
Approximate Mining of Consensus Sequential Patterns

by
Hye-Chung (Monica) Kum

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2004

Approved by:

Wei Wang, Advisor

Dean Duncan, Advisor

Stephen Aylward, Reader

Jan Prins, Reader

Andrew Nobel, Reader

ii

iii

c© 2004
Hye-Chung (Monica) Kum
ALL RIGHTS RESERVED

iv

v

ABSTRACT
HYE-CHUNG (MONICA) KUM: Approximate Mining of Consensus

Sequential Patterns.
(Under the direction of Wei Wang and Dean Duncan.)

Sequential pattern mining finds interesting patterns in ordered lists of sets. The purpose
is to find recurring patterns in a collection of sequences in which the elements are sets of
items. Mining sequential patterns in large databases of such data has become an important
data mining task with broad applications. For example, sequences of monthly welfare services
provided over time can be mined for policy analysis.

Sequential pattern mining is commonly defined as finding the complete set of frequent
subsequences. However, such a conventional paradigm may suffer from inherent difficulties
in mining databases with long sequences and noise. It may generate a huge number of short
trivial patterns but fail to find the underlying interesting patterns.

Motivated by these observations, I examine an entirely different paradigm for analyzing
sequential data. In this dissertation:

• I propose a novel paradigm, multiple alignment sequential pattern mining, to mine
databases with long sequences. A paradigm, which defines patterns operationally,
should ultimately lead to useful and understandable patterns. By lining up similar
sequences and detecting the general trend, the multiple alignment paradigm effectively
finds consensus patterns that are approximately shared by many sequences.

• I develop an efficient and effective method. ApproxMAP (for APPROXimate Multiple
Alignment Pattern mining) clusters the database into similar sequences, and then mines
the consensus patterns in each cluster directly through multiple alignment.

• I design a general evaluation method that can assess the quality of results produced by
sequential pattern mining methods empirically.

• I conduct an extensive performance study. The trend is clear and consistent. Together
the consensus patterns form a succinct but comprehensive and accurate summary of
the sequential data. Furthermore, ApproxMAP is robust to its input parameters, robust
to noise and outliers in the data, scalable with respect to the size of the database, and
outperforms the conventional paradigm.

I conclude by reporting on a successful case study. I illustrate some interesting patterns,
including a previously unknown practice pattern, found in the NC welfare services database.
The results show that the alignment paradigm can find interesting and understandable pat-
terns that are highly promising in many applications.

vi

vii

To my mother Yoon-Chung Cho...

viii

ix

ACKNOWLEDGMENTS

Pursuing my unique interest in combining computer science and social work research was
quite a challenge. Yet, I was lucky enough to find the intersection between them that worked
for me – applying KDD research for welfare policy analysis. The difficulty was to do KDD
research in a CS department that had no faculty with interest in KDD or databases. I would
not have made it this far without the support of so many people.

First, I would like to thank my colleagues Alexandra Bokinsky, Michele Clark Weigle,
Jisung Kim, Sang-Uok Kum, Aron Helser, and Chris Weigle who listened to my endless
ideas, read my papers, and gave advice. Although no one was an expert in either KDD or
social work, one of us knew which direction I needed to go next. Among us we always could
find the answer to my endless questions.

Second, the interdisciplinary research would not have happened without the support of
faculty and staff who were flexible and open to new ideas. I thank James Coggins, my former
advisor in CS, Stephen Aylward, Jan Prins, Jack Snoeyink, Stephen Pizer, Steve Marron,
Susan Paulsen, Jian Pei, and Forrest Young for believing in me and taking the time to learn
about my research. Their guidance was essential in turning my vague ideas into concrete
research.

I would particularly like to thank Dean Duncan, my advisor in the School of Social Work
who has steadily supported me academically, emotionally, and financially throughout my
dissertation. This dissertation would not be if not for his support. I also appreciate all the
support for my interdisciplinary work from Kim Flair, Bong-Joo Lee and many others at the
School of Social Work.

Before them were Stephen Weiss and Janet Jones from the Department of Computer
Science and Dee Gamble and Jan Schopler from the School of Social Work who got the
logistics worked out so that I could complete my MSW (Masters of Social Work) as a minor
to my Ph.D. program in computer science. They along with Prasun Dewan and Kye Hedlund,
patiently waited and believe in me while I was busily taking courses in social work. I thank
you all.

After them were Wei Wang, my current advisor in CS, and Andrew Nobel, the last mem-
ber to join my committee. When Wei, an expert in sequential analysis and KDD, joined the
department in 2002, I could not ask for better timing. With the heart of my research com-

x

pleted, they had the needed expertise to polish the research. I thank them both for taking
me on at such a late phase of my research.

I also thank all of the UNC grad students I have known over the years. Thanks for making
my graduate experience fun and engaging. Thanks especially to Priyank Porwal and Andrew
Leaver-Fay who let me finish my experiments on swan, a public machine.

Finally, I would like to thank the Division of Social Services (DSS) in the North Carolina
Department of Health and Human Services(NC-DHHS) and the Jordan Institute for Families
at the School of Social Work at UNC for the use of the daysheet data in the case study and
their support in my research.

The research reported in this dissertation was supported in part by the Royster Disserta-
tion Fellowship from the Graduate School.

Thank you to my parents, Yoon-Chung Cho and You-Sik Kum, for always believing in me
and for encouraging me my whole life. Finally, to my family and friends, especially Sohmee,
Hye-Soo, Byung-Hwa, and Miseung, thank you for your love, support, and encouragement. I
would not have made it here without you.

xi

TABLE OF CONTENTS

LIST OF TABLES xvii

LIST OF FIGURES xxi

LIST OF ABBREVIATIONS xxiii

1 Introduction 1

1.1 Knowledge Discovery and Data Mining (KDD) 2

1.2 Sequential Pattern Mining . 5

1.2.1 Sequence Analysis in Social Welfare Data 6

1.2.2 Conventional Sequential Pattern Mining 8

1.3 Multiple Alignment Sequential Pattern Mining 8

1.4 Evaluation . 9

1.5 Thesis Statement . 10

1.6 Contributions . 10

1.7 Synopsis . 11

2 Related Work 12

2.1 Support Paradigm Based Sequential Pattern Mining 13

2.2 String Multiple Alignment . 14

2.3 Approximate Frequent Pattern Mining . 16

xii

2.4 Unique Aspects of This Research . 17

3 Problem Definition 18

3.1 Sequential Pattern Mining . 19

3.2 Approximate Sequential Pattern Mining . 20

3.3 Definitions . 21

3.4 Multiple Alignment Sequential Pattern Mining 24

3.5 Why Multiple Alignment Sequential Pattern Mining ? 24

4 Method: ApproxMAP 26

4.1 Example . 27

4.2 Partition: Organize into Similar Sequences . 27

4.2.1 Distance Measure . 29

4.2.2 Clustering . 31

4.2.3 Example . 36

4.3 Multiple Alignment: Compress into Weighted Sequences 40

4.3.1 Representation of the Alignment: Weighted Sequence 41

4.3.2 Sequence to Weighted Sequence Alignment 42

4.3.3 Order of the Alignment . 43

4.3.4 Example . 44

4.4 Summarize and Present Results . 46

4.4.1 Properties of the Weighted Sequence 47

4.4.2 Summarizing the Weighted Sequence 49

4.4.3 Visualization . 51

4.4.4 Optional Parameters for Advanced Users 52

xiii

4.4.5 Algorithm . 53

4.4.6 Example . 54

4.5 Time Complexity . 55

4.6 Improvements . 56

4.6.1 Reduced Precision of the Proximity Matrix 56

4.6.2 Sample Based Iterative Clustering . 59

5 Evaluation Method 63

5.1 Synthetic Data . 64

5.1.1 Random Data . 64

5.1.2 Patterned Data . 64

5.1.3 Patterned Data With Varying Degree of Noise 68

5.1.4 Patterned Data With Varying Degree of Outliers 68

5.2 Evaluation Criteria . 69

5.2.1 Evaluation at the Item Level . 69

5.2.2 Evaluation at the Sequence Level . 71

5.2.3 Units for the Evaluation Criteria . 72

5.3 Example . 73

5.4 A Closer Look at Extraneous Items . 74

6 Results 77

6.1 Experiment 1: Understanding ApproxMAP 78

6.1.1 Experiment 1.1: k in k-Nearest Neighbor Clustering 78

6.1.2 Experiment 1.2: The Strength Cutoff Point 79

6.1.3 Experiment 1.3: The Order in Multiple Alignment 81

xiv

6.1.4 Experiment 1.4: Reduced Precision of the Proximity Matrix 82

6.1.5 Experiment 1.5: Sample Based Iterative Clustering 84

6.2 Experiment 2: Effectiveness of ApproxMAP 85

6.2.1 Experiment 2.1: Spurious Patterns in Random Data 85

6.2.2 Experiment 2.2: Baseline Study of Patterned Data 88

6.2.3 Experiment 2.3: Robustness With Respect to Noise 94

6.2.4 Experiment 2.4: Robustness With Respect to Outliers 96

6.3 Experiment 3: Database Parameters And Scalability 98

6.3.1 Experiment 3.1: ‖I‖ – Number of Unique Items in the DB 99

6.3.2 Experiment 3.2: Nseq – Number of Sequences in the DB 100

6.3.3 Experiments 3.3 & 3.4: Lseq·Iseq – Length of Sequences
in the DB . 105

7 Comparative Study 108

7.1 Conventional Sequential Pattern Mining . 109

7.1.1 Support Paradigm . 109

7.1.2 Limitations of the Support Paradigm 109

7.1.3 Analysis of Expected Support on Random Data 111

7.1.4 Results from the Small Example Given in Section 4.1 115

7.2 Empirical Study . 115

7.2.1 Spurious Patterns in Random Data . 116

7.2.2 Baseline Study of Patterned Data . 118

7.2.3 Robustness With Respect to Noise . 120

7.2.4 Robustness With Respect to Outliers 121

7.3 Scalability . 122

xv

8 Case Study: Mining The NC Welfare Services Database 123

8.1 Administrative Data . 123

8.2 Results . 124

9 Conclusions 126

9.1 Summary . 127

9.2 Future Work . 128

BIBLIOGRAPHY 131

xvi

xvii

LIST OF TABLES

1.1 Different examples of monthly welfare services in sequential form 6

1.2 A segment of the frequency table for the first 4 events 6

2.1 Multiple alignment of the word pattern . 15

2.2 The profile for the multiple alignment given in Table 2.1 15

3.1 A sequence, an itemset, and the set I of all items from Table 3.2 20

3.2 A fragment of a sequence database D . 20

3.3 Multiple alignment of sequences in Table 3.2 (θ = 75%, δ = 50%) 20

4.1 Sequence database D lexically sorted . 28

4.2 Cluster 1 (θ = 50% ∧ w ≥ 4) . 28

4.3 Cluster 2 (θ = 50% ∧ w ≥ 2) . 28

4.4 Consensus sequences (θ = 50%, δ = 20%) . 28

4.5 Examples of normalized set difference between itemsets 30

4.6 Examples of normalized edit distance between sequences 31

4.7 The N ∗N proximity matrix for database D given in Table 4.1 36

4.8 k nearest neighbor list and density for each sequence in D 37

4.9 Merging sequences from D into clusters . 37

4.10 The modified proximity matrix for Table 4.7 38

4.11 The N ∗N proximity matrix for database D2 given in Table 4.12 39

4.12 k nearest neighbor list and density for each sequence in D2 39

4.13 Merging sequences from Table 4.12 into clusters in Steps 2 and 3 39

4.14 The modified proximity matrix for Table 4.11 40

4.15 Alignment of seq2 and seq3 . 41

xviii

4.16 An example of REPLW () . 43

4.17 Aligning sequences in cluster 1 using a random order 46

4.18 An example of a full weighted sequence . 47

4.19 A weighted consensus sequence . 50

4.20 User input parameters and their default values 51

4.21 Presentation of consensus sequences . 51

4.22 Optional parameters for advanced users . 52

4.23 Recurrence relation table . 57

5.1 Parameters for the random data generator . 64

5.2 Parameters for the IBM patterned data generator 65

5.3 A Database sequence built from 3 base patterns 66

5.4 A common configuration of the IBM synthetic data 67

5.5 Confusion matrix . 69

5.6 Item counts in the result patterns . 71

5.7 Evaluation criteria . 72

5.8 Base patterns {Bi} : Npat = 3, Lpat = 7, Ipat = 2 73

5.9 Result patterns {Pj} . 73

5.10 Worksheet: R = 84%,P = 1− 12
48

= 75%, Ntotal = 5, Nspur = 1, NRedun = 2 73

5.11 Evaluation results for patterns given in Table 5.9 73

5.12 Repeated items in a result pattern . 75

5.13 A new underlying trend emerging from 2 base patterns 76

6.1 Notations for additional measures used for ApproxMAP 78

6.2 Parameters for the IBM data generator in experiment 1 78

6.3 Results for k . 79

xix

6.4 Results for different ordering . 82

6.5 Results from random data (k = 5) . 86

6.6 Full results from random data (k = 5) . 86

6.7 Results from random data (θ = 50%) . 87

6.8 Results from random data at θ = Tspur . 87

6.9 Parameters for the IBM data generator in experiment 2 89

6.10 Results from patterned data (θ = 50%) . 89

6.11 Results from patterned data (θ = 30%) . 90

6.12 Results from patterned data (k = 6) . 91

6.13 Optimized parameters for ApproxMAP in experiment 2.2 91

6.14 Consensus sequences and the matching base patterns (k = 6,

θ = 30%) . 92

6.15 Effects of noise (k = 6, θ = 30%) . 95

6.16 Effect of outliers (k = 6, θ = 30%) . 96

6.17 Effect of outliers (k = 6) . 97

6.18 Parameters for the IBM data generator in experiment 3 98

6.19 Parameters for ApproxMAP for experiment 3 98

6.20 Results for ‖I‖ . 99

6.21 Results for Nseq . 100

6.22 A new underlying trend detected by ApproxMAP 101

6.23 The full aligned cluster for example given in Table 6.22 103

6.24 Results for Nseq taking into account multiple base patterns 104

6.25 Results for Lseq . 105

6.26 Results for Iseq . 106

xx

7.1 Examples of expected support . 114

7.2 Results from database D (min sup = 20% = 2 seq) 115

7.3 Results from random data (support paradigm) 117

7.4 Results from random data (multiple alignment paradigm: k = 5) 117

7.5 Comparison results for patterned data . 119

7.6 Effects of noise (min sup = 5%) . 120

7.7 Effects of outliers (min sup = 5%) . 121

7.8 Effects of outliers (min sup = 50 sequences) 121

xxi

LIST OF FIGURES

1.1 The complete KDD process . 3

4.1 Dendrogram for sequences in D (Table 4.1) 38

4.2 Dendrogram for sequences in D2 (Table 4.12) 40

4.3 seq2 and seq3 are aligned resulting in wseq11 45

4.4 Weighted sequence wseq11 and seq4 are aligned 45

4.5 The alignment of remaining sequences in cluster 1 45

4.6 The alignment of sequences in cluster 2. 45

4.7 Histogram of strength (weights) of items . 47

4.8 Number of iterations . 59

5.1 Distributions from the synthetic data specified in Table 5.4 67

6.1 Effects of k . 79

6.2 Effects of θ . 80

6.3 Comparison of pattern items found for different ordering 82

6.4 Running time w.r.t. Lseq . 83

6.5 Fraction of calculation and running time due to optimization 83

6.6 Results for sample based iterative clustering 84

6.7 Effects of k . 90

6.8 Effects of noise (k = 6, θ = 30%) . 95

6.9 Effects of outliers (k = 6, θ = 30%) . 96

6.10 Effects of outliers (k = 6) . 97

6.11 Effects of ‖I‖ . 99

6.12 Effects of Nseq . 100

xxii

6.13 Effects of Nseq taking into account multiple base patterns 104

6.14 Effects of Lseq . 105

6.15 Effects of Iseq . 106

7.1 E{sup} w.r.t. L . 114

7.2 Comparison results for random data . 117

7.3 Effects of noise (comparison) . 120

7.4 Effects of outliers (comparison) . 121

xxiii

LIST OF ABBREVIATIONS

AFDC Aid to Families with Dependent Children
ApproxMAP APPROXimate Multiple Alignment Pattern mining
DB Database
DBMS Database Management Systems
DSS Department of Social Services
FC Foster Care
FS Foodstamp
HHS U.S. Department of Health and Human Services
GSP Generalized Sequential Patterns
KDD Knowledge Discovery and Data Mining
MS Multiple Alignment Score
TANF Temporary Assistance for Needy Families
PrefixSpan Prefix-projected sequential pattern mining
PS Pairwise Score
SPADE Sequential Pattern Discovery using equivalence classes
SPAM Sequential Pattern Mining using a bitmap representation

xxiv

Chapter 1

Introduction

Knowledge discovery and data mining (KDD) has been defined as “the non-trivial pro-
cess of identifying valid, novel, potentially useful, and ultimately understandable patterns
from data” [17]. Clearly this definition serves more as a guideline than an operational def-
inition. “Novel,” “useful,” and “understandable,” are not quantitative criteria that can be
implemented computationally. In any particular KDD problem, the first and most important
task is to define patterns operationally. In KDD, such a definition of patterns is called the
paradigm.

Often times computer scientists forget the importance of a good paradigm and focus
only on finding efficient methods for a given paradigm. The specific methods that find the
particular patterns can only be as good as the paradigm. Designing a good paradigm and
evaluating what patterns are generated from a particular paradigm is difficult. Nonetheless
I must remember that the paradigm should ultimately lead to useful and understandable
patterns.

In this dissertation, I examine closely the problem of mining interesting patterns in ordered
lists of sets and evaluating the results. The purpose is to find recurring patterns in a collection
of sequences in which the elements are sets of items. Conventionally these sets are called
itemsets. I am particularly interested in designing a good paradigm, which can detect the
underlying trends in the sequential data in order to find common practice patterns from the
welfare services database in North Carolina.

In the rest of this chapter, section 1.1 introduces in more detail the KDD process and in
particular what are specific goals in this dissertation. Section 1.2 reviews the typical approach
to sequential analysis in social welfare policy as well as KDD. Section 1.3 introduces a novel
approach to sequential pattern mining based on multiple alignment. Finally, section 1.4 breifly
discusses the evaluation method and the results.

2

1.1 Knowledge Discovery and Data Mining (KDD)

Our society is accumulating massive amounts of data, much of which resides in large
database management systems (DBMS). With the explosion of the Internet the rate of accu-
mulation is increasing exponentially. Methods to explore such data would stimulate research
in many fields. KDD is the area of computer science that tries to generate an integrated
approach to extracting valuable information from such data by combining ideas drawn from
databases, machine learning, artificial intelligence, knowledge-based systems, information re-
trieval, statistics, pattern recognition, visualization, and parallel and distributed computing
[15, 17, 25, 47]. It has been defined as “The nontrivial process of identifying valid, novel, po-
tentially useful, and ultimately understandable patterns in data” [17]. The goal is to discover
and present knowledge in a form, which is easily comprehensible to humans [16].

A key characteristic particular to KDD is that it uses “observational data, as opposed
to experimental data” [27]. That is, the objective of the data collection is something other
than KDD. Usually, it is operational data collected in the process of operation, such as
payroll data. Operational data is sometimes called administrative data when it is collected
for administration purposes in government agencies. This means that often the data is a huge
convenience sample. Thus, in KDD attention to the large size of the data is required and care
must be given when making generalization. This is an important difference between KDD
and statistics. In statistics, such analysis is called secondary data analysis [27].

Data analysts have different objectives for utilizing KDD. Some of them are exploratory
data analysis, descriptive modeling, predictive modeling, discovering patterns and rules, and
retrieval of similar patterns when given a pattern of interest [27]. The primary objective
of this dissertation is to assist the data analyst in exploratory data analysis by descriptive
modeling.

“The goal of descriptive modeling is to describe all the data” [27] by building models
through lose compression and data reduction. These models are empirical by nature and are
“simply a description of the observed data” [27]. The models must be built “in such a way
that the result is more comprehensible, without any notion of generalization” [27]. Hence, the
models should not be viewed outside the context of the data. “The fundamental objective [of
the model] is to produce insight and understanding about the structure of the data, and see
its important features” [27].

Depending on the objective of the analysis, useful information extracted can be in the
form of (1) previously unknown relationships between observations and/or variables or (2)
summarization or compression of the huge data in novel ways allowing humans to “see” the
large bodies of data. The relationships and summaries must be new, understandable, and
potentially useful [15, 27]. “These relationships and summaries are often referred to as models
or patterns” [27]. Roughly, models are global summaries of a database while patterns are local
descriptions of a subset of the data [27]. As done in this dissertation, sometimes a group of

3

Figure 1.1: The complete KDD process

Goal
Databases Data Cleaning and

Integration

Patterns and model
evaluation

Knowledge
Presentation

Data
Warehouse

Data Selection and
Transformation

Data mining

Define Problem

Define Data

Patterns
& Models

Reports
Actions
Models

local patterns can be a global model that summarizes a database.

KDD Iterative Process

The key to successful summarization is how one views the data and the problem. It
requires flexibility and creativity in finding the proper definitions for both. One innovative
perspective can give a simple answer to a complicated problem. The difficulty is in realizing
the proper point of view for the given question and data. As such, it is essential to interpret
the summaries in the context of the defined problem and understanding of the data.

An important aspect of KDD is that it is an ongoing iterative process. Following are the
steps in the iterative KDD process [27]. I demonstrate the process using an example from the
real world on social welfare data.

1. Data Acquisition: The raw data is collected usually as a by-product of operation of
the business.

• As various welfare programs are administered, many raw data have been collected
on who has received what welfare programs in the past 5 years. One might be a
database on all the TANF1 welfare checks issued and pulled.

1TANF (Temporary Assistance for Needy Families) is the cash assistance welfare program since Welfare
Reform.

4

2. Choose a Goal: Choose a question to ask the database.

• There are data on various welfare program participation. From the database, one
could be interested in the following questions: What are the common patterns of
participation in these welfare programs? What are the main variations?

3. Define the Problem: Define the problem statement so that the data can give the
answer.

• What are the underlying patterns in the sequences of sets? (See chapter 3 for
details)

4. Define the Data: Define/view the data to answer the problem statement.

• Organize the welfare data into a sequence of sets per client. Each set would be the
group of welfare programs received by the client during a particular month. See
Table 1.1 in section 1.2.1 for an example.

5. Data Cleaning and Integration: Remove noise and errors in the data and combine
multiple data sources to build the data warehouse as defined in the “Define the Data”
step.

• Cleaning: Clean all bad data (such as those with invalid data points)

• Integration: Merge the appropriate database on different welfare programs by
recipients.

6. Data Selection and Transformation: Select the appropriate data and transform
them as necessary for analysis.

• Selection: Separate out adults and children for separate analysis.

• Transform: Define participation for each program and transform the data accord-
ingly. For example, if someone received at least one TANF welfare check then code
as T for that month.

• Transform: Build the transformed welfare program participation data into actual
sequences.

7. Data Mining: The essential step where intelligent methods are applied to extract the
information.

• Apply ApproxMAP to the sequences of monthly welfare programs received. (See
chapter 4 for details)

5

8. Patterns and Model Evaluation: Identify interesting and useful patterns.

• View the consensus sequences generated by ApproxMAP for any interesting and
previously unknown patterns. Also, view the aligned clusters of interest in more
detail and use pattern search methods to confirm your findings.

9. Knowledge Presentation: Present the patterns and model of interest as appropriate
to the audience.

• Write up a report on previously unknown and useful patterns on monthly welfare
program participation for policy makers.

Figure 1.1 shows the diagram of the complete KDD process [15, 25]. Although the process
is depicted in a linear fashion keep in mind that the process is iterative. The earlier steps are
frequently revisited and revised as needed while future steps have to be taken into account
when completing earlier steps. For example, when defining the problem, along with the
databases and the goal one should consider what established methods of data mining might
work best in the application. This dissertation presents a novel data mining technique along
with the appropriate problem and data definitions.

1.2 Sequential Pattern Mining

Classical exploratory data analysis methods used in statistics and many of the earlier
KDD methods tend to focus only on basic data types, such as interval or categorical data,
as the unit of analysis. However, some information cannot be interpreted unless the data
is treated as a unit, leading to complex data types. For example, the research in DNA
sequences involves interpreting huge databases of amino acid sequences. The interpretation
could not be obtained if the DNA sequences were analyzed as multiple categorical variables.
The interpretation requires a view of the data at the sequence-level. DNA sequence research
has developed many methods to interpret long sequences of alphabets [20, 24, 48].

In fact, sequence data is very common and “constitute[s] a large portion of data stored
in computers” [4]. For example, data collected over time is best analyzed as sequence data.
Analysis of these sequences would reveal information about patterns and variation of variables
over time. Furthermore, if the unit of analysis is a sequence of complex data, one can investi-
gate the patterns of multiple variables over time. When appropriate, viewing the database as
sequences of sets can reveal useful information that could not be extracted in any other way.

Analyzing suitable databases from such a perspective can assist many social scientists
and data analysts in their work. For example, all states have administrative data about who
has received various welfare programs and services. Some even have the various databases
linked for reporting purposes [21]. Table 1.1 shows examples of monthly welfare services

6

Table 1.1: Different examples of monthly welfare services in sequential form
clientID Sequential Data

A {AFDC (A), Medicaid (M), Food Stamp (FS)} {A, M, FS } {M, FS} {M, FS} {M, FS} {FS}
B {Report (R)} {Investigation (I), Foster Care (FC)} {FC, Transportation (Tr)} {FC} {FC, Tr}
C {Medicaid (M)} {AFDC (A), M} {A, M} {A,M} {M, Foster Care (FC)} {FC} {FC}

Table 1.2: A segment of the frequency table for the first 4 events
Pattern ID Sequential Pattern Frequency Percentage

1 Medicaid Only 95,434 55.2%
2 Medicaid Only ⇒ AFDC 13,544 7.8%
3 Medicaid Only ⇒ AFDC ⇒ Foster Care 115 0.1%

given to clients in sequential form. Using the linked data it is possible to analyze the pattern
of participation in these programs. This can be quite useful for policy analysis: What are
some commonly occurring patterns? What is the variability of such patterns? How do these
patterns change over time? How do certain policy changes affect these patterns?

1.2.1 Sequence Analysis in Social Welfare Data

However, the methods to deal with such data (sequences of sets) are very limited. In
addition, existing methods that analyze basic interval or categorical data yield poor results
on these data due to exploding dimensionality [26].

Conventional methods used in policy analysis cannot answer the broad policy questions
such as finding common patterns of practice. Thus, analysts have been forced to substitute
their questions. Until recently, simple demographic information was the predominant method
used (66% of those receiving Food Stamp also received AFDC2 benefits in June). Survival
analysis is gaining more popularity but still only allows for analyzing the rate of occurrence
of some particular events (50% of participants on AFDC leave within 6 months). Goerge at
el. studied specific transitions of interest (15% of children who entered AFDC in Jan 95, were
in foster care before entering AFDC) [21]. These methods are very limited in their ability to
describe the whole body of data.

Thus, some have tried enumeration [21, 49] - frequency counts of participants by program
participation. Table 1.2 gives a small section of a table included in the technical report to
the US Department of Health and Human Services (HHS) [21]. It reports the frequency
of combinations of the first four events. For example the third line states that 0.1% of
the children (115 sequences) experienced “Medicaid only” followed by “AFDC” followed by
“Foster Care”. The client might or might not be recieving Medicaid benefits in conjunction
with the other programs. Client C in Table 1.1 would be encoded as having such a pattern.
In the first month, client C recieves only Medicaid benefits. Subsequently, client C comes on

2AFDC (Aid to Families with Dependent Children) was the cash assistance welfare program that was the
precursor TANF.

7

to AFDC then moves to recieving foster care services.
There are many problems with enumeration. First, program participation patterns do

not line up into a single sequence easily. Most people receive more than one service in a
particular month. For example, most clients receiving AFDC also receive Medicaid. As a
work around, analysts carefully define a small set of alphabets to represent programs of most
interest and its combinations. In [21], only three programs, AFDC, Medicaid, and foster care,
were looked at. In order to build single sequences, they defined the following five events as
most interesting.

• Medicaid Only

• AFDC: probably receiving Medicaid as well but no distinction was made as to whether
they did or not

• Foster Care: could be receiving Medicaid in conjunction with foster care, but no dis-
tinction was made

• No services

• Some other services

Second, even with this reduction of the question, many times the combinatoric nature
of simple enumeration does not give you much useful information. In the above example,
looking at only the first four events, the number of possible patterns would be 54 = 625. Not
surprisingly, there are only a few simple patterns such as, “AFDC ⇒ Some other service”,
that are frequent. The more complex patterns of interest do not get compressed enough to
be comprehensible. The problem is that almost all the frequent patterns are already known
and the rest of the information in the result is not easily understandable by people. There
were a total of 179 patterns reported in the analysis [21].

A much better method developed in sociology, optimal matching, has not yet gained
much popularity in social sciences [1]. Optimal matching is a direct application of pattern
matching algorithms developed in DNA sequencing to social science data [20, 24]. It applies
the hierarchical edit distance to pairs of simple sequences of categorical data and runs the
similarity matrix through standard clustering algorithms. And then, the researcher looks
at the clusters and tries to manually organize and interpret the clusters. This is possible
because up to now researchers have only used it for fairly small data that were collected and
coded manually. Optimal matching could be applied to the data discussed in the previous
paragraph. It should give more useful results than simple enumeration. Then the analysis
would not be limited to the most important programs or the first n elements.

There are two problems with optimal matching. First, we are limited to strings. There
is no easy way to handle multiple services received in one month. In real databases used
in social science, sequences of sets are much more common than sequences of letters. More
importantly, once the clustering and alignment is done there is no mechanism to summarize
the cluster information automatically. Finding consensus strings from DNA sequences have

8

not been applied to social science data yet. Thus, the applicability needs to be investigated.
Without some automatic processing to produce cluster descriptors social scientists would be
limited to very small data.

1.2.2 Conventional Sequential Pattern Mining

In KDD, sequential pattern mining is commonly defined as finding the complete set of
frequent subsequences in a set of sequences [2]. Since this support paradigm based sequential
pattern mining has been proposed, mining sequential patterns in large databases has become
an important KDD task and has broad applications, such as social science research, policy
analysis, business analysis, career analysis, web mining, and security. Currently as far as we
know, the only methods available for analyzing sequences of sets is based on such a support
paradigm.

Although the support paradigm based sequential pattern mining has been extensively
studied and many methods have been proposed (SPAM [3], PrefixSpan [40], GSP [46], SPADE
[56]), there are some inherent obstacles within this conventional paradigm. These methods
suffer from inherent difficulties in mining databases with long sequences and noise. These
limitations are discussed in detail in chapter 7.1.2.

Most importantly, finding frequent subsequences will not answer the policy questions
about service patterns in social welfare data. In order to find common service patterns and the
main variations, the mining algorithm must find the general underlying trend in the sequence
data through summarization. However, the conventional methods have no mechanism for
summarizing the data. In fact, often times many more patterns are output from the method
than the number of sequences input into the mining process. These methods tend to generate
a huge number of short and trivial patterns but fail to find interesting patterns approximately
shared by many sequences.

1.3 Multiple Alignment Sequential Pattern Mining

Motivated by these observations, I present a new paradigm to sequential analysis, multiple
alignment sequential pattern mining, that can detect common patterns and their variations
in sequences of sets. Multiple alignment sequential pattern mining partitions the database
into similar sequences, and then summarizes the underlying pattern in each partition through
multiple alignment. The summerized patterns are consensus sequences that are approximately
shared by many sequences.

The exact solution to multiple alignment sequential pattern mining is too expensive to
be practical. Here, I design an effective and efficient approximate solution, ApproxMAP (for
APPROXimate Multiple Alignment Pattern mining), to mine consensus patterns from large
databases with long sequences. My goal is to assist the data analyst in exploratory data

9

analysis through organization, compression, and summarization.

ApproxMAP has three steps. First, similar sequences are grouped together using k-nearest
neighbor clustering. Then we organize and compress the sequences within each cluster into
weighted sequences using multiple alignment. In the last step, the weighted sequences for each
cluster is summarized into two consensus patterns best describing each cluster via two user
specified strength cutoffs. I use color to visualize item strength in the consensus patterns.
Item strength, color in the consensus patterns, indicates how many sequences in the cluster
contain the item in that position.

1.4 Evaluation

It is important to understand the approximating behavior of ApproxMAP. The accuracy of
the approximation can be evaluated in terms of how well it finds the real underlying patterns
and whether or not it generates any spurious patterns. However, it is difficult to calculate
analytically what patterns will be generated because of the complexity of the algorithm.

As an alternative, in this dissertation I have developed a general evaluation method that
can objectively evaluate the quality of the results produced by sequential pattern mining
methods. It uses the well known IBM synthetic data generator built by Agrawal and Srikant
[2]. The evaluation is based on how well the base patterns are recovered and how much
confounding information (in the form of spurious patterns, redundant patterns, or extraneous
items) is in the results. The base patterns, which are output along with the database by the
data generator in [2], are the patterns used to generate the data.

I conduct an extensive and systematic performance study of ApproxMAP using the evalua-
tion method. The trend is clear and consistent – ApproxMAP returns a succinct but accurate
summary of the base patterns with few redundant or spurious patterns. The results show
that ApproxMAP is robust to the input parameters, is robust to both noise and outliers in the
data, and is effective and scalable in mining large sequence databases with long patterns.

I further employ the evaluation method to conduct a comparative study of the conventional
support paradigm and the multiple alignment paradigm. To the best of my knowledge,
no research has examined in detail what patterns are actually generated from the popular
support paradigm for sequential pattern mining. The results clearly demonstrate that too
much confounding information is generated. With so much redundant and spurious patterns
there is no way to tune into the primary underlying patterns in the results. In addition, my
theoretical analysis of the expected support of random sequences under the null hypothesis
demonstrates that support alone cannot distinguish between statistically significant patterns
and random occurrences. Furthermore, the support paradigm is vulnerable to noise in the
data because it is based on exact match. I demonstrate that in comparison, the sequence
alignment paradigm is able to better recover the underlying patterns with little confounding

10

information under all circumstances I examined including those where the support paradigm
fails.

I complete the evaluation by returning to my motivating application. I report on a suc-
cessful case study of ApproxMAP in mining the North Carolina welfare services database. I
illustrate some interesting patterns and highlight a previously unknown practice pattern de-
tected by ApproxMAP. The results show that multiple alignment sequential pattern mining
can find general, useful, concise and understandable knowledge and thus is an interesting and
promising direction.

1.5 Thesis Statement

The author of this dissertation asserts that multiple alignment is an effective paradigm
to uncover the underlying trend in sequences of sets. I will show that ApproxMAP, a novel
method to apply the multiple alignment paradigm to sequences of sets, will effectively extract
the underlying trend in the data by organizing the large database into clusters as well as give
good descriptors (weighted sequences and consensus sequences) for the clusters using multi-
ple alignment. Furthermore, I will show that ApproxMAP is robust to its input parameters,
robust to noise and outliers in the data, scalable with respect to the size of the database, and
in comparison to the conventional support paradigm ApproxMAP can better recover the un-
derlying patterns with little confounding information under many circumstances. In addition,
I will demonstrate the usefulness of ApproxMAP using real world data.

1.6 Contributions

This dissertation makes the following contributions:

• Defines a new paradigm, multiple alignment sequential pattern mining, for mining ap-
proximate sequential patterns based on multiple alignment.

• Describes a novel solution ApproxMAP (for APPROXimate Multiple Alignment Pattern
mining) that introduces (1) a new metric for sets, (2) a new representation of alignment
information for sequences of sets (weighted sequences), and (3) the effective use of
strength cutoffs to control the level of detail included in the consensus sequences.

• Designs a general evaluation method to assess the quality of results produced from
sequential pattern mining algorithms.

• Employs the evaluation method to conduct an extensive set of empirical evaluations of
ApproxMAP on synthetic data.

11

• Employs the evaluation method to compare the effectiveness of ApproxMAP to the con-
ventional methods based on the support paradigm.

• Derives the expected support of random sequences under the null hypothesis of no
patterns in the database to better understand the behaviour of the support paradigm.

• Demonstrates the usefulness of ApproxMAP using real world data on monthly welfare
services given to clients in North Carolina.

1.7 Synopsis

The rest of the dissertation is organized as follows. Chapter 2 reviews related works.
Chapter 3 defines the paradigm, multiple alignment sequential pattern mining. Chapter 4
details the method, ApproxMAP. Chapter 5 introduces the evaluation method and chapter 6
reports the evaluation results. Chapter 7 reviews the conventional support paradigm, details
its limitations, and reports the results of the comparison study. Chapter 7 includes the
analysis of the expected support in random data. Chapter 8 presents a case study on real
data. Finally, in chapter 9, I conclude with a summary of my research and discuss areas for
future work.

12

Chapter 2

Related Work

There are three areas of research highly related to the exploration in this dissertation,
namely sequential pattern mining, string multiple alignment, and approximate frequent pat-
tern mining. I survey each in the following sections.

2.1 Support Paradigm Based Sequential Pattern Mining

Since it was first introduced in [2], sequential pattern mining has been studied extensively.
Conventional sequential pattern mining finds frequent subsequences in the database based
on exact match. Much research has been done to efficiently find patterns, seqp, such that
sup(seqp) ≥ min sup1.

There are two classes of algorithms. The bottleneck in implementing the support paradigm
occurs when counting the support of all possible frequent subsequences in database D. Thus
the two classes of algorithms differ in how to efficiently count support of potential patterns.

The apriori based breadth-first algorithms (e.g. [37], GSP [46]) pursue level-by-level
candidate-generation-and-test pruning following the Apriori property: any super-pattern of
an infrequent pattern cannot be frequent [2]. In the first scan, they find the length-1 se-
quential patterns, i.e., single items frequent in the database. Then, length-2 candidates are
assembled using length-1 sequential patterns. The sequence database is scanned the second
time and length-2 sequential patterns are found. These methods scan the database multiple
times until the longest patterns have been found. At each level, only potentially frequent
candidates are generated and tested. This pruning saves much computational time compared
to naively counting support of all possible subsequences in the database. Nonetheless, the
candidate-generation-and-test is still very costly.

In contrast, the projection based depth-first algorithms (e.g. PrefixSpan [28], FreeSpan[40],
and SPAM [3]) avoid costly candidate-generation-and-test by growing long patterns from short

1The support of a sequence seqp, denoted as sup(seqp), is the number of sequences in D that are superse-
quences of seqp. The exact definition is given in chapter 3

14

ones. Once a sequential pattern is found, all sequences containing that pattern are collected as
a projected database. And then local frequent items are found in the projected databases and
used to extend the current pattern to longer ones. Another variant of the projection-based
methods mine sequential patterns with vertical format (SPADE [56]). Instead of recording
sequences of items explicitly, they record item-lists, i.e., each item has a list of sequence-ids
and positions where the item appears.

It is interesting to note that the depth first methods generally do better than the breadth
first methods when the data can fit in memory. The advantage becomes more evident when
the patterns are long [54].

There are several interesting extensions to sequential pattern mining. For example, various
constraints have been explored to reduce the number of patterns and make the sequential
pattern mining more effective [22, 41, 46, 55]. In 2003, Yan published the first method for
mining frequent closed subsequences using several efficient search space prunning methods
[53]. In addition, some methods (e.g., [45]) mine confident rules in the form of “A → B”.
Such rules can be generated by a post-processing step after the sequential patterns are found.

Recently, Guralnik and Karypis used sequential patterns as features to cluster sequential
data [23]. They project the sequences onto a feature vector comprised of the sequential
patterns, then use a k-means like clustering method on the vector to cluster the sequential
data. Interestingly, their work concurs with this study that the similarity measure based on
edit distance is a valid measure in distance based clustering methods for sequences. However,
I use clustering to group similar sequences here in order to detect approximate sequential
patterns. Their feature-based clustering method would be inappropriate for this purpose
because the features are based on exact match.

2.2 String Multiple Alignment

The support paradigm based sequential pattern mining algorithms extend the work done
in association rule mining. Association rule mining ignores the sequence dimension and simply
finds the frequent patterns in the itemsets. Approaching sequential analysis from association
rule mining might be natural. Association rules mine intra-itemset patterns in sets while
sequential mining finds inter-itemset patterns in sequences.

However, there is one important difference that can make sequential data mining easier.
Unlike sets, sequences have extra information that can come in very handy - the ordering.
In fact there is a rich body of literature on string (simple ordered lists) analysis in computer
science as well as computational biology.

The most current research in computational biology employs the multiple alignment tech-
nique to detect common underlying patterns (called consensus strings or motifs) in a group of
strings [24, 20, 48]. In computational biology, multiple alignment has been studied extensively

15

Table 2.1: Multiple alignment of the word pattern

seq1 P A T T T E R N
seq2 P A {} {} T E R M
seq3 P {} {} T T {} R N
seq4 O A {} T T E R B
seq5 P {} S Y Y R T N

Underlying pattern P A {} T T E R N

Table 2.2: The profile for the multiple alignment given in Table 2.1
position 1 2 3 4 5 6 7 8

A 3
B 1
E 3
M 1
N 3
O 1
P 4
R 1 4
S 1
T 1 3 4 1
Y 1 1
{} 2 3 1 1

Consensus string P A {} T T E R N

in the last two decades to find consensus strings in DNA and RNA sequences.

In the simple edit distance problem, one is trying to find an alignment of two sequences
such that the edit distance is minimum. In multiple alignment, the purpose is to find an
alignment over N strings such that the total pairwise edit distance for all N strings is minimal.
Aligned strings are defined to be the original string with null, {}, inserted where appropriate
so that the lengths of all strings are equivalent. A good alignment is one in which similar
characters are lined up in the same column. In such an alignment, the concatenation of the
most common characters in each column would represent the underlying pattern in the group
of strings.

For example, given a set of misspellings for a word, the correct spelling can be found by
aligning them. This is shown in Table 2.1 for the word pattern. Even though none of the
strings have the proper spelling the correct spelling can be discovered by multiple alignment.

Although, this is a straight extension of the well known edit distance problem, and can be
solved with dynamic programming, the combinatory nature of the problem makes the solution
impractical for even small number of sequences [24]. In practice, people have employed
the greedy approximation solution. That is, the solution is approximated by aligning two
sequences first and then incrementally adding a sequence to the current alignment of p − 1
sequences until all sequences have been aligned. At each iteration, the goal is to find the best
alignment of the added sequence to the existing alignment of p− 1 sequences. Consequently,

16

the solution might not be optimal. The various methods differ in the order in which the
sequences are added to the alignment. When the ordering is fair, the results are reasonably
good [24].

For strings, a sequence of simple characters, the alignment of p sequences is usually rep-
resented using a profile. A profile is a matrix whose rows represent the characters, whose
columns represent the position in the string, and whose entries represent the frequency or
percentage of each character in each column. Table 2.2 is the profile for the multiple align-
ment of the word pattern given in Table 2.1. During multiple alignment at each iteration we
are then aligning a sequence to a profile. This can be done nicely using dynamic programming
as in the case of aligning two sequences. Only the recurrence is changed to use the sum of
all pairwise characters in the column with a character in the inserted string. Although we
cannot reconstruct the p sequences from the profile, we have all the information we need to
calculate the distance between two characters for all p sequences. Therefore, profiles are an
effective representation of the p aligned strings and allow for efficient multiple alignment.

In this dissertation, I generalized string multiple alignment to find patterns in ordered
lists of sets. Although much of the concept could be borrowed, most of the details had to be
reworked. First, I select an appropriate measure for distance between sequences of itemsets.
Second, I propose a new representation, weighted sequences, to maintain the alignment infor-
mation. The issue of representing p sequences is more difficult in this problem domain because
the elements of the sequences are itemsets instead of simple characters. There is no simple
depiction of p itemsets to use as a dimension in a matrix representation. Thus, effectively
compressing p aligned sequences in this problem domain demands a different representation
form. In this dissertation, I propose to use weighted sequences to compress a group of aligned
sequences into one sequence. And last, unlike strings the selection of the proper items in each
column is not obvious. Recall that for strings, we simply take the most common character in
each column. For sequence of itemsets, users can use the strength cutoffs to control the level
of detail included in the consensus patterns. These ideas are discussed in detail in chapter 4.

In [10], Chudova and Smyth used a Bayes error rate paradigm under a Markov assumption
to analyze different factors that influence string pattern mining in computational biology.
Extending the theoretical paradigm to mining sequences of sets could shed more light to the
future research direction.

2.3 Approximate Frequent Pattern Mining

A fundamental problem of the conventional methods is that the exact match on patterns
does not take into account the noise in the data. This causes two potential problems. In real
data, long patterns tend to be noisy and may not meet the support level with exact matching
[42]. Even with moderate noise, a frequent long pattern can be mislabeled as an infrequent

17

pattern [54]. Not much work has been done on approximate pattern mining.
The first work on approximate matching on frequent itemsets was [52]. Although the

methodology is quite different, in spirit ApproxMAP is most similar to [52] in that both try
to uncover structure in large sparse databases by clustering based on similarity in the data
and exploiting the high dimensionality of the data. The similarity measure is quite different
because [52] works with itemsets while ApproxMAP works on sequences of itemsets.

Pei et al. also presents an apriori-based algorithm to incorporate noise for frequent item-
sets, but is not efficient enough [42]. Although the two methods introduced in [52] and [42]
are quite different in techniques, they both explored approximate matching among itemsets.
Neither address approximate matching in sequences.

Recently, Yang et al. presented a probabilistic paradigm to handle noise in mining strings
[54]. A compatibility matrix is introduced to represent the probabilistic connection from
observed items to the underlying true items. Consequently, partial occurrence of an item is
allowed and a new measure, match, is used to replace the commonly used support measure to
represent the accumulated amount of occurrences. However, it cannot be easily generalized
to apply to sequences of itemsets targeted in this research, and it does not address the issue
of generating huge number of patterns that share significant redundancy.

By lining up similar sequences and detecting the general trend, the multiple alignment
paradigm in this paper effectively finds consensus patterns that are approximately similar to
many sequences and dramatically reduces the redundancy among the derived patterns.

2.4 Unique Aspects of This Research

As discussed in the introduction, to the best of my knowledge, though there are some
related work in sequential pattern mining, this is the first study on mining consensus patterns
from sequence databases. It distinguishes itself from the previous studies in the following two
aspects.

• It proposes the theme of approximate sequential pattern mining, which reduces the
number of patterns substantially and provides much more accurate and informative
insights into sequential data.

• It generalizes the string multiple alignment techniques to handle sequences of itemsets.
Mining sequences of itemsets extends the application domain substantially.

18

Chapter 3

Problem Definition

In this dissertation, I examine closely the problem of mining sequential patterns. I start
by introducing the concept of approximate sequential pattern mining. I then propose a novel
paradigm for approximate sequential pattern mining, multiple alignment sequential pattern
mining, in databases with long sequences. By lining up similar sequences and detecting the
general trend, the multiple alignment paradigm effectively finds consensus sequences that are
approximately shared by many sequences.

3.1 Sequential Pattern Mining

Let I = {I1, . . . , Ip} be a set of items (1 ≤ p). An itemset s = {x1, . . . , xk} is a subset of
I. A sequence seqi = 〈si1 . . . sin〉 is an ordered list of itemsets, where si1, . . . , sin are itemsets.
For clarity, sometimes the subscript i for the sequence is omitted and seqi is denoted as
〈X1 · · ·Xn〉. Conventionally, the itemset sij = {x1, . . . , xk} in sequence seqi is also written
as sij = (xj1 · · ·xjk). The subscript i refers to the ith sequence, the subscript j refers to the
jth itemset in seqi, and the subscript k refers to the kth item in the jth itemset of seqi. A
sequence database D is a multi-set of sequences. That is multiple sequences that are exactly
the same are allowed in the database.

Table 3.1 demonstrates the notations. Table 3.2 gives an example of a fragment of a
sequence database D. All sequences in D are built from the set of items I given in Table 3.1.

A sequence seqi = 〈X1 · · ·Xn〉 is called a subsequence of another sequence seqj = 〈Y1 · · ·Ym〉,
and seqj a supersequence of seqi, if n ≤ m and there exist integers 1 ≤ a1 < · · · < an ≤ m such
that Xb ⊆ Yab

(1 ≤ b ≤ n). That is, seqj is a supersequence of seqi and seqi is a subsequence
of seqj , if and only if seqi is derived by deleting some items or whole itemsets from seqj .

Given a sequence database D, the support of a sequence seqp, denoted as sup(seqp), is
the number of sequences in D that are supersequences of seqp. Conventionally, a sequence
seqp is called a sequential pattern if sup(seqp) ≥ min sup, where min sup is a user-specified
minimum support threshold.

20

Table 3.1: A sequence, an itemset, and the set I of all items from Table 3.2
Items I Itemset s22 Sequence seq2

{ A, B, C, · · · , X, Y, Z } (BCX) 〈(A)(BCX)(D)〉

Table 3.2: A fragment of a sequence database D
ID Sequences
seq1 〈(BC) (DE)〉
seq2 〈(A) (BCX) (D)〉
seq3 〈(AE) (B) (BC) (D)〉
seq4 〈(A) (B) (DE)〉

Table 3.3: Multiple alignment of sequences in Table 3.2 (θ = 75%, δ = 50%)
seq1 〈() () (BC) (DE)〉
seq2 〈(A) () (BCX) (D)〉
seq3 〈(AE) (B) (BC) (D)〉
seq4 〈(A) () (B) (DE)〉

Weighted Sequence wseq3 (A:3, E:1):3 (B:1):1 (B:4, C:3, X:1):4 (D:4, E:2):4 4

Pattern Con Seq (w ≥ 3) 〈(A) (BC) (D)〉
Wgt Pat Con Seq (w ≥ 3) 〈(A:3) (B:4, C:3) (D:4)〉 4

Variation Con Seq (w ≥ 2) 〈(A) (BC) (DE)〉
Wgt Var Con Seq (w ≥ 2) 〈(A:3) (B:4, C:3) (D:4, E:2)〉 4

In the example given in Table 3.2, seq2 and seq3 are supersequences of seqp = 〈(A)(BC)〉.
Whereas seq1 is not a supersequence of seqp because it does not have item A in the first
itemset. Similarly, seq4 is not a supersequence of seqp because it does not have item C in the
second itemset. Thus, sup(seqp = 〈(A)(BC)〉) = 2 in this example.

3.2 Approximate Sequential Pattern Mining

In many applications, people prefer long sequential patterns shared by many sequences.
However, due to noise, it is very difficult to find a long sequential pattern exactly shared by
many sequences. Instead, many sequences may approximately share a long sequential pattern.
For example, although expecting parents would have similar buying patterns, very few will
have exactly the same pattern.

Motivated by the above observation, I introduce the notion of mining approximate sequen-
tial patterns. Let dist be a normalized distance measure of two sequences with range [0, 1].
For sequences seqi, seq1, and seq2, if dist(seqi, seq1) < dist(seqi, seq2), then seq1 is said be
more similar to seqi than seq2 is.

Näıvely, I can extend the conventional sequential pattern mining paradigm to get an
approximate sequential pattern mining paradigm as follows. Given a minimum distance
threshold min dist, the approximate support of a sequence seqp in a sequence database D is

21

defined as s̃up(seqp) = ‖{seqi|(seqi ∈ D) ∧ (dist(seqi, seqp) ≤ min dist)}‖. (Alternatively,
the approximate support can be defined as s̃up(seqp) =

∑
seqi∈D dist(seqi, seqp). All the

following discussion retains.) Given a minimum support threshold min sup, all sequential
patterns whose approximate supports passing the threshold can be mined.

Unfortunately, the above paradigm may suffer from the following two problems. First,
the mining may find many short and probably trivial patterns. Short patterns tend to be
easier to get similarity counts from the sequences than long patterns. Thus, short patterns
may overwhelm the results.

Second, the complete set of approximate sequential patterns may be larger than that
of exact sequential patterns and thus difficult to understand. By approximation, a user may
want to get and understand the general trend and ignore the noise. However, a näıve output of
the complete set of approximate patterns in the above paradigm may generate many (trivial)
patterns and thus obstruct the mining of information.

Based on the above analysis, I abandon the threshold-based paradigm in favor of a multiple
alignment paradigm. By grouping similar sequences, and then lining them up, the multiple
alignment paradigm can effectively uncover the hidden trend in the data. It effect, we are
able to summarize the data into few long patterns that are approximately shared by many
sequences in the data.

In the following sections I present the formal problem statement along with definitions
used in the multiple alignment paradigm for sequences of sets. The definitions have been
expanded from those for strings in computational biology [24].

3.3 Definitions

The global multiple alignment of a set of sequences is obtained by inserting a null itemset,
(), either into or at the ends of the sequences such that each itemset in a sequence is lined up
against a unique itemset or () in all other sequences. In the rest of the dissertation, alignment
will always refer to global multiple alignment.

Definition 1. (Optimal Multiple Alignment) Given two aligned sequences and a dis-
tance function for itemsets, the pairwise score(PS) between the two sequences is the sum
over all positions of the distance between an itemset in one sequence and the corresponding
itemset in the other sequence. Given a multiple alignment of N sequences, the multiple

alignment score(MS) is the sum of all pairwise scores. Then the optimum multiple

alignment is one in which the multiple alignment score is minimal.

PS(seqi, seqj) = Σdistance(siki
(x), sjkj

(x)) (for all aligned positions x)
MS(N) = ΣPS(seqi, seqj) (over all 1 ≤ i ≤ N ∧ 1 ≤ j ≤ N)

(3.1)

where siki
(x) refers to the kth

i itemset for sequence i which has been aligned to position x.

22

The first four rows in Table 3.3 show the optimal multiple alignment of the fragment of
sequences in database D given in Table 3.2. Clearly, itemsets with shared items are lined up
into the same positions as much as possible. The next row in Table 3.3 demonstrates how
the alignment of the four sequences can be represented in the form of one weighted sequence.
Weighted sequences are an effective method to compress a set of aligned sequences into one
sequence.

Definition 2. (Weighted Sequence) A weighted itemset, denoted in equation 3.2, is
defined as an itemset that has a weight associated with each item in the itemset as well as the
itemset itself. Then a weighted sequence, denoted in equation 3.2, is a sequence of weighted
itemsets paired with a separate weight for the whole sequence. The weighted sequence carries
the following three information. (1) The weight associated with the weighted sequence, n, is
the total number of sequences in the current alignment. (2) The weight associated with the
itemset wsj , vj , represents how many sequences have a nonempty itemset aligned in position
j. And (3) the weight associated with each item ijk in itemset wsj , wjk, represents the total
number of the item ijk present in all itemsets in the aligned position j.

weighted itemset wsj = (ij1 : wj1, · · · , ijm : wjm) : vj

weighted seq wseqi = 〈(i11 : w11, · · · , i1s : w1s) : v1 · · · (il1 : wl1, · · · , ilt : wlt) : vl〉 : n
(3.2)

In this dissertation, the weighted sequences are numbered as wseqi where i is the ith

alignment in the partition. Hence, wseqi denotes that i+ 1 sequences have been aligned and
compressed into the weighted sequence.

In the example given in Table 3.3, the weighted sequence wseq3 indicates that 4 sequences
(seq1 to seq4) have been aligned. And there are three A’s and one E in the first column of the
alignment. This information is summarized in the weights w11 = 3 and w12 = 1 associated
with the items A and E respective in the first weighted itemset (A:3, E:1):3. The weight
v1 = 3 associated with the whole itemset indicates that one sequence out of four sequences
(n − vj = 4 − 3 = 1) has a null itemset aligned to this position. seq1 has a null itemset in
the first position of the alignment. The total number of sequences, n = 4 shown in the last
column, is specified as the weight for the full weighted sequence.

Definition 3. (Strength) The strength of an item, ijk, in an alignment is defined as the
percentage of sequences in the alignment that have item ijk present in the aligned position j.

strength(ijk) =
wjk

n
∗ 100% (3.3)

Clearly, larger strength value indicates that more sequences share the item in the same
aligned position. In Table 3.3, the strength of item A in the first itemset is w11

n ∗ 100% =
3
4 ∗ 100% = 75%.

23

Definition 4. (Consensus Sequence) Given a cutoff point, ψ, and a multiple alignment
of N sequences, the consensus itemset for position j in the alignment is an itemset of all
items that occur in at least ψ sequences in position j. Then a consensus sequence is simply a
concatenation of the consensus itemsets for all positions excluding any null consensus itemsets.
When item weights are included it is called a weighted consensus sequence. Thus, a
weighted consensus sequence is the weighted sequence minus all items that do not meet the
strength cutoff point. By definition, the consensus sequence will always be a subsequence of
the weighted sequence.

Consensus itemset (j) = {xjk|∀xjk ∈ wsj ∧ strength(xjk) ≥ ψ}
Consensus Sequence = 〈Υ1≥j≥l {xjk|∀xjk ∈ wsj ∧ strength(xjk) ≥ ψ}〉

(3.4)

where Υ1≥j≥l sj is defined as the concatenation of the itemsets sj 6= NULL and l is the
length of the weighted sequence.

Based on item strengths, items in an alignment are divided into three groups: rare items,
common items, and frequent items. The rare items may represent noise and are in most cases
not of any interest to the user. The frequent items occur in enough sequences to constitute
the underlying pattern in the group. The common items do not occur frequently enough to be
part of the underlying pattern but occur in enough sequences to be of interest. The common
items generally constitute variations to the primary pattern. That is, they are the items most
likely to occur regularly in a subgroup of the sequences.

Using this categorization I make the final results more understandable by defining two
types of consensus sequences corresponding to two cutoff points: (1) The pattern consen-
sus sequence, which is composed solely of frequent items and (2) the variation consensus
sequence, an expansion of the pattern consensus sequence to include common items. This
method presents both the frequent underlying patterns and their variations while ignoring
the noise. It is an effective method to summarize the alignment because the user can clearly
understand what information is being dropped. Furthermore, the user can control the level
of summarization by defining the two cutoff points for frequent and rare items as desired.

Definition 5. (Pattern Consensus Sequence and Variation Consensus Sequence)

Given two cutoff points, θ for frequent items and δ for rare items, (1) the Pattern Consen-

sus Sequence is the consensus sequence composed of all items with strength greater than
equal to θ and (2) the Variation Consensus Sequence is the consensus sequence composed
of all items with strength greater than equal to δ where 0 ≤ δ ≤ θ ≤ 1. The pattern consensus
sequence is also called the consensus pattern.

Pattern Consensus Sequence = 〈Υ1≥j≥l {xjk|∀xjk ∈ wsj ∧ strength(xjk) ≥ θ}〉
Variation Consensus Sequence = 〈Υ1≥j≥l {xjk|∀xjk ∈ wsj ∧ strength(xjk) ≥ δ}〉

where 0 ≤ δ ≤ θ ≤ 1
(3.5)

24

The last four rows in Table 3.3 show the various consensus sequences for the example
given in Table 3.2. The cutoff points for frequent and rare items are defined as follows :
θ = 75% and δ = 50%. The four frequent items – A from the first position in the alignment,
B and C from the third position, and D from the fourth position – with weights greater than
or equal to 3 (w ≥ θ ∗ n = 75% ∗ 4 = 3 sequences) are concatenated to construct the pattern
concensus sequence 〈(A)(BC)(D)〉. In addition to these frequent items, the variation consensus
sequence,〈(A)(BC)(DE)〉, also includes the common item – E from the fourth position in the
alignment – with weight greater than or equal to 2 (w ≥ δ ∗ n = 50% ∗ 4 = 2 sequences).

3.4 Multiple Alignment Sequential Pattern Mining

Given (1) N sequences, (2) a distance function for itemsets, and (3) strength cutoff points
for frequent and rare items (users can specify different cutoff points for each partition), the
problem of multiple alignment sequential pattern mining is (1) to partition the N sequences
into K sets of sequences such that the sum of the K multiple alignment scores is minimum,
(2) to find the optimal multiple alignment for each partition, and (3) to find the pattern
consensus sequence and the variation consensus sequence for each partition.

3.5 Why Multiple Alignment Sequential Pattern Mining ?

Multiple alignment pattern mining is an effective approach to analyzing sequential data
for practical use. It is a versatile exploratory data analysis tool for sequential data. (1) The
partition and alignment organize the sequences, (2) the weighted sequences compress them,
(3) the weighted consensus sequences summarize them at the user specified level, and (4)
given reasonable strength levels, consensus sequences are patterns that are approximately
similar to many sequences in the database.

Multiple alignment pattern mining organizes and compresses the huge high dimensional
database into something that is viewable by people. Data analysts can look at the weighted
consensus sequences to find the partitions for interest. They can then explore the partitions
of interest in more detail by looking at the aligned sequences and the weighted sequences to
find potential underlying patterns in the database. Moreover, once the data is partitioned
and aligned, it is trivial to view different levels of summarization (consensus sequences) in
real time. Since “humans are better able to recognize something than generate a description
of it” [32], the data analyst can then use the more efficient pattern search methods to do
confirmatory data analysis.

In addition, multiple alignment pattern mining is an effective clustering method for group-
ing similar sequences in the sequence database. Intuitively, minimizing the sum of the K
multiple alignment scores will partition the data into similar sequences. Grouping similar

25

sequences together has many benefits. First, we can do multiple alignment on a group of sim-
ilar sequences to find the underlying pattern (consensus sequence) in the group. Second, once
sequences are grouped the user can specify strength as a percentage of the group instead of
the whole database. Then, frequent uninteresting patterns (grouped into large partitions) will
have a higher cutoff number than rare interesting patterns (grouped into small partitions).
Thus, frequent uninteresting patterns will not flood the results as they do in the conventional
support paradigm.

In the support paradigm min sup is specified against the whole database. To overcome
the difference in frequent uninteresting patterns and rare interesting patterns, researchers
have looked at using multilevel cutoff points for the support paradigm [34, 35, 50]. The
main drawback of these methods is the complication in specifying the multilevel cutoff points.
Grouping similar sequences has the effect of automatically using multiple cutoff points without
the complication of specifying them.

26

Chapter 4

Method: ApproxMAP

In this chapter I detail an efficient method, ApproxMAP (for APPROXimate Multiple
Alignment Pattern mining), for multiple alignment sequential pattern mining. I will first
demonstrate the method through an example and then discuss the details of each step in
later sections.

4.1 Example

Table 4.1 is a sequence database D. Although the data is lexically sorted it is difficult to
gather much information from the raw data even in this tiny example.

The ability to view Table 4.1 is immensely improved by using the alignment paradigm
– grouping similar sequences then lining them up and coloring the consensus sequences as
in Tables 4.2 through 4.4. Note that the patterns 〈(A)(BC)(DE)〉 and 〈(IJ)(K)(LM)〉 do not
match any sequence exactly.

Given the input data shown in Table 4.1 (N = 10 sequences), ApproxMAP (1) calculates
the N ∗ N sequence to sequence proximity matrix from the data, (2) partitions the data
into two clusters (k = 2), (3) aligns the sequences in each cluster (Tables 4.2 and 4.3) – the
alignment compresses all the sequences in each cluster into one weighted sequence per cluster,
and (4) summarizes the weighted sequences (Tables 4.2 and 4.3) into weighted consensus
sequences (Table 4.4).

4.2 Partition: Organize into Similar Sequences

The first task is to partition the N sequences into K sets of sequences such that the sum
of the K multiple alignment scores is minimum. The exact solution would be too expensive
to be practical. Thus, in ApproxMAP I approximate the optimal partition by clustering the
sequence database according to the similarity of the sequences. In the remainder of this

28

Table 4.1: Sequence database D lexically sorted
ID Sequences
seq4 〈(A) (B) (DE)〉
seq2 〈(A) (BCX) (D)〉
seq3 〈(AE) (B) (BC) (D)〉
seq7 〈(AJ) (P) (K) (LM)〉
seq5 〈(AX) (B) (BC) (Z) (AE)〉
seq6 〈(AY) (BD) (B) (EY)〉
seq1 〈(BC) (DE)〉
seq9 〈(I) (LM)〉
seq8 〈(IJ) (KQ) (M)〉
seq10 〈(V) (PW) (E)〉

Table 4.2: Cluster 1 (θ = 50% ∧ w ≥ 4)
seq2 〈(A) () (BCX) () (D)〉
seq3 〈(AE) (B) (BC) () (D)〉
seq4 〈(A) () (B) () (DE)〉
seq1 〈() () (BC) () (DE)〉
seq5 〈(AX) (B) (BC) (Z) (AE)〉
seq6 〈(AY) (BD) (B) () (EY)〉
seq10 〈(V) () () (PW) (E)〉

Weighted Seq (A:5, E:1,V:1, X:1,Y:1):6 (B:3, D:1):3 (B:6, C:4,X:1):6 (P:1,W:1,Z:1):2 (A:1,D:4, E:5,Y:1):7 7

PatternConSeq 〈(A) (BC) (DE)〉
WgtPatConSeq 〈(A:5) (B:6, C:4) (D:4, E:5)〉 7

Table 4.3: Cluster 2 (θ = 50% ∧ w ≥ 2)
seq8 〈(IJ) () (KQ) (M)〉
seq7 〈(AJ) (P) (K) (LM)〉
seq9 〈(I) () () (LM)〉

Weighted Sequence 〈(A:1,I:2,J:2):3 (P:1):1 (K:2,Q:1):2 (L:2,M:3):3 3

Pattern Consensus Seq 〈(IJ) (K) (LM)〉
Weighted Pattern Consensus Seq 〈(I:2, J:2):3 (K:2):2 (L:2, M:3):3〉 3

Table 4.4: Consensus sequences (θ = 50%, δ = 20%)

100%: 85%: 70%: 50%: 35%: 20%
Pattern Consensus Seq1 strength = 50% = 3.5 > 3 seqs (A) (B C) (D E)

Variation Consensus Seq1 strength = 20% = 1.4 > 1 seqs (A) (B) (B C) (D E)
Pattern Consensus Seq2 strength = 50% = 1.5 > 1 seqs (I J) (K) (L M)

Variation Consensus Seq2 Not appropriate in this small set

dissertation, I use partition, cluster, and group interchangeably. The exact choice of the word
depends on the flow of the context.

29

4.2.1 Distance Measure

The minimum pairwise score between two sequences is a good distance function to measure
its similarity. In fact, the minimum pairwise score is equivalent to the weighted edit distance,
often used as a distance measure for variable length sequences [24]. Also referred to as
the Levenstein distance, the weighted edit distance is defined as the minimum cost of edit
operations (i.e., insertions, deletions, and replacements) required to change one sequence to
the other. An insertion operation on seq1 to change it towards seq2 is equivalent to a deletion
operation on seq2 towards seq1. Thus, an insertion operation and a deletion operation have
the same cost. INDEL() is used to denote an insertion or deletion operation and REPL()
is used to denote a replacement operation. Often, for two sets X,Y the following inequality
is assumed.

REPL(X,Y) ≤ INDEL(X) + INDEL(Y)

Given two sequences seq1 = 〈X1 · · ·Xn〉 and seq2 = 〈Y1 · · ·Ym〉, the weighted edit dis-
tance between seq1 and seq2 can be computed by dynamic programming using the following
recurrence relation.

D(0, 0)=0
D(i, 0)=D(i− 1, 0) + INDEL(Xi) for (1 ≤ i ≤ n)
D(0, j)=D(0, j − 1) + INDEL(Yj) for (1 ≤ j ≤ m)

D(i, j) =min


D(i− 1, j) + INDEL(Xi)
D(i, j − 1) + INDEL(Yj)

D(i− 1, j − 1) +REPL(Xi, Yj)
for (1 ≤ i ≤ n) and (1 ≤ j ≤ m)

(4.1)

Cost of Edit Operations for Sets: Normalized Set Difference

I now have to define the cost of edit operations (i.e., INDEL() and REPL() in Equation
4.1) for sets. The similarity of the two sets can be measured by how many elements are shared
or not. To do so, here I adopt the normalized set difference as the cost of replacement of sets
as follows. Given two sets, X and Y ,

REPL(X,Y) = ‖(X−Y)∪(Y−X)‖
‖X‖+‖Y ‖ = ‖X‖+‖Y ‖−2‖X∩Y ‖

‖X‖+‖Y ‖ (4.2)

This measure has a nice property that,
0 ≤ REPL() ≤ 1 (4.3)

Moreover, it satisfies the following metric properties [11].
1. nonnegative property: distance(a, b) ≥ 0 for all a and b

2. zero property: distance(a, b) = 0 if and only if a = b

3. symmetry property: distance(a, b) = distance(b, a) for all a and b

4. triangle inequality: distance(a, b) + distance(b, c) ≥ distance(a, c) for all a, b, c

30

Following equation 4.2, the cost of an insertion/deletion is

INDEL(X) = REPL(X, ()) = REPL((), X) = 1, (4.4)

where X is a set. Table 4.5 shows some examples on the calculation of normalized set
difference. Given exact same itemsets REPL((A), (A)) = 0. Given itemsets that share no
items REPL((AB), (CD)) = 1. Given sets that share a certain number of items, REPL() is
a fraction between 0 and 1.

Table 4.5: Examples of normalized set difference between itemsets
X Y REPL(X,Y) X Y REPL(X,Y)
(A) (A) 0 (A) (B) 1
(A) (AB) 1

3 (AB) (CD) 1
(AB) (AC) 1

2 (A) () 1

Clearly, the normalized set difference, REPL(), is equivalent to the Sorensen coefficient,
DS , as shown in equation 4.5. The Sorensen coefficient is an index similar to the more
commonly used Jaccard coefficient [36]. The Jaccard coefficient, DJ , in dissimilarity notation
is defined in equation 4.6. The difference is that REPL() gives more weight to the common
elements because in alignment what are shared by two sets is more important than what are
not.

DS(X,Y) = 1− 2‖X∩Y ‖
‖X−Y ‖+‖Y−X‖+2‖X∩Y ‖ = ‖X‖+‖Y ‖−2‖X∩Y ‖

‖X‖+‖Y ‖ = REPL(X,Y) (4.5)

DJ(X,Y) = 1− ‖X∩Y ‖
‖X∪Y ‖ = 1− ‖X∩Y ‖

‖X−Y ‖+‖Y−X‖+‖X∩Y ‖ (4.6)

Pairwise Score Between Sequences: Normalized Edit Distance

Since the N ∗N sequence to sequence distances will have to be compared with each other
and the length of the sequences vary, we normalize the results by dividing the weighted edit
distance by the length of the longer sequence in the pair, and call it the normalized edit
distance. That is,

dist(seqi, seqj) =
D(seqi, seqj)

max{‖seqi‖, ‖seqj‖}
(4.7)

where D(seqi, seqj) is given in Equation 4.1.

Clearly, dist() satisfies the metric properties and dist() is between 0 and 1. This follows
directly from the properties of the itemset distance, REPL(). Table 4.6 illustrates some
examples. As seen in the first example, when two sequences seq9 and seq10 do not share any
items in common, dist(seq9, seq10) = 1 since each itemset distances is 1. The second example
shows the two sequences that are most similar among the 10 sequences in the example given
in section 4.1. When seq4 and seq2 are optimally aligned, three items, A, B, D, can be lined

31

Table 4.6: Examples of normalized edit distance between sequences
seq9 〈(I) (LM) ()〉 seq4 〈(A) (B) (DE)〉 seq6 〈(AY) (BD) (B) (EY)〉
seq10 〈(V) (PW) (E)〉 seq2 〈(A) (BCX) (D)〉 seq2 〈(A) () (BCX) (D)〉

REPL() 1 1 1 REPL() 0 1
2

1
3 REPL() 1

3 1 1
2 1

dist() 3/3 = 1 dist() (1
2 + 1

3)/3 = 0.278 dist() (2 + 5
6)/4 = 0.708

up resulting in dist(seq4, seq2) = 0.278. In comparison in the third example, when seq2 and
seq6 are optimally aligned, only two items (A and B) are shared. There are many items that
are not shared resulting in dist(seq6, seq2) = 0.708. Clearly, seq4 is more similar to seq2 than
seq6. That is, dist(seq4, seq2) < dist(seq6, seq2).

4.2.2 Clustering

Now I use the distance function dist(seqi, seqj) to cluster sequences. Clustering methods
identify homogeneous groups of objects based on whatever data is available. Data is often
given in the form of a pattern matrix with features measured on a ratio scale, or as a proximity
matrix [5, 30]. As in ApproxMAP, the proximity matrix is sometimes given as a distance
function between data points.

The general objective of clustering methods that work on a distance function is to minimize
the intra-cluster distances and maximize the inter-cluster distance [13, 29]. By using the
pairwise score between sequences (Equation 4.7) as the distance function for sequences of sets,
clustering can approximate a partition that minimizes the sum of the K multiple alignment
scores.

In particular, density based methods, also called mode seeking methods, generate a single
partition of the data in an attempt to recover the natural groups in the data. Clusters are
identified by searching for regions of high density, called modes, in the data space. Then these
clusters are grown to the valleys of the density function [30]. These valleys can be considered
as natural boundaries that separate the modes of the distribution [31, 19].

Building clusters from dense regions that may vary in shape and size [9, 14, 43] results
in clusters of arbitrary shapes. In addition, growing the clusters to the valleys of the density
function can identify the number of natural groups in the data automatically. Thus, with
a good density function these methods can best approximate a partition that minimizes the
sum of the K multiple alignment scores.

Definition of Density for Sequences

What is a good definition of density for a sequence? Intuitively, a sequence is “dense” if
there are many sequences similar to it in the database. A sequence is “sparse,” or “isolated,”
if it is not similar to any others, such as an outlier.

32

Technically, the nonparametric probability density estimate at a point x, p(x), is propor-
tional to the number of points, n, falling in a local region, d, around x. Formally,

p(x) =
n

N ∗ d
, (4.8)

where N is the total number of points. For a given dense point x, its local region d will have
many points, resulting in a large n. This in turn will return a large density estimate. In
contrast, a point x that has few points in d, will result in a small n and thus a small density
estimate [13, 30].

The local region, d, can be specified by either a Parzen window approach or a k nearest
neighbor approach. In the Parzen window approach the size of the local region is fixed. The
user specifies the radius used as the local window size when estimating the local density at
a point [13, 30]. On the other hand, in the k nearest neighbor approach the size of the local
region is variable. The user specifies the number of neighbors, k, which will influence the
local density estimate at a point. The local region d, is then defined by the furthest neighbor
of the k nearest neighbors.

Parzen window is inappropriate for ApproxMAP because the unit of the distance measure
it not Euclidean. The users would have no basis on which to specify the fixed window size. In
contrast, k nearest neighbor works well because the users can intuitively specify the number
of neighbors, k, that should have local influence on the density estimate of a data point. That
is, how many nearest points should be considered as a neighbor.

Adopting such a nonparametric probability density estimate for sequences, I measure the
density of a sequence by a quotient of the number of similar sequences (nearest neighbors),
n, against the space occupied by such similar sequences, d. In particular, for each sequence
seqi in a database D,

p(seqi) =
n

‖D‖ ∗ d
.

Since ‖D‖ is constant across all sequences, for practical purposes it can be omitted.

Therefore, given k, which specifies the k-nearest neighbor region, ApproxMAP defines the
density of a sequence seqi in a database D as follows. Let d1, . . . , dk be the k smallest non-zero
values of dist(seqi, seqj) (defined in equation 4.7), where seqj 6= seqi, and seqj is a sequence
in D. Then,

Density(seqi, k) =
nk(seqi)
distk(seqi)

, (4.9)

where distk(seqi) = max{d1, . . . , dk} and nk(seqi) = ‖{seqj ∈ D|dist(seqi, seqj) ≤ distk(seqi)}‖.
nk(seqi) is the number of sequences including all ties in the k-nearest neighbor space for se-
quence seqi, and distk(seqi) is the size of the k-nearest neighbor region for sequence seqi.
nk(seqi) is not always equal to k because of ties.

33

Density Based k Nearest Neighbor Clustering

ApproxMAP uses uniform kernel density based k nearest neighbor clustering. In this algo-
rithm, the user-specified parameter k not only specifies the local region to use for the density
estimate, but also the number of nearest neighbors that the algorithm will search for linkage.
I adopt an algorithm from [44] based on [51] as given in Algorithm 1. The algorithm has
complexity O(k · ‖D‖).

Theoretically, the algorithm is similar to the single linkage method. The single linkage
method builds a tree with each point linking to its closest neighbor [13]. In the density
based k nearest neighbor clustering, each point links to its closest neighbor, but (1) only with
neighbors with greater density than itself, and (2) only up to k nearest neighbors. Thus, the
algorithm essentially builds a forest of single linkage trees (each tree representing a natural
cluster), with the proximity matrix defined as follows,

dist′(seqi, seqj) =



dist(seqi, seqj) if dist(seqi, seqj) ≤ distk(seqi)
and Density(seqj , k) < Density(seqi, k)

MAX DIST if dist(seqi, seqj) ≤ distk(seqi)
and Density(seqj , k) = Density(seqi, k)

∞ otherwise

(4.10)

where dist(seqi, seqj) is defined in Equation 4.7, Density(seqi, k) and distk(seqi) are defined
in Equation 4.9, and MAX DIST = max{dist(seqi, seqj)} + 1 for all i, j. Note that the
proximity matrix is no longer symmetric. Step 2 in Algorithm 1 builds the single linkage
trees with all distances smaller than MAX DIST . Then in Step 3, the single linkage trees
connected by MAX DIST are linked if the density of one tree is greater then the density of
the other to merge any local maxima regions. The density of a tree (cluster) is the maximum
density over all sequence densities in the cluster. I use Algorithm 1 because it is more efficient
than implementing the single linkage based algorithm.

This results in major improvements over the regular single linkage method. First, the use
of k nearest neighbors in defining the density reduces the instability due to ties or outliers
when k > 1 [14]. In density based k nearest neighbor clustering, the linkage is based on the
local density estimate as well as the distance between points. That is, the linkage to the
closest point is only made when the neighbor is more dense than itself. This still gives the
algorithm the flexibility in the shape of the cluster as in single linkage methods, but reduces
the instability due to outliers.

Second, use of the input parameter k as the local influential region provides a natural cut
of the linkages made. An unsolved problem in the single linkage method is how to cut the
one large linkage tree into clusters. In this density based method, by linking only up to the k
nearest neighbors, the data is automatically separated at the valleys of the density estimate
into several linkage trees.

34

Algorithm 1. (Uniform kernel density based k-NN clustering)

Input: a set of sequences D = {seqi}, number of neighbor sequences k;

Output: a set of clusters {Cp}, where each cluster is a set of sequences;

Method:

1. Initialize every sequence as a cluster. For each sequence seqi in cluster Cseqi ,
set Density(Cseqi) = Density(seqi, k).

2. Merge nearest neighbors based on the density of sequences. For each se-
quence seqi, let seqi1 , . . . , seqin be the nearest neighbor of seqi, where n = nk(seqi)
as defined in Equation 4.9. For each seqj ∈ {seqi1 , . . . , seqin}, merge cluster
Cseqi containing seqi with a cluster Cseqj containing seqj , if Density(seqi, k) <
Density(seqj , k) and there exists no seq′j having dist(seqi, seq′j) < dist(seqi, seqj)
and Density(seqi, k) < Density(seq′j , k). Set the density of the new cluster to
max{Density(Cseqi), Density(Cseqj)}.

3. Merge based on the density of clusters - merge local maxima regions.
For all sequences seqi such that seqi has no nearest neighbor with density greater
than that of seqi, but has some nearest neighbor, seqj , with density equal to that
of seqi, merge the two clusters Cseqj and Cseqi containing each sequence if
Density(Cseqj) > Density(Cseqi).

Obviously, different k values will result in different clusters. However, this does not
imply that the natural boundaries in the data change with k. Rather, different values of
k determine the resolution when locating the valleys. That is, as k becomes larger, more
smoothing occurs in the density estimates over a larger local area in the algorithm. This
results in lower resolution of the data. It is like blurring a digital image where the boundaries
are smoothed. Practically speaking, the final effect is that some of the local valleys are not
considered as boundaries anymore. Therefore, as the value of k gets larger, similar clusters
are merged together resulting in fewer number of clusters.

In short, the key parameter k determines the resolution of clustering. Since k defines
the neighbor space, a larger k value tends to merge more sequences and results in a smaller
number of large clusters, while a smaller k value tends to break up clusters. Thus, k controls
the level of granularity at which the data is partitioned. The benefit of using a small k value
is that the algorithm can detect less frequent patterns. The tradeoff is that it may break
up clusters representing strong patterns (patterns that occur in many sequences) to generate
multiple similar patterns [14]. As shown in the performance study (section 6.1.1), in many
applications, a value of k in the range from 3 to 9 works well.

kum
Algorithm 1. (Uniform kernel density based k-NN clustering)
Input: a set of sequences D = {seqi}, number of neighbor sequences k;
Output: a set of clusters {Cp}, where each cluster is a set of sequences;
Method:
1. Initialize every sequence as a cluster. For each sequence seqi in cluster Cseqi ,
set Density(Cseqi) = Density(seqi, k).
2. Merge nearest neighbors based on the density of sequences. For each sequence
seqi, let seqi1 , . . . , seqin be the nearest neighbor of seqi, where n = nk(seqi)
as defined in Equation 4.9. For each seqj 2 {seqi1 , . . . , seqin}, merge cluster
Cseqi containing seqi with a cluster Cseqj containing seqj , if Density(seqi, k) <
Density(seqj , k) and there exists no seq0j having dist(seqi, seq0j) < dist(seqi, seqj)
and Density(seqi, k) < Density(seq0j , k). Set the density of the new cluster to
max{Density(Cseqi),Density(Cseqj)}.
3. Merge based on the density of clusters - merge local maxima regions.
For all sequences seqi such that seqi has no nearest neighbor with density greater
than that of seqi, but has some nearest neighbor, seqj , with density equal to that
of seqi, merge the two clusters Cseqj and Cseqi containing each sequence if
Density(Cseqj) > Density(Cseqi).

35

Note that in practice, the normal single linkage method is a degenerate case of the algo-
rithm with k = 1. When k = 1, no smoothing occurs and not enough local information is
being used to estimate the local density. Thus, the algorithm becomes instable because the
outliers can easily influence the density estimates. Without the reasonable density estimates,
it becomes difficult to locate the valleys and the proper boundaries.

Choosing the Right Clustering Method

In summary, density based clustering methods have many benefits for clustering se-
quences:

1. The basic paradigm of clustering around dense points fits the sequential data best
because the goal is to form groups of arbitrary shape and size around similar sequences.

2. Density based k nearest neighbor clustering algorithms will automatically estimate the
appropriate number of clusters from the data.

3. Users can cluster at different resolutions by adjusting k.

Nonetheless, if ‖D‖ is huge and calculating the k nearest neighbor list becomes prohibitive,
ApproxMAP can be extended to use the sample based iterative partitioning method. This is
discussed further in section 4.6.2.

Note that there are numerous clustering methods out there and still many more are being
developed. Jain, a notable expert in clustering methods, has said [29]:

There is no clustering technique that is universally applicable in uncovering the variety

of structures present in multidimensional data sets...This explains the large number of

clustering algorithms which continue to appear in the literature; each new clustering

algorithm performs slightly better than the existing ones on a specific distribution of

patterns...It is essential for the user of a clustering algorithm to not only have a thorough

understanding of the particular technique being utilized, but also to know the details of

the data gathering process and to have some domain expertise; the more information the

user has about the data at hand, the more likely the user would be able to succeed in

assessing its true class structure [30].

In essence, choosing the right clustering method is difficult and depends heavily on the
application. Having a good understanding of the data and the clustering method is important
in making the right choice.

I found that in general the density based k-nearest neighbor clustering methods worked
well and was efficient for sequential pattern mining. In fact, in recent years many variations
of density based clustering methods have been developed [9, 14, 43]. Many use k-nearest
neighbor or the Parzen window for the local density estimate. Recently, others have also

36

Table 4.7: The N ∗N proximity matrix for database D given in Table 4.1
ID seq1 seq2 seq3 seq4 seq5 seq6 seq10 seq7 seq8 seq9

seq1 0
seq2 0.511 0
seq3 0.583 0.383 0
seq4 0.444 0.278 0.417 0
seq5 0.700 0.707 0.500 0.567 0
seq6 0.708 0.708 0.542 0.458 0.533 0
seq10 0.778 1 1 0.778 0.867 0.833 0
seq7 1 0.833 0.875 0.833 0.900 0.875 0.833 0
seq8 1 1 1 1 1 1 1 0.542 0
seq9 1 1 1 1 1 1 1 0.750 0.556 0

used the shared neighbor list [14] as a measure of density. Other clustering methods that can
find clusters of arbitrary shape and size may work as well or better depending on the data.
Any clustering method that works well for the data can be used in ApproxMAP. But for the
purposes of demonstrating ApproxMAP, the choice of a density based clustering method was
based on its overall good performance and simplicity.

Furthermore, it should be understood that, as discussed in section 4.6.2, the steps after
the clustering step make up for most of the inaccuracy introduced in it. In fact, as seen in
the study of sample based iterative clustering method (section 6.1.5), the multiple alignment
step can compensate for much of the differences between the different clustering algorithms
to give comparable results. Thus, in the absence of a better choice based on actual data,
a reasonably good clustering algorithm that finds clusters of arbitrary shape and size will
suffice.

4.2.3 Example

Table 4.7 is the proximity matrix for the example given in section 4.1. It has been
arranged so that the two triangle areas are the intra cluster distances for the two clusters,
and the rectangular area is the inter cluster distances. Clearly, the clustering method has
been able to partition the sequences such that the intra cluster distance is much smaller than
the inter cluster distances. Except for the one outlier, seq10, all intra cluster distances are
less than 0.8 while the inter cluster distances are greater than that. The average distance in
the intra cluster distance is 0.633 and 0.616 for cluster 1 and 2 respectively. In comparison,
the average distance for the inter cluster distance is 0.960.

Using the proximity matrix given in Table 4.7, the clustering algorithm first calculates
the k-nearest neighbor list and the density as given in Table 4.8. Table 4.9 shows how the
clusters are formed in the following steps. For each sequence, column ’Step 2’ first shows
the nearest denser neighbor sequence with which the sequence merged with. If that denser

37

Table 4.8: k nearest neighbor list and density for each sequence in D
ID Sequences Density 1st NN(ID:dist) 2nd NN
seq1 〈(BC) (DE)〉 3.913 seq4 : 0.444 seq2 : 0.511
seq2 〈(A) (BCX) (D)〉 5.218 seq4 : 0.278 seq3 : 0.383
seq3 〈(AE) (B) (BC) (D)〉 4.801 seq2 : 0.383 seq4 : 0.417
seq4 〈(A) (B) (DE)〉 4.801 seq2 : 0.278 seq3 : 0.417
seq5 〈(AX) (B) (BC) (Z) (AE)〉 3.750 seq3 : 0.500 seq6 : 0.533
seq6 〈(AY) (BD) (B) (EY)〉 3.750 seq4 : 0.458 seq5 : 0.533
seq7 〈(AJ) (P) (K) (LM)〉 2.667 seq8 : 0.542 seq9 : 0.750
seq8 〈(IJ) (KQ) (M)〉 3.600 seq7 : 0.542 seq9 : 0.556
seq9 〈(I) (LM)〉 2.667 seq8 : 0.556 seq7 : 0.750
seq10 〈(V) (PW) (E)〉 2.572 seq1 : 0.778 seq4 : 0.778

Table 4.9: Merging sequences from D into clusters
ID Sequences Step 2

1 seq1 〈(BC) (DE)〉 seq4 ⇒ seq2
2 seq2 〈(A) (BCX) (D)〉
3 seq3 〈(AE) (B) (BC) (D)〉 seq2
4 seq4 〈(A) (B) (DE)〉 seq2
5 seq5 〈(AX) (B) (BC) (Z) (AE)〉 seq3 ⇒ seq2
6 seq6 〈(AY) (BD) (B) (EY)〉 seq4 ⇒ seq2
7 seq10 〈(V) (PW) (E)〉 seq1 ⇒ seq4 ⇒ seq2

8 seq7 〈(AJ) (P) (K) (LM)〉 seq8
9 seq8 〈(IJ) (KQ) (M)〉
10 seq9 〈(I) (LM)〉 seq8

neighbor merged with another sequence in the same step, the indirect linkage is shown with
an arrow. The first row shows that seq1 merged with seq4 which in turn merged with seq2

(as shown in the fourth row). The seventh row shows that seq10 merged with seq1 which in
turn merged with seq4 then seq2 (as shown in the first row). Such notation shows the densest
sequence of the cluster, to which the sequence belongs to, as the last sequence in column
’Step 2’. The densest sequence of each cluster has the column blank. Thus, Table 4.9 shows
that, in step 2 of the clustering algorithm, seq1 − seq6 and seq10 get merged together into
cluster 1 and seq7 − seq9 get merged into cluster 2. The most dense point in cluster 1 and 2
are seq2 and seq8 respectively.

Table 4.10 shows the proximity matrix that could be used to construct the same clusters
through the single linkage method for this example. Using this proximity matrix, the single
linkage method would generate the dendrogram shown in Figure 4.1 resulting in the same
two clusters as shown in Table 4.9. Each internal node in the dendrogram is labeled with the
actual distance of the link.

To demonstrate how the local maxima region is merged in step 3 of the clustering algo-
rithm, I give a second example. The first two columns in Table 4.12 give the ten sequences for
the sequence database D2. Table 4.11 is the proximity matrix used to calculate the k-nearest

38

Table 4.10: The modified proximity matrix for Table 4.7
ID seq1 seq2 seq3 seq4 seq5 seq6 seq10 seq7 seq8 seq9

seq1 0 0.511 ∞ 0.444 ∞ ∞ ∞ ∞ ∞ ∞
seq2 ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
seq3 ∞ 0.383 0 M D ∞ ∞ ∞ ∞ ∞ ∞
seq4 ∞ 0.278 M D 0 ∞ ∞ ∞ ∞ ∞ ∞
seq5 ∞ ∞ 0.500 ∞ 0 M D ∞ ∞ ∞ ∞
seq6 ∞ ∞ ∞ 0.458 M D 0 ∞ ∞ ∞ ∞
seq10 0.778 ∞ ∞ 0.778 ∞ ∞ 0 ∞ ∞ ∞
seq7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0.542 M D
seq8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
seq9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ M D 0.556 0

Figure 4.1: Dendrogram for sequences in D (Table 4.1)

seq8 seq7 seq9

Cluster 2

(0.556)(0.542)

seq5 seq10seq2 seq4 seq3 seq1 seq6

Cluster 1

(0.778)

(0.444)
(0.383)

(0.278)

(0.458) (0.500)

neighbor list and the density given in Table 4.12. Again the sequences have been arrange
so that the two triangle areas are the intra cluster distances for the two clusters, and the
rectangular area is the inter cluster distances.

Then, Table 4.13 shows how the clusters are merged in steps 2 and 3. At the end of
step 2, there are three clusters. seq1, seq2, and seq4 merge into one cluster with seq1 being
the densest sequence, seq5, seq6, seq7, seq9, and seq10 merge into a second cluster with seq9

as the densest sequence, and seq3 and seq8 merge into the third cluster with seq3 being the
densest sequence.

seq3 does not have any sequence denser than itself in its neighbor list (seq8 and seq5)
but seq5 has the same density as seq3. That is seq3 is a local maxima which has a neigh-
boring region with the same or higher density than itself. If the neighboring region (cluster
containing seq5) has higher density than itself, the cluster containing seq3 as its maximum is
merged into the neighboring cluster in step 3. Thus in step 3, the cluster density of the two
clusters containing seq3 and seq5 are compared. Density(Cseq3) = Density(seq3) = 4.364

39

Table 4.11: The N ∗N proximity matrix for database D2 given in Table 4.12
ID seq1 seq2 seq4 seq3 seq5 seq6 seq7 seq8 seq9 seq10

seq1 0
seq2 0.640 0
seq4 0.556 0.767 0
seq3 0.833 0.867 0.875 0
seq5 0.875 0.867 1 0.458 0
seq6 1 1 1 0.625 0.583 0
seq7 1 1 0.867 0.633 0.467 0.667 0
seq8 1 1 1 0.458 0.542 0.625 0.467 0
seq9 1 1 1 0.500 0.417 0.444 0.533 0.500 0
seq10 1 0.800 1 0.833 0.833 1 0.867 0.833 0.778 0

Table 4.12: k nearest neighbor list and density for each sequence in D2

ID Sequences Density 1st NN(ID:dist) 2nd NN
seq1 〈(A) (BCY) (D)〉 3.125 seq4 : 0.556 seq2 : 0.640
seq2 〈(A) (X) (BC) (AE) (Z)〉 2.609 seq1 : 0.640 seq4 : 0.767
seq3 〈(AI) (Z) (K) (LM)〉 4.364 seq8 : 0.458 seq5 : 0.458
seq4 〈(AL) (DE)〉 2.609 seq1 : 0.556 seq2 : 0.767
seq5 〈(IJ) (B) (K) (L)〉 4.364 seq9 : 0.417 seq3 : 0.458
seq6 〈(IJ) (LM)〉 3.429 seq9 : 0.444 seq5 : 0.583
seq7 〈(IJ) (K) (JK) (L) (M)〉 4.286 seq8 : 0.467 seq5 : 0.467
seq8 〈(IM) (K) (KM) (LM)〉 4.286 seq3 : 0.458 seq7 : 0.467
seq9 〈(IJ) (LM)〉 4.500 seq5 : 0.417 seq6 : 0.444
seq10 〈(V) (K W) (Z)〉 2.500 seq9 : 0.778 seq2 : 0.800

Table 4.13: Merging sequences from Table 4.12 into clusters in Steps 2 and 3
ID Sequences Step 2 Step 3

1 seq1 〈(A) (BCY) (D)〉
2 seq2 〈(A) (X) (BC) (AE) (Z)〉 seq1
3 seq4 〈(AL) (DE)〉 seq1

6 seq5 〈(IJ) (B) (K) (L)〉 seq9
5 seq6 〈(IJ) (LM)〉 seq9
7 seq7 〈(IJ) (K) (JK) (L) (M)〉 seq5 ⇒ seq9
4 seq9 〈(J) (K) (L M)〉
8 seq10 〈(V) (K W) (Z)〉 seq9

9 seq3 〈(AI) (Z) (K) (LM)〉 seq9
10 seq8 〈(IM) (K) (KM) (LM)〉 seq3 seq9

and Density(Cseq5) = Density(seq9) = 4.500 where Cseqi denotes the cluster containing seqi.
Hence, cluster Cseq3 is merged into cluster Cseq5 resulting in the final two clusters. seq1 and
seq9 are the densest sequence of each cluster.

Table 4.14 and Figure 4.2 demonstrate this example through the single linkage method.
In the dendrogram, all the linkages made in step 2 are shown in solid lines. After step 2 three
trees are formed – rooted at nodes labeled 0.640, 0.778, and 0.458. Then, since the two trees

40

Table 4.14: The modified proximity matrix for Table 4.11
ID seq1 seq2 seq4 seq3 seq5 seq6 seq7 seq8 seq9 seq10

seq1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
seq2 0.640 0 M D ∞ ∞ ∞ ∞ ∞ ∞ ∞
seq4 0.556 M D 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
seq3 ∞ ∞ ∞ 0 M D ∞ ∞ ∞ ∞ ∞
seq5 ∞ ∞ ∞ M D 0 ∞ ∞ ∞ 0.417 ∞
seq6 ∞ ∞ ∞ ∞ 0.583 0 ∞ ∞ 0.444 ∞
seq7 ∞ ∞ ∞ ∞ 0.467 ∞ 0 M D ∞ ∞
seq8 ∞ ∞ ∞ 0.458 ∞ ∞ M D 0 ∞ ∞
seq9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
seq10 ∞ 0.800 ∞ ∞ ∞ ∞ ∞ ∞ 0.778 0

Figure 4.2: Dendrogram for sequences in D2 (Table 4.12)

seq1 seq4 seq2

Cluster 1

seq3 seq8seq9 seq5 seq6 seq7 seq10

Cluster 2

MAX_DIST
(0.458)

(0.458)(0.467)(0.444)(0.417)

(0.640)
(0.556)

(0.778)

rooted at nodes labeled 0.778 and 0.458 are linked by MAX DIST (in the proximity matrix
seq3 and seq5 are linked by M D) they are merged in step 3 shown in a dotted line, giving
two clusters. The actual linkage value of seq3 and seq5 is 0.458 as shown in parenthesis.

4.3 Multiple Alignment: Compress into Weighted Sequences

Once sequences are clustered, sequences within a cluster are similar to each other. Now,
the problem becomes how to summarize the general pattern in each cluster and discover the
trend. In this section, I describe how to compress each cluster into one weighted sequence
through multiple alignment.

The global alignment of sequences is obtained by inserting empty itemsets (i.e., ()) into
sequences such that all the sequences have the same number of itemsets. The empty itemsets
can be inserted into the front or the end of the sequences, or between any two consecutive
itemsets [24].

41

Table 4.15: Alignment of seq2 and seq3
seq2 〈(A) () (BCX) (D)〉
seq3 〈(AE) (B) (BC) (D)〉

Edit distance REPL((A), (AE)) INDEL((B)) REPL((BCX), (BC)) REPL((D), (D))

As shown in Table 4.15, finding the optimal alignment between two sequences is mathe-
matically equivalent to the edit distance problem. The edit distance between two sequences
seqa and seqb can be calculated by comparing itemsets in the aligned sequences one by one.
If seqa and seqb have X and Y as their ith aligned itemsets respectively, where (X 6= ()) and
(Y 6= ()), then a REPL(X,Y) operation is required. Otherwise, (i.e., seqa and seqb have X
and () as their ith aligned itemsets respectively) an INDEL(X) operation is needed. The
optimal alignment is the one in which the edit distance between the two sequences is mini-
mized. Clearly, the optimal alignment between two sequences can be calculated by dynamic
programming using the recurrence relation given in Equation 4.1.

Generally, for a cluster C with n sequences seq1, . . . , seqn, finding the optimal global
multiple alignment that minimizes

n∑
j=1

n∑
i=1

dist(seqi, seqj)

is an NP-hard problem [24], and thus is impractical for mining large sequence databases with

many sequences. Hence in practice, people have approximated the solution by aligning two
sequences first and then incrementally adding a sequence to the current alignment of p − 1
sequences until all sequences have been aligned. At each iteration, the goal is to find the best
alignment of the added sequence to the existing alignment of p− 1 sequences. Consequently,
the solution might not be optimal because once p sequences have been aligned, this alignment
is permanent even if the optimal alignment of p+ q sequences requires a different alignment
of the p sequences. The various methods differ in the order in which the sequences are added
to the alignment. When the ordering is fair, the results are reasonably good [24].

4.3.1 Representation of the Alignment: Weighted Sequence

To align the sequences incrementally, the alignment results need to be stored effectively.
Ideally the result should be in a form such that the next sequence can be easily aligned to
the current alignment. This will allow us to build a summary of the alignment step by step
until all sequences in the cluster have been aligned. Furthermore, various parts of a general
pattern may be shared with different strengths, i.e., some items are shared by more sequences
and some by less sequences. The result should reflect the strengths of items in the pattern.

Here, I propose a notion of weighted sequence as defined in section 3.3. Recall that a

42

weighted sequence wseq = 〈WX1 : v1, . . . ,WXl : vl〉 : n carries the following information:

1. the current alignment has n sequences, and n is called the global weight of the weighted
sequence;

2. in the current alignment, vi sequences have a non-empty itemset aligned in the ith

position. These itemset information is summerized into the weighted itemset WXi,
where (1 ≤ i ≤ l);

3. a weighted itemset in the alignment is in the form of WXi = (xj1 : wj1 , . . . , xjm : wjm),
which means, in the current alignment, there are wjk

sequences that have item xjk
in

the ith position of the alignment, where (1 ≤ i ≤ l) and (1 ≤ k ≤ m).

One potential problem with the weighted sequence is that it does not explicitly keep
information about the individual itemsets in the aligned sequences. Instead, this information
is summarized into the various weights in the weighted sequence. These weights need to be
taken into account when aligning a sequence to a weighted sequence.

4.3.2 Sequence to Weighted Sequence Alignment

Thus, instead of using REPL() (Equation 4.2) directly to calculate the distance between
a weighted sequence and a sequence in the cluster, I adopt a weighted replace cost as follows.

Let WX = (x1 : w1, . . . , xm : wm) : v be a weighted itemset in a weighted sequence, while
Y = (y1 · · · yl) is an itemset in a sequence in the database. Let n be the global weight of the
weighted sequence. The replace cost is defined as

REPLW (WX,Y) = R′·v+n−v
n

where R′ =
∑m

i=1
wi+‖Y ‖v−2

∑
xi∈Y

wi∑m

i=1
wi+‖Y ‖v

(4.11)

Accordingly, I have
INDEL(WX) = REPLW (WX, ()) = 1
INDEL(Y) = REPLW (Y, ()) = 1

(4.12)

Let us first look at an example to better understand the notations and ideas. In the
example given in section 4.1, Table 4.16 depicts the situation after the first four sequences
(seq2, seq3, seq4, seq1) in cluster 1 have been aligned into weighted sequence wseq3 (Table 3.3
in section 3 shows the alignment of the first four sequences and the full weighted sequence
wseq3), and the algorithm is computing the distance of aligning the first itemset of seq5,
s51 =(AX), to the first position (ws31) in the current alignment. ws31=(A:3,E:1):3 because
there are three A’s and one E aligned into the first position, and there are three non-null items
in this position. Now, using Equation 4.11, R′ = 2

5 = 36
90 and REPLW = 11

20 = 66
120 as shown

43

Table 4.16: An example of REPLW ()
sequence ID itemset ID itemset distance

seq5 s51 (AX) R′ = (4+2∗3)−2∗3
(4+2∗3) = 2

5 = 36
90

wseq3 ws31 (A:3,E:1):3 - n=4 REPLW = [(2
5) ∗ 3 + 1]/4 = 11

20 = 66
120

seq2 s31(1) (A) REPL((A), (AX)) = 1
3

seq3 s21(1) (AE) REPL((AE), (AX)) = 1
2 Avg = 7

18 = 35
90

seq4 s11(1) (A) REPL((A), (AX)) = 1
3

seq1 s40(1) () INDEL((AX)) = 1
Actual avg distance over the four sequences = 13

24 = 65
120

in the first two lines of the table. The next four lines calculate the distance of each individual
itemset aligned in the first position of wseq3 with s51 =(AX). The actual average over all
non-null itemsets is 35

90 and the actual average over all itemsets is 65
120 . In this example, R′

and REPLW approximate the actual distances quite well.

The rationale of REPLW () (Equation 4.11) is as follows. After aligning a sequence, its
alignment information is incorporated into the weighted sequence. There are two cases.

• A sequence may have a non-empty itemset aligned in this position. Then, R′ is the
estimated average replacement cost for all sequences that have a non-empty itemset
aligned in this position. There are in total v such sequences. In Table 4.16 R′ = 36

90

compares very well to the actual average of 35
90 .

• A sequence may have an empty itemset aligned in this itemset. Then, I need an
INDEL() operation (whose cost is 1) to change the sequence to the one currently
being aligned. There are in total (n− v) such sequences.

Equation 4.11 estimates the average of the cost in the two cases. Used in conjunction with
REPLW (WX,Y), weighted sequences are an effective representation of the n aligned se-
quences and allow for efficient multiple alignment.

The distance measure REPLW (WX,Y) has the same useful properties of REPL(X,Y)–
it is a metric and ranges from 0 to 1. Now I simply use the recurrence relation given in
Equation 4.1 replacing REPL(X,Y) with REPLW (WX,Y) to align all sequences in the
cluster.

4.3.3 Order of the Alignment

In incremental multiple alignment, the ordering of the alignment should be considered. In
a cluster, in comparison to other sequences, there may be some sequences that are more similar
to many other sequences. In other words, such sequences may have many close neighbors with
high similarity. These sequences are most likely to be closer to the underlying patterns than

44

the other sequences. It is more likely to get an alignment close to the optimal one, if I start
the alignment with such “seed” sequences.

Intuitively, the density defined in Equation 4.9 measures the similarity between a sequence
and its nearest neighbors. Thus, a sequence with a high density means that it has some
neighbors very similar to it, and it is a good candidate for a “seed” sequence in the alignment.
Based on the above observation, in ApproxMAP, I use the following heuristic to apply multiple
alignment to sequences in a cluster.

Heuristic 1. If sequences in a cluster C are aligned in the density-descending order, the
alignment result tends to be good.

The ordering works well because in a cluster, the densest sequence is the one that has the
most similar sequences - in essence the sequence with the least noise. The alignment starts
with this point, and then incrementally aligns the most similar sequence to the least similar.
In doing so, the weighted sequence forms a center of mass around the underlying pattern to
which sequences with more noise can easily attach itself. Consequently, ApproxMAP is very
robust to the massive outliers in real data because it simply ignores those that cannot be
aligned well with the other sequences in the cluster. The experimental results show that the
sequences are aligned fairly well with this ordering.

As the first step in the clustering (see Algorithm 1), the density for each sequence is
calculated. I only need to sort all sequences within a cluster in the density descending order
in the alignment step.

4.3.4 Example

In the example given in Table 4.1, cluster 1 has seven sequences. The density descending
order of these sequences is seq2-seq3-seq4-seq1-seq5-seq6-seq10. The sequences are aligned as
follows.

First, sequences seq2 and seq3 are aligned as shown in Figure 4.3. Here, I use a weighted
sequence wseq11

1 to summarize and compress the information about the alignment. Since the
first itemsets of seq2 and seq3, (A) and (AE), are aligned, the first itemset in the weighted
sequence wseq11 is (A:2,E:1):2. It means that the two sequences are aligned in this position,
and A and E appear twice and once respectively. The second itemset in wseq11, (B:1):1, means
there is only one sequence with an itemset aligned in this position, and item B appears once.

After this first step, I need to iteratively align other sequences with the current weighted
sequence. Thus, in the next step, the weighted sequence wseq11 and the third sequence seq4
are aligned as shown in Figure 4.4. Similarly, the remaining sequences in cluster 1 can be

1The weighted sequences are denoted as wseqci to indicate the ith weighted sequence for cluster c. Thus,
the first 1 indicates that the alignment is for cluster 1 and the second 1 indicates that there are two sequences
being aligned. For brevity, sometimes the cluster number is obmited when there is no confusion.

45

Figure 4.3: seq2 and seq3 are aligned resulting in wseq11
seq2 〈(A) () (BCX) (D)〉
seq3 〈(AE) (B) (BC) (D)〉
wseq11 〈(A:2, E:1):2 (B:1):1 (B:2,C:2,X:1):2 (D:2):2)〉 2

Figure 4.4: Weighted sequence wseq11 and seq4 are aligned
wseq11 〈(A:2, E:1):2 (B:1):1 (B:2,C:2,X:1):2 (D:2):2)〉 2
seq4 〈(A) () (B) (DE)〉
wseq12 〈(A:3,E:1):3 (B:1):1 (B:3,C:2,X:1):3 (D:3,E:1):3)〉 3

Figure 4.5: The alignment of remaining sequences in cluster 1
wseq12 〈(A:3,E:1):3 (B:1):1 (B:3,C:2,X:1):3 (D:3,E:1):3)〉 3
seq1 〈() () (BC) (DE)〉
wseq13 〈(A:3,E:1):3 (B:1):1 (B:4,C:3,X:1):4 (D:4,E:2):4)〉 4
seq5 〈(AX) (B) (BC) (Z) (AE)〉
wseq14 〈(A:4,E:1,X:1):4 (B:2):2 (B:5,C:4,X:1):5 (Z:1):1 (A:1,D:4,E:3):5)〉 5
seq6 〈(AY) (BD) (B) () (EY)〉
wseq15 〈(A:5,E:1,X:1,Y:1):5 (B:3,D:1):3 (B:6,C:4,X:1):6 (Z:1):1 (A:1,D:4,E:4,Y:1):6)〉 6
seq10 〈(V) () () (PW) (E)〉
wseq16 〈(A:5,E:1,V:1,X:1,Y:1):6 (B:3,D:1):3 (B:6,C:4,X:1):6 (P:1, W:1, Z:1):2 (A:1,D:4,E:5,Y:1):7)〉 7

Figure 4.6: The alignment of sequences in cluster 2.
seq8 〈(IJ) () (KQ) (M)〉
seq7 〈(AJ) (P) (K) (L M)〉
wseq21 〈(A:1,I:1,J:2):2 (P:1):1 (K:2,Q:1):2 (L:1,M:2):2〉 2
seq9 〈(I) () () (LM)〉
wseq22 〈(A:1,I:2,J:2):3 (P:1):1 (K:2,Q:1):2 (L:2,M:3):3〉 3

aligned as shown in Figure 4.5. The results of aligning sequences in Cluster 2 are shown in
Figure 4.6.

The alignment result for all sequences in cluster 1 are summarized in the weighted sequence
wseq16 shown in Figure 4.5. For cluster 2 the summarized information is in the weighted
sequence wseq22 shown in Figure 4.6. After the alignment, only wseq16 and wseq22 need to
be stored.

As shown in the above example, for a cluster of n sequences, the complexity of the multiple
alignment of all sequences is O(n · l2seq ·iseq), where l2seq ·iseq is the maximal cost of aligning two
sequences. lseq denotes the length of the longest sequence in the cluster and iseq denotes the
maximum number of items in an itemset in the cluster. The result of the multiple alignment
is a weighted sequence. A weighted sequence records the information of the alignment. Once
a weighted sequence is derived, the sequences in the cluster will not be visited anymore in
the remainder of the mining.

Aligning the sequences in different order may result in slightly different weighted sequences
but does not change the underlying pattern in the cluster. To illustrate the effect, Table 4.17
shows the alignment result of cluster 1 using a random order(reverse id), seq10-seq6-seq5-seq4-

46

Table 4.17: Aligning sequences in cluster 1 using a random order
seq10 〈() (V) (PW) () (E)〉
seq6 〈(AY) (BD) (B) () (EY)〉
seq5 〈(AX) (B) (BC) (Z) (AE)〉
seq4 〈(A) (B) () () (DE)〉
seq3 〈(AE) (B) (BC) () (D)〉
seq2 〈(A) () (BCX) () (D)〉
seq1 〈() () (BC) () (DE)〉

Weighted Seq (A:5, E:1,X:1,Y:1):5 (B:4, D:1, V:1):5 (B:5, C:4,P:1,W:1,X:1):6 (Z:1):1 (A:1,D:4, E:5,Y:1):7 7

ConSeq (w > 3) 〈(A) (B) (BC) (DE)〉

seq3-seq2-seq1.

Interestingly, the two alignment results are quite similar, only some items shift positions
slightly. Compared to Table 4.2, the first itemset and second itemset in seq10, (V) and (PW),
and the second itemset in seq4, (B), each shifted one position. This causes the item weights
to be reduced slightly. Yet the consensus sequence is the same as the variation consensus
sequence given in Table 4.4.

The extensive empirical evaluation in section 6.1.3), confirmed the heuristic that density
descending order gives the best results and the density ascending order gives the worst results.
However, the evalutaion revealed that overall the alignment order had little effect on the un-
derlying patterns. The random orders gave almost identical results as the density descending
order and even the density ascending order gave comparable results.

4.4 Summarize and Present Results

The remaining problem is how to uncover the final underlying patterns from the weighted
sequences. It is practically impossible for a computer to automatically generate definitive
patterns accurately with no knowledge of the problem domain. Indeed, the best data min-
ing algorithms allow for proper interaction with the domain expert in order to incorporate
appropriate domain knowledge where needed. In ApproxMAP, the domain expert is brought
into the data mining process in this summarization step. The goal in this step is not to
automatically generate definitive patterns from the weighted sequences, but rather to assist
the domain experts in doing so themselves.

In this section, I discuss a simple but effective presentation scheme that allows the user to
explore the weighted sequences by summarizing the more important components. The level of
summarization is easily controlled by a few simple knobs. Such presentation of the weighted
sequences can assist a domain expert to extract the patterns from the K weighted sequences
representing each of the aligned clusters. It does so by providing an effective scheme for
domain experts to interact with the weighted sequences.

47

Table 4.18: An example of a full weighted sequence
Full Weighted
Sequence

〈(E:1, L:1, R:1, T:1, V:1, d:1) (A:1, B:9, C:8, D:8, E:12, F:1, L:4, P:1, S:1,

T:8, V:5, X:1, a:1, d:10, e:2, f:1, g:1, p:1) (B:99, C:96, D:91, E:24, F:2, G:1,

L:15, P:7, R:2, S:8, T:95, V:15, X:2, Y:1, a:2, d:26, e:3, g:6, l:1, m:1) (A:5,

B:16, C:5, D:3, E:13, F:1, H:2, L:7, P:1, R:2, S:7, T:6, V:7, Y:3, d:3, g:1)

(A:13, B:126, C:27, D:1, E:32, G:5, H:3, J:1, L:1, R:1, S:32, T:21, V:1, W:3,

X:2, Y:8, d:13, e:1, f:8, i:2, p:7, l:3, g:1) (A:12, B:6, C:28, D:1, E:28, G:5, H:2,

J:6, L:2, S:137, T:10, V:2, W:6, X:8, Y:124, a:1, d:6, g:2, i:1, l:1, m:2) (A:135,

B:2, C:23, E:36, G:12, H:124, K:1, L:4, O:2, R:2, S:27, T:6, V:6, W:10, X:3,

Y:8, Z:2, a:1, d:6, g:1, h:2, j:1, k:5, l:3, m:7, n:1) (A:11, B:1, C:5, E:12, G:3,

H:10, L:7, O:4, S:5, T:1, V:7, W:3, X:2, Y:3, a:1, m:2) (A:31, C:15, E:10, G:15,

H:25, K:1, L:7, M:1, O:1, R:4, S:12, T:10, V:6, W:3, Y:3, Z:3, d:7, h:3, j:2,

l:1, n:1, p:1, q:1) (A:3, C:5, E:4, G:7, H:1, K:1, R:1, T:1, W:2, Z:2, a:1, d:1,

h:1, n:1) (A:20, C:27, E:13, G:35, H:7, K:7, L:111, N:2, O:1, Q:3, R:11, S:10,

T:20, V:111, W:2, X:2, Y:3, Z:8, a:1, b:1, d:13, h:9, j:1, n:1, o:2) (A:17, B:2,

C:14, E:17, F:1, G:31, H:8, K:13, L:2, M:2, N:1, R:22, S:2, T:140, U:1, V:2,

W:2, X:1, Z:13, a:1, b:8, d:6, h:14, n:6, p:1, q:1) (A:12, B:7, C:5, E:13, G:16,

H:5, K:106, L:8, N:2, O:1, R:32, S:3, T:29, V:9, X:2, Z:9, b:16, c:5, d:5, h:7,

l:1) (A:7, B:1, C:9, E:5, G:7, H:3, K:7, R:8, S:1, T:10, X:1, Z:3, a:2, b:3, c:1,

d:5, h:3) (A:1, B:1, H:1, R:1, T:1, b:2, c:1) (A:3, B:2, C:2, E:6, F:2, G:4, H:2,

K:20, M:2, N:3, R:19, S:3, T:11, U:2, X:4, Z:34, a:3, b:11, c:2, d:4) (H:1, Y:1,

a:1, d:1)〉

:162

Figure 4.7: Histogram of strength (weights) of items

0

10

20

30

40

50

60

70

80

90

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Strength of the items (%)

of

 it
em

s

4.4.1 Properties of the Weighted Sequence

To design such a scheme I first make some observations about the weighted sequence.
Table 4.18 shows a real example from one of the experiments in section 6. The example is from
a cluster of 162 sequences. As seen in the Table, although the weighted sequences effectively
compress the 162 aligned sequences into one sequence (half a page), the full weighted sequence
is still quite large. In fact, the weighted sequence is too much data for a person to view and
understand.

48

The weighted sequence is normally very long because it includes information on all items
from all sequences in the group. The domain expert needs a way to focus on the items that
are shared by most sequences in the cluster while ignoring those that occur rarely.

Remember that in the weighted sequence each item has a weight representing its presence
in the particular aligned itemset. The strength of an item is calculated as a percentage of
sequences in the cluster that have the item in the aligned position. That is strength(ijk) =
wjk

n · 100%, where n is the number of sequences in the cluster (i.e. the weight associated
with the full weighted sequence). In Table 4.18, B, in the third itemset second line, has
strength = 99

162 = 61%. That means 61% of the sequences in this partition (99 sequences)
has the item B in this position. Clearly, an item with larger strength value indicates that
the item is shared by more sequences in the partition. Consequently, item strength is a good
measure of the importance of an item.

Figure 4.7 is a histogram of all the item strengths for the weighted sequence given in
Table 4.18. The weighted sequence has a total of 303 items: 84 of them occur in only 1
sequence, 45 occur in only 2 sequences, and 24 occur in only 3 sequences. In fact, 83% of the
items occur in less than 10% of the sequences. On the other hand, only 13 of the items occur
in more than 50% of the sequences. Although the clear jump (between 22% and 56%) in the
strength of items is not always present, it is typical for weighted sequences to have the bulk
of items occur infrequently. In fact, if a cluster had no underlying pattern (i.e., the sequences
could not be aligned well), most of the item weights will be infrequent. Most users are not
interested in these rare items.

Not surprising, the experimental results further show that in practice:

1. The small number of items that have strength greater than 50% are items from the
embedded patterns 2.

2. The bulk of the items that have strength less than 10% are all random noise (i.e., items
that were not part of the embedded patterns).

3. Items with strength between 10% and 50% were either items from the embedded pat-
terns or random noise, with higher strength items being more likely to be items from
the embedded patterns.

In most applications the weights of the items will probably be similar to the Zipf distribu-
tion. That is, there are many rare items and very few frequent items [7]. These observations
support our hypothesis that the items in a weighted sequence can be divided into three groups
based on their strengths as follows:

1. The frequent items constitute the underlying pattern in the group. These are the few
frequent items shared by many of the sequences in the partition.

2In the experiment, I randomly embedded sequential patterns into the database then tried to recover these
embeded patterns.

49

2. The rare items are random occurrences (noise). Most items in a weighted sequences are
rare items.

3. The common items, which do not occur frequently enough to be part of the underlying
pattern but occur in enough sequences to be of some interest, are the variations to
the underlying pattern. These items most likely occur regularly in a subgroup of the
sequences.

4.4.2 Summarizing the Weighted Sequence

Utilizing such insight into the properties of the items in a weighted sequence, I summarize
the final results by defining two types of consensus sequences corresponding to two cutoff
points, θ and δ, as follows:

1. The frequent items (w ≥ θ · n) are summarized into the pattern consensus sequence.

2. The common items (δ · n ≤ w < θ · n) are added onto the pattern consensus sequence
to form the variation consensus sequence. When the variation consensus sequence is
presented together with the pattern consensus sequence, it clearly depicts the common
items as the variations to the underlying pattern. In Table 4.19, looking at the pattern
consensus sequence and the variations consensus sequence (lines 2 and 3), it is clear
that E in the fourth, G in the fifth, and Z in the last itemsets are the possible variations
to the main pattern.

3. The rare items (w < δ · n) , i.e., random occurrences, are not presented to the user.

See section 3.3 for a formal definition. Table 4.19 shows how the weighted sequence given in
Table 4.18 is summarized into the two consensus sequences with the cutoff points θ = 50%
for pattern consensus sequence and δ = 20% for variation consensus sequence.

This summarization method presents both the frequent underlying pattern and their vari-
ations while ignoring the noise. Furthermore, the user can control the level of summarization
by defining the two cutoff points for frequent(θ) and rare items(δ) as desired (Equation 3.5).

These two settings can be used uniformly across all partitions to present two consensus
sequences per partition to the user: the estimated underlying pattern and the estimated
variation of it. Our experiments (section 6) show that such uniform estimation of the patterns
and variations is reasonable for most partitions. These estimated consensus sequences provide
a comprehensive summary of the database and is a good starting point for the domain experts
to determine the underlying trend in the data.

Another key to my simple method is specifying the uniform cutoff points as a percentage
of the partition size. This allows ApproxMAP to customize the cutoff values appropriately
for each partition according to the size of the partition. This simple scheme allows users to

50

Table 4.19: A weighted consensus sequence
Full Weighted Se-
quence

〈(E:1, L:1, R:1, T:1, V:1, d:1) (A:1, B:9, C:8, D:8, E:12, F:1, L:4, P:1, S:1, T:8,

V:5, X:1, a:1, d:10, e:2, f:1, g:1, p:1) (B:99, C:96, D:91, E:24, F:2, G:1, L:15,

P:7, R:2, S:8, T:95, V:15, X:2, Y:1, a:2, d:26, e:3, g:6, l:1, m:1) (A:5, B:16,

C:5, D:3, E:13, F:1, H:2, L:7, P:1, R:2, S:7, T:6, V:7, Y:3, d:3, g:1) (A:13,

B:126, C:27, D:1, E:32, G:5, H:3, J:1, L:1, R:1, S:32, T:21, V:1, W:3, X:2,

Y:8, d:13, e:1, f:8, i:2, p:7, l:3, g:1) (A:12, B:6, C:28, D:1, E:28, G:5, H:2, J:6,

L:2, S:137, T:10, V:2, W:6, X:8, Y:124, a:1, d:6, g:2, i:1, l:1, m:2) (A:135,

B:2, C:23, E:36, G:12, H:124, K:1, L:4, O:2, R:2, S:27, T:6, V:6, W:10, X:3,

Y:8, Z:2, a:1, d:6, g:1, h:2, j:1, k:5, l:3, m:7, n:1) (A:11, B:1, C:5, E:12, G:3,

H:10, L:7, O:4, S:5, T:1, V:7, W:3, X:2, Y:3, a:1, m:2) (A:31, C:15, E:10, G:15,

H:25, K:1, L:7, M:1, O:1, R:4, S:12, T:10, V:6, W:3, Y:3, Z:3, d:7, h:3, j:2,

l:1, n:1, p:1, q:1) (A:3, C:5, E:4, G:7, H:1, K:1, R:1, T:1, W:2, Z:2, a:1, d:1,

h:1, n:1) (A:20, C:27, E:13, G:35, H:7, K:7, L:111, N:2, O:1, Q:3, R:11, S:10,

T:20, V:111, W:2, X:2, Y:3, Z:8, a:1, b:1, d:13, h:9, j:1, n:1, o:2) (A:17, B:2,

C:14, E:17, F:1, G:31, H:8, K:13, L:2, M:2, N:1, R:22, S:2, T:140, U:1, V:2,

W:2, X:1, Z:13, a:1, b:8, d:6, h:14, n:6, p:1, q:1) (A:12, B:7, C:5, E:13, G:16,

H:5, K:106, L:8, N:2, O:1, R:32, S:3, T:29, V:9, X:2, Z:9, b:16, c:5, d:5, h:7,

l:1) (A:7, B:1, C:9, E:5, G:7, H:3, K:7, R:8, S:1, T:10, X:1, Z:3, a:2, b:3, c:1,

d:5, h:3) (A:1, B:1, H:1, R:1, T:1, b:2, c:1) (A:3, B:2, C:2, E:6, F:2, G:4, H:2,

K:20, M:2, N:3, R:19, S:3, T:11, U:2, X:4, Z:34, a:3, b:11, c:2, d:4) (H:1, Y:1,

a:1, d:1)〉

:162

Pattern ConSeq 〈(B,C,D,T) (B) (S,Y) (A,H) (L,V) (T) (K) 〉
Variation ConSeq 〈(B,C,D,T) (B) (S,Y) (A,E,H) (G,L,V) (T) (K) (Z)〉
Weighted Pattern
Consensus Seq

〈(B:99, C:96, D:91, T:95) (B:126) (S:137, Y:124) (A:135, H:124)
(L:111,V:111) (T:140) (K:106)〉

:162

Weighted Variation

Consensus Seq

〈(B:99, C:96, D:91, T:95) (B:126) (S:137, Y:124) (A:135, E:36, H:124)
(G:35, L:111,V:111) (T:140) (K:106) (Z:34)〉

:162

specify what items are frequent in relation to similar sequences. Such a multilevel threshold
approach has been proposed for association rule mining to overcome problems with using
the uniform support threshold. However unlike the methods developed for association rules
[34, 35, 50], our method is simple for users to specify. The users are only required to specify
two uniform cutoff points relative to the number of similar sequences.

In practice, there is no easy way to know the correct settings for the two cutoffs θ and
δ. Indeed, the theoretical properties of the strength threshold is too complex to be studied
mathematically. However, I have studied the parameters empirically using various databases
in section 6.1.2. The experiments suggests that ApproxMAP is in fact quite robust to the
cutoff points with a wide range giving reasonable results. The results indicate 20%-50% is a
good range for the strength threshold for a wide range of databases.

In ApproxMAP, the default values are set to θ = 50% for pattern consensus sequences and
δ = 20% for variation consensus sequences. These setting are based on the empirical study
of the strength threshold in section 6.1.2. On the one hand, with the conservative estimate
of θ = 50%, ApproxMAP is able to recover most of the items from the embedded pattern
without picking up any extraneous items in the pattern consensus sequence. On the other

51

Table 4.20: User input parameters and their default values
Parameter Default Description

k 5 For k-nearest neighbor clustering. Defines the neighbor
Region and controls the resolution of the partitions.

θ 50% of cluster The cutoff point for pattern consensus sequences
Specified as a percentage of cluster size

δ 20% of cluster The cutoff point for variation consensus sequences
Specified as a percentage of cluster size

Table 4.21: Presentation of consensus sequences

100%: 85%: 70%: 50%: 35%: 20%

(B:61%, C:59%,
D:56%, T:59%)

(B:
78%)

(S:85%,
Y:77%)

(A:83%, E:22%,
H:77%)

(G:22%, L:69%,
V:69%)

(T:
86%)

(K:
65%)

(B:
21%) : 162

Pat
tern (B C D T) (B) (S Y) (A H) (L V) (T) (K) :162
Vari
ation (B C D T) (B) (S Y) (A E H) (G L V) (T) (K) (Z) :162

hand, with a modest estimate of δ = 20%, ApproxMAP can detect almost all of the items
from the embedded pattern while picking up only a small number of extraneous items in the
variation consensus sequence.

Table 4.20 summarizes the user input parameters for ApproxMAP and their default values.
The default values in ApproxMAP are set so that a quick scan over all the two consensus
sequences (the pattern consensus sequence and the variation consensus sequence) for each
partition would give as best an overview of the data as possible without manually setting
any of the parameters. The experimental results show that ApproxMAP is robust to all three
input parameters. In fact, the default values worked well for all the large databases used in
the experiments. In practice, the default values provide a more than adequate starting point
for most applications.

4.4.3 Visualization

To further reduce the data presented to the user I have designed a simple color-coding
scheme to represent the cluster strength for each item in the pattern. As demonstrated in
the last two lines of Table 4.19, even when noise is filtered out, looking at a sequence of sets
of items together with their weights is too much data for the human eye. The color scheme
reduces a dimension in the weighted sequence by using color instead of numbers to depict
the item weights. Taking into account human vision, I used the standard gray scale display
technique on the color scheme as shown in Table 4.21 [18].

The coloring scheme is simple but effective. In fact, color is better for visualizing the
variations in the item strength of the cluster. In Table 4.21, A in the fourth itemset is present

52

Table 4.22: Optional parameters for advanced users
Parameter Default Description

max DB strength 10% of ‖D‖ The cutoff point for variation consensus sequences
Specified as the percentage of the full database

min DB strength 10 sequences The cutoff point for pattern consensus sequences
Specified as the minimum number of required sequences

in almost all sequences while E in the same itemset is present in only a small proportion of
the sequences. The itemset weights from the weighted sequences are omitted because it has
little value once alignment is finished. The sequence weight is given to indicate how many
sequences have been summarized in the consensus sequence.

4.4.4 Optional Parameters for Advanced Users

Finally, I provide the user with one more optional scheme to control what they view.
Although uniform cutoff points work well for most clusters, it can be misleading when the
partitions are tiny or huge.

For example, when a few outlier sequences form a tiny cluster (say 5 sequences), then the
50% cutoff point for generating the underlying pattern could generate patterns from items
that occur in only a very small number of sequences (w ≥ θ ·n = 0.5∗5 = 2.5 > 2 sequences).
Although it should be clear to the user that the underlying pattern and the dark items are
relative to the partition size, it can still be misleading. Furthermore, it is more likely that
these small partitions do not have an underlying pattern.

Thus, the users have the option to specify an absolute minimum database strength for
pattern consensus sequences. The default in ApproxMAP is set to 10 sequences. That means,
regardless of the size of the cluster, an item has to occur in a particular location in at least 10
sequences for it to be considered as a definitive item in the pattern consensus sequence. This
default should not be changed unless specifically required by the application. This screens
out the tiny partitions and prevents these partitions from generating misleading patterns.

Note that this cutoff point does not affect the variation consensus sequence. Thus, if
there are patterns of interest that do not meet this cutoff point it could still be spotted in
the variation consensus sequence. In essence, that means ApproxMAP considers these items
as ambiguous items which might or might not be part of the underlying pattern.

In a similar way, in huge clusters (say half of the 1000 sequences in the database D
clustered into one partition) the current scheme could eliminate frequent items as noise (w <

δ · n = 0.2 ∗ 1000 ∗ 0.5 = 100 sequences). Although the user should be aware of this, again
this could be misleading.

Here the user has the option to specify an absolute maximum database strength for vari-
ation consensus sequences. This value does not affect the pattern consensus sequence. The
default in ApproxMAP is set to 10% of the database. That is, if an item occurs regularly

53

Algorithm 2. (Generate Consensus Sequences)

Input:

1. a weighted sequence per cluster
2. cutoff point θ and min DB strength for pattern consensus sequences (frequent

items)
3. cutoff point δ andmax DB strength for variation consensus sequences (rare items)
4. the size of the full database, ‖D‖

θ and δ are specified as a percentage of the cluster, min DB strength is specified as
the absolute number of sequences, and max DB strength is specified as a percentage
of all sequences.

Output: two consensus sequences per weighted sequence:

1. pattern consensus sequences
2. variation consensus sequences

Method: For each weighted sequence, wseq = 〈WX1 : v1, . . . ,WXl : vl〉 : n

1. pattern consensus sequences
Npat cutoff = n ∗ θ;
if (Npat cutoff ≤ min DB strength) then

select all items with weight at least min DB strength;
else

select all items with weight at least Npat cutoff ;
2. variation consensus sequences

Nvar cutoff = n ∗ δ;
Nmax DB = ‖D‖ ∗max DB strength
if (Nvar cutoff ≤ Nmax DB) then

select all items with weight at least Nvar cutoff ;
else

select all items with weight at least Nmax DB;

in a certain location in 10% of the full database, we assume that the item is not a random
occurrence and include it in the variation consensus sequence. The user is than able to note
and determine what it might be. Again, this default should not be changed unless specifically
required by the application. The optional parameters for advanced users are summerized in
Table 4.22.

4.4.5 Algorithm

The final consensus sequences are generated by picking only those items that meet the
four strength levels as given in Algorithm 2.

In summary, my presentation scheme is simple but powerful for summarizing and visu-

kum
Algorithm 2. (Generate Consensus Sequences)
Input:
1. a weighted sequence per cluster
2. cuto� point � and min DB strength for pattern consensus sequences (frequent
items)
3. cuto� point � and max DB strength for variation consensus sequences (rare items)
4. the size of the full database, kDk
� and � are specified as a percentage of the cluster, min DB strength is specified as
the absolute number of sequences, and max DB strength is specified as a percentage
of all sequences.
Output: two consensus sequences per weighted sequence:
1. pattern consensus sequences
2. variation consensus sequences
Method: For each weighted sequence, wseq = hWX1 : v1, . . . ,WXl : vli : n
1. pattern consensus sequences
Npat cutoff = n � �;
if (Npat cutoff � min DB strength) then
select all items with weight at least min DB strength;
else
select all items with weight at least Npat cutoff;
2. variation consensus sequences
Nvar cutoff = n � �;
Nmax DB = kDk � max DB strength
if (Nvar cutoff � Nmax DB) then
select all items with weight at least Nvar cutoff;
else
select all items with weight at least Nmax DB;

54

alizing the weighted sequences. The simplicity of the scheme is its strength. It is simple
for people to fully control dynamically. That is, once the weighted sequence for all clusters
have been found, generating appropriate consensus patterns for differing cutoff points is a
trivial process. Hence, understanding the process to control it is easy for users. In addition,
computing new results is very quick allowing users to interactively try many different cutoff
points.

In addition, the summarized consensus sequences are succinct yet expressive. I say it is
expressive because the user can easily include or exclude as much information as they want
by setting the cutoff points as desired. Furthermore, the user is fully aware of what is being
omitted from the summary. That is the users know the cutoff point used to drop items from
the weighted sequence. Note that advanced users can also set the cutoff point for frequent
and rare items individually for each partition after careful investigation.

I say it is succinct because, ApproxMAP is able to reduce the huge high dimensional se-
quential database into a handful of consensus sequences. Yet the consensus sequences offer
comprehensive information on how many sequences are in each partition and how frequent
items occur in the partition via color.

I emphasize that the goal in this step is not to automatically generate the definitive pat-
terns in each group, but rather provide the users with the proper tools to find the underlying
patterns themselves. An interactive program that enables the user to explore (1) the weighted
sequences via different cutoff points, which will generate various consensus sequences dynam-
ically, and (2) the aligned clusters themselves would be the best interface for finding the
sequential patterns.

4.4.6 Example

In the example given in section 4.1, the default cutoff points for pattern consensus sequence
(θ = 50%) and variation consensus sequence (δ = 20%) are used. However for such a tiny
database the minimum and maximum database cutoff points do not have much meaning. For
completeness of the example, I specified the minimum database strength as 1 sequence, and
the maximum database strength as 100%=10 sequences.

Thus, the pattern consensus sequence in cluster 1 selected all items with weight greater
than 3 sequences (w ≥ 50% ∗ 7 = 3.5 > 3) while the pattern consensus sequence in cluster
2 selected all items with weight greater than 1 sequence (w ≥ 50% ∗ 3 = 1.5 > 1). Cluster
2 is too small to have any meaningful variations. Since the pattern cutoff point was defined
at 2 sequences, the variation cutoff point would have to be set at 1 sequence which would
give all items in the weighted sequence. However, cluster 1 generated the variation consensus
sequences with weight greater than 1 sequence (w ≥ 20%∗7 = 1.4 > 1). ApproxMAP detects a
variation to the underlying pattern of 〈(A)(BC)(DE)〉 between the first and second itemset. It
indicates that in about 20% of the sequences in the partition, there is a repeat of the itemset

55

(B) between the first and second itemset resulting in a variation pattern of 〈(A)(B)(BC)(DE)〉
(Table 4.4).

The small example in section 4.1 is not illustrative of the effectiveness of the presentation
scheme. However, the experimental results indicate that such presentation of the weighted
sequence is succinct but comprehensive. Section 6.2.2 demonstrates this point well with a
small database. Leaving the details for later, I summarize the main points here. Table 6.14
gives the 16 consensus sequences (labeled PatConSeqi and V arConSeqi), which summarize
1000 sequences, presented to the user along with the 10 base patterns (labeled BasePi) used to
generated the database3. Manual inspection indicates how well the consensus sequences match
the base patterns used to generate the data. Each consensus pattern found is a subsequence of
considerable length of a base pattern. Clearly, the 16 consensus sequences provide a succinct
but comprehensive overview of the 1000 data sequences.

4.5 Time Complexity

ApproxMAP has total time complexity of O(N2
seq ·L2

seq ·Iseq +k ·Nseq) = O(N2
seq ·L2

seq ·Iseq)
where Nseq is the total number of sequences, Lseq is the length of the longest sequence, Iseq
is the maximum number of items in an itemset, and k is the number of nearest neighbors
considered. The complexity is dominated by the clustering step which has to calculate the
proximity matrix (O(N2

seq · L2
seq · Iseq)) and build the k nearest neighbor list (O(k ·Nseq)).

Practically speaking, the running time is constant with respect to most other dimensions
except the size of the database. That is, ApproxMAP scales well with respect to k, the length
and number of patterns, and the four strength cutoff points θ, δ,max DB strength, and
min DB strength. The length and number of patterns in the data do not affect the running
time because ApproxMAP finds all the consensus sequences directly from the data without
having to build the patterns. The value of the cutoff parameters obviously do not effect the
running time.

ApproxMAP scales reasonably well with respect to the size of the database. It is quadratic
with respect to the data size and has reasonable execution times on common CPU technology
and memory size. In the experiments, as expected, the execution time increases quadratically
with respect to the number of sequences, the average number of itemsets per sequence, and
linearly with respect to the average number of items in the sequences. As a reference, the
example given for 1000 sequences with Lseq = 10 and Iseq = 2.5 took roughly 10 seconds on
an 2GHZ Intel Xeon processor while the example of 10,000 sequences with Lseq = 10 and
Iseq = 2.5 took roughly 15 minutes.

To combat the O(L2
seq) and O(N2

seq) time complexity, for larger databases I introduce

3As discussed in section 5, each patterned database is generated by embedded base patterns. These base
patterns are the underlying trend in the data which need to be uncovered.

56

improvements to the basic algorithm. First, ApproxMAP can speedup O(L2
seq) by calculating

the distance matrix to only the needed precision because it only needs to know the exact
distance of the k nearest neighbors. All other sequences have distance=∞ so the accurate
distance does not need to be calculated. Second, ApproxMAP can be extended to use a sample
based iterative clustering approach of sampling then iteratively recentering and reassigning
clusters to speedup O(N2

seq). The next section discusses these improvements to the basic
algorithm.

4.6 Improvements

The bottle neck in the running time is the clustering step which has to calculate the
Nseq ∗ Nseq proximity matrix and build the k-nearest neighbor list. Here I discuss how to
speedup this process. There are two components to the running time for calculating the
proximity matrix: (1) the per cell calculation in the proximity matrix and (2) the total of
N2

seq cell calculations needed for the proximity matrix. Both of these components can be sped
up.

4.6.1 Reduced Precision of the Proximity Matrix

Each cell in the proximity matrix is calculated using Equation 4.7. Thus, the time com-
plexity is O(L2

seq ∗ Iseq) for solving the recurrence relation for D(seqi, seqj) (Equation 4.1).
A recurrence relation such as Equation 4.1 can be solved through dynamic programming by
building a table that stores the optimal subproblem as shown in Table 4.23.

In Table 4.23, I show the intermediate calculation along with the final cell value. Each cell
RR(p, q) has four values in a 2*2 matrix. If we assume we are converting seqi to seq2. Then,
the top left value shows the result of moving diagonally by replacing itemset p with itemset
q. The top right value is the result of moving down by deleting itemset p. The bottom left
cell is the result of moving right by inserting itemset q. The final value in the cell, shown in
the bottom right position in large font, is the minimum of these three values. The arrow next
to the final value, indicates the direction taken in the cell. The minimum path to the final
answer, RR(‖seqi‖, ‖seqj‖) = D(seqi, seqj), is shown in bold.

For example, when calculating the value for RR(3, 2) = 15
6 , you can either replace (BCX)

with (B) (shown in the upper left RR(3 − 1, 2 − 1) + REPL((BCX), (B)) = 11
3 + 1

2 = 15
6),

insert (B) (shown in the lower left RR(3− 1, 2) + INDEL = 14
15 + 1 = 114

15) , or delete (BCX)

(shown in the upper right RR(3, 2−1)+INDEL = 21
3 +1 = 31

3). Since 15
6 is the minimum of

the three, the replace operation is chosen showing the diagonal movement. The final distance
between seq2 and seq6 is 25

6 , which can be found by following the minimum path: diagonal
(REPLACE), right(INSERT), diagonal, and diagonal. This path gives the pairwise alignment
shown in Table 4.6.

57

Table 4.23: Recurrence relation table
seq6 (AY) (BD) (B) (EY)

seq2 0 1 2 3 4
1
3

2 2 3 3 4 4 5

(A) 1
2 ↘ 1

3 1 1
3

→ 11
3 2 1

3
→ 21

3 3 1
3
→ 31

3
2 1 1

3
1
3

+ 3
5

= 14
15

2 1
3

1 1
3

+ 1
2

= 1 5
6

3 1
3

3 1
3

4 1
3

(BCX) 2
3 ↓ 11

3 2 1
3

↘ 14
15 1 14

15
↘ 15

6 2 5
6
→ 25

6
3 2 1

3
1 2

3
1 14

15
1 14

15
2 5

6
2 5

6
3 5

6

(D) 3
4 ↓ 21

3 3 1
3

↘ 12
3 2 2

3
↘ 114

15 2 14
15
↘ 25

6

Often times a straight forward dynamic programming algorithm for solving such re-
currence relation can be improved by only calculating up to the needed precision [12]. In
ApproxMAP, I note that I do no need to know dist(seqi, seqj) for all i, j to full precision. The
modified proximity matrix (Tables 4.10 and 4.14) includes all information needed to cluster
the sequences in the database. Furthermore, the modified proximity matrix has mostly val-
ues of ∞ because k << N . Thus, I only need to calculate to the precision of the modified
proximity matrix. That is, if a cell is clearly ∞ at any point in the dynamic programming
algorithm, I can stop the calculation and return ∞.

dist(seqi, seqj) is clearly ∞ if seqi is not a k-nearest neighbor of seqj , and seqj is not a
k-nearest neighbor of seqi. Remember that the modified proximity matrix is not symmetric.
The following theorems prove that seqi and seqj are not k-nearest neighbor of each other when

min row(p)
max{‖seqi‖,‖seqj‖} > max{distk(seqi), distk(seqj)} for any row p. Here distk(seqi) is the radius
of the k-nearest neighbor region for sequence seqi (defined in Equation 4.9), and min row(p)
is the smallest value of row p in the recurrence table. In the following theorems, I denote a
cell in the recurrence table as RR(p, q) with the initial cell as RR(0, 0) = 0 and the final cell
as RR(‖seqi‖, ‖seqj‖) = D(‖seqi‖, ‖seqj‖).

min row(p) = min{RR(p, q)} for all 0 ≤ q ≤ ‖seqj‖ (4.13)

Theorem 1. There is a connected path from RR(0, 0) = 0 to any cell RR(p, q) such that
(1) the values of the cells in the path are monotonically increasing, (2) the two indices never
decrease (i.e. the path is always moving downward or to the right), and (3) there must be at
least one cell from each rows 0 to p− 1, in the connected path.

Proof: The theorem comes directly from the definitions. First, the value of any cell RR(p, q)
are constructed from one of the three neighboring cells (up, left, or upper left) plus a non-
negative number. Consequently, the values have to be monotonically increasing. Second, the
value of all cells are constructed from only three neighboring cells - namely up, left, or upper
left - so the path can only move downward or to the right. And last, since there has to be a

58

connect path from RR(0, 0) to cell RR(p, q), there must be at least one cell from each rows
0 to p− 1.

Theorem 2. RR(‖seqi‖, ‖seqj‖) is greater than or equal to the minimum row value in any
row.

RR(‖seqi‖, ‖seqj‖) ≥ min row(p) for all 0 ≤ p ≤ ‖seqi‖ (4.14)

Proof: Let us assume that there is a row, p, such that RR(‖seqi‖, ‖seqj‖) < min row(p). Let
min row(p) = RR(p, q). There are two possible cases. First, RR(p, q) is in the connected path
from RR(0, 0) to RR(‖seqi‖, ‖seqj‖). Since the connected path is a monotonically increasing
according to Theorem 1, RR(‖seqi‖, ‖seqj‖) must be greater then equal to RR(p, q). Thus,
RR(‖seqi‖, ‖seqj‖) ≥ RR(p, q) = min row(p). This is a contradiction. Second, RR(p, q)
is not in the connected path from RR(0, 0) to RR(‖seqi‖, ‖seqj‖). Then, let RR(p, a) be
a cell in the connected path. Since min row(p) = RR(p, q), RR(p, a) ≥ RR(p, q). Thus,
RR(‖seqi‖, ‖seqj‖) ≥ RR(p, a) ≥ RR(p, q) = min row(p). This is also a contradiction.
Thus, by contradiction RR(‖seqi‖, ‖seqj‖) < min row(p) does not hold for any rows p. In
other words, RR(‖seqi‖, ‖seqj‖) ≥ min row(p) for all rows p.

Theorem 3. If min row(p)
max{‖seqi‖,‖seqj‖} > max{distk(seqi), distk(seqj)} for any row p, then seqi is

not a k-nearest neighbor of seqj , and seqj is not a k-nearest neighbor of seqi.

Proof: By Theorem 2, RR(‖seqi‖, ‖seqj‖) = D(seqi, seqj) ≥ min row(p) for any row p.
Thus, dist(seqi, seqj) = D(seqi,seqj)

max{‖seqi‖,‖seqj‖} ≥
min row(p)

max{‖seqi‖,‖seqj‖} > max{distk(seqi), distk(seqj)}
for any row p. By definition, when dist(seqi, seqj) > max{distk(seqi), distk(seqj)}, seqi and
seqj are not k-nearest neighbor of each other.

In summary by Theorem 3, as soon as the algorithm detects a row p in the recurrence table
such that min row(p)

max{‖seqi‖,‖seqj‖} > max{distk(seqi), distk(seqj)}, it is clear that dist(seqi, seqj)
= dist(seqj , seqi) = ∞. At this point, the recurrence table calculation can stop and simply
return ∞. Checking for the condition min row(p)

max{‖seqi‖,‖seqj‖} > max{distk(seqi), distk(seqj)} at the
end of each row takes negligible time and space when k << N and k << L.

Hueristically, setting up the recurrence table such that the shorter of the two sequences
goes across the recurrence table and the longer sequence goes down can save more time.
This is because the algorithm has to finish calculating a full row before checking for the
stop condition. Thus intuitively, recurrence tables with shorters rows are likely to find the
stopping condition faster. The experimental results in section 6.1.4 show that in practice,
such optimization can speedup time by a factor of upto 40%. The running time becomes
almost linear with respect to Lseq (Figures 6.4 and 6.14(b)).

59

Figure 4.8: Number of iterations

0

1

2

3

4

5

6

7

8

9

10

0 20000 40000 60000 80000 100000

of
 it

er
at

io
ns

Nseq : # of sequences

4.6.2 Sample Based Iterative Clustering

The O(N2
seq) for the clustering step can be improved by using an iterative partitioning

method similar to the well known kmediods4 clustering methods. However, there are two
major difficulties with using the kmediods clustering methods. First, without proper initial-
ization, it is impossible to find the right clusters. Thus, finding a reasonably good starting
condition is crucial for kmediods methods to give good results. Second, the general kmediods
method requires that the user input the number of clusters in the data. However, the proper
number of partitions is not known in this application.

To overcome these problems but still benefit from the efficiency in time, I introduce a
sample based iterative clustering method. It involves two main steps. The first step finds the
clusters and its representative sequences based on a small random sample of the data, D′,
using the density based k-nearest neighbor method discussed in section 4.2.2. Then in the
second step, the number of clusters and the representative sequences are used as the starting
condition to iteratively cluster and recenter the full database until the algorithm converges.
The full algorithm is given in Algorithm 3.

When ‖D′‖ << ‖D‖, the time complexity for the clustering method is obviously O(t·Nseq)
where t is the number of iterations needed to converge. The experiments show that the
algorithm converges very quickly. Figure 4.8 shows that for most databases it take from 3 to
6 iterations.

There is a few implementation details to note. First, when using a small sample of the
data, k for k-nearest neighbor algorithm has to be smaller than what is used on the full
database to achieve the clustering at the same resolution because the k-nearest neighbor in
the sampled data is most likely (k + α)-nearest neighbor in the full database. Again this
might be best understood if you think of a digital image. When less pixels are sampled,
blurring has automatically occured from the sampling and less manual blurring (averaging of

4kmediods clustering is exactly the same as the more popular kmeans algorithm, but it works with the
representative points in clusters rather than the means of clusters.

60

Algorithm 3. (Sample Based Iterative Clustering)

Input: a set of sequences D = {seqi}, the sampling percentage α, and the number of neighbor
sequences k′ for the sampled database;

Output: a set of clusters {Cj}, where each cluster is a set of sequences;

Method:

1. Randomly sample the database D into D′ using α. The size of D′ will be a
trade off between time and accuracy. The experiments indicate that at a minimum
‖D′‖ should be 4000 sequences for the default k′ = 3. Furthermore, roughly 10%
of the data will give comparable results when Nseq ≥ 40, 000.

2. Run uniform kernel density based k-NN clustering (Algorithm 1) on D′

with parameter k′. The output is a set of clusters {C ′
s}

3. Center: Find the representative sequence for each cluster C ′
s. The rep-

resentative sequence for each cluster is the one which minimizes the sum of the
intra-sequence cluster distance. That is, the representative sequence, seqsr, for
a cluster, C ′

s, is chosen such that Σjdist(seqsr, seqsj) for all sequences, seqsj , in
cluster C ′

s is minimized.

4. Initialization: Initialize each cluster, Cs, with the representative se-

quence, seqsr, found in the previous step.

5. Cluster: Assign all other sequences in the full database, D, to the closest

cluster. That is assign sequence seqi such that dist(seqi, seqsr) is minimum over
all representative sequences, seqsr.

6. Recenter: Find the representative sequence for each cluster Cs. Repeat
the centering step in 3 for all clusters Cs formed over the full database.

7. Iteratively repeat Initialization, Cluster, and Recenter. Steps 5 through
7 are repeated until no representative point changes for any cluster or a certain
iteration threshold, MAX LOOP = 100, is met.

the sampled points) need to happen for a certain resolution of the picture. In ApproxMAP,
since the default value for k is 5, the default for k′ in the sample based iterative clustering
method is 3.

Second, in the iterative clustering method much more memory is required in order to
fully realize the reduction in running time because the Nseq ∗Nseq proximity matrix needs to
be stored in memory across iterations. In the normal method, although the full Nseq ∗ Nseq

proximity matrix has to be calculated, the information can be processed one row at a time and
there is no need to return to any value. That is, I only need to maintain the k nearest neighbor

kum
Algorithm 3. (Sample Based Iterative Clustering)
Input: a set of sequences D = {seqi}, the sampling percentage �, and the number of neighbor
sequences k0 for the sampled database;
Output: a set of clusters {Cj}, where each cluster is a set of sequences;
Method:
1. Randomly sample the database D into D0 using �. The size of D0 will be a
trade o� between time and accuracy. The experiments indicate that at a minimum
kD0k should be 4000 sequences for the default k0 = 3. Furthermore, roughly 10%
of the data will give comparable results when Nseq � 40, 000.
2. Run uniform kernel density based k-NN clustering (Algorithm 1) on D0
with parameter k0. The output is a set of clusters {C0s}
3. Center: Find the representative sequence for each cluster C0s. The representative
sequence for each cluster is the one which minimizes the sum of the
intra-sequence cluster distance. That is, the representative sequence, seqsr, for
a cluster, C0s, is chosen such that �jdist(seqsr, seqsj) for all sequences, seqsj , in
cluster C0s is minimized.
4. Initialization: Initialize each cluster, Cs, with the representative sequence,
seqsr, found in the previous step.
5. Cluster: Assign all other sequences in the full database, D, to the closest
cluster. That is assign sequence seqi such that dist(seqi, seqsr) is minimum over
all representative sequences, seqsr.
6. Recenter: Find the representative sequence for each cluster Cs. Repeat
the centering step in 3 for all clusters Cs formed over the full database.
7. Iteratively repeat Initialization, Cluster, and Recenter. Steps 5 through
7 are repeated until no representative point changes for any cluster or a certain
iteration threshold, MAX LOOP = 100, is met.

61

list without keeping the proximity matrix in memory. However in the iterative clustering
method, it is faster to store the proximity matrix in memory over different iterations so that
the distance calculation does not have to be repeated. When Nseq is large, the proximity
matrix is quite large. Hence, there is a large memory requirement for the fastest optimized
algorithm.

Nonetheless, the proximity matrix becomes very sparse when the number of clusters is
much smaller thanNseq (‖Cs‖ << Nseq). Thus, much space can be saved by using a hash table
instead of a matrix. The initial implementation of a simple hash table ran upto Nseq = 70, 000
with 2GB of memory (Figures 6.6(c) and 6.6(d) - optimized (all)). A more efficient hash table
could easily improve the memory requirement. Furthermore, a slightly more complicated
scheme of storing only upto the possible number of values and recalculating the other distances
when needed (much like a cache) will reduce the running time compared to the normal method.
Efficient hash tables are a research topic on its own. The initial implementation of the hash
table demonstrates the huge potential for reduction in time well.

In order to fully understand the potential, I also measured the running time when no
memory was used to store the proximity matrix. That is, distances values were always
recalculated whenever needed. I found that even in this worst case the running time was
reduced significantly to about 25%-40% (Figures 6.6(c) and 6.6(d) - optimized (none)). Thus,
a good implementation would give running times in between the optimized (all) and the
optimized (none) line in Figure 6.6(c). More efficient hash table implementations will be
studied in future research.

In summary, the experimental results in section 6.1.5 show that in practice, this opti-
mization can speedup time considerably at the cost of a slight reduction in accuracy (Figure
6.6(b)) and larger memory requirement. Given enough memory the running time is reduced
to about 10%-15% and becomes almost linear with respect to Nseq (Figures 6.6(c) and 6.6(d)
- optimized (all)5). Even when there is not enough memory, in the worst case of not storing
any values, the running time is still reduced to about 25%-40% (Figures 6.6(c) and 6.6(d) -
optimized (none)).

The loss of accuracy is from the difficulty kmediods clustering algorithms have with outliers
and clusters of different sizes and non-globular shapes [14]. As with most iterative clustering
methods, this sample based algorithm tries to optimize a criterion function. That is the
sequences are partitioned so that the intra-cluster distance is minimized. This tends to build
clusters of globular shape around the representative sequences regardless of the natural shape
of the clusters. Thus, the clusters are not as accurate as when they were built around similar
sequences following the arbitrary shape and size of the cluster as done in the pure density
based k-nearest neighbor algorithm.

5optimized (all) is a simple hash table implementation with all proximity values stored and optimized (none)
is the implementation with none of the proximity values stored.

62

Moreover, it is not robust to outlier sequences. Although kmediods methods based on
representative points are more robust to outliers than kmeans methods, the outliers will still
influence the choice of the representative points. This in turn, will change how the data is
partitioned arbitrarily.

Fortunately, the steps following the clustering step makeup for most of the inaccuracy
introduced in it. That is, multiple alignment of each cluster into weighted sequences and then
summarization of the weighted sequences into consensus sequences is very robust to outliers
in the cluster. In fact by the time I get to the final results, the consensus sequences, only
the general trend in each cluster remain. In practice, the core sequences that form the main
trend do not change regardless of the different clustering methods because these sequences
will be located close to each other near the center. Thus, the clustering step only needs to
be good enough to group these core sequences together in order to get comparable consensus
sequences.

Chapter 5

Evaluation Method

It is important to understand the approximating behavior of ApproxMAP. The accuracy of
the approximation can be evaluated in terms of how well it finds the real underlying patterns
and whether or not it generates any spurious patterns. However, it is difficult to calculate
analytically what patterns will be generated because of the complexity of the algorithm.

As an alternative, I have developed a general evaluation method that can objectively eval-
uate the quality of the results produced by sequential pattern mining algorithms. Using this
method, one can understand the behavior of an algorithm empirically by running extensive
systematic experiments on synthetic data.

The evaluation method is a matrix of four experiments - (1) random data, (2) patterned
data, and patterned data with (3) varying degree of noise, and (4) varying number of outliers
- assessed on five criteria: (1) recoverability, (2) precision, (3) the total number of result
patterns returned, (4) the number of spurious patterns, and (5) the number of redundant
patterns. Recoverability, defined in section 5.2, provides a good estimation of how well the
underlying trends in the data are detected. Precision, adopted from ROC analysis [38], is
a good measure of how many incorrect items are mixed in with the correct items in the
result patterns. Both recoverability and precision are measured at the item level. On the
other hand, the numbers of spurious and redundant patterns along with the total number
of patterns returned give an overview of the result at the sequence level. In summary, a
good paradigm would produce (1) high recoverability and precision, with (2) small number
of spurious and redundant patterns, and (3) a manageable number of result patterns.

This evaluation method will enable researchers not only to use synthetic data to bench-
mark performance in terms of speed, but also to quantify the quality of the results. Such
benchmarking will become increasingly important as more data mining methods focus on
approximate solutions.

64

Table 5.1: Parameters for the random data generator
Notation Meaning
‖I‖ # of items
Nseq # of data sequences
Lseq Average # of itemsets per data sequence
Iseq Average # of items per itemset in the database

5.1 Synthetic Data

In this section, I describe the four class of synthetic databases used for each of the four
experiments : (1) random data, (2) patterned data, and patterned data with (3) varying
degree of noise, and (4) varying number of outliers.

5.1.1 Random Data

Random data is generated by assuming independence between items both within and
across itemsets. The probability of an item occurring is uniformly distributed. The number
of distinct items and the number of sequences generated are determined by user set parmeters
‖I‖ and Nseq respective. The number of itemsets in a sequence and the number of items in
an itemset follow a Poisson distribution with mean Lseq and Iseq respectively. The full user
parameters are listed in Table 5.1

5.1.2 Patterned Data

For patterned data, I use the well known IBM synthetic data generator first introduced
in [2]. Given several parameters (Table 5.2), the IBM data generator produces a patterned
database and reports the base patterns used to generate it. Since it was first published in 1995,
the IBM data generator has been used extensively as a performance benchmark in association
rule mining and sequential pattern mining. However, to the best of my knowledge, no previous
study has measured how well the various methods recover the known base patterns. In this
dissertation, I develop some evaluation criteria to use in conjunction with the IBM data
generator to measure the quality of the results.

The data is generated in two phases. First, it generatesNpat potentially frequent sequential
patterns, called base patterns, according to user parameters Lpat and Ipat. Secondly, each
sequence in the database is built by combining these base patterns until the size specified
by user parameters Lseq and Iseq are met. Along with each base pattern, the data generator
reports the expected frequency, E(FB), and the expected length (total number of items),
E(LB), in the database for each base pattern. The E(FB) is given as a percentage of the size
of the database and the E(LB) is given as a percentage of the number of items in the base
pattern.

65

Table 5.2: Parameters for the IBM patterned data generator
Notation Meaning
‖I‖ # of items
‖Λ‖ # of potentially frequent itemsets
Nseq # of data sequences
Npat # of base patterns (potentially frequent sequential patterns)
Lseq Average # of itemsets per data sequence
Lpat Average # of itemsets per base pattern
Iseq Average # of items per itemset in the database
Ipat Average # of items per itemset in the base patterns

There are two steps involved in building the base patterns. First, the set of potentially
frequent itemsets, Λ, are built by randomly selecting items from the distinct set of items in
I. The probability of an item occurring is exponentially distributed. The size of each itemset
is randomly determined using a Poisson distribution with mean Ipat. The number of distinct
items and the number of potentially frequent itemsets are determined by user set parameters
‖I‖ and ‖Λ‖ respective.

Second, the base patterns are then built by selecting, corrupting, and concatenating item-
sets selected from the set of potentially frequent itemsets. The selection and corruption is
based on the P (select) and P (corrupt) randomly assign to each potentially frequent item-
set. The selection probability is exponentially distributed then normalized to sum to 1. The
corruption probability is normally distributed. Corrupting means randomly deleting items
from the selected potentially frequent itemset. Npat determines how many base patterns to
construct, and Lpat determines the average number of itemsets in the base patterns. More
precisely, the number of itemsets in a base pattern is randomly assigned from a Poisson dis-
tribution with mean Lpat. Base patterns built in this manner then become the potentially
frequent sequential patterns.

The database is built in a similar manner by selecting, corrupting, and combining the base
patterns. As with potentially frequent itemsets, each base pattern is also assigned a separate
P (select) and P (corrupt). The P (select) is exponentially distributed then normalized to sum
to 1 and P (corrupt) is normally distributed. The P (select) is the likelihood a base pattern
will appear in the database. Thus, it is equal to the expected frequency of a base pattern,
E(FB), in the database. The P (corrupt) is the likelihood of a selected base pattern to be
corrupted before it is used to construct a database sequence. Corrupting base patterns is
defined as randomly deleting items from the selected base pattern. Hence, 1− P (corrupt) is
roughly the expected length (total number of items), E(LB), of the base pattern in a sequence
in the database.

66

Table 5.3: A Database sequence built from 3 base patterns

 (A, J) (B) (A) (E, H) (C) (L)
Base Patterns (D) (F) (M)
 (G) (L) (K) (F, I) (D)
DB Sequence (D, G) (A, J) (B) (K) (A, F, I) (E, H) (C) (D, F, L)

E(FB) = P (select)
E(LB) ' 1− P (corrupt)

(5.1)

Each sequence is built by combining enough base patterns until the size required, deter-
mined by Lseq and Iseq for the database, is met. Hence, many sequences are generated using
more than one base pattern. Base patterns are combined by interleaving them so that the
order of the itemsets are maintained.

Table 5.3 demonstrates how 3 base patterns are combined to build a database sequence.
The parameters for the database were: Lseq=10, Iseq=2.5 and the parameters of the base
patterns were: Lpat = 7, Ipat=2. The itemsets that are crossed out were deleted in the
corruption process.

In essence, sequential pattern mining is difficult because the data has confounding noise
rather than random noise. The noise is introduced into each data sequence in the form of
tiny bits of another base pattern. In section 5.1.3, I discuss how to add controlled level of
random noise in addition to the confounding noise in the patterned data in order to test for
the effects of noise.

Similarly, outliers may exist in the data in the form of very weak base patterns. The
expected frequency of the base patterns have exponential distribution. Thus, the weakest
base patterns can have expected frequency be so small that the base pattern occurs in only
a handful of the database sequences. These are in practice outliers that occur rarely in the
database. For example, when there are 100 base patterns, 11 base patterns have expected
frequency less than 0.1% of which 1 base pattern has expected frequency less than 0.01%.
Thus, even when Nseq=10000, the weakest base pattern would occur in less than 1 sequence
(10,000*0.01%=1 seq). In section 5.1.4, I discuss how to add controlled level of strictly random
sequences in addition to outliers in the form of very weak base patterns in the patterned data
to test for effects of outliers.

Example

To better understand the properties of the synthetic data generated, let us look closely at
a particular IBM synthetic database. A common configuration of the synthetic database used
in the experiments is given in Table 5.4. The configuration can be understood as follows.

67

Table 5.4: A common configuration of the IBM synthetic data
Notation Meaning Default value
‖I‖ # of items 1, 000
‖Λ‖ # of potentially frequent itemsets 5,000
Nseq # of data sequences 10, 000
Npat # of base pattern sequences 100
Lseq Avg. # of itemsets per data sequence 10
Lpat Avg. # of itemsets per base pattern 7
Iseq Avg. # of items per itemset in the database 2.5
Ipat Avg. # of items per itemset in the base patterns 2

Figure 5.1: Distributions from the synthetic data specified in Table 5.4

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12

of

 b
as

e
pa

tte
rn

s

lpat : actual # of itemsets per base pattern

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

E
(F

_B
):

 E
xp

ec
te

d
F

re
qu

en
cy

 (
%

)

(a) Distribution of the actual lpat (b) Distribution of the E(FB)

1. There are ‖I‖=1,000 unique items in the synthetic database.

2. Using these ‖I‖=1,000 unique items ‖Λ‖=5,000 itemsets were generated at random.
These are the potentially frequent itemsets used to construct the base patterns.

3. On average there are Ipat=2 items per itemset in these 5,000 potentially frequent item-
sets.

4. Npat=100 base patterns were randomly constructed using the 5,000 potentially frequent
itemsets.

5. On average there are Lpat=7 itemsets per base pattern. The acutal distribution of the
number of itemsets for each of the 100 base patterns, lpat, is given in Figure 5.1(a).
Remember that lpat has a possion distribution with mean at Lpat. When Lpat=7, 10%
of the patterns have between 3 or 4 itemsets in the base patterns. On the other hand
5% of the patterns have more than 10 itemsets per base pattern. The remaining 85%
of base patterns have between 5 to 10 itemsets per pattern. Values of Lpat < 7 starts
to introduce base patterns of less then 3 itemsets per pattern. Thus, Lpat=7 is the

68

practical minimum value that will embed sequential patterns of more then 2 itemsets
into the synthetic data.

6. Nseq=10,000 data sequences were constructed using the 100 base patterns.

7. The distribution of the expected frequencies, E(FB), of the 100 base patterns is given in
Figure 5.1(b). Of 100 base patterns, 11 have E(FB) < 0.1% (0.1% * 10,000=10 seq). Of
them, 1 base pattern has expected frequency less than 0.01% (0.01% * 10,000=1 seq).
As discussed above these are the practical outliers that occur rarely in the database. On
the other hand, there are 12 base pattern with E(FB) > 2% (2% * 10,000=200 seqs).
Of these the four largest E(FB) are 7.63%, 5.85%, 3.80%, and 3.35% respectively. The
other 8 are all between 2% and 3% (2% < E(FB) ≤ 3%). The majority, 77 base
patterns, have E(FB) between 0.1% and 2% (10 seq= 0.1% < E(FB) ≤ 2% =200 seqs).

8. The base patterns were combined so that on average there are Lseq=10 itemsets per data
sequence and Iseq=2.5 items per itemset in a data sequence. Note that since Lpat=7 is
the practical minimum for embedding sequential patterns into the synthetic data, Lseq

should be greater than 7. Thus, in many of the experiments which need to test on a
range of Lseq, Lseq is varied from 10 to 50.

5.1.3 Patterned Data With Varying Degree of Noise

Noise occurs at the item level in sequential data. Therefore, to introduce varying degree
of controlled noise into the IBM patterned data, I use a corruption probability α. Items in
the patterned database are randomly changed into another item or deleted with probability
α. This implies that 1 − α is the probability of any item remaining the same. Hence, when
α = 0 no items are changed, and higher values of α imply a higher level of noise [54].

5.1.4 Patterned Data With Varying Degree of Outliers

Outliers are sequences that are unlike most other sequences in the data. That is there are
very few sequences similar to the outlier sequence in the data. A randomly generated sequence,
such as the sequences generated for the random data, can be such an outlier sequence. Thus,
I introduce controlled level of outliers into the data by adding varying number of random
sequences to the IBM patterned data. The random sequences are generated using the same
parameters Lseq, Iseq, and ‖I‖ as those used to generate the patterned data. In the rest of
the dissertation, random sequences added to patterned data are referred to as outliers.

69

Table 5.5: Confusion matrix
predicted (Result Patterns Generated)

negative postive
negative a (NA) b (Extraneous Items)actual (Base Patterns Embedded)
positive c (Missed Items) d (Pattern Items)

5.2 Evaluation Criteria

The effectiveness of a sequential pattern mining method can be evaluated in terms of how
well it finds the real underlying patterns in the data (the base patterns), and whether or not
it generates any confounding information. However, the number of base patterns found or
missed is not alone an accurate measure of how well the base patterns were detected because
it can not take into account how much of a base pattern was detected (which items in the
base pattern were detected) or how strong (frequent) the pattern is in the data. Instead, I
report a comprehensive view by measuring this information at two different levels; (1) at the
item level and (2) at the sequence level.

5.2.1 Evaluation at the Item Level

At the item level, I adapt the ROC analysis to measure recoverability and precision. ROC
analysis is commonly used to evaluate classification systems with known actual values [38].
The confusion matrix contains information about the actual and predicted patterns [38]. The
confusion matrix for the evaluation is given in Table 5.5. The actual patterns are the base
patterns that were embedded into the database. The predicted patterns are the result patterns
generated from any sequential pattern mining algorithm. Then the true positive items, called
pattern items, are those items in the result patterns that can be directly mapped back to a
base pattern. The remaining items in the result patterns, the false positive items, are defined
as extraneous items. These are items that do not come from the embedded patterns, but
rather the algorithm falsely assumes to be part of the base patterns. There are a couple of
reasons why this occurs. I discuss this in more detail in section 5.4. The items from the base
pattern that were missed in the result patterns, the false negative items, are the missed items.
In this context, there are no true negative items (cell a). Thus, only the cells b, c, and d are
used in the evaluation.

Using the confusion matrix I measure two criteria at the item level. Recoverability mea-
sures how much of the base patterns have been found. Precision measures how precise are the
predictions made about the base patterns. That is, precision measures how much confounding
information (extraneous items) are included with the true pattern items.

Normally recall, (d
c+d), the true positive rate, is used to measure how much of the actual

pattern has been found. However, recall is not accurate in this application because base
patterns are only potentially frequent sequential patterns in the data. The actual occurrence

70

of a base pattern in the data, which is controlled by E(FBi) and E(LBi), varies widely.

E(FBi) is exponentially distributed then normalized to sum to 1. Thus, some base patterns
have tiny E(FBi). These base patterns do not exist in the data or occur very rarely. Recovering
these patterns are not as crucial as recovering the more frequent base patterns.

E(LBi) controls how many items on average in the base patterns are injected into one
occurrence of the base pattern in a sequence. This means that one sequence in the database
is not expected to have all the items in the embedded base pattern. Remember that before
a base pattern is embedded into a data sequence, the base pattern is corrupted by randomly
deleting items from it. E(LBi) controls how many items on average are deleted in this process.
Thus, all the items in a base pattern are not expected to be in one database sequence.

Therefore, taking E(FBi) and E(LBi) into account, we designed a weighted measure,
recoverability, which can more accurately evaluate how much of the base patterns have been
recovered. Specifically, given (1) a set of base patterns, {Bi}, along with E(FBi) and E(LBi)
for each base pattern, and (2) a set of result patterns, {Pj}, let each result pattern map back
to the most similar base pattern. That is, the result pattern, Pj , is matched with the base
pattern, Bi, if the longest common subsequence between Pj and Bi, denoted as Bi⊗Pj , is the
maximum over all base patterns. I indicate this matching by referring to the matched result
patterns with two indices. Pj(i) denotes that pattern Pj has been mapped to base pattern
Bi.

Now let Pmax(i) be the max pattern for base pattern Bi. A max pattern, Pmax(i), is the
result pattern that shares the most items with a base pattern, Bi, over all result patterns
mapped to the same base pattern. Furthermore, at least half of the items in Pj has to come
from the base pattern Bi. Thus, maxrslt pat {Pj(i)} ‖Bi ⊗ Pj‖1 is the most number of items
recovered for a base pattern Bi. In essence, max patterns recovered the most information
about a particular base pattern. Note that, there is either one or no max pattern for each
base pattern. There could be no max pattern for a base pattern if none of the result patterns
recovered enough of the items from the base pattern.

Since E(LBi) · ‖Bi‖ is the expected number of items (from the base pattern Bi) in one
occurrence of Bi in a data sequence, max ‖Bi⊗Pj‖

E(LBi
)·‖Bi‖ would be the fraction of the expected number

of items found. E(LBi) is an expected value, thus sometimes the actual observed value,
max{Pj(i)} ‖Bi ⊗ Pj‖ is greater than E(LBi) · ‖Bi‖. In such cases, the value of max ‖Bi⊗Pj‖

E(LBi
)·‖Bi‖ is

truncated to one so that recoverability stays between 0 and 1. Recoverability is defined as
follows,

Recoverability R =
∑

base pat {Bi}

E(FBi) ·min


1(

maxrslt pat {Pj(i)} ‖Bi⊗Pj‖
E(LBi

)·‖Bi‖

) (5.2)

1‖seqi‖=length of seqi denotes the total number of items in seqi

71

Table 5.6: Item counts in the result patterns
Notation Meaning Equation
Nitem total number of items

∑
rslt pat {Pj} ‖Pj‖

NpatI total number of pattern items
∑

rslt pat {Pj}(maxbase pat {Bi} ‖Bi ⊗ Pj‖)
NextraI total number of extraneous items

∑
rslt pat {Pj}(‖Pj‖ −maxbase pat {Bi} ‖Bi ⊗ Pj‖)

Intuitively, if the recoverability of the mining is high, major portions of the base patterns
have been found.

In ROC analysis, precision, d
b+d , is the proportion of the predicted positive items. It

is a good measure of how much of the result is correct [38]. In sequential pattern mining,
precision measures how much confounding information (extraneous items) are mixed in with
the pattern items in the result pattern. Remember that when the result pattern Pj is mapped
to base pattern Bi, the items in both the result pattern and the base pattern, Bi ⊗ Pj , are
defined as pattern items. Note that the result pattern Pj is mapped to base pattern Bi, when
‖Bi⊗Pj‖ is maximum over all base patterns. Thus, the number of pattern items for a result
pattern, Pj , is max{Bi} ‖Bi ⊗ Pj‖. The remaining items in the result pattern, Pj , are the
extraneous items. The different item counts in the result patterns are summerized in Table
5.6. Denoted as P, precision can be calculated using Table 5.6 as either

Precision P =

∑
rslt pat {Pj}(maxbase pat {Bi} ‖Bi ⊗ Pj‖)∑

rslt pat {Pj} ‖Pj‖
× 100% (5.3)

or

Precision P = 1−
∑

rslt pat {Pj}(‖Pj‖ −maxbase pat {Bi} ‖Bi ⊗ Pj‖)∑
rslt pat {Pj} ‖Pj‖

× 100% (5.4)

I tend to report using Equation 5.4 to indicate the exact number of extraneous items in the
results.

5.2.2 Evaluation at the Sequence Level

At the sequence level, the three criteria that I measure are (1) the total number of result
patterns, (2) the number of spurious patterns, and (3) the number of redundant patterns. To
do so, I categorize the result patterns into spurious, redundant, or max patterns depending
on the composition of pattern items and extraneous items. I do not report on the number of
max patterns because it can be easily calculated by

Nmax = Ntotal −Nspur −Nredun

Spurious patterns are those that were not embedded into the database, but what the
algorithm incorrectly assumed to be sequential patterns in the data. In this evaluation,
spurious patterns are defined as the result patterns that have more extraneous items than

72

Table 5.7: Evaluation criteria
criteria Meaning Level Unit
R Recoverability: the degree of the base patterns detected (Eq. 5.2) item %
P Precision: 1-degree of extraneous items in the result patterns (Eq. 5.4) item %

Nspur # of spurious patterns (NextraI > NpatI) seq # of patterns

Nredun # of redundant patterns seq # of patterns

Ntotal Total # of result patterns returned seq # of patterns

pattern items. As discussed in the previous section, max patterns are those that recover the
most pattern items for a given base pattern. The remaining sequential patterns are redundant
patterns. These are result patterns, Pa, which match with a base pattern, Bi, but there exists
another result pattern, Pmax, that match with the same base pattern but better in the sense
that ‖Bi ⊗Pmax‖ ≥ ‖Bi ⊗Pa‖. Therefore these patterns are redundant data that clutter the
results.

5.2.3 Units for the Evaluation Criteria

Recoverability and precision is reported as a percentage of the total number of items in the
result ranging from 0% to 100%. In comparison, the spurious patterns and redundant patterns
are reported as number of patterns. These measures can easily be changed to percentage of
the total number of result patterns as needed.

I report the actual number of patterns because the number of spurious patterns can be tiny
as a percentage of total number of result patterns. In fact, by definition I expect that there
will be only a few spurious patterns if the algorithm is reasonably good. In such situations,
a user would want to see exactly how few spurious patterns are in the result rather than its
proportion in the result. For example, one of the experiments on the support paradigm 2 had
over 250,000 result patterns of which 58 (0.023%) were spurious patterns.

Unlike spurious patterns, redundant patterns are not incorrect patterns. Sometimes, they
can even have additional information, such as suggesting slight variations of a strong pattern
in the data. The most negative effect of redundant patterns is the confounding effect it can
have on understanding the results when there are too many of them. Hence, the exact number
of redundant patterns is directly related to the interference factor. For example, it is easy to
glean some information and/or ignore 10 redundant patterns of 20 result patterns but not so
easy to work through 50% of 250,000 patterns.

The five evaluation criteria is summarized in Table 5.7.

73

Table 5.8: Base patterns {Bi} : Npat = 3, Lpat = 7, Ipat = 2
ID Base Patterns Bi E(FBi

) E(LBi
) ‖Bi‖

B1 (PR) (Q) (IST) (IJ) (U) (D) (NT) (I) 0.566 0.784 13
B2 (FR) (M) (GK) (C) (B) (Y) (CL) 0.331 0.805 10
B3 (D) (AV) (CZ) (HR) (B) 0.103 0.659 8

Table 5.9: Result patterns {Pj}
ID Result Pattern Pj ‖Pj‖
P1 (PR) (Q) (I) (IJ) (IJU) (U) (D) (T) 12
P2 (GKQ) (IT) (IJ) (D) (NT) 10
P3 (P) (IS) (U) (DV) (NT) 8
P4 (FR) (M) (C) (BU) (Y) (CL) 9
P5 (F) (AV) (CL) (BSU) (I) 9

Table 5.10: Worksheet: R = 84%,P = 1− 12
48

= 75%, Ntotal = 5, Nspur = 1, NRedun = 2

ID Base Pattern Bi ‖Bi‖ E(FBi
) E(LBi

) E(LBi) · ‖Bi‖
ID Result Pattern Pj ‖Pj‖ NpatI NextraI R(Bi)
B1 (PR) (Q) (IST) (IJ) (U) (D) (NT) (I) 13 0.566 0.784 10
P1 (PR) (Q) (I) (IJ) (IJU) (U) (D) (T) 12 9 3 9/10=0.9
P2 (GKQ) (IT) (IJ) (D) (NT) 10 8 2 Redundant
P3 (P) (IS) (U) (DV) (NT) 8 7 1 Redundant
B2 (FR) (M) (GK) (C) (B) (Y) (CL) 10 0.331 0.805 8
P4 (FR) (M) (C) (BU) (Y) (CL) 9 8 1 8/8=1
B3 (D) (AV) (CZ) (HR) (B) 8 0.103 0.659 5
P5 (F) (AV) (CL) (BSU) (I) 9 4 5 Spurious

Table 5.11: Evaluation results for patterns given in Table 5.9
criteria Meaning Results
R Recoverability: the degree of the base patterns detected 84%
P Precision: 1-degree of extraneous items in the result patterns 75%

Nspur # of spurious patterns 1
Nredun # of redundant patterns 2
Ntotal total # of patterns returned 5

5.3 Example

Let Table 5.8 be the base patterns used to construct a sequence database. The expected
frequence E(FBi), the expected length after corruption E(LBi), and the actual length ‖Bi‖
of the base patterns are also given. In addition, let Table 5.9 be the result patterns returned
by a sequential pattern mining algorithm. The actual length of the result patterns is given
in column ‖Pj‖. Then, the evaluation is done in the following steps:

1. Identify total number of result patterns, Ntotal = ‖{Pj}‖. Ntotal=5 in this example.

2. Map result patterns to base patterns. Each result pattern, Pj , is mapped to the best
matching base pattern Bi such that ‖Bi ⊗ Pj‖ is maximized over all base patterns

2I did a comparison study between my method and the conventional support paradigm reported in chapter
7.

74

Bi in Table 5.10. For result pattern P5, ‖B1 ⊗ P5‖ = ‖{(U)(I)}‖ = 2, ‖B2 ⊗ P5‖ =
‖{(F)(C)(B)}‖ = 3, and ‖B3 ⊗ P5‖ = ‖{(AV)(C)(B)}‖ = 4. Thus, result pattern P5 is
mapped to base pattern B3.

3. Count the number of pattern items and extraneous items for each result pattern. For
each result pattern in Table 5.10, the number of pattern items and extraneous items are
given in the fourth and fifth column labeled NpatI and NextraI . Result pattern P1 has
9 pattern items it shares with B1 ((PR)(Q)(I)(IJ)(U)(D)(T)) and 3(=12-9) extraneous
items ((IJU)).

4. Calculate precision, P. The total number of pattern items is 9+8+7+8+4=36. The
total number of items in the result pattern is 12+10+8+9+9=48. Thus, the total
number of extraneous items is 48-36=12.

P = (1− 12
48

)× 100% = 75%

5. Identify spurious patterns, Nspur. If a result pattern, Pj , has more extraneous items
than pattern items, it is classified as a spurious pattern. P5 is a spurious pattern because
4 < 5. Therefore, Nspur = 1.

6. Identify max patterns, Pmax(i). Of the remaining result patterns, for each base pattern,
Bi, identify the max result pattern such that ‖Bi ⊗ Pj‖ is maximized over all result
patterns Pj(i) mapped to Bi. In Table 5.10, result patterns are sorted by ‖Bi⊗Pj‖ for
each base pattern. P1 and P4 are max patterns for B1 and B2 respectively. B3 does not
have a max pattern.

7. Identify redundant patterns, Nredun. Any remaining result patterns are redundant pat-
terns. P2 and P3 are redundant patterns for B1 that confound the results. Hence,
Nredun = 2.

8. Calculate recoverability, R. For each max pattern, calculate recoverability with respect
to Bi, R(Bi) = ‖Bi⊗Pmax(i)‖

E(LBi
)·‖Bi‖ . Truncate R(Bi) to 1 if necessary. Weight and sum over

all base patterns.

R = E(FB1) · R(B1) + E(FB2) · R(B2) + E(FB3) · R(B3)
= 0.566 · 9

10 + 0.331 · 8
8 + 0.103 · 0

= 0.84 = 84%

5.4 A Closer Look at Extraneous Items

Extraneous items are those that are part of the result pattern the algorithms found, but
were not embedded into the database intentionally (false positive items). That is, they are

75

Table 5.12: Repeated items in a result pattern

ID len NpatI NextraI Patterns

P1 16 13 3 (G) (E) (A E F) (A E) (H) (A D) (B H) (C I) (B H)
B1 13 (G) (E F) (A) (H) (A D) (B H) (C I) (B H)

not part of the mapped base pattern. There are a couple of reasons why an algorithm would
falsely assume extraneous items to be part of the base patterns.

The most obvious reason would be that the data mining algorithm is incorrect. Algorithms
can inadvertently inject items into the real embedded patterns. These artificially created items
are incorrect. The evaluation method would correctly report them as extraneous items.

A more likely related reason would be that the data mining algorithm is inaccurate.
Different from being incorrect, in these cases the extraneous items do occur regularly in the
database. However, this is a random occurrence because these items do not come from the
base patterns embedded into the database. Furthermore, it is rooted on the definition of
regular that is either explicitly or implicitly specified within the paradigm used to define
patterns in the algorithm. That means that the definition of patterns used in the algorithm
is not accurate enough to differentiate between random occurrences and real patterns in the
data. In any case, these inaccurate items are also reported as extraneous items.

In reality, the most common extraneous items are repeated items. I use the most con-
servative definition of extraneous items. Thus, the current definition will classify repeated
items as extraneous items. That is when an item in the base pattern is reported in the result
pattern more than once, I consider only one of them as being a pattern item. All other items
are classified as extraneous items. Table 5.12 is an illustration from one of the experiments.
The E in the second and fourth, and A in the third itemset are all repeated items that were
classified as extraneous items. All are lightly colored to indicate its relatively weak presence
in the data. Clearly, the E comes from the second itemset in the base pattern, and the A

comes from the third itemset in the base pattern. However, there is a much stronger presence
of E in the third itemset and A in the fourth itemset of the result pattern. Therefore, the
three repeated items were classified as extraneous items.

Another possibility is due to the limitations of the evaluation method. The current eval-
uation method maps each result pattern to only one base pattern. Thus, any items which
do not come from the designated primary base pattern is reported as extraneous items even
though they might come from another base pattern. However, statistically with enough data
and not enough base patterns, a new underlying pattern can emerge. Recall that I build
sequences in the database by combining different base patterns. Consequently, when enough
sequences are generated by combining multiple base patterns in a similar way, it will produce
a new underlying pattern that is a mix of the basic base patterns. This new mixed pattern

76

Table 5.13: A new underlying trend emerging from 2 base patterns

ID len Patterns

P1 22 (F, J) (A,F,H,N) (F,K,Q) (A,E,G,L,P) (A,O) (G,M,R,S) (A,B)

B1 14 (F) (F) (K) (A,E,G,L) (G,M,R) (B) (C,D,O)

B2 14 (J) (A,H,N) (Q) (P) (A,O) (S) (A) (G,L) (I) (R)

will occur regularly in the database and a good algorithm should detect it.
This phenomena can be best depicted through an example from the experiment. A result

pattern P1 with 11 extraneous items of 22 items in total is given in Table 5.13. In this table,
color does not represent item weights. The dark items in P1 are pattern items, and the light
items in P1 are extraneous items. P1 is mapped to B1 because they share the most items
‖B1 ⊗ P1‖ = 11. The 11 light colored items in the result pattern P1, which do no come from
B1, are reported as the extraneous items. Clearly 10 of the 11 extraneous items are from B2.
There is only one real extraneous item in the third itemset, F (underlined). F is a repeated
item from B1. This result pattern suggests that there is a group of sequences that combine
the two base patterns, B1 and B2, in a similar manner to create a new underlying pattern
P1. Essentially, a new underlying pattern can emerge when two base patterns combine in a
similar way frequently enough. Such phenomena arise in the IBM data when Nseq/Npat is
large.

When algorithms detect such mixed patterns, the current evaluation method will incor-
rectly report all items not belonging to the primary base pattern as extraneous items. For-
tunately, such situation could be easily detected. If all the extraneous items were taken out
from a particular result pattern, and then built into a separate sequence, it should become a
subsequence of considerable length of another base pattern. That is the result pattern minus
all items in the primary base pattern should produce a sequence very similar to another base
pattern.

Nonetheless, incorporating this information into the evaluation upfront is quite difficult.
Mapping each result pattern to more than one base pattern for evaluation introduces many
new complications. Not the least of which is the proper criteria for mapping result patterns
to base patterns. That is how much of a base pattern is required to be present in the result
pattern for a mapping to occur. Obviously, one shared item between the result pattern and
the base pattern is not enough. But how many is enough? This and other issues will be
studied in future work for a more comprehensive evaluation method. For now, whenever
there is a large number of extraneous items, we investigate how much of the extraneous items
could be mapped back to a non-primary base pattern and include this information in the
results.

Chapter 6

Results

In this chapter, I report an extensive set of empirical evaluations. I study in detail various
aspects of ApproxMAP using the evaluation method discussed in chapter 5. All experiments
were run on a Dell with Dual 2GHz Intel Xeon processors emulating 4 logical processors. The
computer runs Red Hat Linux and has 2GB of memory. The program only uses one CPU in
all experiments.

Unless otherwise specified, I use the version of ApproxMAP which includes the improve-
ment discussed in section 4.6.1 but not section 4.6.2. That is, ApproxMAP uses reduced
precision of the proximity matrix with k-nearest neighbor clustering.

For all experiments, I assumed that the pattern consensus sequences were the only results
returned by ApproxMAP. In this section, I often refer to the consensus sequence pattern as
simply consensus pattern. Thus, the two main parameters that affect the result are k and θ.
In addition, there is an advanced parameter min DB strength that also affects the pattern
consensus sequence. However, min DB strength is not meant to be changed unless it is
necessary for the application. That is, min DB strength should be left at the default unless
the application is specifically trying to find patterns that occur in less than 10 sequences.
Thus, I assume that min DB strength is kept constant at the default, 10 sequences, for all
experiments.

Furthermore, only the consensus sequences with more than one itemset in the sequence
were considered as result patterns. That is all clusters with null consensus patterns (called
null clusters) or clusters with consensus patterns that have only one itemset (called one-
itemset clusters) were dismissed from the final result patterns because these are obviously not
meaningful sequential patterns.

To accurately depict the full results of ApproxMAP I include additional information about
(1) the total number of clusters, (2) the number of clusters with null consensus patterns, and
(3) the number of clusters with one itemset consensus patterns. Table 6.1 gives the notations
used.

78

Table 6.1: Notations for additional measures used for ApproxMAP
Measures Meaning
‖C‖ number of clusters

‖Nnull‖ number of clusters with null consensus patterns (null clusters)
‖None itemset‖ number of one itemset consensus patterns (one itemset clusters)

Table 6.2: Parameters for the IBM data generator in experiment 1
Notation Meaning Default value
‖I‖ # of items 1, 000
‖Λ‖ # of potentially frequent itemsets 5,000
Nseq # of data sequences 10, 000
Npat # of base pattern sequences 100
Lseq Avg. # of itemsets per data sequence 20
Lpat Avg. # of itemsets per base pattern 14
Iseq Avg. # of items per itemset in the database 2.5
Ipat Avg. # of items per itemset in base patterns 2

6.1 Experiment 1: Understanding ApproxMAP

Before I do a full evaluation of ApproxMAP using the method developed in chapter 5, I
take an in depth look at some important aspects of ApproxMAP. In summary, ApproxMAP was
robust to the input parameter k and θ as well as the order of alignment.

6.1.1 Experiment 1.1: k in k-Nearest Neighbor Clustering

First, I studied the influence and sensitivity of the user input parameter k. I fix other
settings and vary the value of k from 3 to 10, where k is the nearest neighbor parameter in
the clustering step, for a patterned database. The parameters of the IBM synthetic database
are given in Table 6.2 and the results are shown in Table 6.3 and Figure 6.1. As analyzed
before, a larger value of k produces less number of clusters, which leads to less number of
patterns. Hence, as expected when k increases in Figure 6.1(a), the number of consensus
patterns decreases.

However most of the reduction in the consensus patterns are redundant patterns for k =
3..9. That is the number of max patterns are fairly stable for k = 3..9 at around 75 patterns
(Figure 6.1(b)). Thus, the reduction in the total number of consensus patterns returned does
not have much effect on recoverability (Figure 6.1(c)). When k is too large though (k = 10),
there is a noticeable reduction in the number of max patterns from 69 to 61 (Figure 6.1(b)).
This causes loss of some weak base patterns and thus the recoverability decreases somewhat
as shown in Figure 6.1(c). Figure 6.1(c) demonstrates that there is a wide range of k that
give comparable results. In this experiment, the recoverability is sustained with no change in
precision for a range of k = 3..9. In short, ApproxMAP is fairly robust to k. This is a typical
property of density based clustering algorithms.

79

Table 6.3: Results for k
k Recoverability Precision Nspur Nredun Ntotal Nmax Running Time(s)
3 91.69% 100.00% 0 38 113 75 3898
4 91.90% 100.00% 0 33 109 76 3721
5 92.17% 100.00% 0 18 94 76 3718
6 92.23% 100.00% 0 15 91 76 3685
7 91.45% 100.00% 0 11 84 73 4070
8 91.04% 100.00% 0 5 76 71 4073
9 89.77% 100.00% 0 0 69 69 4007
10 83.47% 100.00% 0 3 64 61 3991

Figure 6.1: Effects of k

0

20

40

60

80

100

120

0 2 4 6 8 10

T
ot

al
 #

 o
f c

on
se

ns
us

 p
at

te
rn

s

k : for kNN clustering

0

20

40

60

80

100

120

0 2 4 6 8 10

of

 m
ax

 p
at

te
rn

s

k : for kNN clustering

(a) Ntotal w.r.t. k (b) Nmax w.r.t. k

50

60

70

80

90

100

0 2 4 6 8 10

R
ec

ov
er

ab
ili

ty
 (

%
)

k : for kNN clustering

0

3600

7200

10800

0 2 4 6 8 10

R
un

 T
im

e
(s

ec
)

k : for kNN clustering

(c) Recoverability w.r.t. k (d) Running Time w.r.t. k

In terms of running time, Figure 6.1(d) indicates that the performance of ApproxMAP is
not sensitive to parameter k. It is stable at a little over an hour for all k = 3..10.

6.1.2 Experiment 1.2: The Strength Cutoff Point

In ApproxMAP, there are two strength cutoff points, θ and δ, to filter out noise from
weighted sequences. Here, I study the strength cutoff point to determine its properties em-

80

Figure 6.2: Effects of θ

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

 E
va

lu
at

io
n

C
rit

er
ia

 (
%

)

Theta : Sthrength threshold (%)

Recoverability R
Precision P

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

 E
va

lu
at

io
n

C
rit

er
ia

 (
%

)

Theta : Sthrength threshold (%)

Recoverability R
Precision P

(a) Lseq = 10 (b) Lseq = 15

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

 E
va

lu
at

io
n

C
rit

er
ia

 (
%

)

Theta : Sthrength threshold (%)

Recoverability R
Precision P

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

 E
va

lu
at

io
n

C
rit

er
ia

 (
%

)

Theta : Sthrength threshold (%)

Recoverability R
Precision P

(c) Lseq = 20 (d) Lseq = 30

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

 E
va

lu
at

io
n

C
rit

er
ia

 (
%

)

Theta : Sthrength threshold (%)

Recoverability R
Precision P

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

 E
va

lu
at

io
n

C
rit

er
ia

 (
%

)

Theta : Sthrength threshold (%)

Recoverability R
Precision P

(e) Lseq = 40 (f) Lseq = 50

pirically. Since both cutoff points have the same property, I use θ as the representative
strength cutoff parameter. I ran 6 experiments on 6 different patterned databases. The pat-
terned data was generated with the same parameters given in Table 6.2 except for Lseq and
Lpat. Lseq was varied from 10 to 50, and Lpat = 0.7 · Lseq.

I then studied the change in recoverability and precision as θ is changed for each database.
Without a doubt, in Figure 6.2 the general trend is the same in all databases.

In all databases, as θ is decreased from 90%, recoverability increases quickly until it levels

81

off at θ = 50%. Precision stays high at close to 100% until θ becomes quite small. Clearly,
when θ = 50%, ApproxMAP is able to recover most of the items from the base pattern without
picking up any extraneous items. That means that items with strength greater than 50% are
all pattern items. Thus, as a conservative estimate, the default value for pattern consensus
sequence is set at 50%. In all experiments, the default value of θ = 50% is used unless
otherwise specified.

On the other side, when θ is too low precision starts to drop. Furthermore, in conjunction
with the drop in precision, there is a point at which recoverability drops again. This is because,
when θ is too low the noise is not properly filtered out. As a result too many extraneous items
are picked up. This in turn has two effects. By definition, precision is decreased. Even more
damaging, the consensus patterns with more than half extraneous items now become spurious
patterns and do not count toward recoverability. This results in the drop in recoverability.
In the database with Lseq = 10 this occurs at θ ≤ 10%. In all other databases, this occurs
when θ ≤ 5%.

The drop in precision starts to occurs when θ < 30% for the database with Lseq = 10. In
the databases of longer sequences, the drop in precision starts near θ = 20%. This indicates
that items with strength ≥ 30% are probably items in the base patterns.

Moreover, in all databases, when θ ≤ 10%, there is a steep drop in precision. This
indicates, that many extraneous items are picked up when θ ≤ 10%. The results indicate that
most of the items with strength less than 10% are extraneous items, because recoverability
is close to 100% when θ = 10%. Hence, as a modest estimation, the default value for the
variation consensus sequence is set at 20%. This modest estimate will allow ApproxMAP to
detect almost all pattern items while picking up only a small number of extraneous items in
the variation consensus sequence.

In summary, ApproxMAP is also robust to the strength cutoff point. This experiment
indicates that 20%-50% is in fact a good range for the strength cutoff point for a wide range
of databases.

6.1.3 Experiment 1.3: The Order in Multiple Alignment

Now, I study the sensitivity of the multiple alignment results to the order of sequences
in the alignment. I compare the mining results using the density-descending order, density-
ascending order, and two random orders (sequence-id ascending and descending order) for
the same database specified in Table 6.2. As expected, although the exact alignment changes
slightly depending on the orders, it has very limited effect on the consensus patterns.

The results show that (Table 6.4), all four orders generated the exact same number of
patterns that were very similar to each other. The number of pattern items detected that
were identical in all four orders, column NcommonI , was 2107. In addition, each order found
an additional 100 to 138 pattern items. Most of these additional items were found by more

82

Table 6.4: Results for different ordering
Order Recoverability NextraI NpatI NcommonI Precision Nspur Nredun Ntotal

Descending Density 92.17% 0 2245 2107 100.00% 0 18 94
Ascending Density 91.78% 0 2207 2107 100.00% 0 18 94

Random (ID) 92.37% 0 2240 2107 100.00% 0 18 94
Random (Reverse ID) 92.35% 0 2230 2107 100.00% 0 18 94

Figure 6.3: Comparison of pattern items found for different ordering

49 35

34

2152

9

95

Density Descending

Random (ID) Random (R-ID)

than one order. Therefore, the recoverability is basically identical at 92%.
While aligning patterns in density descending order tends to improve the alignment quality

(the number of pattern items found, NpatI , is highest for density descending order at 2245
while lowest for density ascending order at 2207), ApproxMAP itself is robust with respect
to alignment orders. In fact, the two random ordering tested gave comparable number of
pattern items as the density descending order.

Figure 6.3 gives a detailed comparison of the pattern items detected by the two random
orders and the density descending order. 2152 pattern items detected were identical in the
three orders. 9 pattern items were detected by only the density descending order. 2201
(=2152+49 or 2187=2152+35) pattern items were detected by both the density descending
order and a random order. Essentially, a random order detected about 98% (2201/2245 =
98% ' 2187/2245) of the pattern items detected by the density descending order plus a few
more pattern items (roughly 40 ' 34 + 5 ' 34 + 9) not detected by the density descending
order.

6.1.4 Experiment 1.4: Reduced Precision of the Proximity Matrix

As discussed in section 4.5, the straight forward ApproxMAP algorithm has time com-
plexity O(N2

seq · L2
seq · Iseq). It can be optimized with respect to O(L2

seq) by calculating the
proximity matrix used for clustering to only the needed precision. This was discussed in
section 4.6.1. Here I study the speedup gained empirically. Figure 6.4 shows the speedup
gained by using the optimization with respect to Lseq in comparison to the vanilla algorithm.
The figure indicates that such optimization can reduce the running time to almost linear with
respect to Lseq.

83

Figure 6.4: Running time w.r.t. Lseq

0

3600

7200

10800

14400

18000

21600

25200

28800

32400

36000

0 10 20 30 40 50
R

un
 T

im
e

(s
ec

)

Lseq : avg # of itemsets per sequence

normal
optimized

Figure 6.5: Fraction of calculation and running time due to optimization

0

10

20

30

40

50

0 10 20 30 40 50

F
ra

ct
io

n
of

 c
el

l c
al

cu
la

tio
n

do
ne

 (
%

)

Lseq : avg # of itemsets per sequence

0

10

20

30

40

50

0 10 20 30 40 50

F
ra

ct
io

n
of

 r
un

ni
ng

 ti
m

e
(%

)

Lseq : avg # of itemsets per sequence

(a) Fraction of cells calculation (b) Fraction of running time

To investigate further the performance of the optimization, I looked at the actual number
of cell calculations saved by the optimization. That is, with the optimization, the modified
proximity matrix has mostly values of ∞ because k << N . For those dist(seqi, seqj) = ∞,
I looked at the dynamic programming calculation for dist(seqi, seqj) to see how many cells
in the recurrence table were be skipped. To understand the savings in time, I report the
following in Figure 6.5(a).∑

the number of cells in the recurrence table skipped∑
the total number of cells in the recurrence table

· 100%

When 10 ≤ Lseq ≤ 30, as Lseq increases more and more proportion of the recurrence table
calculation can be skipped. Then at Lseq = 30, the proportion of savings levels off at around
35%-40%.

This is directly reflected in the savings in running time in Figure 6.5(b). Figure 6.5(b)
reports the reduction in running time due to optimization as a proportion of the original
running time. The proportion of savings in running time increases until Lseq = 30. At
Lseq = 30 it levels off at around 40%. Thus, I expect that when Lseq ≥ 30, the optimization

84

Figure 6.6: Results for sample based iterative clustering

40

50

60

70

80

90

100

0 10 20 30 40 50

R
ec

ov
er

ab
ili

ty
 (

%
)

Sample size (%)

Nseq=10K
Nseq=20K
Nseq=30K
Nseq=40K
Nseq=60K

50

60

70

80

90

100

0 20000 40000 60000 80000 100000

R
ec

ov
er

ab
ili

ty
 (

%
)

Nseq : # of sequences

normal
optimizied

(a) Recoverability w.r.t. sample size (b) Recoverability w.r.t. Nseq (sample=10%)

0

36000

72000

108000

144000

180000

216000

0 20000 40000 60000 80000 100000

T
im

e
(s

ec
)

Nseq : # of sequences

normal
optimized (all)

optimized (none)

0

10

20

30

40

50

0 20000 40000 60000 80000 100000

F
ra

ct
io

n
of

 R
un

ni
ng

 T
im

e
(%

)

Nseq : # of sequences

optimized (all)
optimized (none)

(c) Running time w.r.t. Nseq (d) Fraction of running time w.r.t. Nseq

will give a 40% reduction in running time. This is a substantial increase in speed without
any loss in the accuracy of the results.

6.1.5 Experiment 1.5: Sample Based Iterative Clustering

In section 4.6.2, I discussed how to speed up the clustering step by using a sample based
iterative partitioning method. Such change can optimize the time complexity with respect to
O(N2

seq) at the cost of some reduction in accuracy and larger memory requirement. Obviously,
the larger the sample size the better the accuracy with slightly less gain in running time. In
this section, I study the tradeoff empirically to determine the appropriate sample size. The
experiments also suggests when such optimizations should be used.

Figure 6.6(a) presents recoverability with respect to sample size for a wide range of
databases. All runs use the default k′ = 3. When Nseq ≥ 40, 000, recoverability levels
off at 10% sample size. When Nseq < 40, 000, recoverability levels off at a larger sample size.
However, when Nseq = 40, 000 it takes less then 13 hours even without the optimization.
For a large database this should be reasonable for most applications. Thus, the experiment
suggests that the optimization should be used for databases when Nseq ≥ 40, 000 with sample

85

size 10%. For databases with Nseq < 40, 000, as seen in Figure 6.6(b), sample size 10% is too
small. Thus, a larger sample size should be used if the normal algorithm is not fast enough
for the application. Essentially, the experiments indicate that the sample size should have
at least 4000 sequences to get comparable results. As expected, in the smaller databases
with Nseq < 40, 000, the running time is fast even when using a larger sample size. When
Nseq = 30, 000 and sample size=20% the running time was only 90 minutes.

Figure 6.6(b) and (c) show the gain in running time and the loss in recoverability with
respect to Nseq with the optimization (sample size=10%, k′ = 3). optimized (all) is a simple
hash table implementation with all proximity values stored and optimized (none) is the imple-
mentation with none of the proximity values stored. We could only run upto Nseq = 70, 000 in
the optimized (all) experiment with 2GB of memory. The results clearly show that the opti-
mization can speedup time considerably at the cost of negligible reduction in accuracy. Figure
6.6(d) show that the optimization can reduce running time to roughly 10%-40% depending
on the size of the available memory.

6.2 Experiment 2: Effectiveness of ApproxMAP

In this section, I investigate the effectiveness of ApproxMAP using the full evaluation
method discussed in chapter 5 on some manageable sized databases. I ran many experi-
ments with various synthetic databases. The trend is clear and consistent. The evaluation
results reveal that ApproxMAP returns a succinct but accurate summary of the base patterns
with few redundant or spurious patterns. It is also robust to both noise and outliers in the
data.

6.2.1 Experiment 2.1: Spurious Patterns in Random Data

In this section, I study empirically under what condition suprious patterns are generated
from completely random data (‖I‖ = 100, Nseq = 1000, Lseq = 10, Iseq = 2.5). For random
data, because there are no base patterns embedded in the data, evaluation criteria recov-
erability, precision, and number of redundant patterns do not apply. The only important
evaluation measure is the number of spurious patterns, Nspur, generated by the algorithm. I
include the total the number of result patterns returned, Ntotal, for completeness. Since there
are no base patterns in the data Ntotal = Nspur.

Recall that there are two parameters, k and θ in ApproxMAP. I first study the cutoff
parameter θ. To determine the threshold at which spurious patterns will be generated, Tspur,
I ran 8 experiments varying θ for a particular k. Each individual experiment has a constant
k from 3 to 10.

Here I first report the full results of the experiment with the default value k = 5. When
k = 5, there are 90 clusters of which only 31 clusters had 10 or more sequences. That means

86

Table 6.5: Results from random data (k = 5)
θ Ntotal Nspur ‖C‖ ‖Nnull‖ ‖None itemset‖

50% 0 0 90 90 0
40% 0 0 90 89 1
30% 0 0 90 89 1
20% 0 0 90 86 4
16% 1 1 90 85 4

Table 6.6: Full results from random data (k = 5)
Cluster ID Cluster size 22% ≥ θ ≥ 19% 18% ≥ θ ≥ 17% 16% ≥ θ ≥ 0
Cluster1 42 〈(A)〉 〈(A)〉 〈(A)〉
Cluster2 61 〈(B)〉 〈(B)(E)〉 〈(B)(E)(B)〉
Cluster3 22 〈(C)〉 〈(C)〉 〈(C)〉
Cluster4 50 〈(D)〉 〈(D)〉 〈(D)〉
Cluster5 60 〈(F G)〉

‖None itemset‖ 4 3 4
Nspur 0 1 1
‖Nnull‖ 86 86 85
‖C‖ 90 90 90

that the remaining 59 clusters will not return a consensus pattern no matter how low the
cutoff is set because min DB strength = 10 sequences. Recall that when generating pattern
consensus sequences, the greater of the two cutoff, θ or min DB strength is used. Therefore,
the following theorem shows that the lowest value of θ that can introduce the most spurious
patterns is 16%.

Theorem 4. Given a weighed sequence, wseq = 〈WX1 : v1, . . . ,WXl : vl〉 : n, when
min DB strength is kept constant, the pattern consensus sequences generated by ApproxMAP

stay constant regardless of θ for 0 ≤ θ ≤ min DB strength
n .

Proof: According to Algorithm 2, when generating pattern consensus sequences the actual
cutoff applied is the greater of the two specified cutoffs, θ or min DB strength

n . Thus, the cutoff
applied is min DB strength

n for 0 ≤ θ ≤ min DB strength
n , regardless of θ.

By Theorem 4, when θ is lowered enough such that it is smaller than min DB strength
cluster size for

all clusters, there is no change in the results regardless of θ. That is the result is constant for
0 ≤ θ ≤ min DB strength

size(Cmax) where size(Cmax) is the number of sequences in the biggest cluster.
In this experiment the biggest cluster had 61 sequences. Thus, all results are the same for
0 ≤ θ = 16% (θ ≤ min DB strength

61 = 10
61 = 16.4%). Hence the smallest possible effective value

of θ is 16%.
The results are given for 16% ≤ θ ≤ 50% in Table 6.5. Noting that the first spurious

pattern occurs when θ = 16%, I investigated the region 16% ≤ θ < 20% in more detail. The
results for 0% ≤ θ ≤ 22% are given in Table 6.6. It includes the actual consensus sequences
generated for all non null clusters (the first five rows). The next two rows summarize how

87

Table 6.7: Results from random data (θ = 50%)
k Ntotal Nspur ‖C‖ ‖Nnull‖ ‖None itemset‖
3 0 0 134 134 0
4 0 0 103 103 0
5 0 0 90 90 0
6 0 0 86 84 2
7 0 0 57 56 1
8 0 0 61 61 0
9 0 0 59 59 0
10 0 0 56 55 1

Table 6.8: Results from random data at θ = Tspur

k Tspur Ntotal Nspur ‖C‖ ‖Nnull‖ ‖None itemset‖
3 26% 1 1 134 132 1
4 19% 1 1 103 99 3
5 18% 1 1 90 86 3
6 27% 1 1 86 81 4
7 18% 1 1 57 47 9
8 23% 2 2 61 55 4
9 27% 1 1 59 54 4
10 26% 1 1 56 53 2

many of them are one itemset clusters and how many are spurious patterns. It is then followed
by the number of null clusters in the result. These three add to the total number of clusters
given next.

Up to θ = 19%, there are no spurious patterns returned and only four one-itemset con-
sensus sequences returned. At θ = 18%, the first spurious pattern is generated when an
additional itemset (E) is introduced in the consensus sequence from Cluster2. Thus, the
point at which the first spurious pattern occurs, Tspur, is 18% for k = 5. Then at θ = 16%
two more itemsets are introduced. First, one more itemset, (B), is introduced again to the
consensus sequence from Cluster2. Second Cluster5, a null cluster up to this point, now has
an itemset in its consensus sequence. The new consensus sequence 〈(F G)〉 is a one-itemset
consensus sequence. By Theorem 4, for all θ < 16%, the result is the same as that when
θ = 16%

In summary, when k = 5, there is no spurious pattern generated for θ > 18% and only
one spurious pattern for θ ≤ 18%. The spurious pattern is 〈(B)(E)〉 for 17% ≤ θ ≤ 18% and
〈(B)(E)(B)〉 for 0% ≤ θ ≤ 16%.

The summary of all 8 experiments varying k from 3 to 10 is given in Tables 6.7 and
6.8. Table 6.7 give the results for different k while keeping θ at the default value 50%. All
experiments had no clusters with a meaningful (more than one itemset) consensus sequence.
In fact, almost all clusters resulted in null consensus sequences. Five of eight experiments

88

had all clusters with null consensus sequences. The other three experiments, k equal to 6,
7 and 10, gave only 2, 1, and 1 cluster with a one-itemset consensus sequence respectively.
All of these one-itemset clusters, were small and had only one random item aligned. The
exact cluster sizes that had a random item align to produce a one-itemset consensus sequence
were 30, 31, 20 and 19 sequences. All other clusters could not align any items at all. These
excellent results are not surprising when each experiment is investigated in detail. In the
eight experiments, the cluster sizes ranged from 1 to 153 sequences with many being tiny.
In total, 63% had less than 10 sequences. These clusters could not generate any consensus
sequences because min DB strength = 10 sequences.

In Table 6.8, I report the threshold at which the first spurious pattern occurs, Tspur, along
with the other evaluation measures for each k. In the experiment, Tspur ranged from 18% to
27%.

Clearly, ApproxMAP generates no spurious patterns from the random database (‖I‖ =
100, Nseq = 1000, Lseq = 10, Iseq = 2.5) for a wide range of k (3 ≥ k ≥ 10) when θ > 27%.
This is in line with the study of θ in section 6.1.2 that it is very unlikely that extraneous
items appear in the consensus pattern when θ ≥ 30%

Discussion : ApproxMAP and Random Data

ApproxMAP handles random data very well. Although the algorithm generated many
clusters (all experiments generated from 56 to 134 clusters), when θ > 27% all the clusters
produced pattern consensus sequences with either 0 or 1 itemset which were easily dismissed.

There are two reasons why there is no pattern consensus sequence for a cluster. First, if
the cluster is tiny it is not likely to have much item weights greater than min DB strength.
Recall that the default value of min DB strength is 10 sequences. Thus, many clusters with
less than 10 sequences had no pattern consensus sequence.

Second, not enough sequences in the cluster could be aligned to generate any meaningful
consensus itemsets. That is in all experiments at most one itemset could be aligned over all
the itemsets. A one itemset sequence is clearly, not a meaningful sequential pattern. This
is not surprising since the probability of two long sequences being similar by chance is quite
small. Thus, it is very unlikely that enough sequences will align to produce patterns simply
by chance.

6.2.2 Experiment 2.2: Baseline Study of Patterned Data

This experiment serves several purposes. First, it evaluates how well ApproxMAP detects
the underlying patterns in a simple patterned database. Second, it illustrates how readily the
results may be understood. Third, it establishes a baseline for the remaining experiments. I
generated 1000 sequences from 10 base patterns (Table 6.9). The full parameters of the IBM

89

Table 6.9: Parameters for the IBM data generator in experiment 2
Notation Meaning Default value
‖I‖ # of items 100
‖Λ‖ # of potentially frequent itemsets 500
Nseq # of data sequences 1000
Npat # of base pattern sequences 10
Lseq Avg. # of itemsets per data sequence 10
Lpat Avg. # of itemsets per base pattern 7
Iseq Avg. # of items per itemset in the database 2.5
Ipat Avg. # of items per itemset in base patterns 2

Table 6.10: Results from patterned data (θ = 50%)
k recoverability Precision Ntotal Nspur Nredun

3 91.85% 1/169=99.41% 15 0 7
4 88.75% 1/143=99.30% 13 0 6
5 88.69% 0/128=100.00% 11 0 4
6 87.45% 0/96=100.00% 8 0 1
7 78.18% 0/91=100.00% 8 0 2
8 82.86% 0/85=100.00% 7 0 1
9 81.09% 0/84=100.00% 7 0 1
10 64.40% 0/71=100.00% 6 0 1

patterned database is given in Table 6.9. I optimized the parameters k and θ by running a
set of experiments.

The first step was to find a reasonable θ that would work for a range of k. So for the
first experiment, I varied k from 3 to 10 with θ set at the default value of 50%. The results,
given in Table 6.10, showed that recoverability was not high enough in the region where the
number of redundant patterns were small (Nredun < 5 which would be k ≥ 5).

Therefore, I ran a second experiment with a lower θ = 30% while varying k. As seen in the
results given in Table 6.11 in general recoverability was more acceptable with good precision.
So I used θ = 30% to determine the optimal k.

As expected, as k increases, more sequences are clumped together to form less clusters.
This is reflected in the reduction ofNtotal. Initially the clusters merged in this process are those
with similar sequences built from the same base pattern. This can be seen for k = 3..6 where
Nredun decreases from 7 to 1 and little change occur in recoverability from 92.36% to 91.16%.
However, when k is increased beyond 6, small clusters (sequences built from less frequent
base patterns) are merged together and I start to loss the less frequent patterns resulting
in decreased recoverability. For k = 6..10, this phenomena occurs where recoverability is
decreased from 91.16% to 70.76%. Figure 6.7(a) depicts the drop in recoverability at k = 6.
Figure 6.7(b) illustrates that the number of redundant patterns levels off at the same point
(k = 6). Hence, k = 6 is the optimal resolution for clustering this database.

Now, I wanted to optimize θ for the optimal k = 6. Thus, we ran an experiment with

90

Table 6.11: Results from patterned data (θ = 30%)
k recoverability Precision Ntotal Nspur Nredun

3 92.36% 1-5/179=97.21% 15 0 7
4 91.66% 1-2/153=98.69% 13 0 6
5 91.16% 1-4/136=97.06% 11 0 4
6 91.16% 1-3/106=97.17% 8 0 1
7 85.77% 1-1/100=99.00% 8 0 2
8 82.86% 1-4/90=95.56% 7 0 1
9 85.77% 1-0/90=100.00% 7 0 1
10 70.76% 1-4/82=95.12% 6 0 1

Figure 6.7: Effects of k

50

60

70

80

90

100

0 2 4 6 8 10

R
ec

ov
er

ab
ili

ty
 (

%
)

k (#)

0

2

4

6

8

10

0 2 4 6 8 10

of

 r
ed

un
da

nt
 p

at
te

rn
s

k (#)

(a) Recoverability w.r.t. k (b) Number of redundant patterns w.r.t. k

k = 6 and varied θ from 20% to 50% (Table 6.12). For the optimal value, depending on the
application, a user would choose either (1) the smallest θ with no extraneous items (θ = 40%)
or (2) the largest θ with good recoverability and precision even though this point could
include some extraneous items. I choose to go with the later option because the definition
for extraneous items is the most conservative possible. That is, not all extraneous items are
truly extraneous. See section 5.4 for details.

For this database, I decided that the precision=84.8% for θ = 20% was too low. The
region 25% ≥ θ ≥ 35% had both good recoverability and precision. Since θ = 25% had the
same number of pattern items found with θ = 30% but two more extraneous items, θ = 25%
was dropped from consideration.

Now, let us compare the results from θ = 30% and θ = 35%. Although the recoverability
are the same, the actual number of pattern items found are different. The number of pattern
items found are 103 and 100 respectively. There are two circumstances in which there is no
change in recoverability even though more pattern items are found.

First, an increase in the pattern items for a non-max pattern has no affect on recoverability
unless the non-max pattern becomes longer than the original max pattern because only the
pattern items found in the max pattern is used to calculate recoverability.

Second, even if the additional pattern items found are from the max pattern, if

91

Table 6.12: Results from patterned data (k = 6)
θ Recoverability Nitem NpatI NextraI Precision Ntotal Nspur Nredun

20% 93.10% 125 106 19 84.80% 8 0 1
25% 91.16% 108 103 5 95.37% 8 0 1
30% 91.16% 106 103 3 97.17% 8 0 1
35% 91.16% 102 100 2 98.04% 8 0 1
40% 88.69% 98 98 0 100.00% 8 0 1
45% 88.69% 97 97 0 100.00% 8 0 1
50% 87.45% 96 96 0 100.00% 8 0 1

Table 6.13: Optimized parameters for ApproxMAP in experiment 2.2
k # of neighbor sequences 6
θ the strength cutoff for pattern consensus sequences 28%..30%
δ the strength cutoff for variation consensus sequences 20%

min DB strength the optional parameter for pattern consensus sequences 10 sequences
max DB strength the optional parameter for variation consensus sequences 10%

max{Pj(i)} ‖Bi⊗Pj‖ is already greater than E(LBi) · ‖Bi‖, the recoverability does not change.
This is because when the expected length of the base pattern, E(LB) · ‖Bi‖ is smaller than
the observed value max{Pj(i)} ‖Bi ⊗ Pj‖, max ‖B⊗P‖

E(LBi
)·‖Bi‖ is truncated to 1.

To be precise, the optimal point is the one where the most pattern items are found with
the least possible extraneous items. Thus, after debating between θ = 35% and θ = 30%, I
decided that θ = 30% was the optimal point1.

By investigating the region 25% < θ < 35% in more detail I found that the consensus
sequences are exactly the same in the region 28% ≥ θ ≥ 30%. That is the optimal results can
be obtained with k = 6 and 28% ≥ θ ≥ 30% for this database.

Now let us take a closer look at the mining result from the optimal run (k = 6, θ = 30%).
Under such settings, ApproxMAP finds 8 pattern consensus sequences. The full results of
ApproxMAP for this database is given in Table 6.14. The pattern consensus sequences and
the variation consensus sequences are given along with the matched base patterns used to
build the database. For variation consensus sequences, the default setting of 20% is used as
given in Table 6.13. Note that there is 9 clusters but only 8 consensus patterns because there
is one null cluster (PatConSeq9).

As shown in Table 6.14, each of the 8 pattern consensus sequences match a base pattern
well. There were no spurious patterns. The pattern consensus sequences do not cover the

1The difference between the results produced by θ = 35% and θ = 30% are only 4(=106-102) items.
One(=3-2) of them is an extraneous item and the other three are pattern items. All the pattern consensus
sequences for θ = 30% is given in Table 6.14. As θ changes from 35% to 30% an additional extraneous item, 58
in the fourth itemset in PatConSeq8, is picked up. The missed pattern items when θ = 35% are (1) the last
item, 51, in PatConSeq3, (2) and the two items in the last itemset, (2 74), in PatConSeq8. The first does not
affect recoverability because PatConSeq3 is a redundant pattern. The second does not affect recoverability
because the expected length of PatConSeq8 is 0.6 ∗ 13 = 7.8. Thus, finding 11 items of the 13 items in the
base pattern is the same as finding all 13 items when calculating recoverability.

92

Table 6.14: Consensus sequences and the matching base patterns (k = 6, θ = 30%)

B
aseP

i (E(F
B):E(L

B)) || P
 ||

P
attern

 <100: 85: 70: 50: 35: 20>
BaseP

1 (0.21:0.66)
14

<(15 16 17 66)
 (15)

 (58 99)
 (2 74)

 (31 76)
 (66)

 (62)
 (93) >

P
atC

onSeq
1

13
<

 (15 16 17 66)
 (15)

 (58 99)
 (2 74)

 (31 76)
 (66)

 (62)
 >

V
arC

onS
eq

1
18

<
 (15 16 17 66)

 (15 22)
 (58 99)

 (2 74)
 (24 31 76)

 (24 66)
 (50 62)

 (93)
 >

B
aseP

2 (0.161:0.83)
22

<(22 50 66)
 (16)

 (29 99)
 (94)

 (45 67)
 (12 28 36)

 (50)
 (96)

 (51)
 (66)

 (2 22 58)
 (63 74 99) >

P
atC

onSeq
2

19
<

 (22 50 66)
 (16)

 (29 99)
 (94)

 (45 67)
 (12 28 36)

 (50)
 (96)

 (51)
 (66)

 (2 22 58)
 >

V
arC

onS
eq

2
25

<
 (22 50 66)

 (16)
 (29 99)

 (22 58 94)
 (2 45 58 67)

 (12 28 36)
 (2 50)

 (24 96)
 (51)

 (66)
 (2 22 58)

 >
P

atC
onSeq

3
15

<
 (22 50 66)

 (16)
 (29 99)

 (94)
 (45 67)

 (12 28 36)
 (50)

 (96)
 (51)

 >
V

arC
onS

eq
3

15
<

 (22 50 66)
 (16)

 (29 99)
 (94)

 (45 67)
 (12 28 36)

 (50)
 (96)

 (51)
 >

B
aseP

3 (0.141:0.82)
14

< (22)
 (22)

 (58)
 (2 16 24 63)

 (24 65 93)
 (6)

 (11 15 74) >
P

atC
onSeq

4
11

<
 (22)

 (22)
 (58)

 (2 16 24 63)
 (24 65 93)

 (6)
 >

V
arC

onS
eq

4
13

<
 (22)

 (22)
 (22)

 (58)
 (2 16 24 63)

 (2 24 65 93)
 (6 50)

 >
B

aseP
4 (0.131:0.90)

15
<(31 76)

 (58 66)
 (16 22 30)

 (16)
 (50 62 66)

 (2 16 24 63) >
P

atC
onSeq

5
11

<
 (31 76)

 (58 66)
 (16 22 30)

 (16)
 (50 62 66)

 >
V

arC
onS

eq
5

11
<

 (31 76)
 (58 66)

 (16 22 30)
 (16)

 (50 62 66)
 (16 24)

 >
B

aseP
5 (0.123:0.81)

14
<(43)

 (2 28 73)
 (96)

 (95)
 (2 74)

 (5)
 (2)

 (24 63)
 (20)

 (93) >
P

atC
onSeq

6
13

<
 (43)

 (2 28 73)
 (96)

 (95)
 (2 74)

 (5)
 (2)

 (24 63)
 (20)

 >
V

arC
onS

eq
6

16
<

 (22 43)
 (2 28 73)

 (58 96)
 (95)

 (2 74)
 (5)

 (2 66)
 (24 63)

 (20)
 >

B
aseP

6 (0.121:0.77)
9

<(63)
 (16)

 (2 22)
 (24)

 (22 50 66)
 (50) >

P
atC

onSeq
7

8
<

 (63)
 (16)

 (2 22)
 (24)

 (22 50 66)
 >

V
arC

onS
eq

7
9

<
 (63)

 (16)
 (2 22)

 (24)
 (22 50 66)

 >
B

aseP
7 (0.054:0.60)

13
<(70)

 (58 66)
 (22)

 (74)
 (22 41)

 (2 74)
 (31 76)

 (2 74) >
P

atC
onSeq

8
16

<
 (70)

 (58)
 (22 58 66)

 (22 58)
 (74)

 (22 41)
 (2 74)

 (31 76)
 (2 74)

 >
V

arC
onS

eq
8

18
<

 (70)
 (58 66)

 (22 58 66)
 (22 58)

 (74)
 (22 41)

 (2 22 66 74)
 (31 76)

 (2 74)
 >

P
atC

onSeq
9

0
 cluster

 size
 w

as
 only

 5
 sequences

 so
 no

 pattern
 consensus

 sequence
 w

as
 produced

V
arC

onS
eq

9
8

<
 (70)

 (58 66)
 (74)

 (74)
 (22 41)

 (74)
 >

B
aseP

8 (0.014:0.91)
17

< (20 22 23 96)
 (50)

 (51 63)
 (58)

 (16)
 (2 22)

 (50)
 (23 26 36)

 (10 74) >
B

aseP
9 (0.038:0.78)

7
< (88)

 (24 58 78)
 (22)

 (58)
 (96) >

B
aseP

10 (0.008:0.66)
17

< (16)
 (2 23 74 88)

 (24 63)
 (20 96)

 (91)
 (40 62)

 (15)
 (40)

 (29 40 99) >

93

three weakest base patterns (BaseP8, BaseP9, and BaseP10). The recoverability is still quite
good at 91.16%. In general, the pattern consensus sequences recover major parts of the base
patterns with high expected frequency in the database.

The pattern consensus sequences cannot recover the complete base patterns (all items
in the base patterns) because, during the data generation, only parts of base patterns are
embedded into a sequence. Hence, some items in a particular base pattern may have much
lower frequency than the other items in the same base pattern in the data. When I explored
the weighted sequences by trying different cutoffs of θ, it was clear that the full weighted
sequences in ApproxMAP accurately stored this information. The less frequent items in the
base patterns were in the weighted sequence but with smaller weights. This is illustrated
by the lighter (weaker) items in the longer variation consensus sequences. For example,
V arConSeq1 has 5 additional items (22, 24, 24, 50, and 93) compared to PatConSeq1. Four
of them are extraneous items (22, 24, 24, and 50) while the last one (93) is not. It comes from
the base pattern BaseP1, just with less frequency compared to the other items in the base
pattern. These weaker items are not included in the pattern consensus sequences because
their item strengths are not frequent enough to clearly differentiate them from extraneous
items.

Precision is excellent at P = 1 − 3
106 = 97.17%. Thus, clearly all the pattern consensus

sequences are highly shared by sequences in the database. In all the pattern consensus
sequences, there is only three items (the lightly colored items 58, 22, and 58 in the first part
of PatConSeq8) that do not appear on the corresponding position in the base pattern. These
items are not random items injected by the algorithm, but rather repeated items, which
clearly come from the base pattern BaseP7. These items are still classified as extraneous
items because the evaluation method uses the most conservative definition. See section 5.4
for a detailed discussion on this issue.

It is interesting to note that a base pattern may be recovered by multiple pattern consensus
sequences. For example, ApproxMAP forms two clusters whose pattern consensus sequences
approximate base pattern BaseP2. This is because BaseP2 is long (the actual length of the
base pattern is 22 items and the expected length of the pattern in a data sequence is 18 items)
and has a high expected frequency (16.1%). Therefore, many data sequences in the database
are generated using BaseP2 as a template. As discussed in chapter 5, sequences are generated
by removing various parts of the base pattern and combining with other items. Thus, two
sequences using the same long base pattern as the template are not necessarily similar to
each other. As a result, the sequences generated from a long base pattern can be partitioned
into multiple clusters by ApproxMAP. One cluster with sequences that have almost all of the
22 items from BaseP2 (PatConSeq2) and another cluster with sequences that are shorter
(PatConSeq3). The one which shares less with the base pattern, PatConSeq3, is classified
as a redundant pattern in the evaluation method (Nredun = 1).

94

Based on the above analysis, clearly ApproxMAP provides a succinct summary of the
database. That is, ApproxMAP is able to summarize the 1000 sequences into 16 consensus
sequences (two for each partition) both accurately and succinctly. The 16 pattern consensus
sequences resemble the base patterns that generated the sequences very well (recoverability=
91.16%, precision=97.17%). No trivial or irrelevant pattern is returned (Ntotal = 8, Nspur =
0, Nredun = 1).

Note that in real applications, there is no way to know what the true underlying patterns
are. Thus, the approach used in this section to find the optimal parameter setting can not
be utilized. However, consistent with results in section 6.1, this section clearly shows that
ApproxMAP is robust with respect to the input parameters. That is many settings give results
comparable to the optimal solution (k = 5 or 6; 25% ≥ θ ≥ 35%). More importantly, for a
wide range of k and θ the results are at least a sub-optimal solution. For k=3 to 9 and
25% ≥ θ ≥ 50%, all results had recoverability greater than 82.98% and precision greater than
95.56%.

The 16 consensus sequences give a good overview of the 1000 sequences. Thus, in a real
application, a careful scan of the manageable sized results can give a domain expert good
estimates (even with a sub-optimal setting) about what possible patterns they can search
for in the data. This is really what makes ApproxMAP a powerful exploratory data analysis
tool for sequential data. Pattern search methods (sometimes called pattern matching) are
much more efficient than pattern detection methods. Users can use pattern search methods
to confirm and/or tune suggested patterns found from ApproxMAP.

6.2.3 Experiment 2.3: Robustness With Respect to Noise

Here I evaluate the robustness of the ApproxMAP with respect to varying degree of noise
added to the pattern data used in the previous section. I use the parameters that optimized
the results for the patterned data (k = 6, θ = 30%). Results are given in Table 6.15 and
Figure 6.8.

There are two aspects to how noise can interfere with the data mining process. First, if
the data mining process cannot differentiate pattern items from the noise items, precision will
decrease. In ApproxMAP, pattern items are identified as those items that occur regularly in
a certain location after alignment. The probability of a random item showing up in a certain
position frequently enough to be aligned is very low. Thus, even with large amounts of noise
present in the data, these random noise are easily identified and ignored as noise.

In fact, Figure 6.8(b) shows that precision actually increases when there is more noise
in the data. This is because with noise in the data, ApproxMAP is more likely to drop the
weak items that it identified as pattern items without noise. For recoverability, that means
that some weak items that are true patterns will be missed resulting in some reduction in
recoverability. On the other hand, for precision, that means that the weak items that were false

95

Table 6.15: Effects of noise (k = 6, θ = 30%)
1− α running time recoverability Precision Ntotal Nspur Nredun

0% 14 91.16% 1-3/106=97.17% 8 0 1
10% 16 91.16% 1-1/104=99.04% 9 0 2
20% 10 91.16% 1-1/134=99.25% 12 0 5
30% 10 90.95% 1-0/107=100.00% 9 0 2
40% 16 88.21% 1-0/95=100.00% 9 0 2
50% 10 64.03% 1-0/68=100.00% 8 0 3

Figure 6.8: Effects of noise (k = 6, θ = 30%)

50

60

70

80

90

100

0 10 20 30 40 50

R
ec

ov
er

ab
ili

ty
 (

%
)

1-alpha: noise level (%)

50

60

70

80

90

100

0 10 20 30 40 50

P
re

ci
si

on
 (

%
)

1-alpha: noise level (%)

(a) Recoverability w.r.t. 1− α (b) Precision w.r.t. 1− α

positives will now be accurately identified as extraneous items resulting in higher precision.

Second, noise can interfere with detecting the proper pattern items. This will reduce
recoverability. As discussed in the previous paragraph, noise will cause ApproxMAP to miss
some of the weak items and in turn reduce recoverability slightly. However, when the base
pattern appears fairly frequent in the database ApproxMAP can still detect most of the base
patterns even in the presence of noise.

To understand why, let us consider the behavior of ApproxMAP in the presence of noise.
When there are noise in a data sequence, ApproxMAP will simply align based on the remaining
pattern items. Then once the alignment is done ApproxMAP reports on the items that occur
regularly in each position. Note that the items that are randomly changed are different in
each sequence. Thus, a particular pattern item missing from some of the data sequences, is
most likely still captured by ApproxMAP through other data sequence with that particular
pattern item in the proper position if the base pattern signature is strong enough.

Furthermore, ApproxMAP aligns the sequences by starting with the most similar sequences
and working out to the least similar. The weighted sequence built from the core of the
sequences in the cluster forms a center of mass. That is, the items in the base pattern
start to emerge in certain positions. Then the sequences with more noise can easily attach
its pattern items to the strong underlying pattern emerging in the weighted sequence. In

96

Table 6.16: Effect of outliers (k = 6, θ = 30%)
Noutlier NPatSeq NPatI NExtraI R P Ntotal Nspur Nredun ‖Nnull‖ ‖None itemset‖ ‖C‖

0 1000 103 3 91.16% 97.17% 8 0 1 1 0 9
200 1000 100 2 91.16% 98.04% 8 0 1 2 0 10
400 1000 97 0 88.33% 100% 8 0 1 3 0 11
600 1000 92 0 82.87% 100% 8 0 1 4 0 12
800 1000 81 0 72.88% 100% 7 0 1 10 1 18

Figure 6.9: Effects of outliers (k = 6, θ = 30%)

50

60

70

80

90

100

0 200 400 600 800

R
ec

ov
er

ab
ili

ty
 (

%
)

of random sequences

50

60

70

80

90

100

0 200 400 600 800

P
re

ci
si

on
 (

%
)

of random sequences

(a) Recoverability w.r.t. outliers (b) Precision w.r.t. outliers

essence, ApproxMAP works only with those items that align with other sequences and simply
ignores those that cannot be aligned well. This makes ApproxMAP very robust to noise in the
data.

Table 6.15 and Figure 6.8(a) show that the results are fairly good with up to 40% of noise
in the data. Despite the presence of noise, it is still able to detect a considerable number
of the base patterns (i.e. recoverability is 88.21% when corruption factor is 40%) with no
extraneous items (precision is 100%) or spurious patterns. At 50% of noise (that is 50% of
the items in the data were randomly changed to some other item or deleted), recoverability
starts to degenerate (recoverability=64.03%).

Clearly, the results show that ApproxMAP is robust to noise in the data. ApproxMAP is
very robust to noise because it looks for long sequential patterns in the data and simply
ignores all else.

6.2.4 Experiment 2.4: Robustness With Respect to Outliers

This experiment is designed to test the effect of outliers in the data. To do so, varying
number of outliers (random sequences) were added to patterned data used in experiment
2.2. The main effect of the outliers are the weakening of the patterns as a percentage of the
database.

Again I start with the parameters that optimized the results for the patterned data

97

Table 6.17: Effect of outliers (k = 6)
Noutlier NPatSeq θ NPatI NExtraI R P Ntotal Nspur Nredun ‖Nnull‖ ‖None itemset‖ ‖C‖

0 1000 30% 103 3 91.16% 97.17% 8 0 1 1 0 9
200 1000 25% 103 4 91.16% 96.26% 8 0 1 2 0 10
400 1000 22% 103 6 91.16% 94.50% 8 0 1 3 0 11
600 1000 18% 103 10 91.16% 91.15% 8 0 1 4 0 12
800 1000 17% 103 11 91.16% 90.35% 8 0 1 10 0 18

Figure 6.10: Effects of outliers (k = 6)

0

10

20

30

40

50

0 200 400 600 800

th
et

a
(%

)

of random sequences

50

60

70

80

90

100

0 200 400 600 800
P

re
ci

si
on

 (
%

)

of random sequences

(a) θ w.r.t. outliers (b) Precision w.r.t. outliers

(k = 6, θ = 30%). When k is maintained at 6, the added random sequences had no effect on
the clusters formed or how the patterned sequences were aligned because the nearest neighbor
list does not change much for the patterned data. Each cluster just picks up various amounts
of the outliers which are aligned after all the patterned sequences are aligned. In effect, the
outliers are ignored when it cannot be aligned with the patterned sequences in the cluster.
The rest of the outliers formed small separate clusters that generated no patterns, as seen in
experiment 2.1 on random data.

Nonetheless, the consensus sequences were shorter because the random sequences increased
the cluster size. This in turn weakened the signature in the cluster resulting in reduced
recoverability (Figure 6.9(a)) when the cutoff point θ was kept at the same level (30%) as the
pattern data. Similar to what was seen with noise in the data, precision slightly increases
with more outliers (Figure 6.9(b)). The full results are given in Table 6.16 and Figure 6.9.

However, as seen in Table 6.17, I can easily find the longer underlying patterns by adjusting
θ to compensate for the outliers in the data. That is θ can be lowered to pick up more
patterned items. The tradeoff would be that more extraneous items could be picked up as
well. I assessed the tradeoff by finding out how many extraneous items would be picked up
by ApproxMAP in order to detect the same number of patterned items as when there were no
outliers. In Table 6.17 the largest θ for which the exact same patterned items can be found
are reported on each database along with the additional extraneous items picked up. I include
the number of null and one-itemset clusters as well.

98

Table 6.18: Parameters for the IBM data generator in experiment 3
Notation Meaning Default value
‖I‖ # of items 1, 000
‖Λ‖ # of potentially frequent itemsets 5,000
Nseq # of data sequences 10, 000
Npat # of base pattern sequences 100
Lseq Avg. # of itemsets per data sequence 20
Lpat Avg. # of itemsets per base pattern 14 = 0.7 · Lseq

Iseq Avg. # of items per itemset in the database 2.5
Ipat Avg. # of items per itemset in base patterns 2 = 0.8 · Iseq

Table 6.19: Parameters for ApproxMAP for experiment 3
k # of neighbor sequences 5
θ the strength cutoff for pattern consensus sequences 50%

min DB strength the optional parameter for pattern consensus sequences 10 sequences

As seen in Figure 6.10, in all databases with only a small drop in θ, all base patterns
detected without any outliers can be recovered again. There is only a small decrease in
precision. In general for the threshold that gives the same number of patterned items, as
the number of outliers added increase, the number of additional extraneous items found also
increase.

Again, clearly ApproxMAP is robust to outliers. Even with over 40% outliers in the data
(800
1000 ·100% = 44.4%) precision is good at 90.35% when θ is set to give the same recoverability

as the patterned data (91.16%). This is inline with the results of experiment 2.1 on random
data. Random data has very little affect on ApproxMAP. It does not introduce spurious
patterns and it does not hinder ApproxMAP in finding the true base patterns. The only real
effect is the increased data size which in turn weakens the pattern as a proportion of the data.
This can easily be compensated for by adjusting θ.

6.3 Experiment 3: Database Parameters And Scalability

With a good understanding of ApproxMAP and its effectiveness, I go on to investigate
its performance on different types of patterned data. Here I examine the effects of various
parameters of the IBM patterned database on the results. I use much bigger databases in
these experiments. The default configuration of the databases used is given in Table 6.18.
The expected frequencies of the 100 base patterns embedded in the database range from
7.63% to 0.01%. The full distribution of E(FB)is given in Figure 5.1(b). See section 5.3 for a
detailed discussion on the properties of this synthetic database. I used all default parameters
for ApproxMAP which are restated in Table 6.19.

I study the results on four factors, the total number of unique items in the database ‖I‖

99

Table 6.20: Results for ‖I‖
‖I‖ Recoverability Precision Nspur Nredun Ntotal Running Time(s)
1000 92.17% 100.00% 0 18 94 3718
2000 93.13% 100.00% 0 15 91 3572
4000 92.03% 100.00% 0 22 96 3676
6000 93.74% 100.00% 0 15 94 3652
8000 94.89% 100.00% 0 16 92 3639
10000 91.62% 100.00% 0 15 85 3644

Figure 6.11: Effects of ‖I‖

50

60

70

80

90

100

0 2000 4000 6000 8000 10000

R
ec

ov
er

ab
ili

ty
 (

%
)

|I| : # of unique items in the DB

0

3600

7200

10800

0 2000 4000 6000 8000 10000

R
un

 T
im

e
(s

)

|I| : # of unique items in the DB

(a) Recoverability w.r.t. ‖I‖ (b) Running Time w.r.t. ‖I‖

and the database size in terms of (1) number of sequences, Nseq, (2) the average number of
itemsets in a sequence, Lseq, and (3) the average number of items per itemset, Iseq. The
following analysis strongly indicates that ApproxMAP is effective and scalable in mining large
databases with long sequences.

6.3.1 Experiment 3.1: ‖I‖ – Number of Unique Items in the DB

I first studied the effects of the number of items in the set I, ‖I‖. A smaller value of
‖I‖ results in a denser database (i.e., patterns occur with higher frequencies) because the
items come from a smaller set of literals. In multiple alignment, the positions of the items
have the strongest effect on the results. Although same items may occur often (and belong
to many different base patterns), if the item occurs in different locations in relation to other
items in the sequence the items can be easily identified as coming from different base patterns.
Thus, even when the density of the database changes, the alignment statistics does not change
substantially in the experiments. The full results are given in Table 6.20 and Figure 6.11. I
observe that there is no noticeable difference in the results of ApproxMAP in terms of the five
evaluation measures as well as the running time. In this experiment, for a wide range of ‖I‖
between 1000 to 10000,

1. recoverability is consistently over 90%,

100

Table 6.21: Results for Nseq

Nseq Recoverability Precision Nspur Nredun Nmax Ntotal Running Time(s)
10000 92.17% 100.00% 0 18 76 94 3718
20000 95.81% 100.00% 0 39 87 126 12279
40000 98.39% 99.39% 0 54 93 147 45929
60000 99.29% 96.44% 0 107 95 202 98887
80000 98.76% 95.64% 0 134 95 229 159394
100000 98.90% 93.45% 0 179 97 276 232249

Figure 6.12: Effects of Nseq

50

60

70

80

90

100

0 20000 40000 60000 80000 100000

R
ec

ov
er

ab
ili

ty
 (

%
)

Nseq : # of sequences

0

36000

72000

108000

144000

180000

216000

0 20000 40000 60000 80000 100000

R
un

 T
im

e
(s

ec
)

Nseq : # of sequences

(a) Recoverability w.r.t. Nseq (b) Running Time w.r.t. Nseq

2. there is no extraneous items (precision=100%) or spurious patterns,

3. there is a manageable number of redundant patterns (15 ≥ Nredun ≥ 22),

4. and running time is constant at about 1 hour.

6.3.2 Experiment 3.2: Nseq – Number of Sequences in the DB

In this section, I test the effect of database size in terms of number of sequences in the
database. The results are shown in Table 6.21 and Figure 6.12. As the database size increases
with respect to Nseq

1. recoverability increases slightly,

2. precision decreases slightly,

3. the number of max patterns increase,

4. the number of redundant patterns increase,

5. there is no spurious patterns,

6. and running time is quadratic, but with a very modest slope, with respect to Nseq.

Let us look at each point in more detail. It is interesting to note that the recoverability
increases as the database size increase, as shown in 6.12(a). It can be explained as follows.
With multiple alignment, when there are more the sequences in the database, it is easier the
recovery of the base patterns. In large databases, there are more sequences approximating

101

Table 6.22: A new underlying trend detected by ApproxMAP

ID len Patterns

PatC 16 (22,43) (2,22,28,73) (96) (95) (2,74) (5,24,65,93) (2,6)

BP1 14 (43) (2,28,73) (96) (95) (2,74) (5) (2) (24, 63) (20) (93)
BP2 14 (22) (22) (58) (2, 16, 24, 63) (24,65,93) (6) (11, 15, 74)

the patterns. For example, if there are only 1000 sequences, a base pattern that occurs in 1%
of the sequences will only have 10 sequences approximately similar to it. However, if there
are 100, 000 sequences, then there would be 1000 sequences similar to the base pattern. It
would be much easier for ApproxMAP to detect the general trend from 1000 sequences than
from 10 sequences.

This is the same reason why overall there are more patterns returned, Ntotal, as Nseq

increases. When there are more sequences, ApproxMAP is able to detect more of the less fre-
quent patterns. Some of the extra sequences detected are categorized as redundant patterns,
hence the increase in Nredun, and others are max patterns, Nmax. Obviously, the increase in
recoverability is directly related to the increase in max patterns.

Remember redundant patterns returned are almost never the exact same patterns being
returned. As shown in the small example in Table 6.14, redundant patterns are the consensus
sequences that come from the same base patterns (PatConSeq2 and PatConSeq3). Many
times redundant patterns hold additional information about possible variations to the max
pattern. For example, PatConSeq2 and PatConSeq3 in the small example suggests that
there might be many sequences in the database that are missing the later part of the longer
PatConSeq2

2. As there are more sequences in the database, ApproxMAP is more likely to
pick up these variations, which results in increased redundant patterns.

Another reason for the increase in redundant patterns as Nseq increases is due to the
limitations in the evaluation method discussed in section 5.4. That is, the current evaluation
method maps each result pattern to only one base pattern. However, this is not aways
accurate. Essentially, when Nseq/Npat is large in the IBM data generator, a new underlying
pattern can emerge as two base patterns combine in a similar way frequently enough. This
new mixed pattern will occur regularly in the database and a good algorithm should detect
it.

To demonstrate how ApproxMAP works in such situations, I look in detail at an example
from one of the experiments3. In Table 6.22, PatC is the pattern consensus sequence returned
for a cluster. The underlined items are the 6 extraneous items as determined by the evaluation

2Such hypothesis can be verified using more efficient pattern search methods.
3Instead of using an example from one of the experiments done in this section I use a smaller experiment

because it is much easier to see. The example had the following parameters for the data generator: Nseq =
5000, Npat = 10, Lseq = 10, Lpat = 7, Iseq = 2.5, and Ipat = 2.

102

method. The color of the items in PatC indicates the strength of the items while the dark
items for BP1 and BP2 are shared items and the light items are missed items. Clearly, PatC
originates from base pattern BP1 since the two share 10 items. However, it is also clear that
the remaining 6 items in PatC (the underlined items) originated from BP2. This cluster
seems to suggest that there is a group of sequences that combine the two base sequences, BP1

and BP2, in a similar manner to create a new underlying pattern similar to PatC.

I investigate this cluster further in Table 6.23. Table 6.23 gives the full aligned cluster
(size=16 sequences). WgtSeq is the weighted sequence for the cluster. PatC is the pattern
consensus sequence with θ = 50%, and V arC is the variation consensus sequence with δ =
40%. δ was set higher than the default because the cluster size was very small (16 sequences).
Note that since θ = 50% = 8 seq < min DB strength = 10 seq, the cutoff for pattern
consensus sequence is 10 sequences. The cutoff for the variation consensus sequence is δ =
40% = 7 sequences. The aligned sequences clearly show that the underlying pattern in the
data is a combination of the two base patterns BP1 and BP2. All 16 items in the consensus
sequence are approximately present in all sequences. Therefore, there are no real extraneous
items.

Furthermore, the five items in the middle of BP2, 〈(58)(2, 16, 24, 63)〉, are present in the
data sequence with slightly less frequency (between 10 and 7 sequences). These items are
accurately captured in the variation consensus sequence. In comparison, the items at the end
of the two base patterns, 〈(24, 63)(20)(93)〉 for BP1 and 〈(11, 15, 74)〉 for BP2, barely exist
in the data. All are present in less than 5 sequences. Thus, these items are not included
in the consensus patterns because it does not exist frequently in the data. It is clear from
looking at the aligned sequences that ApproxMAP has accurately mapped the 16 sequences to
the combined pattern underlying the cluster.

Detecting such patterns could be quite useful in real applications for detecting interesting
unknown patterns, which arise by systematically combining two known patterns. For example,
we might know the separate buying patterns of those that smoke and those that drink.
However if there are any systematic interactions between the two groups that were not known
ApproxMAP could detect it.

In Table 6.24, I show the number of extraneous items that could be built into a second
base pattern in column NpatI2 and the remaining real extraneous items in NextraI2. When
Nseq = 60K, all but 1 of 181 extraneous items could be built into a second base pattern. For
Nseq = 100K, all but 4 of 483 extraneous items came from a second base pattern. In all other
experiments, all the extraneous items came from a second base pattern. Column Precision P ′

gives the modified precision which exclude the extraneous items that map back to a second
base pattern. Column Nmult is the number of consensus patterns that mapped back to 2
base patterns for each experiment. Not surprisingly, as Nseq increases (which will increase
Nseq/Npat), more interacting patterns (patterns that are a systematic mix of multiple base

103

Table 6.23: The full aligned cluster for example given in Table 6.22

BP
1 [43]

[2,28,73]
[96]

[95]

[2,74]
[5]

[2]
[24,63]

[20]
[93]

BP
2 [22]

[22]
[58]

[2,16,24,63]

[24,65,93]

[6]
[11,15,74]

W
gt

Seq
 16

{15:1,16:1,
17:1, 22:16,
31:2, 43:15,
63:4, 66:1,
76:2}:16

{2:16,15:1,
16:1, 17:1,
22:13, 28:16,
66:1, 73:16,
88:2}:16

{2:3,15:1,
16:1, 22:8,
58:8, 63:1,
66:1, 96:16}
:16

{58:1,
63:1,
95:1,
96:1}
:1

{2:9,16:9,22:2,24:9,
30:1,58:7,63:9,66:1,
74:2,95:16}:16

{2:16,5:1,16:2,
22:1,24:6,31:1,
63:1,65:5,74:16,
76:1,93:5}:16

{5:11,6:2,16:1,
24:12,31:1,58:1,
65:11,66:1,76:1,
93:11}:15

{2:14,6:15,11:2,
15:2,22:2,50:6,
58:2,62:2,66:4,
74:2,96:1}:16

{2:1,6:1,11:3,
15:3,16:1,24:3,
50:1,62:1,63:3,
74:3}:4

{20:1,
22:1,
50:1,
66:1}
:1

PatC {22,43}

{2,22,28,73}
{96}

{95}

{2,74}
{5,24,65,93}

{2,6}

VarC {22,43}
{2,22,28,73}

{22,58,96}

{2,16,24, 58,63,95}
{2,74}

{5,24,65,93}
{2,6}

763 {22,43}

{2,22,28,73}
{96}

{}
{58,95}

{2,74}
{24,65,93}

{2,6}
{}

{}

762 {22,43}
{2,22,28,73}

{58,96}
{}

{2,16,24,63,95}
{2,74}

{5,24,65,93}
{2,6}

{}
{}

764 {22,43}

{2,22,28,73}
{96}

{}
{58,95}

{2,74}
{5,24,65,93}

{2,6}
{}

{}

767 {22,43}
{2,28,73}

{22,96}
{}

{58,95}
{2,74}

{5,24,65,93}
{2,6}

{}
{}

761 {22,43}

{2,22,28,73}
{22,58,96}

{}
{2,16,24,63,95}

{2,24,65,74,93}
{5,6,24,65,93}

{2,6,11,15,74}
{}

{}

775 {22,43,63}
{2,22,28,73}

{2,22,58,96}
{}

{2,16,24,63,95}
{2,74}

{5,24,65,93}
{2,6,50}

{}
{}

718 {22}

{2,22,28,73}
{58,96}

{}
{95}

{2,74}
{24,65,93}

{6}
{}

{}

766 {22,43}
{2,22,28,73,88} {96}

{}
{58,95}

{2,22,74}
{24,65,93}

{2,6,58}
{}

{}

1133 {22,43}
{2,22,28,73}

{22,96}
{}

{58,95}
{2,16,24,63,74}

{24,65,93}
{2,6}

{6,11,15,24,
63,74}

{}

765 {22,43}
{2,22,28,73,88} {22,58,63,96} {}

{2,16,24,58,63,95}
{2,24,65,74,93}

{5,24,58,65,93} {2,6,22,50,66,96}{}
{}

743 {22,31,43,76} {2,22,28,73}

{58,96}
{}

{58,66,95}
{2,74}

{5,16}
{2,6,50,62,66}

{}
{}

590 {15,16,17,22,
43,63,66}

{2,22,28,73}
{2,22,96}

{}
{2,16,22,24,63,74,95}{2,31,74,76}

{5,66}
{2,6,50,58}

{}
{}

776 {22,43,63}

{2,28,73}
{2,22,96}

{}
{2,16,24,63,95}

{2,24,65,74,93}
{5,6}

{2,11,15,74}
{}

{}

742 {22,31,43,76} {2,22,28,73}
{58,66,96}

{}
{2,16,22,24,30,63,95}{2,16,24,65,74,93}{}

{6,50,62,66}
{2,11,15,16,
24,63,74}

{}

1909 {22,43}
{2,28,73}

{22,96}
{58,63,
95,96} {2,16,24,63,74,95}

{2,5,74}
{5,24,65,93}

{2,6}
{11,15,74}

{20,22,
50,66}

1145 {22,43,63}
{2,15,16,17,22
28,66,73}

{15,16,58,96} {}
{2,16,24,63,95}

{2,24,65,74,93}
{5,24,31,76}

{2,6,22,50,66}
{24,50,62,63}

{}

104

Table 6.24: Results for Nseq taking into account multiple base patterns
Nseq Precision P Nitem NpatI NextraI NpatI2 NextraI2 Precision P ′ Nmult

10000 100% 2245 2245 0 0 0 100% 0
20000 100% 3029 3029 0 0 0 100% 0
40000 99.39% 3590 3568 22 22 0 100% 1
60000 96.44% 5086 4905 181 180 1 100% 11
80000 95.64% 5662 5415 247 247 0 100% 13
100000 93.45% 7374 6891 483 479 4 99.95% 25

Figure 6.13: Effects of Nseq taking into account multiple base patterns

0

5

10

15

20

25

30

0 20000 40000 60000 80000 100000

N
m

ul
t (

of

 p
at

te
rn

s)

Nseq : # of sequences

50

60

70

80

90

100

110

0 20000 40000 60000 80000 100000

P
re

ci
si

on
 (

%
)

Nseq : # of sequences

Precision P
Precision P’

(a) Nmult w.r.t. Nseq (b) Precision w.r.t. Nseq

patterns) are found (Figure 6.13(a)).

In terms of the current evaluation method, there are two consequences of detecting these
new patterns. First, the detected pattern will most likely be categorized as a redundant
pattern. This is because, statistically it is very likely that there will be another cluster which
represents the primary base pattern well. Thus, the small cluster giving the new emerging
pattern is counted as a redundant pattern.

Second, the items that do not map back to the primary base pattern will be counted as
extraneous items. Consequently, as Nseq increase, and more interacting patterns are found,
precision decrease. However, when the second base pattern is properly taken into account the
modified precision, P ′, is stable as Nseq increases (Figure 6.13(b)).

In terms of running time, I observe that ApproxMAP is scalable with respect to the
database size. Although asymptotically ApproxMAP is quadratic with respect to Nseq, as
seen in Figure 6.12(b), practically it is close to linear. Furthermore, when the database size
is really big (Nseq ≥ 40K), ApproxMAP can use the sample based iterative clustering method
discussed in section 4.6.2 to reduce the running time considerably.

105

Table 6.25: Results for Lseq

Lseq Recoverability Precision Nspur Nredun Ntotal Running Time(s)
10 85.29% 100.00% 0 26 92 934
20 92.17% 100.00% 0 18 94 3718
30 95.92% 100.00% 0 16 94 8041
40 95.93% 100.00% 0 11 93 14810
50 95.32% 100.00% 0 16 93 21643

Figure 6.14: Effects of Lseq

50

60

70

80

90

100

0 10 20 30 40 50

R
ec

ov
er

ab
ili

ty
 (

%
)

Lseq : avg # of itemsets per sequence

0

3600

7200

10800

14400

18000

21600

0 10 20 30 40 50

R
un

 T
im

e
(s

)

Lseq : avg # of itemsets per sequence

(a) Recoverability w.r.t. Lseq (b) Running Time w.r.t. Lseq

6.3.3 Experiments 3.3 & 3.4: Lseq · Iseq – Length of Sequences in the DB

The results with respect to the length of the sequences in the database are similar to
that in the previous experiment. As the length increases, the results improve. There are
two parameters that control the length (total number of items) of a sequence. Lseq is the
average number of itemsets in a sequence and Iseq is the average number of items per itemset.
Therefore, both change the total number of items of the data sequences. As either parameter
increases, the additional items provide more clues for proper alignment leading to better
results.

More itemsets per sequence (larger Lseq), has a direct effect on improving alignment due
to more positional information during alignment. That is, as the average number of itemsets
in a sequence increase, recoverability tends to increase (Figure 6.14(a)). As the number of
elements in the sequence (itemsets) increase the pattern signature becomes longer. That
means there are more clues as to what is the proper alignment. This in turn makes it easier
to capture the signature through alignment. The result are given in Table 6.25 and Figure
6.14.

On the other hand, more items per itemset (larger Iseq) has an indirect effect of improving
alignment by providing more evidence on the location of a particular position. For example,
if Iseq = 2.5, that means that on average there is only 2.5 items in any position to indicate its
proper position. If one or two items in a particular itemset for a sequence is missing due to

106

Table 6.26: Results for Iseq

Iseq Recoverability Precision Nspur Nredun Ntotal Running Time(s)
2.5 92.17% 100.00% 0 18 94 3718
5 92.25% 100.00% 0 21 95 4990
10 94.52% 100.00% 0 21 98 7248
15 93.61% 100.00% 0 30 104 9583
20 95.05% 100.00% 0 26 105 11000

Figure 6.15: Effects of Iseq

50

60

70

80

90

100

0 5 10 15 20

R
ec

ov
er

ab
ili

ty
 (

%
)

Iseq : avg # of items per itemset

0

3600

7200

10800

0 5 10 15 20

R
un

 T
im

e
(s

)

Iseq : avg # of items per itemset

(a) Recoverability w.r.t. Iseq (b) Running Time w.r.t. Iseq

variations, there is not much more information left to use to identify the proper alignment.
In comparison, if Iseq = 10, that means on average there are 10 items in any position. Thus,
even if one or two items are missing due to slight variations in the data, there are still a good
number of items that can be used to locate the proper position in the alignment. The indirect
effect of Iseq is not as pronounced as Lseq. The results are given in Table 6.26 and Figure
6.15.

Basically, the longer the pattern the more likely it is to detect the patterns. Thus, both
Lseq and Iseq have similar affects, but Lseq has a stronger affect. In summary, for a wide
range of Lseq between 10 to 50:

1. Recoverability tends to be better as Lseq increases and levels off at around 96% at
Lseq = 30.

2. There is no extraneous items (precision=100%) or spurious patterns.

3. There is a manageable number of redundant patterns (16 ≥ Nredun ≥ 26).

4. And the running time is close to linear with respect to Lseq with the optimization
discussed in section 4.6.1 (Figure 6.14(b)).

The experiment of Iseq = 2.5..20 gave similar results as follows:

1. Recoverability has a slight upward tendency (Figure 6.15(a)).

2. There are no extraneous items (precision=100%) or spurious patterns.

107

3. And there is a manageable number of redundant patterns (18 ≥ Nredun ≥ 30).

4. However, unlike Lseq, the running time is linear with respect to the average num-
ber of items per itemset, Iseq. The time complexity analysis in section 4.5 show that
ApproxMAP should be linear with respect to Iseq. The experiment confirmed the rela-
tionship as shown in Figure 6.15(b).

108

Chapter 7

Comparative Study

In this chapter, I look in depth at the conventional sequential pattern mining methods
based on the support paradigm and compare it to ApproxMAP.

7.1 Conventional Sequential Pattern Mining

7.1.1 Support Paradigm

Sequential pattern mining is commonly defined as finding the complete set of frequent
subsequences in a set of sequences. The conventional support paradigm finds all subsequences
that meet a user specified threshold, min sup [2]. I restate the exact definition, given in
section 3.1, here for clarity.

Given a sequence database D, the support of a sequence seqp, denoted as sup(seqp), is
the number of sequences in D that are supersequences of seqp. seqj is a supersequence of
seqi and seqi is a subsequence of seqj , if and only if seqi is derived by deleting some items
or whole itemsets from seqj . Conventionally, a sequence seqp is called a sequential pattern if
sup(seqp) ≥ min sup, where min sup is a user-specified minimum support threshold.

Much research has been done and many methods have been developed to efficiently find
such patterns. The methods can be divided into breadth first search methods (e.g. [2, 37]
and GSP [46]) and depth first search methods (e.g. PrefixSpan [28], FreeSpan[40], SPAM [3],
and SPADE [56]). These were reviewed in detail in chapter 2. All methods return the same
results and only differ in how the frequent subsequences are counted.

7.1.2 Limitations of the Support Paradigm

Although the support paradigm based sequential pattern mining has been extensively
studied and many methods have been proposed (e.g., GSP [46], SPADE [56], PrefixSpan [40],
FreeSpan [28], and SPAM [3]), there are three inherent obstacles within the conventional
paradigm.

110

First, support alone cannot distinguish between statistically significant patterns and ran-
dom occurrences. When I applied the evaluation method, discussed in chapter 5, to the
support paradigm for sequential pattern mining, it revealed that empirically the paradigm
generates huge number of redundant and spurious patterns in long sequences, which bury
the true patterns. My theoretical analysis of the expected support of short patterns in long
sequences confirms that many short patterns can occur frequently simply by chance alone. To
combat this problem in association rule mining, Brin has used correlation to find statistically
significant associations [8]. Unfortunately, the concept of correlation does not extend easily
to sequences of sets.

Second, these methods mine sequential patterns with exact matching. The exact match
based paradigm is vulnerable to noise in the data. A sequence in the database supports a
pattern if, and only if, the pattern is fully contained in the sequence. However, such exact
matching approach may miss general trends in the sequence database. Many customers may
share similar buying habits, but few of them follow exactly the same buying patterns. Let us
consider a baby product retail store. Expecting parents who will need a certain number of
products over a year constitute a considerable group of customers. Most of them will have
similar sequential patterns but almost none will be exactly the same patterns. Understanding
the general trend in the sequential pattern for expecting parents would be much more useful
than finding all frequent subsequences in the group. Thus, to find non-trivial and interesting
long patterns, we must consider mining approximate sequential patterns.

Third, most methods mine the complete set of sequential patterns. When long patterns
exist, mining the complete set of patterns is ineffective and inefficient, because every sub-
pattern of a long pattern is also a pattern [53]. For example, if 〈a1 · · · a20〉 is a sequential
pattern, then each of its subsequence is also a sequential pattern. There are (220−1) patterns
in total! On one hand, it is very hard for users to understand and manage a huge number
of patterns. On the other hand, computing and storing a huge number of patterns is very
expensive or even computationally prohibitive. In many situations, a user may just want the
long patterns that cover many short ones.

Recently, mining compact expressions for frequent patterns, such as max-patterns [33]
and frequent closed patterns [39], has been proposed and studied in the context of frequent
itemset mining. However, mining max-sequential patterns or closed sequential patterns is far
from trivial. Most of the techniques developed for frequent itemset mining “cannot work for
frequent subsequence mining because subsequence testing requires ordered matching which is
more difficult than simple subset testing” [53].

Just last year, Yan published the first method for mining frequent closed subsequences
using several efficient search space prunning methods [53]. Much more work is needed in
this area. Nonetheless, in a noisy sequence database, the number of max or closed sequential
patterns still can be huge, and many of them are trivial for users.

111

7.1.3 Analysis of Expected Support on Random Data

Implicit in the use of a minimum support for identifying frequent sequential patterns is the
desire to distinguish true patterns from those that appear by chance. Yet many subsequences
will occur frequently by chance, particularly if (1) the subsequence is short, (2) the data
sequence is long, and (3) the items appear frequently in the database. When min sup is set
low, the support of those sequences that are frequent by chance can exceed min sup simply
by chance. Conversely, an arbitrarily large min sup may miss rare but statistically significant
patterns.

I can derive the expected support, E{sup(seq)}, for a subsequence under the statistical
null hypothesis that the probability of an item appearing at a particular position in the
sequence is independent of both its position in the sequence and the appearance of other
items in the sequence. I will first consider simple sequences of items rather than sequences of
itemsets. The analysis is then extended to sequences of itemsets.

The expected support (measured as a percentage) for a subsequence under the null hy-
pothesis is Pr{seqi appears at least once}. I use the probability of the sequence appearing
at least once because an observed sequence in the database can increment the support of
subsequence only once, regardless of the number of times the subsequence appears in it.

E{sup(seqi)} = Pr{seqi appears at least once} = 1− Pr{seqi never appears} (7.1)

Consider first the calculation of the probability that item A will appear at least one time
in a sequence of length L. That is let us calculate the expected support of sequence A. Rather
than calculate Pr{A}, the probability of A appearing once, directly, it is easier to calculate
Pr{¬A} , i.e. the probability of never seeing an A. Pr{A} is then found from 1-Pr{¬A}. The
probability that A never appears, is

Pr{A never appears} = [1− p{A}]L (7.2)

where p{A} is the probability of item A appearing in the sequence at any particular position.
Then the expected support of A, ie. the probability that A will appear at least one time in a
sequence of length, L is

E{sup(A)} = Pr{A appears at least once}
= 1− Pr{A never appears}
= 1− [1− p(A)]L

(7.3)

Now consider the calculation of Pr{seqi} where the subsequence length is two. A and
B arbitrarily represent two items, which need not be distinct. Here I calculate the expected
support of sequence, AB. Again it is easier to first calculate Pr{¬(A..B)}, i.e. the probability
of never seeing an A followed by a B rather than to calculate directly Pr{A..B}, the probability
that item A will be followed by item B at least one time in a sequence of length L. To calculate

112

Pr{¬(A..B)} divide all possible outcomes into the L+ 1 mutually exclusive sets:

A first appears in position 1 = first(A, 1)
A first appears in position 2 = first(A, 2)
· · ·
A first appears in position j = first(A, j)
· · ·
A first appears in position L = first(A, L)
A never appears

The probability that A first appears in position j

Pr{first(A, j)} = Pr{A first appears in pos j} = [1− p(A)]j−1p(A) (7.4)

for j = 1..L. The probability that A never appears is given in equation 7.2.

Next, I condition the probability of ¬(A..B) upon these mutually exclusive events:

Pr{¬(A..B)} = Pr{¬(A..B)|A first appears in pos 1} · Pr{A first appears in pos 1}
+Pr{¬(A..B)|A first appears in pos 2} · Pr{A first appears in pos 2}
· · ·
+Pr{¬(A..B)|A first appears in pos j} · Pr{A first appears in pos j}
· · ·
+Pr{¬(A..B)|A first appears in pos L} · Pr{A first appears in pos L}
+Pr{¬(A..B)|A never appears} · Pr{A never appears}

=
∑L

j=1 Pr{¬(A..B)|first(A, j)} · Pr{first(A, j)}
+Pr{¬(A..B)|A never appears} · Pr{A never appears}

(7.5)

Where in general,

Pr{¬(A..B)|first(A, j)} = Pr{¬(A..B)|A first appears in pos j}
= Pr{B never appears in a sequence of length L− j}
= [1− p(B)]L−j

(7.6)

By substituting equations 7.2, 7.4, and 7.6 into 7.5 and recognizing that the probability
of not seeing A followed by B given that A never appears in the sequence is 1

Pr{¬(A..B)|A never appears} = 1

I have,

Pr {¬(A..B)} = p(A)
L∑

j=1

{
[1− p(B)]L−j [1− p(A)]j−1

}
+ [1− p(A)]L (7.7)

113

Then the probability that a sequence of length L will provide support for AB is

E{sup(AB)} = Pr {(A..B)}
= 1− Pr {¬(A..B)}

= 1−
(
p(A)

∑L
j=1

{
[1− p(B)]L−j [1− p(A)]j−1

}
+ [1− p(A)]L

) (7.8)

The probability of observing longer subsequences can now be calculated recursively. To
determine Pr{A..B..C} I again first calculate Pr{¬(A..B..C)} and condition on A appearing
first in either the jth position or not at all:

Pr{¬(A..B..C)} = Pr{¬(A..B..C)|A first appears in pos 1} · Pr{A first appears in pos 1}
+Pr{¬(A..B..C)|A first appears in pos 2} · Pr{A first appears in pos 2}
· · ·
+Pr{¬(A..B..C)|A first appears in pos j} · Pr{A first appears in pos j}
· · ·
+Pr{¬(A..B..C)|A first appears in pos L} · Pr{A first appears in pos L}
+Pr{¬(A..B..C)|A never appears} · Pr{A never appears}

=
∑L

j=1 Pr{¬(A..B..C)|first(A, j)} · Pr{first(A, j)}
+Pr{¬(A..B..C)|A never appears} · Pr{A never appears}

(7.9)

Note that the conditional probability

Pr{¬(A..B..C)|first(A, j)} = Pr{¬(A..B..C)|A first appears in pos 1}
= Pr{¬(B..C) in a sequence of length L− j}

(7.10)

Applying equation 7.7 to a sequence of length L− j I find that:

Pr{¬(B..C) in a sequence of length L− j}
= p(B)

∑L−j
k=1

{
[1− p(C)]L−j−k[1− p(B)]k−1

}
+ [1− p(B)]L−j

(7.11)

Noting that the probability of not seeing A followed by B followed by C given that A never
appears in the sequence is 1,

Pr{¬(A..B..C)|A never appears} = 1

and substituting equations 7.10, 7.4, and 7.2 into 7.9 produces an expression for Pr{¬(A..B..C)}

Pr{¬(A..B..C)}

= p(A)
∑L

j=1

(
p(B)

∑L−j

k=1

{
[1− p(C)]L−j−k[1− p(B)]k−1

}
+ [1− p(B)]L−j

)
· [1− p(A)]j−1 + [1− p(A)]L

(7.12)

114

Table 7.1: Examples of expected support
P(A) P(B) L=10 L=25 L=50 L=100 L=150
0.01 0.01 0.4266% 2.58% 8.94% 26.42% 44.30%
0.001 0.01 0.0437% 0.28% 1.03% 3.54% 6.83%
0.01 0.001 0.0437% 0.28% 1.03% 3.54% 6.83%
0.001 0.001 0.0045% 0.03% 0.12% 0.46% 1.01%

Figure 7.1: E{sup} w.r.t. L

0

10

20

30

40

50

0 30 60 90 120 150

E
{s

up
po

rt
}

(%
)

L: # of elements in a sequence

p(A)=0.01 p(B)=0.01
p(A)=0.01 p(B)=0.001

p(A)=0.001 p(B)=0.001

from which Pr{A..B..C} can be found:

E{sup(ABC)} = Pr{(A..B..C)} = 1− Pr{¬(A..B..C)} (7.13)

The analytical expression for the probability of observing a subsequence at least once
quickly becomes cumbersome as the length of the sequence increases, but may be readily
computed in a recursive manner as illustrated above.

Now consider a sequence of itemsets. Under some paradigms for how an itemset is con-
structed the probability of seeing a set of n arbitrary items in the same itemset is simply

p(i1) · p(i2) · · · p(in).

Then, by substituting the probability of an arbitrary element, p(ik), with p(i1) ·p(i2) · · · p(in),
in any of the equations above I can derive the expected support of sequence of itemsets.
For example, the expected support of a simple two itemset pattern, 〈(i1..in)(i1..im)〉, can
easily be derived from equation 7.8 by replacing p(A) with p(i1) · p(i2) · · · p(in) and p(B) with
p(i1) · p(i2) · · · p(im).

The quantities p(A), p(B), etc., are not known, but must be estimated from the observed
database and will necessarily exhibit some sampling error. Consequently, the expression for
the expected support of a subsequence, E{sup(seqi)}, will also exhibit sampling error. It is,
however, beyond the scope of this dissertation to evaluate its distribution. I merely propose
as a first step that the choice of min sup as well as the interpretation of the results should

115

Table 7.2: Results from database D (min sup = 20% = 2 seq)
id pattern support id pattern support id pattern support
1 〈(A)(B)〉 5 11 〈(B)(DE)〉 2 21 〈(A)(B)(C)〉 2
2 〈(A)(C)〉 3 12 〈(C)(D)〉 3 22 〈(A)(B)(D)〉 2
3 〈(A)(D)〉 4 13 〈(C)(E)〉 2 23 〈(A)(B)(E)〉 2
4 〈(A)(E)〉 3 14 〈(I)(M)〉 2 24 〈(A)(B)(BC)〉 2
5 〈(A)(BC)〉 3 15 〈(J)(K)〉 2 25 〈(A)(C)(D)〉 2
6 〈(B)(B)〉 3 16 〈(J)(M)〉 2 26 〈(A)(BC)(D)〉 2
7 〈(B)(C)〉 2 17 〈(K)(M)〉 2 27 〈(B)(B)(E)〉 2
8 〈(B)(D)〉 4 18 〈(BC)(D)〉 3 28 〈(J)(K)(M)〉 2
9 〈(B)(E)〉 4 19 〈(BC)(E)〉 2 29 〈(A)(B)(B)(E)〉 2
10 〈(B)(BC)〉 2 20 〈(A)(B)(B)〉 2

be guided by E{sup(seqi)}. In Table 7.1, I calculated the expected support of E{sup(seq =
〈(A)(B)〉)} with respect to L for two items with varying probabilities and for different lengths.
As shown in Figure 7.1, the expected support grows linearly with respect to L.

7.1.4 Results from the Small Example Given in Section 4.1

In chapter 4.1, I gave a small example of a sequence databaseD to demonstrate ApproxMAP.
In Table 7.2, I present the results using the support paradigm on the small example. I set
min sup = 20% = 2 sequences. The 6 sequences given in bold are the max-seqential patterns.

Given the 10 sequences in Table 4.1, the support paradigm returns 29 patterns of which
6 are max-patterns when min sup = 20%. In comparison, ApproxMAP returns 2 patterns
〈(A)(BC)(DE)〉 and 〈(IJ)(K)(LM)〉. See Tables 4.2 to 4.4 in section 4.1 for the full results.

Note that although nearly 3 times as many patterns (29 patterns) are returned than
the original input data (10 sequences) from the support paradigm, the two patterns de-
tected by ApproxMAP are not found. This is because the two manually embedded patterns
〈(A)(BC)(DE)〉 and 〈(IJ)(K)(LM)〉 do not match any sequence in D exactly. Since the support
pattern is based on exact match, the support paradigm is not able to find the underlying
trend that is not exactly matched by any sequence in the data.

7.2 Empirical Study

In this section, I conduct a detailed comparison of the traditional support sequential
pattern mining paradigm with an alternative approximate multiple alignment pattern mining
paradigm proposed in this dissertation. I employ the comprehensive evaluation method,
presented in chapter 5, which can assess the quality of the mined results from any sequential
pattern mining method empirically.

Note that all methods generate the same results for the support paradigm. In contrast,

116

the exact solution to the multiple alignment pattern mining is NP-hard, and in practice all
solutions are approximate. Consequently the results of the alignment paradigm are method
dependent. I use the results of ApproxMAP to represent the alignment paradigm. In general,
most of these results were presented in detail in section 6.2. Here I recap the important points
for comparison.

In the support paradigm, one itemset frequent patterns, called large itemsets, are usually
considered as part of the results. However, to be consistent in the comparison I only considered
frequent patterns with more than one itemset as the result. Recall that in ApproxMAP I do
not consider the one itemset patterns as sequential patterns and dismiss them along with the
clusters that generate null patterns.

In summary, I demonstrate that the sequence alignment based approach is able to best
recover the underlying patterns with little confounding information under all circumstances
I examined including those where the frequent sequential pattern paradigm fails.

7.2.1 Spurious Patterns in Random Data

I first compare the results from the two paradigms on completely random data. I test
empirically how many spurious patterns are generated from random data in the support
paradigm and the multiple alignment paradigm. I generate random databases with parameters
‖I‖ = 100, Nseq = 1000, Iseq = 2.5, and varied Lseq.

The support paradigm has no mechanism to eliminate patterns that occur simply by
chance. As seen in the theoretical analysis in section 7.1.3, when sequences are long, short
patterns can occur frequently simply by chance. The threshold where the first spurious pattern
is generated, Tspur, depicts this well empirically (Table 7.3). As the sequence becomes longer,
Tspur increases quickly. When Lseq = 50, a simple sequential pattern, 〈(A)(A)〉, occurs in 610
of 1000 sequences simply by chance. Even when Lseq is only 20, the sequential pattern occurs
in 200 of 1000 sequences simply by chance along.

Consistent with the theoretical analysis, the results show that support alone cannot dis-
tinguish between significant patterns and random sequences. The support paradigm gen-
erates many spurious patterns given random data (Figure 7.2(a) and Table 7.3). When
min sup = 5% and Lseq = 30, there are already 53,471 spurious patterns. In many real
applications, since min sup << 5%, and Lseq > 30, there could be many spurious patterns
mixed in with true patterns.

Our implementation of the support paradigm ran out of memory of when min sup = 5%
and Lseq > 30. It is typical of the support based methods to have difficulty with long sequences
[6]. To understand the trend better, I did a second experiment with a higher min sup = 10%.
We were able to run upto Lseq = 40 when min sup = 10%.

Clearly, Figure 7.2(a) shows that the number of spurious patterns increase exponentially
with respect to Lseq. This follows naturally from Figure 7.1 which shows that E{sup} of

117

Table 7.3: Results from random data (support paradigm)
min sup = 5% min sup = 10%

Lseq Nspur ‖None itemset‖ Nspur ‖None itemset‖
Tspur

10 9 100 0 100 4.9%
20 10000 100 436 100 20%
30 53471 100 10044 100 37%
40 out of mem 100 39770 100 52%
50 out of mem 100 out of mem 100 61%

Table 7.4: Results from random data (multiple alignment paradigm: k = 5)
θ = 50% δ = 20%

Lseq ‖C‖
Nspur ‖Nnull‖ ‖None itemset‖ Nspur ‖Nnull‖ ‖None itemset‖

Tspur

10 90 0 90 0 0 86 4 18%
20 93 0 92 1 0 89 4 17%
30 81 0 81 0 1 77 3 27%
40 95 0 94 1 6 85 4 35%
50 99 0 98 1 5 92 2 32%

Figure 7.2: Comparison results for random data

0

10000

20000

30000

40000

50000

60000

10 20 30 40 50

of

 s
pu

rio
us

 p
at

te
rn

s

Lseq (#)

min_sup=5%
min_sup=10%

0

10

20

30

40

50

10 20 30 40 50

of

 s
pu

rio
us

 p
at

te
rn

s

Lseq (#)

theta=50%
delta=20%

(a) Support paradigm (b) Multiple alignment paradigm

length 2-itemset sequences increase linearly with respect to L. Thus, the total of all patterns
(that is the sum of all L-itemset sequences) should grow exponentially.

In contrast, as discussed in section 6.2.1 the probability of a group of random sequences
aligning well enough to generate a consensus sequence is negligible. Thus, using default values
(k = 5 and θ = 50%), the multiple alignment paradigm found no spurious patterns in any
database with Lseq = 10..50 (Table 7.4 and Figure 7.2(b)). Although the algorithm generated
many clusters (81 to 99), all the clusters were either very small, or not enough sequences in
the cluster could be aligned to generate meaningful consensus itemsets.

In Figure 7.2(b), I also report the number of spurious patterns that occur at the cutoff
point for variation consensus sequences, δ = 20%. When sequences are longer, there are a few
negligible number of spurious patterns (1, 6, and 5 when Lseq=30, 40, and 50 respectively)

118

generated at this low cutoff point. These few spurious patterns occur in small clusters where
20% of the cluster results in slightly more than 10 sequences. Since min DB strength = 10
sequences, ApproxMAP is unable to screen these patterns out automatically. Such spurious
patterns only occur because there are no patterns in this random data to build an alignment
on. It is unlikely you will see the same phenomena in patterned data.

For both paradigms, the threshold where the first spurious pattern occurs, Tspur, suggests
that as the sequences get longer, spurious patterns are more likely to occur at higher cutoff
values. This is to be expected. However, the significant differences in the values of Tspur in
the two paradigms should be fully appreciated. In the support paradigm, Tspur is the highest
point at which a spurious pattern appears in the full database. On the other hand, in the
multiple alignment paradigm, Tspur is the highest point at which a spurious pattern occurs
in any subgroup of the database (any cluster). That is support is based on the full database,
whereas strength is based on clusters, subgroups of the database. Thus, in practice min sup
is usually very low and is almost always less than 10%. In the support paradigm, when Tspur

is greater 10% it suggests a significant problem in dealing with spurious patterns.

In comparison, since the strength cutoff point, θ, is specified against a similar group of
sequences, it is set high (20%-50%) in practice. For pattern consensus sequences, the default is
set to 50%. The experiments in section 6 clearly demonstrate that recoverability is consistently
over 90% for a wide range of databases using such default value. Thus, Tspur ≤ 35% for all
databases signifies that the first spurious pattern occurs at a considerably low point. Spurious
patterns can clearly be differentiated from real patterns in such circumstances. Furthermore,
as mentioned above these spurious patterns only occur because there are no patterns in the
random data to build an alignment on. As shown in section 6.3.3, in patterned data the
longer the sequence and the pattern embedded in the sequences, the better the recoverability
as well as precision.

7.2.2 Baseline Study of Patterned Data

Now that I have an understanding of the behavior of the two paradigms in random data,
I move on to investigate patterned data. I generate 1000 sequences from 10 base patterns.
I used the same patterned database as the one used in section 6.2.2. The parameters of
the database is given in Table 6.9. For clearity, I restate the purpose of this experiment.
First, it evaluates how well the paradigms detect the underlying patterns in a simple pat-
terned database. Second, it illustrates how readily the results may be understood. Third, it
establishes a baseline for the remaining experiments.

I tuned both paradigms to the optimal settings. Results and the optimal parameters are
given in Table 7.5. The recoverability for both paradigms is good at over 90%. However, in
the support paradigm it is difficult to extract the 10 base patterns from results that include
253,714 redundant patterns and 58 spurious patterns. Furthermore, although the precision

119

Table 7.5: Comparison results for patterned data
Multiple Alignment Paradigm Support Paradigm

k = 6 & θ = 30% min sup = 5%
Recoverability 91.16% 91.59%

Nitem 106 1,782,583
NextraI 3 66,058

Precision 97.17% 96.29%
Ntotal 8 253,782
Nspur 0 58
Nredun 1 253,714

seems to be reasonable at 96.29%, this accounts for 66,058 extraneous items of 1,782,583 total
items. The precision seems reasonable because there are so many items (almost all of the
result items belong to redundant patterns) that as a percentage, the number of extraneous
items is small. In reality though, there is quite a bit of extraneous items in the results.

In fact, it would be impossible to list the full results, 253,782 sequences, from the support
paradigm. Most of these are redundant patterns. Many of the redundant patterns in the
support paradigm are either subsequences of a longer pattern or a small variation on it. They
hold no additional information and instead bury the real patterns. Even if I were to find only
the max-patterns, there would still be 45,281 max-patterns1.

In contrast, the alignment paradigm returned a very succinct but accurate summary of
the base patterns. There were only one redundant pattern, no spurious patterns, and 3
extraneous items. The details were discussed in section 6.2.2. Table 6.14 in section 6.2.2
shows, in one page, all the pattern consensus sequences, PatConSeqi, the variation consensus
sequences, V arConSeqi, with the matching base patterns, BasePi. In this small database,
manual inspection clearly shows how well the consensus sequences match the base patterns
used to generate the data. Each consensus pattern found was a subsequence of considerable
length of a base pattern. The 16 consensus sequences provide a good overview of the 1000
data sequences.

Furthermore, as discussed in section 6.2.2 unlike the support paradigm the small num-
ber of redundant patterns returned by ApproxMAP suggests useful information. Recall that
in this experiment, there was one redundant pattern returned by the alignment paradigm.
This redundant pattern (PatConSeq3) was a subsequence of a longer pattern(PatConSeq2).
Sequences in the partition that generated PatConSeq3 (Table 6.14) were separated out from
the partition that generated PatConSeq2 because they were missing most of the items at the
end of PatConSeq2. Thus, when the redundant patterns in the alignment paradigm are sub-
sequences of a longer pattern, it alerts the user that there is a significant group of sequences
that do not contain some of the items in the longer pattern.

1Of 45,281 max patterns returned 40 are spurious patterns and 45,231 are redundant patterns.

120

Table 7.6: Effects of noise (min sup = 5%)
1− α Recoverability Nitem NextraI Precision Ntotal Nspur Nredun

10% 76.06% 235405 14936 93.66% 46278 9 46259
20% 54.94% 39986 3926 90.18% 10670 5 10656
30% 41.83% 11366 1113 90.21% 3646 1 3635
40% 32.25% 4021 360 91.05% 1477 0 1469
50% 28.35% 1694 143 91.56% 701 0 692

Figure 7.3: Effects of noise (comparison)

10

30

50

70

90

0 10 20 30 40 50

R
ec

ov
er

ab
ili

ty
 (

%
)

1-alpha: noise level (%)

multiple alignment
support

50

60

70

80

90

100

0 10 20 30 40 50

P
re

ci
si

on
 (

%
)

1-alpha: noise level (%)

multiple alignment
support

(a) Recoverability w.r.t. 1− α (b) Precision w.r.t. 1− α

7.2.3 Robustness With Respect to Noise

In this section, I evaluate the robustness of the paradigms with respect to varying degree
of noise added to the patterned data used in the previous section.

The results show that the support paradigm is vulnerable to random noise injected into
the data. As seen in Table 7.6 and Figure 7.3, as the corruption factor, 1− α, increases, the
support paradigm detects less of the base patterns (recoverability decrease) and incorporates
more extraneous items in the patterns (precision decrease). When the corruption factor is
30%, the recoverability degrades significantly to 41.83%. I tried a lower min sup to see if
I could recover more of the base patterns. Even when min sup was lowered to 2%, the
recoverability was only 65.01% when the corruption factor is 30%. Such results are expected
since the paradigm is based on exact match. Note that even with recoverability at 41.83%, the
paradigm returns 3,646 patterns that include 1,113 extraneous items (precision = 90.21%).

In comparison, the alignment paradigm is robust to noise in the data. Despite the presence
of noise, as shown in section 6.2.3 and Figure 7.3(b), it is still able to detect a considerable
number of the base patterns (i.e. recoverability is 90.95% when corruption factor is 30%) with
high precision and no spurious patterns. The alignment paradigm is robust to noise because
it is an approximate method that reports the general underlying trend in the data.

121

Table 7.7: Effects of outliers (min sup = 5%)
Noutlier NPatSeq Recoverability Nitem NextraI Precision Ntotal Nspur Nredun

0 1000 91.59% 1782583 66058 96.29% 253782 58 253714
200 1000 91.52% 882063 26726 96.97% 129061 16 129035
400 1000 87.67% 544343 12372 97.73% 82845 7 82828
600 1000 83.76% 286980 6404 97.77% 47730 4 47716
800 1000 80.38% 158671 3611 97.72% 28559 4 28546

Table 7.8: Effects of outliers (min sup = 50 sequences)
Noutlier min sup Recoverability Nitem NextraI Precision Ntotal Nspur Nredun

0 10/1000=5% 91.59% 1782583 66058 96.29% 253782 58 253714
200 50/1200=4.2% 91.59% 1783040 66195 96.29% 253939 59 253870
400 50/1400=3.6% 91.59% 1783945 66442 96.28% 254200 59 254131
600 50/1600=3.1% 91.59% 1784363 66571 96.27% 254341 59 254272
800 50/1800=2.8% 91.59% 1784828 66716 96.26% 254505 61 254434

Figure 7.4: Effects of outliers (comparison)

50

60

70

80

90

100

0 200 400 600 800

P
re

ci
si

on
 (

%
)

of outliers

multiple alignment
support

66100

66200

66300

66400

66500

66600

66700

66800

0 200 400 600 800

of

 e
xt

ra
ne

ou
s

ite
m

s

of outliers

support

(a) Precision w.r.t. outliers (b) NextraI w.r.t outliers

7.2.4 Robustness With Respect to Outliers

This experiment is designed to test the effect of outliers added to patterned data. The
main effect of the outliers is the weakening of the patterns as a percentage of the database.
Consequently, in the support paradigm the recoverability along with the number of spurious
patterns, the number of redundant patterns, and the number of extraneous items is decreased
when min sup is maintained at 5% (Table 7.7). On the other hand, if I maintain min sup=50
sequences, obviously the recoverability can be maintained. The tradeoff is that the number of
spurious patterns, redundant patterns, and extraneous items all increase slightly (Table 7.8).

Similarly, as discussed in detail in section 6.2.4, in ApproxMAP when θ is kept the same
at 50% the results decline as the number of outliers increase. However, I can easily find
the longer underlying patterns by adjusting θ to compensate for the outliers in the data. In
summary, with a slight decrease in θ I can recover all of the base patterns detected without
the outliers with only minor decrease in precision (Table 6.17).

122

Figure 7.4(a) compares the decrease in precision in the two paradigms when the param-
eters are adjusted to compensate for the outliers. Although, on the surface it looks like the
multiple alignment paradigm is less robust to outliers since the precision is decreased more,
this is misleading. Remember that precision is given as a percentage of the total number of
items returned. Thus, when there are so many items returned as in the support paradigm,
precision does not give an accurate picture. The lower precision for the alignment paradigm
when Noutlier = 600, corresponds to 10 extraneous items of 113 total returned items. In
comparison, the support paradigm returned 66,571 extraneous items of 1,784,363 total items.
The comparison is similar for Noutlier = 800.

As seen in Figure 7.4(b) in the support paradigm, the number of extraneous items in the
result increase linearly as more outliers are added. The increase in extraneous items for the
alignment paradigm is not nearly as pronounced (Table 6.16).

7.3 Scalability

The time complexity of the support paradigm is dependent on the algorithm. However, in
general the support based algorithms are linear with respect to the size of the database but
exponential with respect to the size of the pattern. The exponential time complexity with
respect to the pattern is a lower bound since all algorithms have to enumerate the complete
set of subsequences for any pattern by definition.

In contrast, the alignment paradigm is not dependent on the size of the pattern because
the patterns are detected directly through multiple alignment. Instead in the alignment
paradigm, computation time is dominated by the clustering step, which has to calculate
the distance matrix and build the k nearest neighbor list. This inherently makes the time
complexity O(N2

seq · L2
seq · Iseq). However, unlike the support paradigm the time complexity

can be improved by using a sampling based iterative clustering algorithm and stopping the
sequence to sequence distance calculation as soon as it is clear that the two sequences are not
neighbors. These improvements were discussed and studied in this dissertation.

In summary, methods based on the support paradigm has to build patterns, either in depth
first or breath first manner, one at a time. In contrast, the methods based on the alignment
paradigm find the patterns directly through multiple alignment. Thus, not surprisingly when
the patterns are relatively long, the alignment algorithms tend to be faster than support
based algorithms that are exponential in nature to the size of the pattern.

Chapter 8

Case Study:

Mining The NC Welfare Services Database

An extensive performance evaluation of ApproxMAP verifies that ApproxMAP is both effec-
tive and efficient. Now, I report the results on a real data set of welfare services accumulated
over a few years in North Carolina State.

I started this research on sequential data mining in order to answer a policy question with
the welfare services database. What are the common patterns of services given to children
with substantiated reports of abuse and neglect? What are its variations? Using the daysheet
data of services given to these children, ApproxMAP confirmed much of what I knew about
these children. These findings gave us confidence in the results. It further revealed some
interesting previously unknown patterns about children in foster care.

8.1 Administrative Data

There are three administrative databases used in this analysis. Most of the data comes
from the North Carolina social workers’ daysheet data. It records activities of social workers
in North Carolina for billing purposes. County DSS (Department of Social Services) have
numerous funding sources that are combined to pay social workers’ salary. In order to properly
bill the correct funding source, each social worker is required to report on their 40 hour work
week. The daysheet data is a timesheet of the social worker’s 40 hour week workload indicating
what services were given when, to whom, and for how long. Time is accounted for in minutes.
The data gives a fairly accurate picture on the various services given to clients each month.
Therefore, the daysheet data can be converted into monthly services given to clients.

The next step is to identify the clients of interest. Children who had a substantiated
report of abuse and neglect can be identified by using the abuse and neglect report database.
And then, using the foster care database, I can further split the children with substantiated
reports into those that were placed in foster care and those that were not. The children who

124

were never placed in foster care received very little services in comparison to those who were
placed. Thus, the interesting patterns were found in those who were placed in foster care.
Here I report on the results from children who had a substantiated report of abuse and neglect
and were placed in foster care.

There were 992 such children. Each sequence starts with the substantiated report and is
followed by monthly services given to each child. The follow up time was one year from the
report. In summary I found 15 interpretable and useful patterns.

8.2 Results

The most common pattern detected was

〈(RPT)(INV, FC)

11︷ ︸︸ ︷
(FC) · · · (FC)〉

In the pattern, RPT stands for Report, INV stands for Investigation, and FC stands for
Foster Care services. In total, 419 sequences were grouped together into one cluster, which
gave the above consensus pattern. The pattern indicates that many children who are in the
foster care system after getting a substantiated report of abuse and neglect have very similar
service patterns. Within one month of the report, there is an investigation and the child is
put into foster care. Once children are in the foster care system, they stay there for a long
time. Recall that the follow up time for the analysis was one year so 12 months in foster care
means the child was in foster care for the full time of analysis. This is consistent with the
policy that all reports of abuse and neglect must be investigated within 30 days. It is also
consistent with the analysis on the length of stay in foster care. The median length of stay
in foster care in North Carolina is a little over one year, with some children staying in foster
care for a very long time.

Interestingly, when a conventional sequential algorithm is applied to this database, vari-
ations of this consensus pattern overwhelm the results because roughly half of the sequences
in this database followed the typical behavior shown above approximately.

The rest of the sequences in this database split into clusters of various sizes. Another
obvious pattern was the small number of children who were in foster care for a short time.
One cluster formed around the 57 children who had short spells in foster care. The consensus
pattern was as follows.

〈(RPT)(INV, FC)(FC)(FC)〉

125

There were several consensus patterns from very small clusters with about 1% of the
sequences. One such pattern of interest is shown below.

〈(RPT)(INV, FC, T)(FC, T)

8︷ ︸︸ ︷
(FC,HM)(FC)(FC,HM)〉

In the pattern, HM stands for Home Management services and T stands for Transportation.
There were 39 sequences in the cluster. The clients were interested in this pattern because
foster care services and home management services were expected to be given as an “either/or”
service, but not together to one child at the same time. Home management services were
meant to be given to those who where not placed in foster care.

Thus, this led us to go back to the original data to see if indeed many of the children
received both services in the same month over some time. Remember, the consensus patterns
are built by combining the frequent items in any position in the alignment. Hence, the
consensus patterns might not match exactly any actual sequence in the data. Therefore,
when there are consensus patterns of interest it is important to go back the original database
to confirm the patterns using efficient pattern search methods.

Bear in mind, this is a desirable property of consensus patterns. The goal is to find
patterns that are approximately shared by many data sequences. In most applications, finding
such approximate patterns is more practical than finding patterns that exist in the database
exactly. For applications where it is important to find patterns that occur in the data, I can
easily find the data sequence that is most similar to the consensus pattern.

Our investigation found that indeed many children were receiving both foster care services
and home management service in the same month over time. Was this a systematic data entry
error or was there some components to home management services (originally designed for
those staying at home with their guardian) that were used in conjunction with foster care
services on a regular basis? If so, which counties were giving these services in this manner?
Policy makers would not have known about such patterns without my analysis because no
one ever suspected there was such a pattern.

It is difficult to achieve the same results using the conventional sequential analysis methods
because with min support set to 20%, there are more than 100, 000 sequential patterns and
the users just cannot identify the needle from the straws.

126

Chapter 9

Conclusions

I conclude the dissertation with a summary of the research and a discussion of areas for
future work.

9.1 Summary

In any particular data mining problem, the first and most important task is to define
patterns operationally. The algorithms are only as good as the definition of the patterns
(paradigm). In this dissertation, I propose a novel paradigm for sequential pattern mining,
multiple alignment sequential pattern mining. Its goal is to organize and summarize sequence
of sets to uncover the underlying consensus patterns. I demonstrate that multiple alignment is
an effective paradigm to find such patterns that are approximately shared by many sequences
in the data.

I develop an efficient and effective algorithm, ApproxMAP (for APPROXimate Multiple
Alignment Pattern mining), for multiple alignment sequential pattern mining. ApproxMAP

uses clustering as a preprocessing step to group similar sequences, and then mines the underly-
ing consensus patterns in each cluster directly through multiple alignment. A novel structure,
weighted sequences, is proposed to compress the alignment information. The weighted se-
quences are then summarized into consensus sequences via strength cutoffs. The use of the
strength cutoffs is a powerful and expressive mechanism for the user to specify the level of
detail to include in the consensus patterns.

To the best of my knowledge, this is the first study on mining consensus patterns from
sequence databases. It distinguishes itself from the previous studies in the following two as-
pects. First, it proposes the theme of approximate sequential pattern mining, which reduces
number of patterns substantially and provides much more accurate and informative insights
into the sequential data. Second, it generalizes the multiple alignment techniques to handle
sequences of itemsets. Mining sequences of itemsets extends the multiple alignment applica-
tion domain substantially. The method is applicable to many interesting problems, such as

128

social science research, policy analysis, business analysis, career analysis, web mining, and
security.

The extensive evaluation demonstrates that ApproxMAP will effectively extract useful in-
formation by organizing the large database into clusters as well as give good descriptors
(weighted sequences and consensus sequences) for the clusters using multiple alignment. I
demonstrate that together the consensus patterns form a succinct but comprehensive and
accurate summary of the sequential data. Furthermore, ApproxMAP is robust to its input
parameters, robust to noise and outliers in the data, scalable with respect to the size of the
database, and in comparison to the conventional support paradigm ApproxMAP can better
recover the underlying patterns with little confounding information under all circumstances
we examined.

In addition, the case study on social welfare service patterns illustrates that approximate
sequential pattern mining can find general, useful, concise, and understandable knowledge
and thus is an interesting and promising direction.

9.2 Future Work

This dissertation is the first step towards the study of effective sequential pattern min-
ing. Following the approximate frequent pattern mining paradigm, many interesting research
problems need to be solved.

First, more recent advances in multiple alignment come from Gibbs sampling algorithms,
which use the hidden Markov model [24, 48]. These methods are better for local multiple
alignment. Local multiple alignment is to find substrings of high similarity. Formally, given
a set of strings, local multiple alignment first selects a substring from each string and then
finds the best global alignment for these substrings. Since DNA sequences are very long,
finding local similarity has many benefits. One possible future direction would be to expand
ApproxMAP to do local alignment and investigate the benefits of local multiple alignment for
sequences of sets in KDD applications.

Second, in the optimization of sample based iterative clustering the hash table imple-
mentation needs to be explored further. The optimization is made in order to speed up the
running time for large databases. But the current hash table implementation has a large mem-
ory requirement for large databases. In the experiments, I ran out of memeory for databases
with Nseq > 70000 given 2GB of memory. I already know that there are other more efficient
implementations of hash tables. But ultimately, to make the method practically scalable, I
need to explore an implementation that stores only the possible proximity values (limited
by the given memory size), and recalculates the other distances when needed. This will
make the application work with any memory size and still give a significant reduction in time
(Figure 6.6(d)).

129

The most interesting future direction is to expand the distance metric to be more com-
prehensive. First, it could be expanded to handle sequences of multisets or sets with quan-
titative information. Many of the data mining applications have sets that have more than
one of the same item (multiset). For example, people buy many packs of diapers at once. If
ApproxMAP could be expanded to handle multisets, it can find quantitative sequential pat-
terns.

Second, user specified taxonomies could be used to customize the replacement cost. For
example, two toys should be considered more similar to each other than a toy and a piece of
furniture. Under the current paradigm, {doll}, {crib}, and {ball} are all equally distant. If
a user specified a taxonomy tree putting doll and ball under the same ancestor and crib in a
separate branch, the distance metric could be expanded to a weighted distance metric which
can incorporate this information.

Last, a practical improvement to ApproxMAP would be to automatically detect the best
strength threshold, θ, for each cluster of sequences. An interesting approach could be ana-
lyzing the distribution of the item weights dynamically. Initial investigation seems to suggest
that the item weights may follow the Zipf distribution. Closer examination of the distribution
might give hints for automatically detecting statistically significant cutoff values customized
for each cluster. When presenting an initial overview of the data, such approach could be
quite practical.

130

131

BIBLIOGRAPHY

[1] A. Abbott and A. Tsay. Sequence Analysis and Optimal Matching Methods in
Sociology: Review and Prospect. In Sociological Methods and Research, Vol. 29,
pages 3–33, 2000.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of International
Conference on Data Engineering (ICDE), pages 3–14, Taipei, Taiwan, March 1995.

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap
representation. In Proceedings of the ACM International Conference on Knowledge
discovery and data mining (SIGKDD), pages 429–435, July 2002.

[4] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In The fourth international conference on foundations of data organization
and algorithms 1993.

[5] P. Arabie and L. J. Hubert. An overview of combinatorial data analysis. In Clustering
and classification. Arabie, P. Hubert, L. J., & De Soete, G. (Eds.). River Edge, NJ:
World Scientific Publications 1996.

[6] R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. of ACM
International Conference On Management of Data (SIGMOD, pages 85–93, June 1998.

[7] Z. Bi, C. Faloutsos, F. Korn. The “DGX” distribution for mining massive, skewed
data. In Proc. of ACM International Conference On Knowledge discovery and data
mining (SIGKDD), pages 17–26, 2001.

[8] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing
association rules to correlations. In Proc. of ACM International Conference On
Management of Data (SIGMOD), pages 265–276, 1997.

[9] P. Berkhin. Survey Of Clustering Data Mining Techniques. Technical Report - Accrue
Software, San Jose, CA, 2002.

[10] D. Chudova and P. Smyth. Pattern discovery in sequences under a markov assumption.
In Proc. of ACM International Conference On Knowledge discovery and data mining
(SIGKDD), pages 153–162, Edmonton, Alberta, Canada, July 2002.

[11] J. Coggins. Dissimilarity measures for clustering strings. In Time warps, string edits,
and macromolecules: the theory and practice of sequence comparison. D. Snakoff, & J.
Kruskal, (Eds.), pages 253–310. Addison-Wesley Pub. Co. MA. 1983.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Dynamic Programming. In
Introduction to Algorithms, pages 301-328. Cambridge, Mass. : MIT Press. 1990.

[13] R. O. Duda, P. E. Hart, and D. G. Stork. Unsupervised Learning and Clustering. In
Pattern Classification., New York: Wiley, pages 517–599, 2001.

132

[14] L. Ertoz, M. Steinbach, and V. Kumar. Finding Clusters of Different Sizes, Shapes,
and Densities in Noisy, High Dimensional Data. In Third SIAM International
Conference on Data Mining(SDM), pages 47–58 San Fransico. CA, 2003.

[15] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge
Discovery: An Overview. In Advances in Knowledge Discovery and Data Mining,
Fayyad et al (Eds), pages 1-34. Cambridge, MA: AAAI/MIT Press, 1996.

[16] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for extracting
useful knowledge from volumes of data. In Communications of ACM Vol 36 Issue 11,
pages 27-34. New York, NY: ACM Press, Nov. 1996.

[17] U. Fayyad and R. Uthurusamy. Data mining and knowledge discovery in databases.
In Communications of ACM Vol 36 Issue 11, pages 24-26. New York, NY: ACM Press,
Nov. 1996.

[18] J. Foley, A. VanDam, S. Feiner, and J. Hughes. Computer graphics : principles and
practice. Reading, Mass. : Addison-Wesley, 1996.

[19] K. K. Fukunaga and P. M. Narendra. A branch and bound algorithm for computing
k-nearest neighbours. In IEEE Transactions on Computers, Vol 24, pages 750–753,
1975.

[20] Osamu Gotoh. Multiple sequence alignment: Algorithms and applications. In Adv.
Biophys., Vol. 36, pages 159–206. 1999.

[21] R. Goerge, D. Duncan, L. Usher, B. J. Lee, M. Reidy, B. Needell, and A.
Brookhart. Dynamics of Children’s Movement among the AFDC, Medicaid, and Foster
Care Programs. Technical report to U.S. Dept. of Health and Human Services (HHS).
2000.

[22] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern mining with
regular expression constraints. In Proc. 1999 International Conference on Very Large
Data Bases (VLDB), pages 223–234, Edinburgh, UK, Sept. 1999.

[23] V. Guralnik and G. Karypis. A scalable algorithm for clustering sequential data. In
Proc. of International Conference on Data Mining (ICDM), pages 179–186, San Jose,
CA, Nov. 2001.

[24] D. Gusfield. Algorithms on strings, trees, and sequences: Computer Science and
Computational Biology. Cambridge Univ. Press, Cambridge, England. 1997.

[25] J. Han and M. Kamber. Data Mining: Concepts and Techniques. New York, NY:
Morgan Kaufmann Publishers, 2001.

[26] A. Hinneburg and D. Keim. Clustering Techniques for Large Data Sets: From the
past to the future. In Tutorial notes fro ACM SIGKDD 1999 International Conference
on Knowledge discovery and data mining, Han et al, (Eds), ACM. 1999.

[27] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. Cambridge, MA:
MIT Press, 2001.

133

[28] J. Han, J. Pei, et al. FreeSpan: Frequent pattern-projected sequential pattern mining.
In Proceedings of the ACM International Conference on Knowledge discovery and data
mining (SIGKDD), pages 355–359, Aug. 2000.

[29] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. In ACM
Computing Surveys, Vol. 31(3), pages 264–323, Sep 1999.

[30] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Englewood Cliffs, NJ:
Prentice-Hall. 1988.

[31] W. Koontz, P. Narendra, and K. Fukunaga. A Branch and Bound Clustering
Algorithm. In IEEE Transactions on Computers. Vol. 24(9), pages 908–915, 1975.

[32] A. Large, L. Tedd, and R. Hartley. Information seeking in the online age: principles
and practice. Bowker. 1999.

[33] D. Lin and Z. Keadem. Pincer-search: a new algorithm for discovering the maximum
frequent set. In Proc. 6th Intl. Conf Extending Database Technology (EDBT),
pages 105–119, 1998.

[34] B. Liu, M. Hu, and W. Hsu. Multi-level organization and summarization of the
discovered rules. In Proceedings of the ACM International Conference on Knowledge
discovery and data mining (SIGKDD), pages 208–217, 2000.

[35] B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum
supports. In Proceedings of the ACM International Conference on Knowledge discovery
and data mining (SIGKDD), pages 337-341, 1999.

[36] G. R. McPherson and S. DeStefano. Applied Ecology and Natural Resource
Management. Cambridge University Press, Cambridge, England. 2002.

[37] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event
sequences. In Data Mining and Knowledge Discovery, Vol 1(3), pages 256–289, 1997.

[38] C. E. Metz. Basic principles of ROC analysis. In Seminars in Nuclear Medicine,
Vol. 8, pages 283–298, 1978.

[39] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets
for association rules. In Proc. of the International Conference on Database Theory
(ICDT), pages 398–416, Jan. 1999.

[40] J. Pei, J. Han, et al. PrefixSpan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In Proc. of International Conference on Data
Engineering (ICDE), pages 215–224, April 2001.

[41] J. Pei, J. Han, and W. Wang. Constraint-based sequential pattern mining in large
databases. In Proc. of International Conference Information and Knowledge
Management (CIKM), pages 18–25, 2002.

[42] J. Pei, A. K. H. Tung, and J. Han. Fault-tolerant frequent pattern mining: Problems
and challenges. In Proc. 2001 ACM-SIGMOD International Workshop on Data Mining
and Knowledge Discovery (DMKD), pages 7–12, Santa Barbara, CA, May 2001.

134

[43] J. Sander, M. Ester, H. P. Kriegel, and X. Xu. Density based clustering in spatial
databases: The algorithm gdbscan and its applications. In Data Mining and Knowledge
Discovery, Vol 2(2), pages 169–194, 1998.

[44] Sas Institute. Proc Modeclust. In SAS/STAT User Guide: Sas online Document. 2000

[45] Myra Spiliopoulou. Managing interesting rules in sequence mining. In Proc. European
Conf. on Principles and Practice of Knowledge Discovery in Databases, pages 554–560,
1999.

[46] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. In Proc. 6th Intl. Conf Extending Database Technology
(EDBT), pages 3–17. March 1996.

[47] P. Stolorz and R. Musick (Eds). Guest Editorial. In Data mining and knowledge
discovery Vol 1(4). Special issue: Scalable High Performance Computing for Knowledge
Discovery and Data Mining. Boston, MA: Kluwer Academic Publishers, 1998.

[48] J. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple
sequence alignment programs. In Nucleic Acids Research. Vol. 27(13), pages 2682–2690.
Oxford University Press. 1999.

[49] C. L. Usher, K. A. Randolph, and H. C. Gogan. Placement patterns in foster care. In
Social Service Review, Vol 73, pages 22-36. 1999.

[50] K. Wang, Y. He, and J. Han. Mining frequent itemsets using support constraints. In
Proc. 1999 International Conference on Very Large Data Bases (VLDB), pages 43–52,
2000.

[51] M. A. Wong and T. Lane. A kth Nearest Neighbor Clustering Procedure. In Journal
of the Royal Statistical Society, Series B, 45, pages 362–368, 1983.

[52] C. Yang, U. Fayyad, and P.S. Bradley. Efficient discovery of error-tolerant frequent
itemsets in high dimensions. In Proc. of ACM International Conference On Knowledge
discovery and data mining (SIGKDD), pages 194–203. 2001.

[53] X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Larege
Datasets. In Third SIAM International Conference on Data Mining (SDM), pages
166–177, San Fransico. CA, 2003.

[54] J. Yang, P. S. Yu, W. Wang, and J. Han. Mining long sequential patterns in a noisy
environment. In Proc. of ACM International Conference On Management of Data
(SIGMOD), pages 406–417, Madison, WI, June 2002.

[55] M. J. Zaki. Sequence mining in categorical domains: incorporating constraints. In 9th
International Conference Information and Knowledge Management (CIKM),
pages 422–429. 2000.

[56] M. J. Zaki. Efficient enumeration of frequent sequences. In 7th International
Conference Information and Knowledge Management, pages 68–75. Nov 1998.

