application to employ GAL for adaptive data access. Along with the functions required

by the application layer template (see Section 5.3.3), an application can create a new

session, start the adaptation algorithm, express changes in preferences and require-

ments, handle the arrival and disposal of data, and terminate the adaptation algorithm

and application. The pseudocode in Figure 5.2 shows how a typical GAL-based appli-

cation would employ these functions.

5.3.2 Communicator-Adaptor API

The communicator-to-adaptor interface defines a set of generic functions used by the

adaptor to interact with the adaptor library. A simplified portion of the API is il-

lustrated in Figure 5.1(C). This portion of the API is particularly simple because the

services required are trivial. In response to subscription operations, the communication

layer must simply deliver packets to the adaptation layer.

Therefore, the API specifies only one key function which handles the arrival of

new data packets. The PushPacket{} function is used as a callback function by the

communicator every time a new packet arrives from the network. The communicator

can call this function for packets in any order, even in the presence of lost packets. This

flexibility relieves the communication layer from any responsibility for packet reordering

or reliable delivery. As a result, the communication layer can be built on top of any

best-effort protocol with or without reliable delivery, including both TCP and UDP.

5.3.3 Application Layer Template

The application layer is an abstraction for the application-specific code required by

any actual system. As such, this layer will vary greatly for each application. However,

85

an application must define a minimal set of functionality to work correctly with GAL.

This interface, illustrated in Figure 5.1(A), is used by GAL to exchange data and to

monitor changing application conditions.

The first function in the application layer template is PushNode{}. This function

handles data exchange between the adaptation and application layers. As a node enters

the resolved state within the adaptation layer, the data corresponding to the node

is pushed to the application layer via the PushNode{} function. An application’s

implementation of this function determines what happens to data once it becomes

available to the application.

The remaining functions in the application layer template are used to provide the

adaptation layer with access to the current application conditions. The application is

responsible for maintaining both a prediction vector (see Section 4.5.2 and alpha vector

4.5.2 and updating the vector values based on their own requirements and preferences.

These vectors are then exposed to the adaptation layer for incorporation into the UCR

calculation as part of the iterative adaptation algorithm.

The vectors are shared between layers via two functions. The PredVector{} func-

tion returns a reference to the current prediction vector, while the AlphaVector{}
returns a reference to the current alpha vector. Note that both of these functions pass

references to, rather than copies of, the vectors. This is important because both the

prediction vector and alpha vector are highly dynamic. Using references allows any

changes made by the application to have an immediate impact on the UCR calculation

without requiring extensive copying of data.

Taken together with the Application-Adaptor API, the application layer template

provides all the functionality required for an adaptive application to make use of GAL

for multidimensional adaptation. The pseudocode for a typical adaptive application is

shown in Figure 5.2.

5.3.4 Communication Layer Template

As with the application layer, the GAL library provides a template for the communi-

cation layer. The template defines the minimum functionality required by GAL and

specifies the interface through which GAL interacts with the underlying network ser-

vice.

The communication layer is an abstraction for the portion of the system that handles

the low level network functionality. This abstract layer is designed to allow GAL to

86

1 Application Initialization
2 Call Open{} to create a new adaptive session
3 Additional application initialization
4 Call Run{} to initiate the iterative adaptive algorithm
5 While (Application is running) {
6 Update prediction vector if needed
6 Update the alpha vector if needed
6 Process new data arriving via PushNode{}
7 Signal data disposal by calling FlushNode{}
8 Perform other application tasks
9 }
10 Call Stop{} to halt the iterative adaptive algorithm
11 Application Tear Down
12 Call Close{} to terminate the adaptive session
13 Additional Application Tear Down

Figure 5.2: Pseudocde for an application built on top of the GAL library.

work equally well with a large set of transport level network protocols. GAL depends

on at least best-effort packet delivery and uses a subscription metaphor for data access.

Based on the template’s set of functions, a new communicator can be defined for each

new network protocol to be used by an application.

The first function defined in communication layer template is the Describe{} func-

tion. This function must be defined to utilize the available network resources to obtain

a description of the utility space and representation graph from a specified server. The

description is a formal XML-based file format used to enumerate the RG’s properties,

including the nodes, edges, and utility space specifications.

An application’s initial call to GAL’s Open{} function includes information about

the server and dataset that the application wishes to access. In response to the Open{}
call, the GAL library calls the Describe{} function of the communication layer to

obtain the formal description of the RG being accessed. This information is then used

to create the appropriate data structures within the adaptation layer.

Two other functions included in the communication layer template specification are

Subscribe{} and Unsubscribe{}. These functions are used to provide the required

subscription-oriented interface to GAL. The underlaying implementation of these two

functions depends on the natively supported network protocol. A communicator there-

fore is responsible for bridging the gap between the services provided by the network

(i.e. as socket-based TCP or best-effort UDP) and the subscription model used by

87

GAL.

When the adaptation layer chooses to activate a specific cluster (based on the UCR

calculation as part of the adaptation algorithm), it uses the Subscribe{} function

to initiate the data request. A corresponding call to Unsubscribe{} terminates the

request. In a typical TCP-based communicator, these functions could correspond to

the setup and tear down of a network socket connection.

Finally, there are two network measurement functions required by GAL. These func-

tions are used as input to the the adaptation algorithm so that the adaptation layer

can effectively monitor network performance and adapt accordingly. This feature of the

communication layer template is critical for implementations based on network proto-

cols without congestion control (i.e. UDP). In these cases, the adaptation algorithm

can vary the number of simultaneously active clusters to maintain satisfactory network

performance levels.

The first of the two performance monitoring functions is LossEst{}. This function

provides a loss rate estimate for the underlying network. Using loss as an implicit signal

of congestion, the adaptation algorithm is designed to reduce its number of concurrent

data requests when loss levels rise.

The second performance monitoring function is LatencyEst{}. This function pro-

vides an estimate of the leave latency, defined as the time between the initiation of a

unsubscribe request and the actual cessation of data flowing over the network. Given

that the adaptation algorithm can attempt to manage congestion via changes in the

number of concurrent data requests, it must have an idea of how quickly a change in

subscription level will impact the loss rate. The latency estimation function provides

that metric.

5.3.5 The Metric Plug-ins

The adaptation algorithm defined in Chapter 4 relies on abstract cost and utility metrics

in its definition of the UCR. These metrics are critical to GAL because the adaptation

algorithm performs adaptation as a maximization problem where the UCR is the value

to be maximized. However, the adaptation framework is careful to leave the actual

implementation of the cost and utility metrics undefined because individual applications

will need to measure the cost of data access and the utility of information in application-

specific ways.

The GAL library follows the same philosophy by providing a plug-in architecture

88

through which applications can either reuse existing metric plug-ins, or develop their

own based on their individual requirements.

New metric plug-ins can be defined to implement any desired utility or cost met-

ric. The plug-in is given access to the internals of the adaptation layer, including the

representation graph. Therefore, a particular plugin can make full use of the data de-

scription, utility space definition, and the entire node state space in determining cost

or utility. GAL’s plug-in architecture is illustrated in Figure 5.1(F).

Standard inputs to the cost and utility metrics, such as the prediction and alpha

vectors or network measurements, can be accessed through the previously presented

APIs, similar to the adaptation layer itself. However, some metrics may need additional

information from either the application or communication layers. A custom metric

plug-in may therefore define its own API to be exposed to both the application and

communication layers. This is shown in Figures 5.1(E) and 5.1(G).

5.4 Summary

This chapter described GAL, a library for multidimensional and multimedia adaptation.

GAL is an actual implementation of the adaptation framework and data representation

presented in earlier chapters of this dissertation. In addition, GAL forms the foundation

of the experimental prototype used throughout the evaluations presented later in this

dissertation.

This chapter reviewed several underlying assumptions in the GAL design, including

the subscription-based network model to which it is designed. In addition, this chapter

detailed layered system design of GAL, including the application layer, the adaptation

layer, and the communication layer.

In the middle, there is an adaptation layer that contains the actual GAL imple-

mentation. The adaptation layer is responsible for maintaining the RG data structure,

keeping track of node state changes, and performing the iterative adaptation algorithm.

The topmost layer is the application layer. This layer is an abstraction that rep-

resents an adaptive application that employs the GAL library. An application layer

template is defined that specifies the interface thorough which GAL interacts with the

application. Similarly, an API is defined as part of the adaptation layer which specifies

the interface through which the application interacts with GAL.

The bottommost layer is the communication layer. This layer is a wrapper around

the underlying network service that provides a subscription-oriented interface to GAL.

89

The GAL library interacts with the communication layer through the functions defined

in the communication layer template. Similarly, the communication layer interacts with

GAL through an API defined as part of the adaptation layer. GAL can be ported to a

new underlying network protocol simply by implementing a new communication layer

that maps the underlying network services to GAL’s subscription-based model.

90

Chapter 6

Experimental Prototype and

Evaluation

In this chapter, I describe the experimental prototype application built to evaluate

the design and performance of GAL, as well as the underlying RG representation and

multidimensional adaptation framework. The prototype application is an stream-based

image-based rendering application where a server distributes a large set of high reso-

lution images to a heterogeneous set of remote clients, each of which requires a unique

set of images.

This chapter begins with a detailed description of the prototype application. In

addition to coverage of the application domain itself, this chapter includes a discus-

sion of both the streaming challenges faced in designing the prototype application and

how these challenges are representative of a broad class of non-linear media streaming

applications.

Second, a review of the experimental testbed and methodology is presented. This

review includes a formal definition of The Summed Utility Metric (SUM), the perfor-

mance metric used in many of the evaluation experiments.

Finally, the results from a number of experiments are presented that evaluate the

prototype’s performance using TCP data delivery. As part of this presentation, addi-

tional challenges related to large scale performance are highlighted. These challenges

will serve as motivation for the solutions presented in the remainder of this dissertation.

6.1 Prototype Application

The experimental prototype application used throughout the evaluation presented in

this dissertation is an image-based rendering streaming application, known as Streaming

Walk-throughs of Image-based Models (SWIM). This target application is a client-

server version of the Sea of Images (SOI) algorithm (Aliaga et al., 2002) designed to

transmit digitized spaces to large groups of users. For example, consider a digital

museum that digitizes a famous location and wants to share the image-based model

with its virtual visitors.

This SOI-based application is a good match for the adaptation framework presented

earlier in this dissertation because it is a high-bandwidth application with several di-

mensions of adaptability and a dynamic point of interest.

This section begins with an overview of the motivating application as well as the

original SOI algorithm. It then presents two designs for a streamed version of SOI

capable of serving several clients from a centrally stored image database. The first

design is the naive approach using existing tools that has two critical performance flaws.

The second design is the approach taken by the prototype application and utilizes the

GAL library as part of a more comprehensive solution.

6.1.1 Motivating Example

As a motivating example, imagine a digital museum sharing a large IBR model of a

famous location for virtual visitors connected to the Internet (Gotz and Mayer-Patel,

2005a). In such a scenario, the museum curators would first need to digitize the space

using IBR techniques. Then, they would place the digitized data on-line and make it

available to legions of on-line visitors to navigate interactively and independently.

To support this vision, the prototype must extend an IBR algorithm to function in

a distributed environment where there is a centrally stored data repository with a large

set of independently operating clients that have unique operating requirements as they

explore the digitized space.

6.1.2 Sea of Images

The prototype system is based on the SOI algorithm (Aliaga et al., 2002) by Aliaga et

al. The SOI algorithm is an image-based rendering algorithm that allows for a user to

virtually navigate through a digitized scene. The algorithm takes as input a large set

92

Figure 6.1: The Sea of Images rendering algorithm proposed by Aliaga et al. takes as
input a large set of panoramic images. Using the database of images, novel views of
the scene can be constructed by interpolating between triplets of stored images. (A)
Each panoramic image in the input dataset contains a full 360◦ view of the scene.
(B) The input images are captured by a camera positioned along a plane at eye-level.
(C) At runtime, a Delaunay Triangulation of the stored image positions is maintained.
(D) As the user moves through the scene, illustrated by the red diamond, the triangle
containing the user’s position determines the appropriate triplet for interpolation.

of high resolution cylindrical images captured at various points along a eye-level plane.

This can be done, for example, with a camera attached to a motorized cart.

A Delaunay Triangulation of the image positions is computed to build a triangle

mesh. At run time, a user can navigate a virtual viewpoint along the eye-level plane. A

virtual rendering of the scene is synthesized by interpolating between the three nearest

pictures found within the input dataset, as determined by the triangle containing the

viewpoint. The process is illustrated in Figure 6.1.

The original SOI algorithm is designed to run locally with both the image database

and the rendering engine located on the same machine. Even in this configuration, the

frame-rate at which reconstruction takes place can have trouble maintaining interactive

rates. In addition, the input dataset is often too large to be loaded entirely into

memory. As a result, the three closest images may not always be available. Therefore,

the triangular mesh is calculated dynamically using only the set of loaded images. The

93

mesh is maintained throughout the life of the application as images are loaded into or

removed from memory.

6.1.3 Streaming SOI

The motivating application requires not only IBR reconstruction, but that large groups

of remote clients have interactive access to a centrally stored model through which they

can navigate. There are two possible approaches to this streaming problem.

A Streaming Approach Using Existing Technologies

The experimental prototype is a SOI-based IBR streaming application. The simplest

approach to supporting such a system would be to perform the entire SOI algorithm on

a server and stream the reconstructed imagery to individual clients. In this design, a

client application would translate user interaction events into movements of the virtual

viewpoint within the scene before reporting the change in viewpoint to the server. The

server would then determine the three closest images, reconstruct the new view of the

scene, and transmit the images back to the client.

In this design, the server is tasked with performing the entire SOI algorithm. The

reconstructed views of the scene produced by the server could then be streamed to the

client using existing video adaptive streaming technologies. This in effect would trans-

late the inherently non-linear problem of streaming the actual images to a traditional

linear challenge of streaming video.

However, there are two critical flaws in this design which would severely limit the

system’s interactive experience. The first problem is latency. The delay between a

user’s interaction and the associated change in generated imagery has been shown to be

a critical factor in achieving a sense of presence within virtual environments (Meehan

et al., 2003). While no study has been undertaken to study the impact of latency

specifically for streaming IBR models, similar results can be expected.

The latency introduced by the design presented here can be quite severe. From the

moment of interaction, when a user first initiates a change in viewpoint, to the time

where the change becomes evident to the user is directly related to the network’s round-

trip time between client and server. As shown in Figure 6.2, a change in viewpoint must

first be sent from the client to the server. This is followed by a delay while the server

reconstructs an updated image. Finally, the resulting image is sent back to the client.

Even in the ideal case, where reconstruction can occur instantly and no buffering is

94

Figure 6.2: A naive approach to streaming a streaming IBR application based on the
SOI algorithm would perform reconstruction on a central server and transmit the novel
imagery as a video stream. However, this technique performs poorly due to (A) the
latency introduced between user interaction and changes in the imagery. Client-side
activities introduce (B) latency in translating user interaction to viewpoint movement
and (D) latency from buffering the video stream. Server-side activities introduce (E)
latency due to reconstruction. Even if these system latencies were performed instanta-
niously, (C) a latency of one round trip time would be incurred.

required to smoothly stream the resulting video, a full round-trip time is the smallest

latency possible.

The second critical flaw in this design is the inability to support a large number

of simultaneous users. As described in Section 6.1.2, the SOI algorithm a significant

amount of computation. Combining the work required to support several simultaneous

clients navigating independently would reduce performance below acceptable levels.

The SWIM Approach

An alternative approach can alleviate both the scaling and latency problems encoun-

tered in the previous solution. This approach, rather than leverage video streaming

technologies for data transport, attempts to transmit the raw image data to individual

clients which are each responsible for their own reconstruction. The approach, named

SWIM for Streaming Walk-throughs of Image-based Models, removes the CPU bottle-

neck away from the server by placing the onus for all per-client reconstruction tasks on

the clients themselves.

95

Moving reconstruction to the client allows for the asynchronous retrieval of image

data from the server which removes the round-trip-time latency from between the time

of interaction and the time of rendering. Instead, the rendering loop continuously

renders novel views of the digitized scene with whatever data is present. In parallel,

data is being adaptively requested to meet the client’s current requirements.

It is this approach which is used in the experimental prototype referenced in the

remainder of this dissertation. The adaptive data access to the raw images is supported

by the GAL library. In this approach, the prototype is designed as a client-server system

with a single image server that can transmit streams of images to any interested clients.

Each client is able to navigate through the space independently along their own unique

paths. Each client expresses their individual needs for data using the GAL library’s

prediction and alpha vectors.

Simple Server Design Philosophy

The SWIM design choice of moving the task of reconstruction from the server to the

client is the first example in this dissertation of the Simple Server Design Philosophy.

This philosophy holds that in order to be truly scalable, a server should not perform any

per-client work. In non-linear media applications, where every client requires custom

data flows, the work load associated with performing any per-client task will inherently

grow along with the size of the user population. By removing all per-client tasks from

a server, a design becomes inherently scalable where no additional work is required as

new users connect to the service.

The SWIM approach presented so far improves dramatically the server’s perfor-

mance for large user groups. However, as will be shown in Section 6.3.6, there are still

bottlenecks that result from per-client server-side work. In the next chapter, a new

technique will be presented that takes the simple server design philosophy to another

level, leading to truly group-size-independent performance.

6.1.4 Data Representation

Because the prototype employs the GAL library, it is important to specify a mapping

between the data set’s underlying representation and the RG representation abstrac-

tion. It is therefore critical to understand the data representation used to represent the

input data set for the prototype.

The input data set to the SWIM application consists of a set of cylindrical panoramic

96

a) b) d)

c)

1

2
3

4
5

6 7

8 9

10 11

12

13

14
15

16
17

18
19

20 21

1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 6.3: The dataset is organized across multiple dimensions. (a) The data consists
of a collection of images arranged in a plane. (b) The first step in building the repre-
sentation is to partition the data into spatial regions. This figure shows a regular grid
partitioning. (c) The next step is to order the individual images by spatial density. (d)
The ordering is determined by a breadth-first traversal of a quad-tree built using the
image positions in the plane.

images. Each image in the input set has an associated position along a 2D plane at

eye level. This position corresponds to the location of the camera when the image was

captured. The images are encoded using a configurable multi-stage process. The two

major stages are segmentation and multi-resolution encoding. Both stage of the process

are configurable to allow a high degree of control over the final encoding.

Segmentation

The first step is in the encoding process is segmentation. This process splits the input

dataset into coherent units of data along four dimensions. These dimensions correspond

to four of the five dimensions of adaptive data access provided by the representation.

These are the spatial position of the images (2D), the view angle of the images, and

the spatial density of the images. The fifth adaptive dimension is provided by the next

state of the encoding process.

The data is first partitioned based on the 2D planar position of each image. Concep-

tually, this partitioning structure is designed to allow a client to navigate the database

by jumping from one partition to the next as the user’s viewpoint changes. Typically,

a client will be interested in a neighborhood of partitions surrounding the viewpoint.

The encoding process for the prototype uses a regular grid partitioning algorithm

as illustrated in Figure 6.3(b). However, variable resolution partitioning mechanisms

97

can be used as well. Partitions are used to group images together for predictive coding.

Images placed in the same partitions can be used to improve the representation’s storage

efficiency with the expense of greater inter-image dependence. The exact size of the

partitions is configurable and can be used to control the granularity which which the

data is encoded.

After partitioning, the segmentation process continues by splitting the dataset along

view direction. Each image is captured as a 360◦ panorama. The input images are

broken up into n pieces pieces, each with a 360◦

n
field-of-view. Once again, the value

of n is a configuration parameter. At this stage, each segment of the dataset contains

only potions of images oriented in the same view direction and captured from the same

general location.

Segments are further broken apart along the dimension of spatial density. This

step first requires that images be arranged by order of importance as measured by

their spatial proximity. This is done by building a progressive ordering of images

via quad-tree decomposition, storing the image closest to the center of each region in

the corresponding node of the quad-tree. A breadth-first traversal of the quad-tree

determines the order. Figures 6.3(c) and 6.3(d) show this process.

The ordering creates a progressive data representation, reflecting the fact that the

SOI algorithm can make use of sparsely located images to produce poor quality recon-

structions while more dense data continues to arrive. The image groups are further

segmented by grouping the images along the progressive ordering. This creates seg-

ments of the database at various spatial resolutions.

Every step within the four dimensional segmentation process is configurable to con-

trol the size of the segments. In the extremes, a very large segmentation size can group

the entire set of images together into a single segment. Conversely, an extremely small

segmentation size will place every image into its unique segment. This feature will

become particularly relevant in Chapter 7.

Multi-resolution Encoding

Following segmentation, each individual image is encoded at multiple resolutions. The

provides the fifth and final dimension of adaptivity available in the prototype’s data

representation. The encoding process uses the JPEG2000 (ISO/IEC, 2000) image com-

pression standard which uses a wavelet-based encoding process. Wavelet-based coders

inherently encode an image at multiple resolutions. The progressive JPEG2000 code

stream is split into multiple parts, as was done with the progressive image ordering

98

during segmentation.

Each image is encoded as either an index frame or a delta frame. Index frames are

fully encoded as standard images. Delta frames are stored as differences from previously

stored frames. For images with a closely matching predictor, delta encoding takes less

storage space.

Images are encoded by segment and in progressive order. For each image, the

encoder begins by searching for the best possible predictor among previously encoded

images within the segment. If no good predictor is found, the image is encoded as a

index frame. Otherwise, the difference is computed and encoded as a delta frame. The

compressed images are split into multiple resolution layers as each image is encoded.

6.1.5 Mapping the Dataset to GAL

A critical component of the prototype design is the mapping between the data repre-

sentation and GAL’s RG data model. The first step in developing this mapping is to

identify the dimensions of adaptability. These dimensions define the RG’s utility space

within which the nodes and edges that make up the RG will be embedded.

The data representation described in Section 6.1.4 creates five adaptive dimensions.

Two dimensions (X × Y) are defined by the two-dimensional plane from which the

images were captured. A third dimension, θ, corresponds to am image’s view angle.

The fourth dimension, δ, corresponds to the spatial density of the images. The fifth and

final dimension, ρ corresponds to the resolution of the image. Together, these define a

five dimensional utility space U = (X × Y × θ × δ × ρ).

Within U there are several nodes and edges that correspond to the individual images

and their encoding relationships. Each resolution layer of each image has an associated

node ni ∈ S, where S is the set of all nodes within the RG. The location of each node,

Pos{ni}, is determined by its location within the five dimensions as determined by the

encoding process.

Edges are used to represent the data dependencies introduced by the predictive

coding methods and wavelet-based transforms used during the encoding process. Edges

are added to the RG that point from high resolution images to their lower resolution

counterparts in recognition of the layered dependency relationship between different

resolution versions of the same image. In addition, edges are used to connect delta

frames with their predictive base. Finally, self-edges are added to all nodes representing

the lowest resolution layer of index frames. These are the only nodes that can be

99

immediately decoded without any data dependencies.

Finally, clusters are introduced to the RG by placing all edges that correspond to

the same segment of the database into a single cluster. In this way, data corresponding

to images located nearby in the utility space is grouped together into a single atomic

unit of data. By controlling the parameterization of the segmentation process during

encoding, the size of these clusters can be widely varied. They can be large enough

to encompass every edge in the RG, or small enough to force every edge into its own

cluster. In essence, the number of partitions controls the granularity with which data

is accessed via GAL.

6.1.6 Merging SWIM with GAL

As dictated by GAL’s layered design, the prototype application must be configured

with an application layer, a communication layer, and a server. The application must

also specify cost and utility metrics as well as prediction and alpha vectors.

The Application Layer

The application layer is built around GAL’s application template and contains the

rendering and reconstruction code. The application also manages the prediction and

alpha vectors for expressing changes in requirements. The prototype maintained a

prediction vector with just a single point corresponding to the point of interest.

The position of the prediction vector was dynamically managed to map to the client

application’s viewpoint position. The alpha vector was used to manage the trade-off

between the five adaptive dimensions. It was updated dynamically based on the speed

of the viewpoint’s movement through the scene. During periods of slow movement, the

alpha vector was set to favor the resolution of nearby high resolution images. When

the viewpoint moved quickly, the alpha vector was set to favor lower resolution images

located further from the viewpoint.

The Communication Layer and Server

The communication layer is built around GAL’s communication layer template and

provides a subscription-based wrapper around, in this chapter, TCP/IP. The GAL

library will ask the communicator to subscribe to a particular cluster. In response,

the communicator users TCP/IP to communicate with the remote image server to

100

request all image data associated with the specified cluster. The communicator provides

congestion control and reliable, in order delivery to GAL because it is based on TCP/IP.

Cost and Utility Metrics

The cost metric employed by the prototype application is very straightforward. The

cost function assigns a cost to each edge equal to the number of bytes in the cluster to

which it is assigned. Because data is accessed atomically by cluster, the overall size of

the cluster determines the amount of data that must be transferred to the client before

decoding the edge.

The utility metric is designed to mathematically express several assumptions about

the IBR application. Primarily, images located closer to the viewpoint are most impor-

tant because reconstruction quality is highest when the source images used as input are

closest to the viewpoint. In addition, low resolution images are most critical as input

to the reconstruction process because they provide the most information. Additional

resolution layers of the images can be employed to provide additional information as

they become resolved, but they are treated as a luxury by the utility metric.

In effect, these assumptions about the utility of data express the notion that far

away low resolution images are about equal in utility to nearby high resolution images.

This relationship can be easily expressed via a Euclidean distance metric which is the

metric utilized in the prototype.

Prediction and Alpha Vectors

The prediction vector in the application prototype consists of just one entry. An indi-

vidual prediction vector is maintained by each client. The single entry corresponds to

the client’s current point of interest. No predictions were used to drive the adaptation

process so that only the current application conditions were taken into account. A

more sophisticated prototype could make predictions of future locations of the point of

interest based on user speed and direction of movement.

The application prototype’s alpha vector consisted of five values chosen to manage

the trade-offs between each of the five dimensions of the utility space. The alpha vector

is configured in part to reflect the units associated with node positions inside the RG.

For example, the prototype’s default alpha vector is ~α = {50, 50, 3, 1, 1} for the utility

space U = (X × Y × θ × δ × ρ). The prototype assigns far greater alpha values to the

spatial dimensions X and Y . This reflects the vastly different scale at which values are

101

assigned to node positions in these dimensions.

The prototype application’s alpha vector is not static. The values are adjusted when

the application detects that the user is moving faster than a specified threshold. When

this condition is detected, the alpha vector is altered to place greater utility on the X

and Y dimensions. This is accomplished by decreasing the alpha values associated with

these dimensions. The lower alpha values bias the utility metric in favor of far away

images.

Measuring the Effort of Application Implementation

The overall coding required to implement the application prototype was relatively small.

As a rough measure of complexity, one can examine the lines of code associated with

each component of the application. For example, the GAL library itself consists of

roughly 15,000 lines of code.

In contrast, the application layer of the prototype contains approximately 1,000

lines of code (not including the actual SOI rendering module). The relatively modest

size of this component shows the power of using GAL to manage the data management,

adaptation, and communication portions of the application.

6.1.7 Specifics for the Input Dataset

The input dataset for the prototype consists of about 2,000 cylindrical color images,

each with a resolution of 2,048×512. For all experiments in this dissertation, the

RG used to represent the dataset consisted of 15,568 edges connecting 15,568 nodes

embedded within the five dimensional utility space defined in Section 6.1.5. The number

of clusters varied widely between experiments, ranging from 16 to 15,568.

6.2 Experimental Testbed and Methodology

The evaluation of the prototype application is designed to quantify the effectiveness of

the GAL library and its underlying data representation and adaptation algorithm at

satisfying the data requirements for a non-linear adaptive media streaming application

serving several independently operating clients. This section describes the experiment

testbed and the methodology behind the evaluation. This includes the network testbed

used during evaluation, the network model that lies at the foundation of the evaluation,

102

the network topology used for the experiments, and the SUM performance metric by

which the experimental results are measured.

6.2.1 The Emulab Testbed

The evaluation experiments were performed using the Emulab network emulation testbed

(White et al., 2002). Emulab uses network emulation to recreate the operating condi-

tions of a real network in a laboratory environment. The Emulab testbed provides a

more realistic environment than simulation technologies because it transmits real pack-

ets over real network hardware to be received by real applications. However, unlike

experiments performed on the open Internet, Emulab experiments are performed in a

closed environment where competing network traffic can be carefully controlled.

6.2.2 Network Model

Because the experiments will be performed in a laboratory environment, several as-

sumptions about the underlying network must be made when designing a custom

topology. In particular, the assumption is made that bandwidth bottlenecks in a client-

server application occur near the individual clients. Under this assumption, a server is

provisioned with a rather large but constant level of network connectivity. Similarly,

individual clients are provisioned with relatively narrow last-mile links which form the

narrowest bandwidth portion of the path between client and server. Finally, the inter-

mediate links between server and client (i.e. neither the first-mile nor last-mile links)

are assumed to be adequately provisioned for whatever traffic is sent over them. The

network model is illustrated in Figure 6.4.

6.2.3 Experiment Topologies

The Emulab testbed allows for the specification of custom topologies for network ex-

periments. In all of the experiments presented in this chapter, a topology was designed

based on the network model presented in Section 6.2.2.

The topology includes a single server provisioned with a 100Mbps network connec-

tion. This is the top speed supported by the Emulab testbed and therefore corresponds

to a server that is maximally provisioned by a content provider aiming to distribute an

IBR dataset to a large group of users.

103

Figure 6.4: The network model for evaluation makes two key assumptions. First, the
server is assumed to be provisioned with a large but fixed size first-mile link. Second,
individual clients are assumed to be provisioned with relatively narrow last-mile links
which form independent bandwidth bottlenecks. Finally, the core network is assumed
to be adequately provisioned to handle all traffic sent over it.

The network model assumes that all bandwidth bottlenecks occur within the “last

mile” for each client. All core links within the topology were therefore modeled with

the same 100Mbps bandwidth as the server. Once again, the bit-rate is determined by

the maximum rate supported by the testbed.

The core links connected interior routers of the topology in a tertiary tree. This

created four links connected to each interior router: one upstream link and three down-

stream links. Once again, this design was dictated by the Emulab environment. In

order to perform experiments at large scale, the topology had to make maximal use

of the four network interfaces provided by Emulab at each node. For example, the 60

client topology illustrated in Figure 6.5 requires 131 nodes from the Emulab. Were

the topology to model a more complicated interior network, even more nodes would be

required, surpassing the capacity of Emulab. The fact that Emulab perform emulation

using real machines and real networks provides an accurate look at network perfor-

mance. However, the same fact forces the topology to reflect the real world limits of

the testbed.

Finally, links connecting clients to the core network were configured as last-mile

bottleneck links. This was achieved by provisioning edge links with a fixed bandwidth

of between 0.1Mbps and 10Mbps depending on the experiment. Figure 6.5 shows a

graphical depiction created of one experiments topology as created by the Emulab

testbed.

104

Figure 6.5: An experiment topology with 60 clients is depicted in this image taken
from the Emulab testbed’s web interface. This topology, even though it uses a tertiary
tree for efficiency, nearly surpasses Emulab’s resources by requiring 131 PCs to be
provisioned.

6.2.4 The SUM Metric

The experiments presented later in this chapter are designed to measure the adaptive

performance of GAL in supporting the prototype application. In support of these ex-

periments, a performance metric must be defined that can evaluate a system’s adaptive

behavior.

An important property of the performance metric is that it must be application in-

dependent. This is because the goal is to measure how well GAL supports the adaptive

policies of the application, not how well the application’s cost and utility metrics map

to user satisfaction. Such a metric can be defined by as a function of the adaptation

105

layer, itself an application-independent concept. Stated broadly, the performance met-

ric measures the performance of GAL by measuring how well it can adapt the flow of

data to match the needs of the application independent of how well the application can

express its needs.

The proposed performance metric, the SUM, is a metric that measures system

performance as a function of the current state of the representation graph. The SUM

is designed to provide a numerical measure of system performance at a given point in

time using only information that is available to the adaptation layer. This includes the

representation graph, the alpha and prediction vectors, and the utility metric.

The SUM is derived from the notion that the adaptation layer’s performance can

be measured by the utility of the data it has obtained at any given point in time. This

can be measured by applying the current utility metric to every resolved node in the

representation graph. We then sum all of the resolved node utility values to find the

SUM. We formally define the SUM metric in Equation 6.1.

SUM =
∑
ni

UtilMetric(ni) : ni ∈ S ∧ State{ni} = Resolved (6.1)

It is important to note that the SUM is a measure of performance at a single point

in time. To capture a reliable measure of system behavior, the SUM metric must be

evaluated repeatedly over a period of time.

6.3 Performance Evaluation using TCP Data De-

livery

In this section, the results of several performance experiments are presented that high-

light the proper adaptive behavior achieved by GAL. In addition, the experiments

highlight that even the SWIM approach to streaming IBR, which performs reconstruc-

tion on the individual clients, scales poorly in support of large user groups. The scaling

problems highlighted in the experiments shown here form the motivation for the Chan-

nel Set Adaptation (CSA) technique presented in Chapter 7.

6.3.1 Experiment Description

For each experiment presented in this chapter, the network topology consisted of one

central image server with a constant number of clients. The exact number varied by

106

experiment. Throughout the life of an experiment, clients autonomously navigated

along a ten minute path through the IBR dataset.

During the ten minute execution time, the SUM metric was computed once per

second. When presenting average SUM values, only the second five minutes of SUM

data were considered. This policy ensured that only steady-state behavior was included

in the results presented below and that transient start-up behavior had no impact on

the evaluation. However, in practice the results generally held even when the initial

time period was included.

6.3.2 Negligible Impact of Path Choice on Performance

Throughout all of the experiments, the path along which the clients navigated the

dataset included a variety of movement patterns. The movements included both fast

and slow movements as well as changes of direction. In addition, movements included

forward, backward, and sideways translations of the viewpoint. The varied nature of

the path choice is designed to limit the impact of specific path properties on the overall

results.

However, the specific path choice has a negligible impact over the presented results

for several reasons. First, the input dataset is relatively uniform in density across the

navigable dimensions. This leads to little variation in performance between different

paths.

Second, most of the experiment results are presented as averages of the performance

metrics. Because the characteristics of the specified path varies widely over the course

of each ten minute session, any transient advantages due to path choice are averaged

out over the course of each session.

Finally, the independence of the experimental results from the navigation path can

be seen by closely examining the non-averaged results which plot performance over

time. These results show that even over limited time windows, during which the path

exhibits more homogeneous characteristics, the relative performance of various system

configurations remains similar to the overall average results. For example, the plot

in Figure 6.7 was calculated by averaging the results from 6.6 over the entire session.

Averages computed over more limited time windows exhibit similar characteristics.

107

6.3.3 Adaptation Performance Over Time

The first experiment in this chapter examines the adaptation performance of the pro-

totype over the course of session. Performance was measured using the SUM metric

as defined in Section 6.2.4. The experiment used a single client TCP-based topology

as described in Section 6.2.3. The client machine in the topology was instrumented to

capture SUM values once a second for the entirety of a ten minute session.

Plotted directly against time, the SUM value can fluctuate dramatically as applica-

tion conditions change and data is resolved. For example, a sharp change in position

of view direction of the user’s viewpoint can make the entire set of resolved data im-

mediately less useful to the application than it had been just seconds earlier.

The cumulative SUM value can be used to represent the SUM values more smoothly

when viewing them as a function of time. If we consider the sequence of SUM values

taken from time 0 to time t, the cumulative SUM can be defined as in Equation 6.2. The

cumulative SUM creates a monotonically increasing metric that avoids the traditional

SUM’s fluctuations in value and allows for a cleaner illustration of a system’s behavior

over time.

CumulativeSUM(t) =
t∑

i=0

SUM(i) (6.2)

The results of several sessions are summarized in Figure 6.6. In each session, the

SUM values were recorded at intervals of one second and plotted using the

CumulativeSUM metric. The ten plots in the figure correspond to ten unique con-

figurations of the experiment. Each session was performed using a different last-mile

bottlenck bit-rate, ranging from 0.10 Mbps to 10 Mbps. In all of these sessions, every

edge in the was placed in its own cluster, yielding 15,658 unique clusters. This con-

figuration allows the most flexibility of data access and therefore the greatest adaptive

power.

The results indicate that the GAL library performs well in several important ways.

First, they show that despite dramatically different behavior during various time peri-

ods, the cumulative SUM value continues to grow steadily. This indicates that under

all conditions, such as changes of viewpoint direction, changes of viewpoint speed, and

changes of viewpoint orientation, the GAL library is able to reliably deliver useful data

to the application layer, as judged by the utility metric.

Second, the similar shape but disparate slope for each plot shows that GAL ap-

108

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200
Summmed Utility Metric vs. Bottleneck Link Bandwidth

Time in Seconds

C
um

ul
at

iv
e

Su
m

m
ed

 U
til

ity
 M

et
ric

0.10 Mbps
0.25 Mbps
0.50 Mbps
1.0 Mbps
2.0 Mbps
3.0 Mbps
4.0 Mbps
5.0 Mbps
7.5 Mbps
10 Mbps

Figure 6.6: This graph shows three plots of cumulative summed utility values over the
course of a ten minute session. The plots correspond to three different bottleneck link
speeds. The steady growth of the three plots shows that over time, GAL continues to
provide data of high utility. The difference in slope shows that GAL properly utilizes
any available bandwidth to improve utility as much as possible.

propriately makes use of additional bandwidth to improve the overall utility of the set

of resolved nodes. Closer attention to the differences in slope shows that the benefit

in terms of SUM does not grow linearly with the speed of the bottleneck link. This

behavior is explored in more detail in the next experiment.

6.3.4 Bottleneck Link Impact on Adaptation Performance

As hinted at in the previous experiment, the benefit of additional bandwidth at the

bottleneck link is sublinear. This fact can be illustrated clearly by analyzing average

SUM values as a function of the bottleneck link speed.

This experiment again used a single client topology where the client was instru-

mented to capture SUM values once a second for the entirety of a ten minute session.

In this experiment, the series of SUM values was averaged to yield a single numerical

measure of the adaptation performance over the life of the session. In all of the ses-

109

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Summmed Utility Metric vs. Bottleneck Link Bandwidth

Bottleneck Bandwidth (Mbps)

A
ve

ra
ge

 S
um

m
ed

 U
til

ity
 M

et
ric

Figure 6.7: This figure shows the average summed utility metric value for several
sessions. Each session was executed with a different bottleneck link speed. As expected,
the plot shows an increase in utility for higher link speeds. However, the shape of the
curve is not linear. This highlights the diminishing marginal benefits of additional
bandwidth.

sion for this experiment, the RG was configured to place each edge in its own cluster,

yielding 15,568 unique clusters. The results are shown in Figure 6.7.

This experiment confirms the conclusions drawn from the first experiment: that

GAL correctly takes advantage of excess bandwidth to improve the utility of the set of

resolved nodes. However, additional focus is placed on the marginal utility gained by

additional bandwidth at the bottleneck link.

The behavior is illustrated by the shape of the curve in the plot. The steepest gains

in utility are found when increasing bandwidth from a very low value. The gains tend

to plateau as the bottleneck link speed grows faster and faster.

While not necessarily intuitive, the decrease in marginal utility at higher bit-rates

is the expected result. For example, suppose that with a bottleneck bit-rate of x, a

system using GAL is able to resolve the n nodes with the highest utility values. In this

scenario, not a single unresolved node has more utility than any of the n nodes that

the system was able to resolve.

110

Meanwhile, assuming all nodes are the same size, a system with a bottleneck bit-

rate of 2x (twice the previous example) would be able to resolve those same n nodes

plus n additional nodes. However, if GAL is operating correctly then the additional n

nodes would never be as useful as the first n. Therefore, while the system with twice

the bandwidth was able to resolve twice as much data, the additional data was not as

useful. System engineers who need to double the performance of an adaptive system

must more than double the bandwidth available for adaptation.

In summary, the results of this experiment shows that there is a decreasing marginal

utility for the added bandwidth. Played out over several bottleneck link speeds, the

results show the clearly sub-linear growth in utility as the bit-rate grows. In fact,

the plot grows asymptotically toward an upper bound corresponding to the highest

possible SUM value. In the extreme, where the bottleneck bit-rate is infinite, the

best performance possible would be to resolve all nodes in the RG. The SUM value

corresponding to this ideal state serves as the upper bound on performance.

6.3.5 Impact of Clustering on Performance

An important engineering parameter when mapping a specific dataset to to the abstract

RG data model is the specification of clusters. Under the RG model, clusters are groups

of edges that form units of data that are accessed atomically. For a given dataset, the

range of options is quite wide.

At one extreme, every edge can be place within its own cluster. This allows each edge

to be individually addressed, providing the maximal amount of data access flexibility.

However, there is an increase in the required overhead in managing all of the cluster

subscriptions.

At the other extreme, all edges are grouped into a single cluster. This is equivalent to

simply downloading a single large file with a static data ordering. This does not provide

any data access flexibility, but it dramatically reduces the amount of management

overhead because there are no choices to be made.

In practice, it will be best to choose a middle ground between these two extremes

that provides adequate flexibility without incurring too much overhead. This is par-

ticularly true for network models that have large subscription penalties such as IP

Multicast. However, the network model employed in this chapter is based on the uni-

cast protocol TCP/IP which has the smallest subscription delay possible: one round

trip time.

111

101 102 103 104 105
0

0.05

0.1

0.15

0.2

0.25

0.3
Summmed Utility Metric vs. Number of Clusters

Number of Clusters

Su
m

m
ed

 U
til

ity
 M

et
ric

 (S
U

M
)

Figure 6.8: This figure shows the impact of clusters on overall performance. As the
number clusters decreases, so does the flexibility of data access patterns, resulting in
a drop of the average SUM value. We call this the clustering penalty. However, the
clustering penalty is not evenly distributed. The penalty is greatest when there are
a very small number of clusters. As the number of clusters grows, the penalty gets
smaller and smaller. This leads to the linear shape of the plot using a logarithmic scale
for the number of clusters.

The experiment presented here was designed to explore the impact of clustering

on performance. This experiment used a single client topology where the client was

instrumented to capture SUM values once a second for the entirety of a ten minute

session. The series of SUM values was averaged to yield a single numerical measure of

adaptation performance over the life of the session.

The number of clusters in the RG was varied for each session. At one extreme,

every edge in the RG was placed in its own cluster, resulting in 15,568 clusters. At

the other extreme, the dataset was split into just 16 clusters, averaging nearly 1,000

edges each. This greatly restricted the data access patterns available to the application,

but lowered the overhead needed to make subscription requests. For example, only 16

subscriptions requests need to be made to resolve the entire dataset. The results are

shown in Figure 6.7.

112

The results show that as the number of clusters drops, the average SUM value

decreases. For all sessions, there was a single client with a fixed bottleneck bandwidth

of 5Mbps. The only setting that changed between sessions is the number of clusters,

and the drop in utility is a direct result of this clustering parameter. I refer to the drop

in utility as the clustering penalty.

It is important to note that the graph shows the number of clusters using a loga-

rithmic scale. Therefore, the linear shape of the plot indicates a substantial clustering

penalty only for configurations with relatively few clusters. Additional clusters will

improve quality by increasing the flexibility of data access. However, there is a de-

crease in the marginal benefit of increasing the number of clusters as the cluster count

grows. This result implies that a small amount of clustering to reduce communication

overheads can be used without seeing a dramatic impact on system utility.

For the TCP/IP-based application presented in this chapter, there is little benefit

from reducing the number of clusters. With just one client, as in this experiment, there

is no benefit as the session with the greatest number of clusters performed best. How-

ever, as more and more users access the data simultaneously, decreasing the cluster

count can decrease the number of data requests arriving at the server. In addition,

reducing the number of clusters may be desirable for implementations that utilize al-

ternative network models that have substantial delays when servicing a subscription

request.

6.3.6 Scaling to Large User Groups

The GAL design places the burden of adaptation on the client side. This is particularly

critical when there are a large number of users simultaneously accessing the server. If

the server were responsible for adaptation, the server’s CPU load would grow linearly

with the number of clients. However, the client-side adaptation architecture means

that the server’s CPU doesn’t perform any adaptation tasks. Instead, the number of

users is limited only by the amount of outgoing bandwidth provisioned to the server.

To test this property, this section presents an experiment based on several sessions

that were run with a variety of user group sizes. For all sessions in this experiment, there

was a single server connected via the tertiary tree topology to a group of clients, each

of which were provisioned with a 5Mbps bottleneck link. In addition, each client was

allowed to navigate independently through the IBR dataset. The RG was configured

to place each edge in its own cluster, yielding 15,568 unique clusters.

113

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

Average Summed Utility Metric vs. Group Size

Number of Clients

A
ve

ra
ge

 S
um

m
ed

 U
til

ity
 M

et
ric

Figure 6.9: This figure shows the average summed utility metric for several sessions.
The sessions were performed with a variety of user group sizes ranging from one to
sixty. Given the server bandwidth allocation of 100Mbps and a per-client bottleneck
speed of 5Mbps, the drop off in performance at 20 clients is expected. This is because
the system’s overall performance is bandwidth limited.

The results from these sessions are shown in Figure 6.9. As the plot illustrates,

there is essentially no drop-off in performance until the number of clients surpasses

twenty. The drop-off point is where we would expect given the server’s link speed of

100Mbps and a per client link speed of 5Mbps. This illustrates that the scaling limit

for the TCP/IP prototype is the server-side first-mile link speed.

While the client-side adaptation architecture alleviates the CPU bottleneck on the

server, it does little to limit the bandwidth bottleneck. The only control over band-

width is the number of clusters. However, as the experiments in this chapter have

shown, performance remains best at high cluster counts despite the added number of

subscription requests.

In the next chapter, a novel technique is presented that targets the bandwidth

bottleneck that plays such a key role in limiting the number of simultaneous users.

Together with the client-side adaptation architecture presented in this chapter, the

new technique enables truly scalable streaming for non-linear media.

114

It is interesting to note that even as the group size grows past 60, more than triple

the drop-off point of 20, the drop in performance is perhaps less than expected at first

glance. While the bit-rate per client will drop by two thirds when there are 60 clients,

the decline in the SUM is less than 50 percent. This relationship, however, is indicative

of proper behavior and is a result of the same phenomenon discussed in detail in Section

6.3.4.

6.4 Summary

This chapter presented the details of the experimental prototype used throughout this

dissertation. The prototype is a media streaming system for IBR datasets based on

the SOI algorithm developed by Aliaga et al. As a motivating example application, the

prototype is designed to meet the needs digital museum that wants to share digitized

IBR models of important spaces to large groups of independently operating virtual

visitors.

After describing the motivating application and the SOI algorithm itself, this chap-

ter presented two approaches to the IBR streaming problem and explained the client-

side adaptation technique adopted in the prototype. This option was chosen for its

scalable properties, such as the transfer of per-client work to the client in adherence to

the simple server design philosophy.

Following the IBR streaming design discussion, the chapter detailed the data rep-

resentation used in our prototype and described its mapping to the GAL libraries RG

data model. This included the definition of a five-dimensional utility space and a 15,568

node RG.

Finally, the results from four experiments were presented. The experimental method-

ology and testbed were described, including details on the Emulab network emulator,

the network topology used throughout the experiments, and the SUM performance

metric.

The experiments evaluated several of the prototype’s performance properties. These

included measurements of the adaptation algorithm’s performance over time, its perfor-

mance over varying bottleneck link speeds, and the impact of clustering on adaptation

performance. The final experiment highlighted that even the client-side adaptation

architecture could alleviate the CPU bound to system performance. The server-side

bandwidth remained as the limiting factor in how many simultaneous users could be

supported.

115

116

Chapter 7

Scalable Delivery Architecture

The experimental prototype evaluated in the previous chapter performed well for rela-

tively small groups of users. For one or a few simultaneous clients, the system architec-

ture based on TCP/IP’s unicast network model was able to support effective adaptation

and deliver a stream of data to each user that matched its individual data requirements.

The client-side adaptation approach moved both adaptation and reconstruction to the

client and removed the CPU bound on server performance. This enabled the support

of a handful of clients from a single IBR server.

However, as the final experiment in Chapter 6 highlighted, the solution was unable

to support large groups of simultaneous users. Because individual data streams are

delivered to each client, the server-side bandwidth requirement grows linearly with

the number of clients. This leads to a bottle-neck on the first-mile link over which

the server must distribute all of the outgoing data streams. For very large groups,

the performance quickly drops below acceptable levels. Unfortunately, the motivating

digital museum application for this technology requires that very large numbers of

independently operating clients be able to satisfactorily access the centrally stored IBR

data set.

In this chapter, I describe an architecture for scalable data delivery that alleviates

the server-side bottleneck, enabling IBR streaming that scales effectively to support

very large user groups (Gotz, 2004). The architecture, called CSA (Gotz and Mayer-

Patel, 2005c), takes the simple server design philosophy outlined in the previous chapter

to the next level by removing literally every per-client task from the server. This is

accomplished by employing a group-based channel oriented network model in a novel

way to allow non-linear media streaming to large groups of users.

This chapter begins with an overview of the design decisions relevant to creating a

scalable delivery architecture. It then presents a detailed description of CSA, a novel

framework for supporting highly scalable non-linear media streaming. The chapter con-

cludes with a presentation of several experimental results that highlight CSA’s most

important performance characteristics over both broadcast and multicast network mod-

els. Throughout the results, a CSA performance model is developed to highlight the

important factors that contribute to overall system performance.

7.1 Achieving Scalability

A scalable solution for non-linear media streaming requires a carefully balanced design

that can manage the trade-off between (1) the requirement of delivering custom flows

to each client and (2) the need to remove per-client work from the server for scalable

performance. This section presents a number of design considerations that address this

trade-off. It first revisits the simple server design philosophy outlined in Chapter 6. It

then describes the spectrum of possible delivery solutions.

7.1.1 Simple Server Design Philosophy

Achieving scalable delivery of non-linear media can be accomplished by adhering to the

simple server design philosophy first described in Section 6.1.3. This design philosophy

encourages the migration of all per-client tasks from the server toward individual clients.

This client-driven approach is motivated by two factors.

First, the philosophy strives for a constant server load model. If the server itself is

responsible for any per-client tasks, the goal of a constant server load is impossible to

reach because additional work will be required for every additional client that accesses

the sever.

Second, adaptation is performed independently on each client and must reflect lo-

cal system and application conditions. Therefore, the logical location for per-client

adaptive decisions is on the individual clients themselves.

These two factors led to the adoption of the simple server design philosophy where

the centralized server is tasked with constant level work loads that are equally useful for

all participants and independent from the needs of any individual clients. The simple

server design leads directly to a bounded server load that is independent of the number

of participating clients.

118

7.1.2 Spectrum of Delivery Solutions

There is a wide spectrum of possible solutions for delivering non-linear media to large

audiences. This section first presents a sample application to give our discussion a

concrete context. It then outlines the two extremes of the solution spectrum. Finally,

this section describes the compromise approach adopt in the CSA solution.

Example Non-Linear Application

As an illustrative example of a many-user non-linear streaming application, this chapter

uses the same digital museum application as in Chapter 6. The sample application is

described briefly below.

Consider a digital museum that aims to digitize and share a famous space (e.g., the

Palace of Versailles) with a group of virtual visitors from around the globe. This could

be accomplished by capturing a large set of digital pictures from the scene, storing

them in an IBR dataset, and making them available on-line.

IBR is a computer graphics technique that uses real world pictures from a scene as

input, and renders novel photo-realistic views of the scene in response to a user moving a

virtual viewpoint. The novel views are generated by interpolating between the captured

samples. Users can navigate through the virtual space interactively, exploring the scene

with the same freedom that video game players have while exploring a game’s virtual

setting.

IBR datasets are typically very large in size. A digital museum would therefore want

to stream the dataset to each user to avoid long download delays. In addition, because

users will be navigating the scene independently, they will each require a unique flow

of image data. Such a system would therefore need to support non-linear streaming

that scales to support a large group of museum visitors.

The Adaptive Extreme

There are a variety of possible solutions for supporting the digital museum streaming

application. At one extreme, the most adaptive architecture for streaming IBR data is

the unicast client-server model proposed in Chapter 6. Under this model, each client

first obtains a list of all available images and their semantic (e.g., position in space) and

syntactic (e.g., encoding dependencies) relationships. For applications using the RG

data model, this can be accomplished by sharing the representation index (see Section

3.1.4).

119

Armed with the representation index, a client would iteratively determine which

images are most important using a benefit function and request those images from the

server, for example using the GAL library and the UCR adaptation metric. As shown

in the experiment of Section 6.3.5, the unicast model performs best by placing every

edge into its own cluster enabling data requests for specific images.

Allowing the client to make individual image requests provides the highest degree

of adaptive behavior to each client. They can custom compose the incoming stream of

images by specifically requesting each photograph.

However, this approach does not take advantage of any similarity in interests across

users. The server must respond individually to each client’s requests and the server’s

outbound bandwidth requirement grows linearly with respect to the number of clients.

This design does not scale well and violates our simple server design philosophy by

requiring per-client streams to be sent out by the server. The end result of this design is

a dramatic drop in performance past the point of first-mile link saturation as illustrated

by the experiment in Section 6.3.6.

The Scalable Extreme

At the other extreme, the most scalable architecture for the digital museum applica-

tion is to cluster all of the data into one large unit and transmit the data over a single

multicast channel. Under this design, the server would repeatedly transmit the infor-

mation on a carousel. Individual clients would then tune in to the channel, continuing

to receive data until the entire dataset has been downloaded.

This architecture is infinitely scalable because the server does not perform any

per-client work and the design adheres strictly to the simple server design philosophy.

However, this solution is not practical for non-linear applications. Clients have no

options for adapting the flow of images and must settle for the predefined linear ordering

chosen when grouping the images into a monolithic cluster of data. This solution

essentially degrades the fully interactive IBR application model into a non-adaptive

flow of images: a static video stream.

This extreme of the spectrum is the reason that multicast works so well for linear

media distribution where all users have identical interests. When all users are satisfied

with the same flows of information, as in video or audio streaming, multicast transmis-

sion of the streams is the ideal scalable solution because it adheres to the simple server

design philosophy.

However, in practice, the straightforward multicast solution is not even satisfactory

120

for many linear media streaming applications which often require mono-dimensional

adaptation to control the bit-rate of data transmission over a constrained network.

This has been the motivation behind technologies such as Receiver-driven Layered

Multicast (RLM) (McCanne et al., 1996).

This extreme falls even farther short in support of non-linear media, where every

client requires control over not only the rate of data delivery but the content of data

delivery as well. These dual requirements for both per-client rate control and per-client

content control make the traditional multicast unacceptable for non-linear media.

A Scalable and Adaptive Solution

The ideal solution for the illustrative application, and for scalable non-linear media

streaming in general, would retain both the adaptive nature of the first extreme and

the scalable properties of the second extreme. It turns out that these goals can be

reached through a middle-ground approach which achieves both scalable and adaptive

distribution of non-linear media.

Under the hybrid approach, related data elements would be grouped into larger

units, as supported by the cluster component of the RG data model. This would

partition a media object into several large blocks, each of which has a semantic meaning.

For example, in the sample application, images might grouped so that all the low

resolution pictures from one corner of a room are placed within a single cluster of

images.

Each cluster could be distributed using multicast to scalably deliver them to all

interested clients. For example, if five users were exploring the same corner of a room,

they could all subscribe to the multicast stream that contained the associated cluster

of images. Users in a different room would choose instead to subscribe to an alternate

multicast stream with an image cluster that more closely matched their requirements.

If clients were aware of the available multicast channels and their associated semantic

meanings (e.g., which images are in which cluster, and which clusters are on which mul-

ticast channel), they could intelligently and independently subscribe to the multicast

streams that contain information most relevant to their needs. As those needs change

over time, clients could quickly choose to subscribe to whichever multicast streams had

become most appropriate.

Clients would be able to compose a custom flow of images based upon the order

of their subscriptions. At the same time, the server would perform no per-client work

because it would only be responsible for transmitting a fixed number of multicast

121

streams on a regular schedule. This channel-based approach to providing scalable and

adaptive access to non-linear media forms the conceptual foundation for CSA, a novel

approach to scalable non-linear media streaming.

By varying the degree to which images are clustered, this hybrid approach is pow-

erful enough to represent delivery solutions at both extremes of the spectrum. By

placing every image in its own cluster, we reach the extreme of allowing every user to

request individual pictures. By clustering all images into one big cluster, we achieve

the scalable extreme using a single multicast channel.

The choice of exactly how to cluster the images into larger groups and how many

clusters to employ can have a large impact on the effectiveness of the architecture.

The proper choice will depend greatly on both the cluster penalty on performance (as

explored in Section 6.3.5) and the overheads associated with a particular multicast

protocol.

7.2 Channel Set Adaptation

This section outlines CSA, a framework that enables efficient streaming of non-linear

datasets to large user groups. CSA allows individual clients to request custom data

flows for interactive applications using standard multicast join and leave operations.

CSA scales to support very large user groups while continuing to provide interactive

data access to independently operating clients.

The CSA framework is built upon the RG data model presented in Chapter 3. This

section begins with a quick overview of the RG components relevant to CSA. It then

describes the CSA communication model designed to provide scalable service to large

user groups. Finally, it covers the client-driven adaptation algorithms that perform

both congestion and content control.

7.2.1 CSA and the RG Data Representation

A critical task in the CSA framework is the expression of relationships between individ-

ual data elements. This task requires formal structures for expressing both syntactic

relationships (e.g., encoding dependencies) and semantic relationships (e.g., similarity

in meaning or utility). The RG data model presented earlier in this dissertation pro-

vides the representational power required by CSA and serves as the underlying data

structure. This subsection provides a brief overview of the RG data representation. For

122

more detailed coverage, refer to Chapter 3.

The RG data model is a flexible representation abstraction designed specifically for

expressing both syntactic and semantic data relationships in multimedia databases.

The RG abstraction also provides mechanisms for evaluating the relative utility of

individual elements of information in the database based on dynamic system conditions.

A RG is composed of a graph-based structure embedded within a multidimensional

utility space. Individual elements of information are modeled as nodes. Syntactic

dependencies are expressed via a set of edges that connect sets of dependent nodes.

Semantic relationships between nodes are expressed by the nodes’ positions within the

utility space. Furthermore, the RG model defines clusters as groups of edges which are

accessed atomically. Each cluster is considered a semantically consistent unit of data.

The underlying structure of a RG, including the list of nodes and their connectivity, is

stored explicitly as the representation index.

There are two parts of the RG abstraction that are particularly important within

the context of CSA: (1) Clusters and (2) the representation index.

Clusters

A cluster is a block of data, corresponding to one or more edges in the RG model, which

is semantically consistent and accessed atomically. For example, clusters in Section 7.1.2

represented groups of images captured from similar locations. When modeled using a

RG, a dataset is essentially partitioned into a set of clusters, C = {c1, · · · , cn}.
Each cluster, ci, has two key properties. First, ci has a set of assigned edges,

Edges{ci}, which correspond to the data associated with the given cluster. Second, ci

has a cost function, Cost{ci}, which defines the cost of accessing the block of informa-

tion.

The Representation Index and The CSA Index

The representation index is a specification of the underlying structure of the RG. The

index is a concise enumeration of the nodes, edges, and clusters that make up the RG,

as well as the definition of the utility space in which the graph.

The CSA architecture defines a new index description called the CSA index. This

structure uses an XML-based index format to represent both the RG’s standard rep-

resentation index as well as additional metadata required by CSA. This meta data

includes the cluster-to-channel mapping M that will be described in Section 7.2.2.

123

<gal>
<utilityspace dimensionality=5>
<subspace id=0 dimensionality=3>
<dimension type=navigable name=x> </dimension>
· · ·

</subspace>
· · ·

</utilityspace>
<nodelist>
<node id=1 subspace=0 pos=12.332,23.32,1.1> </node>
· · ·

</nodelist>
<clusterlist>
<cluster id=1 resource=30012 cost=308>
· · ·

</clusterlist>
<edgelist>
<edge id=1 src=12 dest=14 cluster=1> </edge>
· · ·

</edgelist>
</gal>

Figure 7.1: A brief sample the XML index format used within CSA to specify both the
RG representation index as well as metadata required by CSA. The CSA index includes
a description the inherent structure of the RG data representation (i.e. nodes, edges,
and clusters), while omitting the actual encoded data.

A sample of the CSA index format is shown in Figure 7.1. The CSA index does not

include any actual media data and is therefore very small in size in comparison to the

overall dataset.

7.2.2 Media Communication Model

The CSA media communication model is designed to meet two goals. First, the model

must allow individual users to access the non-linear media interactively and indepen-

dently. In other words, it must provide custom flows of information to each user in

response to their own unique and locally determined requirements. This requirement

argues for a unicast client-server approach, capable of delivering a unique data flow to

each user.

Second, the model must scale to support large groups of independent users. Unfor-

tunately, the unicast solution for meeting the first goal places a load on the server that

124

RG
Index

ci

Internet

Se
rv

er

gi

Client

Figure 7.2: CSA enables efficient streaming of non-linear media to large groups of
independently operating users. The CSA communication model partitions a media
object into semantically meaning clusters, labeled ci. These clusters are then mapped
to a large set of broadcast or multicast channels, labeled gi. Clients compose custom
data flows that match their local application requirements without ever contacting
the central server by managing their Active Channel Set through scalable subscription
operations.

scales linearly with the number of participants. As the final experiment from Chapter

6 shows, this makes it extremely difficult to support large groups of users.

This section presents a new media communication model that is not based on uni-

cast transmission which provides a solution that meets the competing goals for both

interactivity and scalability. The approach delivers custom data flows to each user while

maintaining a constant and bounded server load that is independent of the number of

users.

There are three primary components of our design: (1) channel-based transmission,

(2) session initiation, and (3) client behavior. These are each covered in the subsections

below. This discussion concludes with an analysis of the implications of the communi-

cation model on the two design goals.

125

Channel-Based Transmission

CSA requires the central server to maintain a large set of communication channels,

noted as G = {g1, · · · , gn}. In this context, a channel is an individual data flow to

which users can subscribe and unsubscribe. Upon subscription, users have no control

over the data contained in an individual channel. They must either accept the data

flow assigned to the active channel, or unsubscribe to terminate the flow of information.

The subscription model of the channel-based transmission scheme can be easily

supported in both broadcast and multicast networks. The subscription model is also

aligned with the subscription-based communication layer API specified by GAL (see

Section 5.1).

The number of channels in G is equal to the number of clusters in the RG model

used to represent a media object. A one-to-one mapping M : C 7→ G maps each cluster

ci ∈ C to a corresponding channel gi ∈ G. Because clusters are semantically consistent

blocks of data (e.g., sets of images from the same location), the mapping M assigns a

semantic meaning to each channel gi. The mapping information in M is appended to

the CSA index. A discussion on how individual clients make use of this mapping to

support non-linear data access is presented in Section 7.2.3. This section concentrates

on the server’s responsibilities.

At runtime, the server simultaneously transmits all channels in G. Each channel gi

is transmitted at a constant bit rate. It is important to note that the data assigned

to each cluster is typically finite in size. In this case, the server transmits the data

on a carousel transmission schedule, repeatedly sending out the entire cluster of data

with a cyclical schedule. The server is not responsible for any other tasks. The overall

architecture is shown in Figure 7.2.

Session Initiation

Clients are responsible for initiating a new sessions. The client’s first step in creating a

new session is to obtain a copy of the CSA index. The mechanism for this transaction

is not specified as part of the CSA framework and must be supported through some

out-of-band mechanism. For example, the CSA index could be made available through

a well-known HTTP or FTP host.

The XML description of the CSA index contains the cluster-to-channel mapping,

M , as well as the traditional representation index contents describing the semantic

and syntactic data relationships of the associated non-linear media dataset. The CSA

126

index is essentially a menu describing which communication channels are available as

well as each channel’s assigned semantic meaning. For example, in the digital museum

application, the CSA index would specify which channels contained images from each

part of the Palace of Versailles.

Client Behavior

Following session initiation, a client has all the information it needs to begin receiving

the non-linear data stream. Using the a client-driven adaptation algorithm that is

described in Section 7.2.3, the client begins to manage its Active Channel Set (ACS).

The ACS is a list of all channels to which the client is currently subscribed. By

choosing which channels are in the ACS as well has how many channels are active any

any point in time, a client can compose a unique stream that delivers a custom flow of

non-linear media data that is individually tailored to meet the needs of the client.

Satisfying Design Goals

The media communication model meets the two primary design goals. First, individual

users can access the non-linear media stream interactively and independently through

management of the ACS. Second, the model easily supports large groups of independent

users because of the channel-based transmission design. Coverage of the algorithms

for managing the ACS is deferred until Section 7.2.3. The remainder of this section

concentrates on the scalable properties of the communication model.

As outlined in the simple server design philosophy, a key requirement for any scal-

able solution is the removal of all per-client work from the server. This requirement is

achieved in CSA by utilizing a channel-oriented network infrastructure, which can be

supported by a broadcast or multicast network. By their nature, these network pro-

tocols don’t require any per-client work by a server. The utilization of these network

models leads to a highly scalable server-side solution whose performance is independent

of the number of participating clients.

The independence of server performance from the number of clients is a critical

property in CSA. It allows for the determination of a constant upper bound on compu-

tation and bandwidth requirements. As a result, servers can be properly provisioned

with a finite and static level of resources to support, in the ideal case, an infinite number

of simultaneous users.

The upper bound property is critical in supporting scalable delivery. In contrast,

127

the unicast model described in Chapter 6 places a load on the server that grows linearly

with the number of users. This makes it impossible to provision a server with a constant

amount of bandwidth, no matter how plentiful, that will be adequate for any user group

size.

However, the scalable nature of broadcast and multicast data delivery is well known.

The key contribution of CSA is that it provides a framework for using these scalable

technologies for non-linear media, where every receiving client requires a unique data

flow.

The following subsection describes CSA’s novel method for allowing the composition

of individualized flows via broadcast and multicast networks typically employed for

homogeneous data distribution.

7.2.3 Client-Driven Adaptation

The client-driven adaptation algorithm that forms the foundation of CSA is aligned

very closely with the iterative adaptation algorithm presented in Section 4.10. As

dictated by the simple server design philosophy, Individual clients are responsible for

adapting their own incoming data flows to match their own application preferences and

resource requirements. Adaptation is performed independently, without any assistance

from the centralized server, as each client manages their own ACS.

ACS management is performed through two fundamental operations. The first

operation, Sub{gi, ACS}, is used to subscribe to a new channel. Upon subscription,

the new channel is added to the ACS. The second operation, Unsub{gj, ACS}, is used

to unsubscribe from an already active channel. This operation removes channel gj from

the ACS assuming it is a member. The two operations are defined below.

Sub{gi, ACS} = ACS ∪ {gi} (7.1)

Unsub{gj, ACS} = ACS \ gj (7.2)

Both the subscribe and unsubscribe operations can be performed in broadcast or

multicast networks without any direct contact with the server. Adaptive data flows as

well as scalable performance can be enabled by defining adaptation in terms of these

two operations.

The client-driven adaptation algorithm must accomplish two tasks. First, it must

perform congestion control to manage the speed at which data arrives. Second, it must

128

perform content control to achieve the individualized data flows required by non-linear

media applications. The following sections define both of these adaptive tasks in terms

of the subscribe and unsubscribe operations outlined above.

Congestion Control

A client participating in a non-linear media stream using CSA must manage the speed

at which data arrives over the network through a process known as congestion control.

Within the CSA framework, this is done by managing the size of the ACS, noted as

|ACS|.
Under the channel-based transmission scheme, the server offers a large set of con-

stant bit-rate channels, G. Clients subscribe to a subset of this offering, so that

ACS ⊂ G. Because each channel gi ∈ ACS is offered at a constant bit-rate, the overall

bit-rate of the arriving ACS is determined by the size of the set, or |ACS|. The con-

gestion control problem for CSA is analogous to the problem faced in Receiver-Driven

Layered Multicast (McCanne et al., 1996), and we apply a similar solution.

At runtime, the client adjusts the size of the ACS through subscribe and unsubscribe

operations At signs of network congestion, such as the detection of lost packets, the

client decreases |ACS| through an unsubscribe operation. In order to maintain the

most useful data flow after the decrease in subscription level, a client will choose to

unsubscribe from the least useful active channel. The UCR metric described in Section

4.7 is utilized for this evaluation. The UCR metric combines application-specific utility

and cost functions to determine how best to adapt a multimedia dataset.

In times of exceptionally strong network performance, the client probes for addi-

tional bandwidth by increasing |ACS| through a subscribe operation. Once again, the

UCR metric is used to determine which channel should be added to the ACS.

A series of timers are used for each level of subscription to improve stability and

to allow the system to converge more quickly to an appropriate subscription level. A

simplified version of the congestion control algorithm is shown in lines 2-9 of Figure

7.3.

Content Control

Parallel to performing congestion control, each client must also perform content control.

This task is unique to the problem of non-linear streaming. In traditional linear media

applications, data is delivered in a fixed order and there is no freedom to change the

129

1 repeat forever:
2 if ((experiencingNetworkLoss) and (timerExpired))
3 cactive = GetLeastUsefulActiveCluster(RG, ACS)
4 gactive = M(cactive)
5 Unsub(gactive, ACS)
6 else if ((notExperiencingNetworkLoss) and (timerExpired))
7 cinactive = GetMostUsefulInactiveCluster(RG, ACS)
8 ginactive = M(cinactive)
9 Sub(ginactive, ACS)
10 else
11 cinactive = GetMostUsefulInactiveCluster(RG, ACS)
12 cactive = GetLeastUsefulActiveCluster(RG, ACS)
13 if Utility{cinactive} > Utility{cactive}
14 ginactive = M(cinactive)
15 gactive = M(cactive)
16 Unsub(gactive, ACS)
17 Sub(ginactive, ACS)
18 endif
19 endif

Figure 7.3: A simplified version of the CSA client-driven adaptation algorithm. To
perform congestion control, CSA iteratively monitors network conditions to determine
if it should contract the ACS (lines 2-5), expand the ACS (lines 6-9), or maintain a
constant size. When the ACS size does not change, CSA perform content control by
ensuring that the most useful clusters always map to the set of active channels (lines
11-18).

order to meet application needs. This obviates the need for content control over the

arriving data stream. However, individualized control over the contents of an arriving

data stream is a primary requirement for non-linear media streaming applications.

Within the CSA framework, Content control is performed by aggressively chang-

ing channels over time, managing the ACS to ensure that the active channels match

the current application requirements. Recall that the RG data representation abstrac-

tion builds clusters that are semantically consistent. As a result, each channel has

an associated semantic meaning. This allows the adaptation algorithm to use chan-

nel subscription operations to express an application’s needs for specific semantically

meaningful units of data.

At runtime, a client iteratively compares the least useful active channel, gactive, with

the most useful inactive channel, ginactive. Whenever it is discovered that the utility of

ginactive is greater than that of gactive, the two swap positions and ginactive becomes a

130

gi

Time

A
C

S
 S

iz
e

t1 t2 t3 t4 t5 t6

Figure 7.4: This figure illustrates the evolution of the ACS over time. The client-
driven adaptation algorithm composes a custom flow of data to match application
needs by a series of subscribe and unsubscribe operations. The composite of these
channel operations yields a flow of data that is unique to the individual client. This
figure illustrates a channel plot that shows a series adaptive operations over a window
of time. Times t1, t2, and t5 mark subscriptions to expand the ACS. Time t3 marks
an unsubscribe operation to contract the ACS. Times t4 and t6 mark channel changes
performed solely for content control.

member of the ACS. Lines 11-18 of Figure 7.3 show a simplified version of the algorithm.

The channel subscription pattern is driven by the evaluation of utility that is per-

formed on each iteration of the adaptation algorithm. The content control logic uses

the same UCR metric as the congestion control algorithm for determining the relative

utility of each channel.

The UCR metric is a spatial measure of utility defined on the RG structure included

in the CSA index. Most importantly, it evaluates utility with respect to the current

application conditions and preferences as expressed through both the prediction and

alpha vectors. As a result, the sequence of subscription operations performed in the

adaptation process is determined uniquely on each client in response to user interactions

and locally changing system conditions.

Each client will exhibit their own pattern of subscription requests based upon their

own local needs. For example, Figure 7.4 illustrates a possible sequence of subscription

operations over a small window of time. In the figure, the ACS starts at size two and

grows to size four with the subscriptions at times t1, and t2. At time t3, the congestion

control algorithm determines that the ACS is too large and the ACS is contracted back

131

down to size three. The content control algorithm initiates a channel swap at time

t4. This is followed by another subscription to enlarge in the ACS (at t5) and another

channel swap (at t6).

The concatenation of data flows, following a series of subscribe and unsubscribe

operations, produces a unique flow of data that is delivered to each individual client.

The number of channels within the ACS is controlled to perform congestion control.

Given an ACS of size n, the selection of channels in the ACS is controlled to perform

content control.

When CSA is employed together with a broadcast or multicast network model, the

unique flow represented by the concatenation of the subscribed channels is composed

without any direct communication between clients and the server. As a result, CSA

can deliver unique, customized data flows to individual clients in fully scalable manner.

Implications of Using Non-Uniform Bit-Rate Allocation

In the content and congestion control algorithms, the fundamental operations for ex-

pressing adaptive behavior is adding or removing individual channels from the ACS.

The algorithm is relatively straightforward when all channels are transmitted at iden-

tical bit-rates and, in practice, such a configuration is often the best approach.

It is possible, however, that the data rate for each channel can be set individually.

In this case, the adaptation algorithms will need to be altered slightly to take this into

account. Under this scenario, the adaptation problem becomes an instance of the classic

Knapsack Problem which is known to be NP-complete (Garey and Johnson, 1979). As

a result, the adaptation algorithms would need to be altered to use a heuristic-based

or approximation technique to choose which channels to add or remove from the CSA.

7.3 Experimental Testbed and Methodology

The effectiveness of the CSA architecture in supporting scalable delivery of non-linear

media streams has been evaluated via a series of experiments. This section describes

the experimental testbed and methodology employed throughout the evaluation.

7.3.1 Prototype Application

The experiments presented in this chapter utilize the same prototype application (see

Section 6.1 as the TCP-based evaluation covered in Section 6.3. Briefly, the prototype is

132

an network streaming implementation of the SOI algorithm for reconstructing digitized

spaces (Aliaga et al., 2002).

When distributed to a large audience, such an application could allow digital mu-

seums to share digitized versions of famous places with vast audiences. Each member

of such an audience would be able to freely navigate through the recreated space along

an independent path and at their own rate. As the results to be presented later in this

chapter will highlight, this vision can be enabled using the CSA architecture.

7.3.2 Experimental Testbed

As in the TCP-based evaluation of GAL described in Section 6.3, the CSA experiments

covered here were performed on the Emulab network emulation testbed (White et al.,

2002). Once again, the Emulab testbed provided a middle ground between the realism

of the actual Internet and the laboratory control over network simulations.

Using an emulation tool such as Emulab allows for evaluation under fairly realistic

network conditions because it employs actual network hardware and client computers

sending real data packets. At the same time, experiments are performed in a closed

environment where variable factors such as competing network traffic can be carefully

controlled.

7.3.3 The SUM Performance Metric

For all of the experiments in this chapter, it is critical to measure how well the system

performs under specific conditions. As in the TCP-based evaluation of GAL (Section

6.3, the CSA experiments use the SUM metric to quantify performance. The SUM

metric is a performance metric applicable to any GAL-based application.

The SUM is defined as a function upon the RG maintained within the application-

independent adaptation layer. It can therefore evaluate how well the communication

layer supports an application’s adaptation needs given specific cost and utility metrics.

Relative comparisons of network behavior can be made by changing the underlying

communication model’s parameters and evaluating the SUM metric.

For a more detailed description of the SUM metric, refer to Section 6.2.4.

133

7.3.4 Network Models

The CSA architecture exploits a channel-based network model to provide scalable non-

linear media streaming. Two classes of channel-based protocols have been developed:

(1) broadcast and (2) multicast.

Broadcast networks transmit the same information to all receivers irregardless of

individual user preferences. Once data arrives at a receiver, the receiver can choose to

ignore it. However, data is sent by the broadcast network to every individual receiver.

Multicast, in contrast, allows receivers to individually opt in to receive a flow of

information. Without opting in, a receiver will not receive the flow of data. Only after

specifically subscribing to a particular flow will data begin to arrive at the receiver.

In many ways, broadcast is an idealized multicast model. It has no group manage-

ment duties because all data gets sent to all receivers. Similarly, there are negligent

subscription delays as receivers tune in to individual channels because the data is always

arriving irregardless of the receivers’ interests.

However, broadcast data networks are not practical for wide-area distribution of

data because of the finite bandwidth available over network links. If literally every

data packet on the Internet were sent to every user, the resulting congestion would

cause the Internet to quickly grind to a halt.

Given the contrast between broadcast and multicast, the experiments in this chapter

evaluate the performance of CSA under both models. Broadcast-based CSA measures

CSA performance under idealized conditions where the overheads associated with chan-

nel management are negligible. The multicast-based CSA experiments provide a better

look at how CSA performs using today’s most practical channel-based protocols. The

specific network topologies utilized by each CSA variant will be presented together with

their experimental results in the sections that follow.

7.4 Performance Evaluation using Broadcast-based

CSA

This section highlights several experiments performed using a broadcast-based network

model in support of CSA. Because broadcast networks send all data to all receivers,

there is no overhead required for group-management. This allows for individual re-

ceivers to subscribe or unsubscribe to individual channels of data without any latency,

without any additional network traffic, and without ever contacting the centralized

134

server.

For these reasons, the performance of the broadcast-based CSA prototype can be

considered the ideal level of performance achievable by CSA. Later in this chapter,

these results will be compared to more practical solutions based on today’s technology

to highlight where improvements can be made.

This section begins with a detailed description of the network topology employed

for the broadcast-based CSA experiments. It continues with a detailed discussion of

the prototype’s performance at a variety of scales.

7.4.1 Broadcast Network Topology

The broadcast network topology is designed to test CSA’s ideal scaling behavior when

the performance overhead for group management is negligible. The network topology

used for the broadcast experiments is the simplest used in this dissertation.

For an experiment with n clients, n + 1 nodes were connected to a single local area

network with all links provisioned at 100Mbps. The one additional node corresponds

to the single SWIM server tasked with transmitting the channels of data to the other

n receivers. An illustration of a sample topology from the broadcast experiments is

shown in Figure 7.5.

7.4.2 Ideal Scalability of CSA

One of the primary motivations for the CSA framework is the ability to support large

groups of independent users. This section presents the results from a series of exper-

iments designed to evaluate the performance of CSA at a range of group sizes. The

evaluation presented here compares the performance of broadcast-based CSA with the

TCP-based GAL performance reported in Section 6.3.6.

In the TCP-based evaluation from Chapter 6, performance was measured for group

sizes between one and sixty-five clients accessing a dataset modeled by a 15,568 cluster

RG. The TCP-based experiments performed well for small user groups, but perfor-

mance degraded past 20 users which marks the saturation point of the first-mile link.

From that point onward, performance continued to drop as additional clients joined

the session.

In this evaluation, a similar series of experiments were run with between one and 65

clients. These experiments were performed using the broadcast network topology and

135

Figure 7.5: A broadcast-based experiment topology with 60 clients is depicted in this
image taken from the Emulab testbed’s web interface. The topology shows 61 nodes
(60 clients and 1 server) arranged within a single local area network.

with a RG containing 160 clusters. Besides the assignment of edges to clusters, the RG

used in these experiments was identical to one used in the TCP-base GAL evaluation.

The similarity between the two RG models means that the experiments performed

here and those performed previously both deal with the exact same dataset in terms

of utility space, nodes, and edges. The only difference is the granularity of data access

(i.e. the number of clusters).

The results of both the broadcast-based CSA and the previous TCP GAL evaluation

are shown in Figure 7.6. There are several critical elements to observe.

136

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

Average Summed Utility Metric vs. Group Size

Number of Clients

A
ve

ra
ge

 S
um

m
ed

 U
til

ity
 M

et
ric

Broadcast CSA
TCP / Unicast

Figure 7.6: The broadcast-based CSA prototype performs at a constant level regardless
of the number of users. This compares favorably to the TCP-based GAL approach for
non-linear media streaming. Past the crossover point at n ≈ 32, broadcast-based CSA
clearly outperforms the unicast alternative.

The Cluster Penalty

First, notice the superiority in performance of the TCP-based GAL experiment for

small user groups. When the number of clients n is below 20, the TCP-based system

outperforms broadcast-based CSA by roughly 14%. The margin in performance for the

TCP-based experiment is directly attributable to the two orders of magnitude difference

in the number of clusters.

In the TCP experiments, which are based on the unicast network model, individual

clients are given the greatest degree of freedom in data access because they are able to

make individual requests from the server using 15,568 clusters. In the broadcast-based

CSA experiments, a channel-based network model is used making the large cluster

count prohibitive.

The experiments presented here reduce the number of clusters by two orders of

magnitude to 160. As highlighted in Section 6.3.5, the reduction in flexibility due to

clustering negatively impacts performance via the cluster penalty. However, the cluster

137

penalty’s impact is relatively small until the clustering becomes extreme.

CSA aggressively employs clustering as part of a strategy to support large groups of

users. However, at small group sizes, where the TCP-based approach proved effective,

CSA under-performs by roughly 14% due to the cluster penalty.

Immunity to Scale

Broadcast-based CSA essentially transmits the entire dataset all of the time. It is up

to the individual clients to filter out the data that they are interested in based on

the channel structure outlined in the CSA Index. This simple mechanism allows for an

infinitely scalable mechanism for distributing non-linear media. As illustrated in Figure

7.6, client performance remains constant regardless of the number of simultaneous

clients. The performance metrics with group sizes of one and sixty-five are essentially

identical.

While CSA under-performs for small groups due to the cluster penalty, it dramat-

ically outperforms TCP-based GAL for large groups of users. The performance under

scale of the two experiments highlights two key points in the relationship between the

two distribution methods.

The first key point is the unicast saturation point. As illustrated in the TCP-

based GAL experiment, unicast performance remains constant until the first-mile link

becomes saturated due to the growing outbound data rate. Up until this point, CSA

under-performs by the fixed cluster penalty. This highlights that the fine-grained data

access provided by the TCP-based approach is the best solution for small group sizes.

The second key point is the crossover point, where unicast performance drops below

the scalable CSA approach. In the experiments presented here, the crossover point is

at n ≈ 32. The exact location of the crossover point depends on several parameters of

the experiment.

Between the saturation point and the crossover point, the TCP-based GAL approach

continues perform better than CSA. However, the margin continuously decreases as

congestion further constrains the saturated first-mile link. The margin drops to zero

at the crossover point as the drop in performance due to congestion equals the cluster

penalty.

Past the saturation point, the TCP-based GAL approach continues to drop in per-

formance. However, the CSA approach is immune to scale and continues to perform at

the same constant level. As the group size increases, the CSA approach outperforms

by a greater and greater margin. This highlights that the channel-based architecture

138

of CSA is far superior for large user groups.

7.4.3 A CSA Performance Model

A simple CSA performance model can be developed given these early results. First,

assume that the TCP-based GAL prototype with a single client defines a baseline

for ideal performance. The exact performance level depends directly on the last-mile

bottleneck link bandwidth.

The performance of the unicast prototype can be noted by UnicastPerf(n, Blm),

where n is the number of clients and Blm is the bandwidth of the last-mile link. Using

this notation, the ideal performance can be noted as a function of the last-mile link

bandwidth as in Equation 7.3.

IdealPerf(Blm) = UnicastPerf(1, Blm) (7.3)

As the results presented in this section show, the broadcast-based CSA prototype

performs equally well for all group sizes. However, the performance suffers from the

cluster penalty. Therefore, the performance for broadcast-based CSA is equal to the

ideal performance benchmark minus the cluster penalty, noted as CP . Notice that

Equation 7.4 is independent of the number of clients, n.

BroadcastCSAPerf(n, Blm) = IdealPerf(Blm)− CP (7.4)

Under this model, the crossover point is defined as the number of clients n where

UnicastPerf is equal to BroadcastCSAPerf as defined in Equation 7.5.

CrossoverP t(Blm) = n|(UnicastPerf(n,Blm) = BroadcastCSAPerf(n,Blm)) (7.5)

An important feature of Equation 7.5 is that the crossover point is a function of

the last-mile link bandwidth. This is because the saturation point at which the unicast

performance begins to decline is directly related to the average client-side bandwidth

requirements for the group of receivers.

139

7.5 Performance Evaluation using Multicast-based

CSA

The broadcast-based CSA prototype performs very well in supporting non-linear media

streaming to large user groups. However, broadcast delivery is not a realistic solution

except for dedicated distribution networks such as cable television networks or over-

the-air transmission. A more practical solution for streaming over the Internet requires

a multicast solution for CSA.

This section explores the performance of multicast-based CSA in comparison to both

the unicast GAL and broadcast-based CSA approaches covered so far. In addition,

several experiments are performed that explore the performance impacts of various

overheads associated with multicast as well as several engineering parameters.

7.5.1 Multicast Network Topology

The network topology specified for the multicast experiments presented in this section

is identical to the topology used for the TCP-based GAL evaluation in Chapter 6. This

subsection provides a brief overview of the topology. Refer to Section 6.2.3 for a more

detailed description.

The topology defines a single image server provisioned with a 100Mbps network first-

mile network connection. This corresponds to the maximum network speed supported

by the Emulab testbed. Last-mile bottleneck links are provisioned independently for

each client with a bit-rate of 5Mbps. Interior links are provisioned with the same

100Mbps as the server, ensuring that bottlenecks occur only at the topology’s last-mile

links.

The topology links the server to a large set of clients via interior routers which

are connected via a tertiary tree. This topology is defined to maximize the possible

group size in the experiments by using the Emulab testbed’s resources as efficiently as

possible. An illustration of the tertiary tree topology with 60 clients can be found in

Figure 6.5.

The highly regular tertiary branching pattern and balanced nature of the topology,

which is required to enable evaluation using large group sizes, is a limitation of the

Emulab testbed environment. However, its impact on the overall evaluation should be

negligible. For example, while highly unbalanced trees may result in greater variation

in join and leave latencies, I have been careful to explore a wide range of such overheads

140

and discuss their impact on overall performance.

7.5.2 Practical Scalability of CSA

The multicast-based CSA prototype is designed to provide a practical realization of the

scalable behavior exhibited by the broadcast-based solution evaluated in Section 7.4.2.

This section compares the results from a set of experiments evaluating multicast-based

CSA with both the broadcast and unicast results presented previously.

For the multicast-based CSA experiments, a RG with 160 clusters was used. Each

cluster was transmitted over a multicast channel at a rate of 480Kbps. The number of

clients ranged from one to 65. These parameters match up exactly with the broadcast-

based CSA experiments. Therefore the results can be compared directly.

The multicast-based CSA experiments were built on top of a lab-based infrastruc-

ture multicast algorithm that imitates many properties of IP Multicast with the added

feature of allowing explicit variation of the overhead parameters such as join and leave

latencies. This feature is used to perform several of the evaluations presented later in

this chapter. For the scaling experiments presented here, the overheads were set to

values similar to IP Multicast.

The results from the multicast-based CSA experiments, together with the broadcast-

based CSA and TCP GAL results, are presented in Figure 7.7. There are several

observations to be made about the results.

First, the multicast-based CSA prototype performs equally well for all group sizes.

Just as with the broadcast-based CSA prototype, performance was flat all the way

through to the maximum group size of 65. This compares favorably to the unicast

approach of the TCP-based GAL prototype of Chapter 6. As with the broadcast-based

prototype, there is a crossover point after which the performance of CSA outperforms

the TCP-based prototype.

However, the multicast-based CSA prototype performs worse than the broadcast-

based prototype across the entire range of group sizes. The drop in performance is a

direct result of the group management overhead assocaited with the multicast protocol.

Recall that a broadcast network has virtually no overhead in managing groups of

receivers. Multicast, however, must maintain state at each of the internal routers to

properly route and replicate the individual data flows. This group management task

is decentralized to scale in support of large user groups. Unfortunately, the group

management process delays responses to Sub and Unub operations. It is this delay

141

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

Average Summed Utility Metric vs. Group Size

Number of Clients

A
ve

ra
ge

 S
um

m
ed

 U
til

ity
 M

et
ric

Broadcast CSA
Multicast CSA
Unicast

Figure 7.7: The multicast-based CSA prototype performs at a constant level regardless
of the number of users. This behavior is similar to the broadcast-based CSA prototype
and compares favorably to the TCP-based GAL approach. The multicast solution
performs slightly worse than broadcast-based CSA due to the overhead associated with
group management. However, the multicast solution is more practical to deploy.

that is responsible for the drop in performance between multicast and broadcast CSA.

This result can be used to extend the performance model of Section 7.4.3. Given

a group management overhead of MO, multicast-based CSA performs as governed by

Equation 7.6. The MO value corresponds directly to the constant level of difference in

performance indicated in Figure 7.7.

MulticastCSAPerf(n, Blm) = IdealPerf(Blm)− CP −MO (7.6)

The exact value of MO varies by multicast protocol. IP Multicast, for example, has

leave latencies that average around three seconds. Various application-layer multicast

algorithms exhibit a range of overheads. In general, the faster the response to join and

leave operations, the better a multicast protocol will support CSA. The impact of these

factors is discussed in more detail later in this chapter

142

0 100 200 300 400 500 600
0

2

4

6

8

10

12
Clusters vs. Time

Time (in frames)

C
lu

st
er

s

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2
Loss vs. Time

Time (in frames)

Lo
ss

Figure 7.8: CSA achieves congestion control by adjusting the size of the ACS. The top
plot shows the number of active clusters over the course of a session. The lower plot
shows the estimated packet loss rate for the same session. CSA probes for additional
bandwidth by increasing ACS size. When loss is detected as a result, the ACS size is
decreased. Notice the seven spikes in loss and the corresponding drop in the number
of active clusters.

7.5.3 CSA Congestion Control

The CSA framework performs congestion control by adjusting the number of actively

subscribed channels. Under CSA, a server transmits a set of channels all at fixed bit-

rates. Therefore, a client can reduce the bit-rate at which data arrives by either adding

or removing channels from their ACS. The algorithm is described in more detail in

Section 7.2.3.

In this experiment, a single client was evaluated while running a ten minute session

over a multicast network. Throughout the session, a log was kept of both the size of

the ACS and the estimated packet loss rate. The results are illustrated in Figure 7.8.

The top plot of Figure 7.8 shows the number of actively subscribed clusters. This is

equivalent to the size of the ACS. At the very start of the session, the size of the ACS

is quickly expanded as the client attempts to use as much of the available bandwidth

as possible. The expansion stage continues until the estimated loss rate rises above a

143

threshold.

The lower plot of Figure 7.8 shows the estimated loss rate over the course of the

same ten minute session. The first spike in the plot corresponds to the end of the initial

ACS expansion period. In response to the first spike in the loss rate, the congestion

control algorithm decreases the size of the ACS. The actual trigger is a sustained loss

rate greater than a threshold.

The triggers for both increases and decreases in the size of the ACS are governed

by timers which guide the congestion control toward stability. This is evidenced by

the decreased rate of bandwidth probing over the life of the session. In Figure 7.8,

the effect of the timers can be seen by the increased spacing between the intermittent

probes to 11 clusters.

7.5.4 Congestion Control with Cross Traffic

Congestion control must adjust the data rate in response to transient competing data

flows as well as long term changes in available bandwidth. The previous experiment

highlighted the congestion control’s behavior during self-interference as it expanded to

utilize the entire last-mile link. In this section, the congestion control algorithm is

observed during its response to a variable load of cross traffic.

The experiment in this section evaluates the performance of the congestion control

algorithm in the face competing TCP traffic. The experiment follows the size of the

ACS and the estimated loss rate through a ten minute session. The session begins with

no competing traffic over its bottleneck link. After two and a half minutes (t = 150),

a 180 second load of simulated HTTP traffic is introduced over the congested link. At

t = 330, the HTTP traffic ceases. The results are shown in Figure 7.9.

In the first 30 seconds, the size of the ACS quickly increases as the client performs

its initial probe for available bandwidth. At t ≈ 30, the ACS grows to size 11 and

congests the bottleneck link. The increase in ACS size is matched by a spike in the loss

rate estimate. As a result, the congestion control algorithm backs the ACS down to

size 10. From t = 30 to t = 150, the client continues to probe for additional bandwidth,

but at growing intervals as the timer duration increases.

At t = 150, the competing HTTP traffic begins flowing over the bottleneck link and

the measured loss rate begins to climb. Typically, the client would back down extremely

fast in response to the increased loss rate. However, in this case, as shown in Figure

7.9, the client initially hesitates to back down from |ACS| = 10. The delayed response

144

0 100 200 300 400 500 600
0

2

4

6

8

10

12
Active Channel Set Size vs. Time

Time (in seconds)

A
C

S
Si

ze

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

Loss vs. Time

Time (in seconds)

Lo
ss

Figure 7.9: At the start of a session, the client increases the ACS size until size ten,
when it detects high packet loss rates. The ACS size remains stable until a blast of
HTTP cross traffic causes the system to back off (the region between the dotted lines).
When the cross traffic fades, the client once again increases its subscription level to the
steady state of ten.

is due to the fact that the onset of competing traffic occurred nearly simultaneously

with a decrease in ACS size.

After detecting that the loss rates remained steady, the client continued to back

down, with the ACS size falling to as low as five. At t = 330, the HTTP traffic was

removed from the bottleneck link and the client detected an improvement in network

conditions. Very rapidly, the ACS size was increased to 10 following the same probing

pattern as seen at the start of the session.

The timers used to govern the rate of increase and decrease in ACS size are tunable

and can be configured to yield faster back-off times at the expense of lower stability. The

specific settings for the timer parameters should be chosen to best match a particular

application. For example, stability is less critical for the IBR prototype application

than it is for typical video streaming applications. The prototype therefore has its

timer parameters set to adapt more quickly to changes in network congestion.

145

7.5.5 Impact of Channel Cycle Size on Performance

Among the many CSA engineering parameters that must be configured by an appli-

cation developer is the channel cycle size. When partitioning the edges of a RG into

clusters, not only must the number of clusters be determined, but so must the size of

each cluster. For example, all clusters could be configured to contain the same amount

of data. Conversely, the clusters could be specified so that there is a great degree of

variability in the cluster size.

The amount of data in a cluster has a great impact on CSA performance. CSA

transmits the data for an individual cluster according to a round-robin schedule, where

every byte is sent out over the channel before starting once again from the beginning.

The time required to send out all bytes over the channel is the cycle time. For

clusters with little data assigned to them, the cycle time can be very short. For larger

clusters the cycle time can be very long. The cycle time is critical because it determines

the expected time required to resolve a node in the RG. At runtime, a client that

subscribes to a channel can begin receiving the data for the associated cluster at any

point in the cycle. The expected time to resolve a specific node is one half the cycle

time. Therefore the expected access time to data in large clusters is much longer than

the expected access time to data in small clusters.

In practice, the proper configuration of edges to clusters depends highly on the

application. Certain applications may require perform best with relatively even access

times across clusters. Other applications may require very fast access to certain data

elements and would therefore perform better using variably sized clusters.

In this section, the multicast-based CSA prototype is evaluated using two different

clustering configurations. Both configurations utilize a similar RG. Both have the same

utility space, nodes, and edges. However, in one data set the clusters are set to be

equal size. In the other data set the clusters are of variable size. The results are shown

in Figure 7.10.

The two plots in Figure 7.10 show the cumulative SUM value over the life of each

of the two sessions. The rational for using the cumulative SUM metric as well as its

formal definition is described in more detail in Section 6.3.3.

The plots indicate that for the prototype application, equally sized clusters have

superior performance when compared to variably sized clusters. Recall that when

variably sized clusters, some data elements have faster access times while others require

additional time. The results in this experiment indicate that the benefit of faster access

146

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140
Summmed Utility Metric For Different Encodings

Time in Seconds

C
um

ul
at

iv
e

Su
m

m
ed

 U
til

ity
 M

et
ric

Variably Sized Clusters
Equally Sized Clusters

Figure 7.10: The amount of data assigned to a cluster has a direct impact on system
performance. Variably sized clusters can provide faster access to certain data at the
cost of longer access times for other data. Equally sized clusters performed best for the
prototype application, though other applications may behave differently.

to certain data is not worth the penalty of longer access times to the remaining data.

In general, the impact of cluster size on performance is highly application dependent

and careful experimentation should be performed to determine the optimal configura-

tion. However, this result highlights that the allocation of edges to clusters does indeed

have a sharp impact on overall performance.

7.5.6 Impact of Leave Latency on Performance

The CSA adaptation algorithm uses subscription operations to perform both content

and congestion control. Any significant latency between the issuance of a subscription

operation and the actual effect on transmission can have dramatic impact on overall

performance. This section presents the results from two sets of experiments exploring

the impact of leave latency on CSA performance.

In this section, I concentrate on leave latency in particular in this section because IP

Multicast, the most widely accepted multicast protocol, exhibits far greater latencies

147

for leave operations than for join operations. The impact of symmetric join and leave

latencies is discussed in Section 7.5.7.

Performance Impact of Various Leave Latency Values

Various multicast implementations (e.g., IP Multicast, ALM protocols, etc.) exhibit

a wide range in leave latency : the time it takes between an unsubscribe request and

the actual termination of the data flow. For example, in the course of performing the

experiment in this dissertation, IP Multicast typically showed an average leave latency

of about three seconds. Depending on their design, ALM protocols can be significantly

better or worse.

The experiments in this section are designed to evaluate the impact of leave latency

on CSA performance by introducing artificial leave latencies from 0 to 5000 milliseconds.

The results are shown in Figure 7.11. The experiment shows that longer latencies have a

negative impact on performance. In particular, the three second leave latency measured

in our IP Multicast experiments is far from the ideal range for supporting CSA.

The results show a steep drop in performance at between two and three seconds of

leave latency. The overall trend in performance is important. However, the exact slope

of the drop is highly dependent on fraction of time spent on overhead and depends on

the specific parameters of the experiment.

The system parameters along with user behavior indirectly set the expected listen

time: the average time for which a client receives any single channel before unsubscrib-

ing. Together with the expected listen time, the average join and leave latencies of the

underlying multicast algorithm define the CSA efficiency.

Efficiency = 1− SubOpLatency

〈ListenT ime〉
(7.7)

Efficiency is a measure of the fraction of time for which a channel subscription is

actively receiving data. For latency-free multicast protocols, efficiency becomes one. As

latency grows, efficiency drops. As the efficiency factor becomes higher, the overhead

factor MO of the performance becomes lower. This maps directly to the ideal case of

broadcast. Broadcast has an efficiency factor of 1, leading to zero overhead.

When the average duration for a single subscription is long, the inefficiency intro-

duced by subscription operation latency is relatively small and the impact on perfor-

mance will be lower. Conversely, if the average subscription duration is short, the

efficiency is large and can dramatically impact performance.

148

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Average Summed Utility Metric vs. Leave Latency

Leave Latency (ms)

A
ve

ra
ge

 S
um

m
ed

 U
til

ity
 M

et
ric

Figure 7.11: Increased leave latency results in lower CSA performance. Leave latency
is a major contributor to the overhead cost of managing the ACS under multicast.
As overhead increases, the efficiency of data delivery decreases, dragging down overall
performance.

In other research, I have been participating in the development of StrandCast (Beg-

noche et al., 2005), a novel ALM algorithm that attempts to minimize leave latency,

and therefore maximize efficiency, while supporting a high rate of subscription opera-

tions. In the future, StrandCast may serve as an ideal multicast protocol to support

CSA.

Leave Latency Impact on Congestion Control

Long leave latencies impact more than just CSA efficiency. It can cause serious problems

with the congestion control algorithm as well. This is particularly true for multicast

algorithms that don’t provide explicit confirmation of Unsub operations. IP Multicast,

for example, does not provide any feedback that an unsubscription request has been

honored. The only method for determining that an unsubscribe operation has been

handled is the eventual cessation of the data flow.

Figure 7.12 shows the results of an evaluation of the congestion control algorithm

149

0 100 200 300 400 500 600
0

2

4

6

8

10

12
Clusters vs. Time

Time (in frames)

C
lu

st
er

s

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Loss vs. Time

Time (in frames)

Lo
ss

Figure 7.12: Excessive leave latency values can play havoc with the congestion control
algorithm. Because Unsub operations do not have a timely effect on the loss rate,
the congestion control algorithm backs off too aggressively. This leads to a dramatic
fluctuation of the ACS size.

using a multicast algorithm with an average leave latency of four seconds. Similar to

the properly behaving congestion control results of Figure 7.8, the session begins with

a series of Sub operations to expand the ACS.

The trouble occurs at the first sign of loss. After the first Unsub operation, the

congestion control algorithm waits for the loss rate to drop below the threshold. How-

ever, because the leave latency is so long, the loss rate remains high for several seconds.

In the mean time, the algorithm has no way of ensuring that the Unsub operation has

been honored. As a result, it issues a second Unsub request. The overly aggressive

behavior continues throughout the life of the session resulting in the dramatic swings

in ACS size.

The unstable behavior in ACS management is caused directly by the long leave

latencies and unconfirmed Unsub operations. Better tuning of the timers for adjusting

the ACS size can reduce the instability, but regardless of the setting long leave latencies

negatively impact CSA performance.

150

7.5.7 Impact of Symmetric Join and Leave Latencies

CSA efficiency is determined in part by the performance of the underlying multicast

network. In the previous section, results from leave latency experiments showed the

deleterious impact of high latency values on performance. The results from that section

focused on asymmetric subscription overheads where the leave latency was significantly

different than the join latency. The results are particularly important because IP

Multicast exhibits these asymmetric properties.

However, alternative multicast algorithms, such as some of the many ALM proto-

cols, may show more symmetric overheads and provide explicit confirmation of join and

leave events. In this section, the experiments aim to measure the impact of symmetric

subscription overhead values on CSA performance. As the results in this section show,

even these well behaved multicast algorithms introduce significant inefficiencies and

contribute to a substantial value for the MO term in the performance model.

The experiments in this section were performed with a single client using multicast-

based CSA. For each session, the average SUM was computed over a ten minute session

to produce a quantitative measure of performance. Sessions were configured with var-

ious levels of subscription operation delay over the last-mile link. The delay values

ranged from 0ms to 5000ms. The results are illustrated in Figure 7.13.

The plot shows a linearly decreasing trend in performance directly inversely related

to the length of delay in responding to subscription operations. With a subscription

delay of five seconds, performance was roughly 75% of the peak levels shown with no

delay at all. Unlike the asymmetric case, where high latencies led to instability and

significant drops in performance, CSA behaves much better with symmetric delays.

This interesting result highlights an important design factor that varies across dif-

ferent multicast algorithms. In IP Multicast, for example, only join latencies can be

measured directly. This can be done by timing the delay between a Sub operation and

the arrival of the first packet. However, no such direct method exists for the Unsub

operation. Using IP Multicast, packets cease being forwarded to the application layer

as soon as an Unsub operation is executed even though the flow of data packets contin-

ues down the wire for as much as several seconds. This results in only rough estimates

of the leave latency based on estimated loss rates, leading to the unstable behavior

highlighted in Section 7.5.6.

For multicast protocols with symmetric join and leave latencies, or for protocols that

explicitly notify the application of when the flow of data has stopped, much improved

151

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Summmed Utility Metric vs. Link Delay

Link Delay (ms)

Su
m

m
ed

 U
til

ity
 M

et
ric

 (S
U

M
)

Figure 7.13: While IP Multicast exhibits asymmetric latencies for subscription opera-
tions, alternative multicast protocols such as ALM may have more symmetric delays.
This figure shows the impact on CSA performance of symmetric delays for subscrip-
tion operations. Long delays have a negative effect on performance, though to a lesser
degree than asymmetric latencies.

results are possible. As shown by the experiments in this section, the actual drop in

performance due to the delay in satisfying subscription operations is relatively small

compared to drop in performance resulting from poor leave latency estimates in the

congestion control algorithm.

7.5.8 Interaction Between Cluster Count and Subscription La-

tency

An important engineering parameter in designing a CSA application is the number

of channels in the set G. Because G is mapped to the set of clusters C, the number

of channels defines the number of clusters and therefore determines the granularity of

access to the overall dataset.

A small size for G provides relatively few choices for adapting the ACS, reducing

the ability of individual clients to customize their incoming data flow. Conversely, a

152

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

Average Summed Utility Metric vs. Subscription Operation Latency

Subscription Operation Latency (ms)

A
ve

ra
ge

 S
um

m
ed

 U
til

ity
 M

et
ric

16 Channels
80 Channels
160 Channels
320 Channels

Figure 7.14: The number of clusters, which maps directly to the number of channels,
impacts the degree to which subscription latency affects performance. Performance
improves as additional channels are made available due to increased flexibility in data
access. However, the impact of overhead costs is more pronounced as a result of the
higher frequency of subscription operations. This is evidenced by the steeper slope in
high-channel configurations.

large size for G provides far greater flexibility in ACS management and enables highly

customized data flows.

Consider the size of the overall channel set, noted as |G|. In the extreme, a dataset

with |G| = 1 corresponds to a single channel and is equivalent to a common monolithic

file that all clients must download. When |G| is maximized so that every byte of data

is available through a unique channel, clients are given random access to the database.

As a result, additional channels generally result in higher performance. Figure 7.14

shows a series of experiments performed using four different channel configurations. As

expected, the SUM value is highest when the number of channels is greatest.

The benefit of additional channels is greatest when the subscription operation la-

tency is negligible. However, the impact of latency on performance is more pronounced

in high-channel configurations. This is evidenced in Figure 7.14 by the steeper slopes

in the high-channel plots.

153

The steeper decline in performance is a direct result of the increased rate of channel

subscription operations for high-channel configurations. The faster pace of subscrip-

tions is exactly what makes large channel sets beneficial: additional channels aid in

composing custom data flows. However, the increase in subscription operations re-

duces the expected listen time for any given channel. As reflected in the results as well

as Equation 7.7, a shorter expected listen time magnifies the impact of changes in the

subscription latency by reducing the efficiency.

At first glance, the results seem to hint that it would be desirable to use an enormous

number of channels to obtain the best overall performance. In fact, in the absence of

any overhead costs, that would be the case. This is why the random-access unicast

configuration in the TCP-based GAL prototype outperforms both CSA variants for

small user groups.

However, in a CSA-based system, which is needed to support large user groups, it

would not be practical to place every edge in its own cluster. First, any multicast in-

frastructure will introduce some amount of subscription operation latency. Second, the

expected listen time in this extreme configuration would be extremely short. Equation

7.7 shows that these two factors combine to produce extremely poor efficiency values

and lead to a poor solution.

A practical system design must balance the benefit of a high channel count with

the overhead cost of supporting it. The optimal compromise depends very highly

on subscription operation latencies associated with the multicast infrastructure. This

conclusion motivates additional work in developing more efficient multicast algorithms

with low subscription operation overheads, especially in high-churn environments.

7.5.9 Performance Model Implications

Throughout this chapter, the experiments have motivated a simple performance model

that describes the impact of several engineering parameters. The ideal performance

model of Equation 7.3 highlights that the best possible performance is represented by

the GAL prototype built upon the unicast network model where clients have random

access privileges to the non-linear media dataset. In practice, however, the experiments

of Chapter 6 show that the ideal solution does not scale to support large user groups.

CSA is proposed to address this challenge by mapping clusters of semantically con-

sistent data to a large set of scalable delivery communication channels. Using broadcast

as the ideal channel-oriented scalable delivery network model, this chapter developed

154

the performance model of Equation 7.4. The broadcast performance model shows that

the broadcast solution is immune to scale and comes as close as possible to the ideal

performance given the cluster penalty, CP .

Finally, the performance model for multicast in Equation 7.6 introduces the MO

factor to represent the group management overhead. The amount of overhead is di-

rectly impacted by subscription operation latencies and therefore the efficiency term of

Equation 7.7.

The results in this chapter show that the performance of the multicast-based CSA

prototype depends very heavily on the underlying properties of the multicast infrastruc-

ture. Because CSA employs the multicast model in a novel and aggressive fashion, the

particular properties most important to CSA performance are not those traditionally

optimized in widely deployed multicast algorithms.

For this reason, CSA can serve as a true stress test for emerging multicast solutions.

It’s aggressive channel hopping strategy requires the optimization of several important

properties often overlooked by multicast developers. For example, the typical measures

of quality for multicast protocols are the notions of stress and stretch. For CSA applica-

tions, however stretch is of little consequence due to the repeated carousel transmission

schedule. Similarly, the minimization of stress is less important than the stability of

stress levels because fluctuations have a negative impact on congestion control.

Finally, and perhaps most importantly, CSA is highly sensitive to join and leave

latencies because of their impact on overall efficiency and the MO factor of the per-

formance model. Typical multicast algorithms are designed for long-life flows and

therefore expend significant effort in global optimization of the distribution topology

at the expense of longer join and leave latencies. Given CSA’s shorter expected dura-

tion of subscriptions and sensitivity to MO, these design decisions regarding long-life

flows should be reconsidered.

While beyond the scope of this dissertation, my colleagues and I have made sig-

nificant progress in developing a new approach to ALM protocols that we hope will

significantly improve on the best of today’s current multicast technologies. The new

protocol, named StrandCast (Begnoche et al., 2005), aims to support high-churn mul-

ticast sessions with very low join and leave latencies and a fixed stress levels for each

node in the ALM overlay topology.

155

7.6 Summary

This chapter presented CSA, a scalable solution for non-linear media streaming. Mo-

tivated by the shortcomings of the TCP-based GAL prototype of Chapter 6, CSA

takes the simple server design philosophy outlined in the previous chapter to the next

level by removing literally every per-client task from the server. This is accomplished

by employing a group-based channel oriented network model in a novel way to allow

non-linear media streaming to large groups of users.

This chapter began with an overview the CSA architecture. CSA calls for the group-

ing of semantically similar edges within a dataset’s RG into relatively large clusters.

The data from each cluster is then mapped to an individual communication channel,

producing a set of semantically meaningful channels, G. At runtime, a CSA server

transmits all of the channels all of the time, repeatedly transmitting the data assigned

to each channel in carousel fashion.

CSA provides individual clients with custom data flows for interactive applications

using standard multicast join and leave operations. At any point in time, a client is

actively receiving a set of channels. This set is called the ACS. Congestion control is

performed by managing the size of the ACS. Content control is performed by choosing

which of the channels in G should be added or removed from the ACS.

The chapter concluded with a presentation of several experimental results that high-

light CSA’s most important performance characteristics over both broadcast and mul-

ticast network models. Throughout the results, a CSA performance model is developed

to highlight the important factors that contribute to overall system performance.

The performance model indicates the high level of scalability inherent in the CSA

architecture. At the same time, the performance model motivates several areas of focus

important for the development of the next generation of multicast algorithms capable

of achieving even better results for the scalable streaming of non-linear media.

156

Chapter 8

Summary and Conclusion

The research presented in this dissertation lies at the crossroads of two pronounced

trends in the world of computing. First, digital media techniques have grown dra-

matically in importance across a vast array of domains. Second, the proliferation of

broadband communication technologies has led to changes in our way of life that have

had a tremendous impact on how we access information, communicate, and value lo-

cation.

At the intersection of these two trends, where digital media and broadband net-

working meet, there is the broad application space that combines the power of both

technology trends. Included in this application space is digital media streaming: a

technique for efficiently distributing large media datasets to interested receivers.

The recipient of a digital media stream receives a continuous flow of data which has

been carefully arranged to allow the receiving application to make use of the data as it

arrives. Streaming has been widely deployed to support access to multimedia objects

because these objects are typically large in size and multimedia applications benefit

greatly from the reduced access time afforded by the technique.

Existing media streaming applications have been largely limited to linear media

domains. Linear media objects, most notably audio and video, consist of linear ar-

rangements of data ordered statically for all recipients. The prevalence of linear media

among network streaming applications is not an isolated phenomenon. Rather, it par-

allels the long time dominance of linear media within more traditional media channels,

including books, film, and television.

Recently, however, the tide has been changing. Advances in computing and inter-

active technology have led to an increasing adoption of non-linear media experiences.

The data contained in non-linear media objects, such as video games, interactive visu-

alizations, and virtual environments, is accessed in unique patterns by each user. The

individual access patterns are dictated by independent interaction events occurring

within each user’s application.

Non-linear objects are therefore best suited for applications which foster individual

interaction, such as video games. This is in contrast to linear media objects which are

easily applicable to large audiences, as evidenced by the large crowds that turn up at

movie theaters.

In the context of media streaming, non-linear media poses new challenges. In par-

ticular, the need to deliver a custom data flow to each member of a large group of

independent users can not be solved using traditional media streaming techniques. It

is this challenge—scalable non-linear media streaming—which has been the primary

topic addressed by the research presented in this dissertation.

For fully interactive non-linear media applications, the task of adapting data flows

to match individual resource requirements is a complicated task. Performing this task

in a scalable fashion is an even bigger challenge. In my research, I have begun to

address some of the fundamental obstacles confronting such systems.

My work provides a complete framework that supports the streaming of non-linear

media to a large group of independently operating and heterogeneously provisioned

clients. As the experimental results of Chapter 7 have shown, my proposed framework

scales well for large user groups and allows for each client to independently perform

both content control and congestion control.

My research proposes three primary formalisms: (1) an abstract representation

model for non-linear media called a Representation Graph, (2) a quantitative adaptation

algorithm that frames adaptation as a maximization problem, and (3) the Channel

Set Adaptation method that exploits scalable channel-based network models such as

broadcast and multicast to provide highly scalable non-linear media streaming.

8.1 Research Contributions

The research presented in this dissertation has made several contributions. These

include conceptual developments in the areas of data representation, adaptation, and

distribution, as well practical contributions in both software library implementation

and a novel prototype application.

Specifically, the research contributions of my work include:

158

• A Graph-based Model for Data Representation: I presented the Represen-

tation Graph in Chapter 3. An RG is an abstract data model that can be used to

express the complex multidimensional and multi-resolutional properties common

to a large space of non-linear media data sets.

The RG is a graph-based abstraction which models semantic data relationships

and syntactic dependencies through a network of nodes, edges, and clusters.

Nodes are used to represent individual elements of information, edges are used

syntactic data dependencies between nodes, and clusters express access-level re-

strictions on how the data is accessed.

I use the generic RG abstraction as the core data representation throughout my

other work. This enables the incorporation of the remaining contributions into

any application which can map its dataset to the RG model.

• Utility-Driven Multidimensional Adaptation Algorithm: An essential

component of any non-linear media streaming application is data adaptation.

As information flows from the media server to the consumer, the flow of data

must be controlled to satisfy both the limited communication resources as well

as the receiver’s application-level needs and preferences.

Previously, this task has been most often performed via ad hoc solutions based on

complex rule systems or application-specific heuristics. In Chapter 4, I proposed a

general framework for expressing multidimensional adaptation via a spatial utility

metric defined as a function over the RG data abstraction.

The adaptation framework poses adaptation as a maximization problem in which

the goal is to maximize the utility of the received data while simultaneously

minimizing the access cost. The framework allows for the efficient computation

of adaptive decisions via a quantitative and iterative adaptation algorithm. The

algorithm provides intuitive spatial mechanisms for expressing application-specific

data requirements without the burdensome task of developing complex rule sets.

• Simple Server Design Philosophy: In Chapter 6, I proposed a central philos-

ophy for designing scalable distribution systems. This philosophy, which serves as

the cornerstone behind the CSA approach to non-linear media streaming, stipu-

lates that all per-client tasks must be pushed away from any centralized resources

and placed as close to the individual clients as possible in order to truly achieve

scalable performance.

159

This design philosophy is strongly embraced by the architecture of CSA. The

CSA server model does not perform any per-client work resulting in a constant

level of work independent of the size of the client pool. Because it adheres so

strictly to the simple server design philosophy, the CSA streaming architecture

is, theoretically, infinitely scalable.

• Channel Set Adaptation: I proposed Channel Set Adaptation, a channel-based

communication framework for scalable and adaptive streaming of non-linear me-

dia in Chapter 7. CSA uses a novel method of channel subscription management

to achieve truly scalable streaming of non-linear media. CSA exploits the scalable

aspects of multicast and broadcast networks while developing a novel approach

to content control.

Typically such scalable channel-based network models are used to distribute iden-

tical flows of information to large audiences. CSA aggressively utilizes subscrip-

tion operations to deliver unique data flows to each client in a highly scalable

approach.

• Performance Model: I developed a performance model in Chapter 7 that ex-

presses the impact on application performance of a number of important system

parameters. The performance model has been developed after careful analysis

of the experimental results gathered while testing a non-linear media streaming

prototype on a network emulation testbed.

The performance model provides an insightful look at the impact that underlying

system properties can have on overall performance. The performance model high-

lights where current multicast implementations can be most improved in order to

support novel application-level technologies such as Channel Set Adaptation.

In addition, my research has led to the development of the following practical con-

tributions:

• A Library for Generic Adaptation:

I have implemented a C++ library, GAL, based on the representation abstraction

and multidimensional adaptation algorithms presented in this dissertation. The

library has direct support for multi-dimensional multimedia adaptation. Chapter

5 defines the three-layer architecture of the middleware library and presents an

overview of the library API.

160

• Motivating Application Prototype: As part of my evaluation, I have im-

plemented a scalable non-linear media streaming infrastructure designed for an

image-based rendering application that reconstructs entire spaces for virtual ex-

ploration. The prototype is described in detail in Chapter 6. One promising

application of this technology is in digital museums, where a centrally stored

image-based model of a famous space can be streamed to a large number of vir-

tual visitors.

8.2 Future Work

The experimental results from the evaluation of CSA in Chapter 7 are extremely promis-

ing and hint at the extremely scalable performance made possible by the channel-based

distribution method and adaptation algorithm proposed in this work.

However, there is still more exploration to be performed. In this section, I provide

a brief glimpse into the areas of future work which I feel must be addressed before

a practical and deployable solution to scalable streaming of non-linear media can be

realized.

8.2.1 Relaxing the Communication Model

One important area of future work is a relaxation of the communication model. The

experiments performed throughout the evaluation of GAL and CSA, as outlined in

Section 6.2.2, were based on a network model that assumes independent bandwidth

bottlenecks located on each client’s last-mile link.

This assumption is based on the common idea that a consumer’s home network

connection, via technologies such as DSL or dial-up modems, is typically far slower

than the core network links at the heart of corporate network service providers. In

practice, however, this assumption is not always true. The exceptions to the last-mile

assumption are becoming especially important as newer and faster last-mile technologies

(such as fiber-optics) are rolled out to reach individual customers.

Additional improvements to the CSA architecture must be developed that address

bottlenecks that occur further away from the client. In particular, the interference

between multiple clients’ join experiments as CSA tries to grow the ACS may prove

problematic to the current CSA adaptation algorithm. This complication makes it

difficult for an individual client to know if congestion has been caused by their own join

161

experiment or by one belonging to another client.

Similar problems have been observed with more traditional layered multicast tech-

niques aimed at layered media applications, such as Receiver-driven Layered Multicast

(McCanne et al., 1996). Certain derivatives of the original Receiver-driven Layer Mul-

ticast proposal have explored solutions to the shared bottleneck problem (Legout and

Biersack, 2000; Wu et al., 1997) and may serve as models for future improvements to

CSA.

8.2.2 Moving Beyond Emulation

Another area for future work is in moving beyond network emulation to evaluation

within the real operating conditions of the Internet. The long-term goal for the CSA

architecture is the ability to support large scale non-linear media distribution via a

wide-scale deployment of the adaptation and distribution technologies developed in my

research.

The experiments performed as part of the CSA evaluation presented here were

performed on an emulation-based network testbed. Emulation provides superior realism

when compared to simulation because it sends real data packets over real network

equipment to be processed by applications running on real computers. However, it is

a closed environment where the behavior in the face of competing network traffic can

only be observed by introducing artificial cross traffic.

Before widespread deployment can be achieved, a thorough evaluation is required

that measures the effectiveness of CSA on real Internet topologies and facing actual

competing network traffic. This type of real-world experimentation is now possible

using PlanetLab (Bavier et al., 2004), a network of hundreds of nodes distributed

across the Internet at nearly 300 sites around the world.

8.2.3 Improving Multicast

The CSA performance model developed in Chapter 7 highlights the critical impact of

the underlying multicast protocol’s properties on overall system performance. Existing

multicast algorithms, both infrastructure-based and ALM, are typically designed for

long-life subscriptions and the design decisions made during their development reflect

this aim.

Even without the unique demands of CSA, standard IP multicast (Deering and

Cheriton, 1990) has faced problems with both functionality and deployment. As a

162

result, a vast research effort has been invested in developing overlay technologies, called

ALM, that combine the scalable performance of a multicast network model with a

deployable infrastructure built at the application layer (Banerjee et al., 2002; Castro

et al., 2002; Chu et al., 2000; Chu et al., 2001; Ratnasamy et al., 2001).

However, CSA places unique demands on the underlying multicast protocol. First,

CSA’s extremely aggressive use of multicast join and leave operations stresses the group

management infrastructure far more than traditional multicast-based applications. Sec-

ond, CSA reacts differently to changes to both stress and stretch, two common evalu-

ation metrics applied to ALM protocols. CSA is immune to stretch due to its carousel

transmission schedule, and it is extremely sensitive to stress because it is a greedy

framework that attempts to utilize as much bandwidth as possible.

Using the performance model as a guide, I believe that an application-layer multicast

algorithm can be designed that meets the requirements of CSA far better than the

algorithms that have so far been proposed. My colleagues and I have already begun

working on such a protocol (Begnoche et al., 2005) and significant effort is still required.

Developing such a protocol can further drive performance closer to the ideal benchmark

set by the broadcast-based CSA performance evaluations.

8.3 Summary

Linear media streaming is ubiquitous in today’s digital world. Radio programs, sports

events, and news coverage are available on-line and on demand. However an emerging

class of non-linear media objects, such as large 3D computer graphics models and

visualization databases, remain beyond the scope of existing streaming technology.

In this dissertation, I begin to address the area of scalable and adaptive streaming

for non-linear media. Via experimentation and analysis, I have shown that the scalable

streaming of non-linear media to a large group of independently adapting clients is

enabled through Channel Set Adaptation: a framework that maps a partitioned media

representation to a set of relatively thin multicast communication channels to provide

scalable congestion and content control.

Channel Set Adaptation provides a solution that is, theoretically, infinitely scalable.

It allows individual clients to arbitrarily compose custom data flows that match their

local requirements in a fully scalable manner. CSA therefore allows for the efficient

delivery of individualized and interactive non-linear experiences on a large scale.

163

164

BIBLIOGRAPHY

Acharya, S., Alonso, R., Franklin, M., and Zdonik, S. (1995). Broadcast disks: data
management for asymmetric communication environments. In Proceedings of
ACM SIGMOD, pages 199–210.

Al-Regib, G., Altunbasak, Y., Rossignac, J., and Mersereau, R. (2002). Protocol for
streaming compressed 3-d animations over lossy channels. In Proceedings of IEEE
International Conference on Multimedia and Expo, pages 353–356.

Aliaga, D. G., Funkhouser, T., Yanovsky, D., and Carlbom, I. (2002). Sea of images.
In Proceedings of IEEE Visualization.

Banerjee, S., Bhattacharjee, B., and Kommareddy, C. (2002). Scalable application
layer multicast. In Proceedings of ACM Sigcomm.

Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L.,
Roscoe, T., Spalink, T., and Wawrzoniak, M. (2004). Operating system support
for planetary-scale network services. In First Symposium on Networked Systems
Design and Implementation, pages 253–266.

Begnoche, B., Gotz, D., and Mayer-Patel, K. (2005). The design and implementation
of strandcast. Technical Report TR05-004, The University of North Carolina at
Chapel Hill Department of Computer Science.

Beynon, M., Ferreira, R., Kurc, T. M., Sussman, A., and Saltz, J. H. (2000). Datacutter:
Middleware for filtering very large scientific datasets on archival storage systems.
In IEEE Symposium on Mass Storage Systems, pages 119–134.

Bischoff, S. and Kobbelt, L. (2002). Towards robust broadcasting of geometry data.
Computers and Graphics.

Black, J. (2001). This three-way slugfest is no game. Business Week. December 13.

Boll, S., Klas, W., and Wandel, J. (1999). A cross-media adaptation strategy for
multimedia presentations. In Proceedings of ACM Multimedia.

Bowers, S., Delcambre, L., Maier, D., Cowan, C., Wagle, P., McNamee, D., Meur,
A.-F. L., and Hinton, H. (2000). Applying adaptation spaces to support quality
of service and survivability. In DARPA Information Survivability Conference and
Exposition.

Castro, M., Druschel, P., Kermarrec, A.-M., and Rowstron, A. (2002). Scribe: A
largescale and decentralized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communications.

165

Chakareski, J., Han, S., and Girod, B. (2003). Layered coding vs. multiple descriptions
for video streaming over multiple paths. In Proceedings of ACM Multimedia.

Chatterjee, S., Sydir, J., Sabata, B., and Lawrence, T. (1997). Modeling applications for
adaptive qos-based resource management. In Proceedings of IEEE High Assurance
Systems Engineering Workshop.

Chu, Y., Rao, S. G., and Zhang, H. (2000). A case for end system multicast. In
Proceedings of ACM SIGMETRICS.

Chu, Y.-H., Rao, S. G., Seshan, S., and H.Zhang (2001). Enabling conferencing appli-
cations on the internet using on overlay multicast architecture. In Proceedings of
ACM SIGCOMM.

Clark, D. D. and Tennenhouse, D. L. (1990). Architectural considerations for a new
generation of protocols. In Proceedings of ACM SIGCOMM.

Cohen-Or, D., Chrysanthou, Y., and Silva, C. (2001). A survey of visibility for walk-
through applications. SIGGRAPH Course Nodes # 30.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine computation of
the complex fourier series. Mathematics of Computation, 19:297–301.

Deering, S. E. and Cheriton, D. R. (1990). Multicast routing in a datagram internet-
works and extended lans. ACM Transactions on Computer Systems, 8(2):85–110.

Floriani, L. D. and Magillo, P. (2002). Regular and Irregular Multi-Resolution Terrain
Models: A Comparison. In Proceedings of 10th ACM International Symposium
on Advances in Geographic Information Systems (ACM-GIS’02), pages 143–148.

Funkhouser, T. and Sequin, C. (1993). Adaptive display algorithm for interactive
frame rates during visualization of complex virtual environments. In Proceedings
of ACM SIGGRAPH.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

Gortler, S., Grzeszczuk, R., Szeliski, R., and Cohen, M. (1996). The lumigraph. In
Proceedings of ACM SIGGRAPH, pages 43–54.

Gotz, D. (2004). Supporting Adaptive Remote Access to Multiresolutional or Hierar-
chical Data for Large User Groups. In Proceedings of ACM Multimedia Doctoral
Symposium, New York, NY, USA. Association for Computing Machinery.

Gotz, D. and Mayer-Patel, K. (2004). A General Framework for Multidimensional
Adaptation. In Proceedings of ACM Multimedia, New York, NY, USA. Associa-
tion for Computing Machinery.

166

Gotz, D. and Mayer-Patel, K. (2005a). A framework for scalable delivery of digitized
spaces. International Journal on Digital Libraries, 5(3):205–218. Special Issue on
Digital Museums.

Gotz, D. and Mayer-Patel, K. (2005b). Gal: A middleware library for multidimensional
adaptation. Technical Report TR05-023, The University of North Carolina at
Chapel Hill Department of Computer Science.

Gotz, D. and Mayer-Patel, K. (2005c). Scalable and adaptive streaming for non-linear
media. Technical Report TR05-022, The University of North Carolina at Chapel
Hill Department of Computer Science.

Gotz, D., Mayer-Patel, K., and Manocha, D. (2002). IRW: An incremental representa-
tion for image-based walkthroughs. In Proceedings of ACM Multimedia.

Herman, G., Lee, K. C., and Weinrib, A. (1987). The datacycle architecture for very
high throughput database systems. In Proceedings of ACM SIGMOD.

Hoppe, H. (1996). Progressive meshes. In Proceedings of ACM SIGGRAPH.

Hua, K. A. and Sheu, S. (1997). Skyscraper broadcasting: A new broadcasting scheme
for metropolitan video-on-demand systems. In Proceedings of SIGCOMM, pages
89–100.

IBM Corporation and Microsoft Corporation (1991). Multimedia Programming Inter-
face and Data Specifications 1.0.

ISO/IEC (1993). ISO/IEC International Standard 11172.

ISO/IEC (1995a). ISO/IEC International Standard 13818.

ISO/IEC (1995b). ISO/IEC International Standard 13818-3 - Part 3: Audio.

ISO/IEC (2000). ISO/IEC International Standard 15444, Final Committee Draft.

Juhn, L.-S. and Tseng, L.-M. (1997). Harmonic broadcasting for video-on-demand
service. IEEE Transactions on Broadcasting, 43(3):268–271.

Kanakia, H., Mishra, P., and Reibman, A. (1993). An adaptive congestion control
scheme for real-time packet video transport. In Proceedings of ACM SIGCOMM.

Kerlow, I. V. (2003). The Art of 3-D Computer Animation and Effects. John Wiley
and Sons, third edition.

Kharif, O. (2002). Focusing on picture-perfect diagnoses. Business Week. October 15.

Kharif, O. (2005). Turning wi-fi into a must-have. Business Week. January 11.

167

Lamar, E. C., Hamann, B., and Joy, K. I. (1999). Multiresolution techniques for inter-
active texture-based volume visualization. In Proceedings of IEEE Visualization.

Legout, A. and Biersack, E. W. (2000). PLM: Fast convergence for cumulative layered
multicast transmission schemes. In Proceedings of ACM SIGMETRICS.

Levoy, M. and Hanrahan, P. (1996). Light field rendering. In Proceedings of ACM
SIGGRAPH, pages 31–42.

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L., Faust, N., and Turner, G. (1996).
Real-time continuous level of detail rendering of height fields. In Proceedings of
ACM SIGGRAPH, pages 109–118.

Luebke, D. (2001). A developer’s survey of polygonal simplification algorithms. IEEE
Computer Graphics and Applications, pages 24–35.

McCanne, S., Jacobson, V., and Vetterli, M. (1996). Receiver-driven layered multicast.
In Proceedings of ACM SIGCOMM.

McIlhagga, M., Light, A., and Wakeman, I. (1998). Towards a design methodology
for adaptive applications. In Proceedings of ACM/IEEE International Conf. on
Mobile Computing and Networking.

Meehan, M., Razzaque, S., Whitton, M. C., and Frederick P. Brooks, J. (2003). Effect
of latency on presence in stressful virtual environments. In Proceedings of IEEE
Virtual Reality.

Miller, G., Rubin, S., and Poncelen, D. (1998). Lazy decompression of surface light
fields for pre-computer global illumination. Proceedings of Eurographics Workshop
on Rendering, pages 281–292.

Pennebaker, W. and Mitchell, J. (1993). JPEG: Still Image Data Compression Stan-
dard. Van Nostrand Reinhold.

Perkins, C., Hodson, O., and Hardman, V. (1998). A survey of packet-loss recovery
techniques for streaming audio. IEEE Network, 12:40–48.

Policroniades, C., Chakravorty, R., and Vidales, P. (2003). A data repository for fine-
grained adaptation in heterogeneous environments. In International Workshop
on Data Engineering for Wireless and Mobile Access.

Ramanujan, R. S., Newhouse, J. A., Kaddoura, A. A. M. N., Chartier, E. R., and
Thurber, K. J. (1997). Adaptive streaming of mpeg video over ip networks. In
Proceedings of the IEEE Conference on Computer Networks.

Rao, K. R. and Yip, P. (1990). Discrete Cosine Transfomr: Algorithms, Advantages,
Applications. Academic Press, Inc.

168

Ratnasamy, S., Handley, M., Karp, R., and Shenker, S. (2001). Application-level mul-
ticast uisng content-addressable networks. In Proceedings of 3rd International
Workshop on Networked Group Communication.

Rejaie, R., Handley, M., and Estrin, D. (1999). Quality adaptation for congestion
controlled video playback over the internet. In Proceedings of ACM SIGCOMM,
pages 189–200.

Rejaie, R., Handley, M., and Estrin, D. (2000). Layered quality adaptation for internet
video streaming. IEEE Journal on Selected Areas of Communications (JSAC).
Special issue on Internet QoS.

Rendleman, J. (2002). Have dsl and firewalls, will telecommute. InformationWeek.
March 25.

Rickitt, R. (2000). Special Effects: The History and Technique, page 175. Watson-
Guptill Publications.

Rizzo, L. (1997). Effective Erasure Codes for Reliable Computer Communication Pro-
tocols. ACM Computer Communication Review, 27(2):24–36.

Rowe, L. and Smith, B. (1992). A continuous media player. In Network and Operating
System Support for Digital Audio and Video.

Rusinkiewicz, S. and Levoy, M. (2001). Streaming qsplat: A viewer for networked visu-
alization of large, dense models. In Proceedings of ACM Interactive 3D Graphics.

Salkever, A. (2003). Everyone’s smiling for digital cameras. Business Week. December
9.

Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Com-
puting Surveys, 16(2):187–260.

Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. (1996). RTP: A Transport
Protocol for Real-Time Applications. IETF Netowrk Working Group. RFC 1889.

Schulzrinne, H., Rao, A., and Lanphier, R. (1998). Real Time Streaming Protocol
(RTSP). IETF Netowrk Working Group. RFC 2326.

Stice, R. (2005). Kodak’s many negatives. Business Week. January 7.

Taubman, D. and Zakhor, A. (1994). Multirate 3-d subband coding of video. IEEE
Transactions on Image Processing, 3(5):572–588.

Teler, E. and Lischinski, D. (2001). Streaming of complex 3d scenes for remote walk-
throughs. In Proceedings of Eurographics.

Union, I. T. (1993). ITU-T H.261: Video codec for audiovisual services a p x 64 kbits.

169

Varadhan, G. and Manocha, D. (2002). Out-of-core rendering of massive geometric
environments. In Proceedings of IEEE Visualization.

Vetterli, M. and Kavacevic, J. (1995). Waveletes and Subband Coding. Prentice Hall
PTR.

Viswanathan, S. and Imielinski, T. (1996). Metropolitan area video-on-demand service
using pyramid broadcasting. Multimedia Systems, 4:197–208.

Walpole, J., Krasic, C., Liu, L., Maier, D., Pu, C., McNamee, D., and Steere, D.
(1999). Quality of service semantics for multimedia database systems. Database
Semantics: Semantic Issues in Multimedia Systems.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., and Joglekar, A. (2002). An integrated experimental environment
for distributed systems and networks. In Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation, pages 255–270, Boston, MA.
USENIX Association.

Wildstrom, S. H. (2005). Google’s magic carpet ride. Business Week. July 7.

Wu, L., Sharma, R., and Smith, B. (1997). Thin streams: An architecture for multi-
casting layered video. In Proceedings of the International Workshop on Network
and Operating System Support for Digital Audio and Video (NOSSDAV).

Zhang, C. and Li, J. (2001). Interactive browsing of 3d environment over the internet.
In Proceedings of Visual Communication and Image Processing.

170

