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ABSTRACT
D. BRANDON LLOYD: Logarithmic Perspective Shadow Maps

(Under the direction of Dinesh Manocha)

The shadow map algorithm is a popular approach for generating shadows for real-time

applications. Shadow maps are flexible and easy to implement, but they are prone to aliasing

artifacts. To reduce aliasing artifacts we introduce logarithmic perspective shadow maps

(LogPSMs). LogPSMs are based on a novel shadow map parameterization that consists of

a perspective projection and a logarithmic transformation. They can be used for both point

and directional light sources to produce hard shadows.

To establish the benefits of LogPSMs, we perform an in-depth analysis of shadow map

aliasing error and the error characteristics of existing algorithms. Using this analysis we

compute a parameterization that produces near-optimal perspective aliasing error. This pa-

rameterization has high arithmetical complexity which makes it less practical than existing

methods. We show, however, that over all light positions, the simpler LogPSM parameteriza-

tion produces the same maximum error as the near-optimal parameterization. We also show

that compared with competing algorithms, LogPSMs produce significantly less aliasing error.

Equivalently, for the same error as competing algorithms, LogPSMs require significantly less

storage and bandwidth. We demonstrate difference in shadow quality achieved with LogPSMs

on several models of varying complexity.

LogPSMs are rendered using logarithmic rasterization. We show how current GPU archi-

tectures can be modified incrementally to perform logarithmic rasterization at current GPU

fill rates. Specifically, we modify the rasterizer to support rendering to a nonuniform grid with

the same watertight rasterization properties as current rasterizers. We also describe a novel

depth compression scheme to handle the nonlinear primitives produced by logarithmic ras-

terization. Our proposed architecture enhancements align with current trends of decreasing

cost for on-chip computation relative to off-chip bandwidth and storage. For only a modest
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increase in computation, logarithmic rasterization can greatly reduce shadow map bandwidth

and storage costs.
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CHAPTER 1

Introduction

Our perception of the world around us comes largely through what we see. Every day the

sun rises and bathes the world in light, and when it sets we continue our activities by use

artificial lights. Nearly as important to our sense of sight as the light itself are the parts of

the world that remain in darkness – the shadows.

1.1 Importance of shadows

A shadow can be defined as a region of darkness resulting from the blockage of all or part of

the light that would otherwise fall on the region. The boundary between light and darkness

on a shadow edge helps us to understand the shape of an object or its position relative to

another. For example, consider the images shown in Figure 1.1. The first image shows only

attached shadows, which are shadows that occur at a point when light is blocked by the point

Figure 1.1: The benefit of shadows for understanding spatial relationships and
shape. (Left) With only attached shadows, this image appears to be three identical spheres
floating above the ground. (Middle) Adding cast shadows, we can see that the spheres on the
left is touching the ground, the sphere in the middle is floating, and the sphere on the right is
not a sphere at all. (Right) The same scene from a different point of view.



Figure 1.2: Shadows in an interactive walk-through. (Left) Without shadows the
structures of this power plant model seem to float above the ground plane. (Right) Shadows
aid spatial understanding and add realism.

itself, i.e. when the point lies on a surface facing away from the light. The attached shadows

help us to see the curvature of the objects. The image appears to be of three identical spheres

lined up in a row. In the next image we add cast shadows, which are shadows that occur at a

point when light is blocked by some other point. In this case, the objects cast shadows onto

the ground plane. The cast shadows reveal that the first two objects are spheres of different

sizes and that one of them is actually not a sphere at all! Furthermore, we see that the

objects are positioned at different heights above the ground plane. Figure 1.2 shows a less

contrived example from a walk-through application in a power plant model. Without cast

shadows, the structures appear to float above the ground plane. The spatial understanding

gained from shadows is important in still images, but it can be even more useful for interactive

applications such as walk-through, simulators, and video games. Several user studies have

shown how shadows aid the user in interacting with a virtual environment (Wanger, 1992;

Hubona et al., 1999; Hu et al., 2000). They also provide powerful motion cues (Kersten et al.,

1996; Kersten et al., 1997).

One of the goals of interactive computer graphics is to produce an experience in a virtual

world that visually is as close to reality as possible. In achieving this goal, shadows are of

vital importance. Shadows exist nearly everywhere in the real world, and without them the
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Figure 1.3: Shadows convey time of day. The long shadows indicate a time late in the
day.

illusion of reality is destroyed. Shadows can also strongly influence more subjective aspects

such as the “mood” or “feel” of an environment and can be used for dramatic effect. Consider

a video game in which the player first sees the shadows of his or her opponent approaching

from around the corner, thus heightening the suspense of a pinnacle moment in the gameplay.

Shadows can also influence the perceived time of day. In Figure 1.3, the low lighting with

long cast shadows gives the impression a late time of day.

Attached shadows are fairly easy to compute because they depend only on the local

surface orientation. Computing accurate cast shadows, however, can be computationally

challenging. Offline rendering used for creating single images or the still frames of a film

can generate very realistic lighting and shadows, but the time spent to render each image

can range from minutes to hours. Interactive applications must operate under much tighter

timing constraints. Ideally, they must maintain frame rates of greater than about 60 frames

per second to create the illusion of smooth motion. In a virtual world where the user can

go anywhere and change the view at any moment, the frames cannot be precomputed. This

means that each frame must be rendered on the fly. The application has 1/60th of a second

to compute the positions of objects, the lighting and shadows, and the final image. In video

games other components such as physics and artificial intelligence compete for a slice of the
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limited frame time. But even with these constraints, shadows are so important that the

popular video game Doom III reportedly spends one half of the frame time on shadows alone

(Shoemaker, 2003).

Shadow rendering involves the computation of the visibility of the light source. Hard

shadows are the easiest type of cast shadows to compute because they are generated from

a light source consisting of a single point. When a point light is infinitely far away, it is

referred to as a directional light. Unlike real lights, point and directional light sources have

no physical extent. They are referred to as ideal light sources. To compute the visibility of

an ideal light source at a given point in space, we must determine whether the path from the

point to the light source is blocked by an occluder. If the path is free, the point is illuminated.

Otherwise, it lies in shadow. On a surface, the sudden transition from the light being visible to

occluded produces a hard shadow edge. Small or distant lights in the real world can often be

approximated by ideal light sources. For example, a point light can be a good approximation

for the illumination from a small light fixture in a room, a street light, or even a flash light. A

directional light can be a good approximation for what is perhaps the most ubiquitous light

source, the sun. However, ideal light sources produce a poor approximation for many other

sources of illumination, e.g. fluorescent tubes in an office building or an overcast sky. These

light sources give rise to soft shadows. The boundaries of soft shadows have a penumbra, a

smooth transition from lit to unlit. The penumbra arises from partial visibility of a light

source having appreciable physical extents. These light sources are referred to as extended

light sources. Computing shadows from extended light sources is significantly more expensive

than computing hard shadows from ideal light sources because we must not only determine

whether or not the light source is visible at a point, but also what fraction of the light source

is visible. Due to the high cost of soft shadow computation, the shadow algorithms most

commonly used in today’s interactive applications are based on hard shadows. But even hard

shadow computation can pose significant challenges.
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Figure 1.4: Hard and soft shadows. (Left) Hard shadows cast by a point light source.
(Right) Soft shadows cast by an extended light source. Hard shadows are easier to compute
because we need only determine whether the light source is visible or not. Soft shadows have
a penumbra region where the light source is partially visible.

1.2 Shadow maps

One of the most popular techniques for generating hard shadows is the shadow map algorithm

(Williams, 1978). A shadow map is a discrete representation of the surfaces in the scene which

is used to compute the visibility of the light. The algorithm consists of two rendering passes.

First, the shadow map is rendered from the view point of the light. Shadow maps are typically

stored as a depth buffer which records at each texel the depth of the surface closest to the

light. Second, the image is rendered from the viewpoint of the eye. The point in the scene

corresponding to each image pixel is projected into the shadow map. If the depth of the point

relative to the light is greater than that stored at the corresponding location in the shadow

map, then it is assumed that some other surface lies between the point and the light and the

point is classified as in shadow. The basic algorithm is summarized in Figure 1.5.

Shadow maps are an attractive approach for rendering shadows for several reasons. The

algorithm is quite general and easy to use. Shadow maps can be implemented using projective

texturing (Segal et al., 1992), which is widely available on current graphics hardware. They

require no pre-processing and are therefore suitable for dynamic scenes. Shadow maps can

be generated using a wide range of geometric representations. For example, in addition to

the standard polygon mesh, shadow maps may also be used for alpha test geometry. This
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Figure 1.5: Shadow map algorithm. A shadow map is created by rendering a depth buffer
from the point of view of the light. When rendering the image from the point of view of the
eye, the point in the scene corresponding to each pixel is transformed into the light’s view and
its depth is compared to that stored in the shadow map. If the depth of the point is greater, it
lies in shadow. The positions of a sample point in the image, the scene, and the shadow map
are shown here.

representation uses the alpha test in conjunction with the alpha channel of a texture map to

“knock-out” regions of the base polygon to which the texture map is applied. This approach

is often used in interactive applications to simplify the geometric representations of objects

like a plant or a chain link fence, which would otherwise require a large number of polygons.

Rendering shadows using shadow maps also tends to have better performance than other

shadow algorithms. Because shadow maps contain only depth information, they can take

advantage of optimizations available on some GPUs that rasterize to depth-only buffers at

higher speeds. Though shadow maps are used primarily for hard shadows, they can also

produce plausible soft shadows from small light sources by simply blurring the shadow edges.

Applying the blur is fairly easy because of the image-based nature of the algorithm.

The main disadvantage of the shadow map algorithm is that it can suffer from several

sampling artifacts. One of these artifacts is a jagged appearance along shadow boundaries

that should otherwise be smooth curves (see Figure 1.6). These artifacts occur in parts of the

scene that are undersampled by the shadow map. In these regions, a large number of points

corresponding to neighboring pixels map to the same texel in the shadow map. This causes

the texel boundaries to become distinguishable in the image and results in jagged shadow
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Figure 1.6: Shadow map artifacts. (Left) In this image rendered with a standard shadow
map the shadow boundaries are jagged. (Right) The same image rendered with our shadow
map algorithm without shadow map artifacts .

edges.

1.3 Avoiding sampling artifacts

There are several ways to avoid the sampling artifacts shown in Figure 1.6. These include

using an object-based approach that avoids sampling altogether, increasing the shadow map

resolution, or using a better sample distribution. We will briefly discuss each of these ap-

proaches.

1.3.1 Object-based approaches

Approaches that compute shadows in object-space do not suffer from sampling artifacts. A

popular object-space method is the shadow volume algorithm (Crow, 1977). This algorithm

explicit constructs the volume of points that lie behind an occluder and are therefore not

visible to the light. The shadow volumes are created by extruding the silhouette edges of the

occluder away from the light source toward infinity. To determine if a point lies in shadow,

we can trace a ray away from the point in any direction, incrementing a counter whenever

the ray enters a shadow volume and decrementing when it exits. If the final counter value is
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non-zero then the point lies inside a shadow volume. On graphics hardware, the rays used

are those that pass through the eye and the pixels in the image. The stencil buffer is used to

provide a counter for each ray.

The shadow volume algorithm consists of three passes. In the first pass, the scene is

rendered with ambient lighting. In the second pass, depth buffer writes are disabled and the

shadow volumes are rendered to the stencil buffer, incrementing for front faces and decre-

menting for back faces. In the final pass, the image is rendered again, this time with full

lighting and the stencil test is used to disable writes to pixels with a nonzero count, thereby

preserving the ambient lighting in shadowed regions.

While the shadow volume algorithm produces accurate shadow edges, it has several draw-

backs. Shadow volumes require that occluders be represented with a polygonal mesh, and

thus are less flexible than shadow maps. They cannot be used with alpha test geometry or

point-based representations, which do not have explicit silhouette edges. As with all object-

based approaches, the performance of the shadow volume algorithm is highly sensitive to the

geometric complexity of the scene. Individual shadow volumes often cover large areas of the

screen. Rendering many large shadow volumes generated by complex scenes can lead to poor

performance on current graphics hardware.

1.3.2 Increasing shadow map resolution

The obvious approach to the undersampling problem is to simply increase the resolution of the

shadow map. The magnitude of shadow map error is reduced in proportion to the resolution

of the shadow map. However, there are several limitations to this approach as well. Large

shadow maps strain the limited storage capacities of current graphics hardware. While the

amount of memory available on GPUs continues to increase, so does the visual richness of the

rendered scenes. High resolution shadow maps must compete for storage in GPU memory

with the texture maps, vertex data, and shaders that provide this richness. Increasing the

shadow map resolution can also decrease rendering performance. Rendering high resolution

shadow maps can take longer because there is more rendering work. The rendering speed

is more likely to be limited by bandwidth bottlenecks. Generating the image using a high
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resolution shadow map can also be slower due to poor cache performance. Regions farther

from the viewer tend to be oversampled by the shadow map. In these regions, shadow map

queries exhibit poor spatial locality in memory which can hurt cache performance. Increasing

the resolution of the shadow map makes this problem worse.

1.3.3 Explicit sampling

Rather than simply increasing the number of samples to combat aliasing by brute force, a

better approach is to place the shadow map samples more carefully. Ideally, the shadow

map resolution would be no larger than the image resolution with a single shadow map

sample corresponding to each pixel. Approaches such as raytracing (Whitted, 1979) and the

irregular z-buffer (Johnson & Cohen, 2004; Aila & Laine, 2004a) establish this correspondence

explicitly. Both of these approaches can produce artifact-free shadow edges with far fewer

samples than a standard shadow map. Ray tracing can compute shadows at any point in

the scene simply by tracing a ray towards the light to check for intersections with occluders.

Thus ray tracing can sample exactly at those locations in the scene that correspond to pixels

in the image. There is a price to be paid for this flexibility. The entire scene database must

be accessible because rays may potentially intersect any object in the scene. In other words,

ray tracing must operate in retained mode. Due to the high cost of intersection tests, spatial

data structures are typically used to reduce the number of intersection tests that have to be

performed in complex scene. Building acceleration data structures for complex models and

maintaining them in dynamic scenes can have substantial overhead.

The irregular z-buffer algorithm rasterizes polygons using an arbitrary set of sample loca-

tions on the image plane. To generate a shadow map with an irregular z-buffer, the scene is

first rendered from the viewpoint of the eye. The eye sample locations are transformed into

light space and used to render the shadow map. Finally, the resulting depth buffer is used to

compute shadows at the eye sample locations. The irregular z-buffer can produce the same

results as raytracing for an ideal light source. Because each polygon can be processed inde-

pendently, the algorithm fits well with the traditional graphics pipeline. The main challenge

for the algorithm is the irregularity of the sample distribution. From the point of view of the
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Figure 1.7: Fitting the shadow map to the view frustum. These images show the
trapezoidal view frustum as seen from an overhead directional light. (a) Shadow map reso-
lution wasted on unseen portions of the scene. (b) The shadow map fit tightly to the view
frustum makes better use of the available samples but is still a poor match for the eye sample
distribution. Areas near the viewer are extremely undersampled. (c) The eye sample spacing
generally increases linearly with z.

light, the eye sample locations can be highly nonuniform. Indexing these samples requires

irregular data structures, such as a quad tree (Aila & Laine, 2004a) or a grid of lists (Johnson

et al., 2005), which are more difficult to implement efficiently in hardware than the regular

grid used for standard rasterization.

The sample locations for a standard shadow map are derived implicitly using a function

parameterized by the texel grid locations. Using a parameterization places constraints on

the sample locations, but it has two important advantages – simplicity and a high degree of

coherence. Sample locations can be computed and indexed in constant time, and they can be

stored in a regular grid. Some important operations, such as filtering, are much simpler using a

regular grid. Rasterization using a parameterization is also easy to parallelize. The coherence

between samples can be exploited to increase performance via incremental computations

and optimizations such as depth buffer compression. The performance of modern GPUs is

due largely to these advantages afforded by a parameterization. Recent improvements in ray

tracing that better exploit what coherence is available show promising results for static scenes,

but these algorithms still cannot compete with the performance of GPUs for moderately

complex, dynamic scenes at high resolutions (Wald et al., 2007). Hardware architectures

have been proposed for accelerating raytracing (Woop et al., 2005) and the irregular z-buffer

(Johnson et al., 2005), but compared to standard rasterization they are more difficult to

implement efficiently. As of yet, no mass market implementation exists for either approach.
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Figure 1.8: Techniques for improving shadow map sample distribution. (Top row)
Warping techniques: (a) perspective shadow maps (PSMs) (Stamminger & Drettakis, 2002),
(b) light-space perspective shadow maps (LiSPSMs) (Wimmer et al., 2004), and (c) loga-
rithmic perspective shadow maps (LogPSMs). (Bottom row) Partitioning methods: (d) z-
partitioning, (e) face partitioning, (f) adaptive partitioning, (g) explicit sampling. Explicit
sampling can be viewed as using one partition per sample.

1.3.4 Warping and partitioning

While it is difficult to establish an exact correspondence between eye and light sample positions

in the scene with a parameterization, it is possible to obtain a better match between the eye

and light sample distributions than that produced by a standard shadow map. To begin with,

the shadow map can be tightly fit to parts of the scene that are actually visible to the eye

(Brabec et al., 2002b) so that shadow map resolution is not wasted on parts of the scene that

will never be seen. This approach, however, still requires a high resolution shadow map to

remove undersampling artifacts for views in which objects are visible throughout the entire

view frustum. The problem is illustrated in Figure 1.7. Here the view frustum is seen from a

directional light directly overhead. The tapered shape of the view frustum causes the spacing

between eye sample locations, in general, to increase linearly with distance from the viewer.

However, when using the uniform parameterization of a standard shadow map, the sampling

rate is constant over the entire view frustum, leading to undersampling near the viewer.
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Several algorithms have been proposed to obtain a nonuniform sampling rate over the view

frustum. We classify these algorithms into two main categories: warping and partitioning.

Warping controls the sample distribution using a nonuniform parameterization. Partitioning

provides local control over the sample distribution by using multiple shadow maps.

Figure 1.8 shows several examples of warping and partitioning. Existing warping algo-

rithms use perspective projections to warp the rectangular sample grid of the shadow map

to the trapezoidal view frustum. This warping can also be viewed as expanding the view

frustum in shadow map space to fill the rectangular shadow map. Projective warping algo-

rithms include perspective shadow maps (PSMs) (Stamminger & Drettakis, 2002), light-space

perspective shadow maps (LiSPSMs) (Wimmer et al., 2004), and trapezoidal shadow maps

(TSMs) (Martin & Tan, 2004). For an overhead directional light source, the principal differ-

ence between these algorithms is the way in which the parameter is computed that controls

the strength of the warping. These algorithms are based solely on the shape of the view

frustum and do not consider the surfaces in the scene. As such, they are not guaranteed

to completely eliminate shadow artifacts. However, they are fairly cheap to implement. Be-

cause perspective projections can be encoded in the 4 × 4 transformation matrices available

on current GPUs, existing warping algorithms need only modify the camera matrix used for

rendering the shadow map.

Partitioning algorithms divide the shadow map resolution among multiple, smaller shadow

maps to better control the local sampling distribution. The simplest of the partitioning

schemes is what we call z-partitioning. z-partitioning splits the view frustum along the eye

space z-axis (view direction) into smaller subfrusta and applies a separate shadow map to

each (see Figure 1.8d). Multiple shadow maps are better able to conform to the shape of the

view frustum than a single one. Adaptive partitioning algorithms use multiple shadow maps,

typically arranged in a quadtree, to adapt to local variation in sample density requirements.

Because adaptive methods can take the position and orientation of surfaces in the scene into

account, they can be more accurate. They also tend to be more expensive because of the

added cost of the scene analysis to determine where to refine the partitioning. In addition,

they tend to require many more shadow maps than simpler, scene-independent partitioning
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techniques. The irregular z-buffer algorithm can also be viewed as a partitioning scheme that

uses a partition per sample.

Warping can be combined with partitioning. For instance, each subfrustum generated

by z-partitioning can be rendered with a warped shadow map. Adaptive techniques can

be applied on top of a global warping of the scene. Another technique, which we call face

partitioning, subdivides the view frustum into regions corresponding to its faces and applies

a warped shadow map to each.

1.4 Problems with existing shadow map techniques

As can be seen, there are quite a few variations on the basic shadow map algorithm that

can often be combined. However, the error characteristics of many of the techniques are

not well understood. Several of the algorithms are based on a theoretical error analysis,

but the analysis is usually limited to a specific light/camera configuration. The behavior

of the algorithms for general light positions is poorly understood, which can often lead to

unexpected results that make the algorithms more difficult to use. This is particularly true

of some warping methods for which the error can vary dramatically with the light position.

Some methods are based entirely on heuristics such as maximizing the projected area of the

scene in the shadow map. The lack of theoretical analysis makes it difficult for a developer to

answer such fundamental questions as “Which algorithm is best for my application?”, “How

much shadow map resolution will I need?”, or “How many z-partitions should I use, and

where should the partition be made?”

One problem with the existing warping methods based on perspective projections is that

this parameterization does not produce the best match to the eye sample distribution. As

can be seen in Figure 1.8a, a perspective projection can produce a good fit to the view

frustum. However, along the length of the view frustum the spacing between samples increases

quadratically, while the eye sample spacing increases only linearly. Because the spacing

distribution in both directions is coupled in a perspective projection, the optimal fit along

the view direction can only be obtained at the expense of the fit in the orthogonal direction

(see Figure 1.8b).
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Figure 1.9: Standard and logarithmic shadow maps. A uniform grid is superimposed
on the shadow map to show the warping from the logarithmic parameterization. Note that
under the logarithmic transformation straight lines become curved

Several researchers (Wimmer et al., 2004; Zhang et al., 2006a) have suggested the use

of a logarithmic parameterization along the view direction, which produces a linear spacing

distribution. However, we know of no published algorithms that use a logarithmic parame-

terization for rendering shadow maps for real-time applications. Due to its nonlinear nature,

a logarithmic parameterization introduces new problems that have not been explored. As

shown in Figure 1.9, a logarithmic parameterization causes straight lines and planar surfaces

to become curved. Current GPUs have no native support for these kinds of surfaces. The

logarithmic parameterization could be approximated by adaptively tessellating the scene and

using a programmable shader to apply a logarithmic transformation to the vertices, but this

increases the vertex transformation load on the GPU and the complexity of the shadow ren-

dering code. The logarithmic parameterization can also be implemented with brute-force

rasterization in a fragment shader. While this approach can generate accurate results, it is

more complex to implement and is much slower than standard rasterization. In addition,

techniques for avoiding self-shadowing artifacts on planar surfaces do not work as well for the

curved surfaces.
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1.5 Thesis goals

This dissertation seeks to address these two issues. We aim to provide a more complete

understanding of the capabilities and limitations of the various warping and partitioning

methods. This will permit developers to more easily select the algorithm that meets the

performance and error requirements of their particular applications.

We also seek an improved shadow map algorithm for real-time applications. The algorithm

should have similar performance and implementation complexity as existing algorithms but

have lower error. Reducing error is important not only for improving visual quality, but

also for increasing performance. Shadow map rendering does not usually involve expensive

shaders so the performance is often bandwidth limited. An algorithm with lower error can

meet a specific error bound with less shadow map resolution, and thus requires less storage

and bandwidth.

We show that a combination of a logarithmic and perspective parameterization can be

used to produce such an algorithm. In addition, we also show that such a parameterization

can be implemented on GPUs at low cost via incremental modifications that leverage existing

graphics hardware architectures. This leads us to our thesis statement.

1.5.1 Thesis statement

Logarithmic perspective shadow maps (LogPSMs) can produce significant error reductions

over existing shadow map algorithms for real-time applications. The logarithmic rasterization

required to support LogPSMs can be implemented with performance similar to linear rasteri-

zation through incremental modifications to current graphics hardware.

1.6 Overview of our approach

1.6.1 Scope

In this thesis we restrict our attention to hard shadows, though our methods may also be

useful for algorithms that use shadow maps to generate soft shadows. Because we target

real-time applications, we concentrate mainly on scene-independent algorithms that require
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only a small number of partitions (< 10). These algorithms are the simplest and have the

best performance in practice. Specifically, this means that we do not consider algorithms

like adaptive shadow maps, although these can produce lower error than scene-independent

algorithms. Recently proposed algorithms based on adaptive shadow maps report near real-

time performance for simple scenes (Lefohn et al., 2007). But it is difficult to say when

graphics hardware will be fast enough that adaptive algorithms can be competitive with the

simpler, scene-independent algorithms used on today’s GPUs. LogPSMs aim to provide the

same performance as the simpler algorithms, but with lower error.

To establish the benefit of LogPSMs, we first perform an analysis of shadow map error. We

seek to minimize the magnitude of the undersampling error that causes jagged shadow edges,

commonly referred to as aliasing. Aliasing error can be factored into two parts: perspective

aliasing which is due to the tapered shape of the view frustum, and projective aliasing which is

related to the orientation of the surfaces in the scene relative to the light and eye. Minimizing

projective aliasing error requires a scene-dependent analysis and the use of adaptive techniques

that perform a large number of render passes. Therefore we seek only to minimize perspective

aliasing error. In practice, this means that we may not completely eliminate aliasing in most

images, but we seek to reduce it significantly while maintaining good performance.

In our analysis we focus primarily on bounding the worst case error. The actual error in

the image depends on the position of the shadows inside the view frustum. In an interactive

application where the view is unconstrained and the scene geometry is arbitrary, the shadows

may appear in any part of the view frustum. Therefore we measure the perspective aliasing

error over the entire frustum using the L∞ norm, or max norm. Using this metric we can

give scene-independent guarantees on the worst case error.

1.6.2 Logarithmic perspective parameterization

We formulate the LogPSM parameterization as a perspective projection, followed by a log-

arithmic transformation that is applied in only one direction. Suppose that the light space

y-axis is aligned with the eye’s view direction, and that shadow map coordinates are repre-
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sented by s and t. A perspective projection along y has the following form:

sp =
a0x+ a1

y
tp =

a2y + a3

y
, (1.1)

where a0 . . . a3 are constants. This projection can produce a good spacing distribution in s,

but the distribution in t can be improved by using a logarithmic parameterization along y:

tl = b0 log(b1y), (1.2)

where b0 and b1 are constants. Our parameterization transforms Equation 1.1 into Equa-

tion 1.2 by applying an affine transformation (a scale and translation) to tp obtain 1/(b1y),

applying the log to get log(1/(b1y)), and scaling by −b0 to get b0 log(b1y). Our logarithmic

perspective parameterization has the following form:

tlp = c0 log(c1tp + c2), (1.3)

where c0, c1, and c2 are constants. The main advantage of this formulation is that the

perspective portion of the parameterization can be handled by the standard graphics pipeline

without any modifications. Most importantly we do not have to clip curved primitives. To

support the logarithmic transformation, only the rasterizer needs to be modified. (We include

triangle setup, which also needs to be modified, as part of the rasterizer.)

Another advantage of our formulation is that it is easy to extend existing perspective warp-

ing algorithms to use the logarithmic perspective parameterization. In this thesis we extend

three different algorithms to use our parameterization: a single shadow map algorithm similar

to light-space perspective shadow maps (LiSPSMs) (Wimmer et al., 2004), a z-partitioning

algorithm similar to parallel-split perspective shadow maps (PSSMs) (Zhang et al., 2006a),

and a face partitioning algorithm similar to perspective-warped cubemaps (Kozlov, 2004).

Each of these algorithms has different performance and error tradeoffs. Like all single shadow

map algorithms, our single shadow map LogPSM produces the lowest error when the light

direction is perpendicular to the view direction, but reverts to a uniform parameterization as
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the light direction approaches the view direction. Adding z-partitioning reduces the error for

the bad light configurations but at an added cost. The face partitioning algorithm is slightly

more involved, but produces the lowest error over all light directions. In addition, it can be

used for both directional lights and omnidirectional point lights for almost the same cost.

We demonstrate the benefit of these algorithms for several environments of varying com-

plexity using a fragment program to simulate logarithmic rasterization. Our unoptimized

simulator is quite slow but still interactive. With hardware acceleration, however, the Log-

PSM algorithms would have performance similar to the existing algorithms upon which they

are based.

1.6.3 Logarithmic rasterization

In order to implement logarithmic rasterization on GPUs, we propose several incremental

modifications to current hardware architectures. We need to modify the rasterizer, polygon

offset, and depth compression. The rasterizer in current high performance GPUs use edge

equations to compute which pixels are covered by a primitive. It generally operates in two

stages, a coarse stage that identifies potentially covered tiles of pixels, and a fine stage that

computes coverage at each pixel. We extend the rasterizer to handle the edge equations for

the curved edges generated by the logarithmic transformation. Our logarithmic rasterizer can

utilize the same tile traversal and culling optimizations used by current rasterizers. Polygon

offset, typically used to avoid self-shadowing artifacts, and depth compression also need to be

modified.

Modern GPUs are typically the result of many years of careful optimization and tuning.

Our modifications leverage existing hardware designs, which makes them easier to implement

at low cost. Rasterizing with curved edge equations requires a modest amount of additional

computational power, but can provide significant bandwidth savings. Thus these modifi-

cations align well with current hardware trends, where computational power continues to

outpace memory bandwidth (Dally & Poulton, 1998).
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1.7 Summary of results

The primary results of this dissertation can be divided into three main categories. First,

we have a number of results related to the theoretical analysis of the error of shadow map

methods. Second, we use this analysis to arrive at several algorithmic results which can be

used to improve existing methods as well as LogPSMs. Third, we propose modifications to

existing hardware to support LogPSM rendering. We will discuss each of these categories in

more detail.

1.7.1 Theoretical analysis of shadow map algorithms

We analyze several shadow map algorithms both to better understand their behavior and to

determine the benefits of LogPSMs over existing methods. Specific results include:

• Equations for error from both point and directional light sources in general

position: Previous error analysis has focused primarily on overhead directional light

sources. We derive equations that can be used to analyze the error for both types of

light sources in any position.

• Storage factor error metric: We introduce a new metric called the storage factor for

characterizing the error of a shadow map algorithm. The storage factor is the size of the

shadow map in texels relative to the size of the image in pixels that would be required

to remove perspective aliasing. This metric enables us to minimize the maximum error

while taking into account the error in both shadow map directions simultaneously.

• Error bounds: Using the aliasing error equations we compute error bounds for different

shadow map algorithms in terms of the storage factor.

We use this error analysis to compare a range of algorithms and to answer such questions

as “When is a combination of face partitioning and z-partitioning better than z-partitioning

alone?”
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1.7.2 Algorithmic results

The analysis of shadow map aliasing leads to several improvements for shadow map algo-

rithms.

• LogPSM algorithms: We show how to extend existing shadow map algorithms to

incorporate the logarithmic perspective parameterization. We also demonstrate the

benefit of these algorithms using a fragment program to simulate logarithmic rasteriza-

tion.

• Resolution redistribution: Common practice is to use a square texture for the

shadow map. However, the error in each shadow map direction is not necessarily the

same. For partitioning methods, the error may also vary from one partition to the next.

We minimize the overall error by redistributing the shadow map resolution according

to the error. For example, a partition with high error will get more resolution than

one with less error. The resolution is also divided between the shadow map directions

in proportion to the error in each direction. We also provide a parameter to bias the

resolution distribution toward one direction or the other to give the user more control.

• Improved parameter selection for warping algorithms: When a warping algo-

rithm is used with a single shadow map covering the entire view frustum, the strength

of the warping must be reduced as the light direction approaches the view direction in

order to avoid excessive error. In some configurations, the current warping methods can

produce error exceeding that of a standard shadow map. Using our error analysis we

formulate an improved parameter selection function that keeps the error below that of

a standard shadow map in the higher error configurations while maintaining low error

for other light positions.

• Pseudo-near plane algorithms: When a surface is too close to the viewer it will

be clipped by the near plane. To avoid this problem, developers typically choose a

conservative value for the near plane distance that is as small as possible. However,

this has an adverse effect on shadow map error, which depends on the far to near

plane distance ratio. To minimize the error and to avoid wasting shadow map samples
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on unoccupied regions of the view frustum, the near plane distance should ideally be

set as large as possible, i.e. at the depth of the closest visible surface. We reconcile

these two opposing criteria for setting the near plane distance by using a pseudo-near

plane. When we compute the z-partition locations and/or warping parameters, we

minimize the maximum error in only the part of the view frustum beyond the pseudo-

near plane rather than the entire view frustum. Regions between the actual near plane

and the pseudo-near plane are still covered by the shadow map but are permitted to

have higher error. The pseudo-near plane gives the user a way to provide the shadow

map optimization with rough information about parts of the view frustum that are more

likely to contain geometry.

• Approximation of LogPSM with z-partitioning: On hardware without logarith-

mic rasterization, the closest we can come to the same error as a LogPSM is with

z-partitioning. Using the error bounds that we derive, we can determine how many

z-partitions are necessary to meet a user specified threshold on the error relative to

that of a LogPSM.

We also discuss several practical considerations and aspects of implementing shadow map

algorithms that are useful for developers.

1.7.3 Hardware support for LogPSMs

The logarithmic rasterization required by LogPSMs is not supported on current graphics

hardware. Because the logarithmic perspective parameterization is formulated in such a

way that it fits easily into the graphics pipeline, graphics hardware can be easily extended

to support logarithmic rasterization through incremental enhancements to existing graphics

hardware. These enhancements include:

• Rasterization on a nonuniform grid: Rendering with the curved edge equations

produced by logarithmic rasterization can be thought of as rasterizing linear edges

on a regular grid with nonuniform spacing in one direction. We extend rasterization

on a uniform grid to handle nonuniform spacing. Using this approach, logarithmic
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rasterization can exploit the same optimizations used by linear rasterization. It also

provides water-tight rasterization of a mesh without holes or double-hitting of pixels.

• Generalized polygon offset: Polygon offset is used with shadow maps to avoid self-

shadowing artifacts. The polygon offset on current GPUs is constant over a primitive.

For logarithmic rasterization we need an offset that varies linearly in one direction. This

can be implemented with a small change to constants of the equation used to compute

depth at each pixel.

• A new depth compression scheme: Depth compression is important for reducing

memory bandwidth requirements. Existing depth compression techniques that exploit

the planarity of primitives perform poorly with logarithmic rasterization because planar

primitives become curved. We present a depth compression scheme that is better suited

for logarithmic rasterization, which, in practice, also works well for linear rasterization.

These enhancements enable logarithmic rasterization at fill rates comparable to the linear ras-

terization on current GPUs. Thus LogPSMs should have performance characteristics similar

to the existing algorithms upon which they are based.

1.8 Thesis organization

In Chapter 2 we review the start-of-the-art in shadow map algorithms. We discuss the various

kinds of shadow map artifacts and the methods that have been proposed to handle them. We

also discuss alternative shadow generation algorithms. Chapter 3 introduces the equations

for quantifying aliasing error at a point in both 2D and 3D. In Chapter 4 we discuss how to

minimize the aliasing error using minimal shadow map resolution by computing an appropriate

parameterization. The parameterization we derive is not suitable for practical use, but serves

as a baseline for evaluating simpler parameterizations. We also discuss global error metrics

over the entire view frustum and all light directions. Chapter 5 contains the analysis of the

various warping and partitioning schemes and their combinations. We study the behavior of

these algorithms for different warping parameter values, view frustum parameters, and light

positions. We present the details of the LogPSM parameterization and show empirical results.

22



In addition, we propose several improvements to existing algorithms. In Chapter 6 we discuss

various implementation details for existing shadow map algorithms and LogPSMs. Chapter 7

describes the hardware enhancements required to support logarithmic rasterization. Finally,

we conclude in Chapter 8 with a brief summary and indicate directions for future work.
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CHAPTER 2

Handling shadow map artifacts

Much of the work related to shadow maps addresses the artifacts to which they are prone.

Depth-based shadow maps were originally proposed by Williams in 1978 (Williams, 1978).

They were popular initially for offline rendering. Segal et al. (1992) later showed how shadow

maps could be implemented on standard graphics hardware using an extension of texture

mapping, which led to their adoption for interactive applications. The increased demand for

visual realism in interactive applications has spurred a flurry of activity in recent years to

address shadow map artifacts.

In this chapter we present a classification of shadow map artifacts. We then present the

various existing algorithms according to the artifacts that are designed to handle.

2.1 A classification of shadow map artifacts

Shadow maps use discrete samples in both time and space to compute the visibility of the light

on a surface. As a sampling method, it is prone to sampling artifacts. Figure 2.1 illustrates

how some of these artifacts can arise when using discrete samples to represent an arbitrary

1D signal. Aliasing is introduced by the initial sampling of the signal when the sampling

frequency is too low to capture high frequency details, causing the high frequencies to show

up as lower frequency artifacts. Other errors can occur when resampling a sampled signal.

Conceptually, resampling reconstructs a piecewise continuous signal from the samples, from

which is drawn additional discrete samples. Both the filter used for reconstruction and the

resampling frequency can affect the output.

For hard edged shadows, light visibility can be thought of as a piecewise continuous signal

whose value is binary, either 0 or 1. Shadow maps do not encode the “visibility signal”
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Figure 2.1: Resampling a sampled signal. A 1D signal (a) is initially sampled by
multiplying by a train of uniformly spaced delta functions (b) with frequency ω0, which is
lower than the Nyquist limit for this signal. This produces a discrete, sampled signal (c)
which is an aliased version of the original. The sampled signal itself is now band-limited
to ω0/2. The signal reconstructed from the sampled signal using an ideal band pass filter is
shown with the dashed line. Using nearest-neighbor sampling in effect reconstructs the sampled
signal by convolving with a box function that is one sample wide (e). This reconstructed
signal (f) is then resampled at different frequencies. A resampling frequency of ω0/2 (g) is
too low and causes aliasing in the resampled signal (j). Resampling at a frequency of ω0 (h)
results in a perfect resampling of the sampled signal. Resampling with a frequency of 4ω0 (i)
introduces high frequency reconstruction errors (k) not present in the original sampled signal.
(l) Resampling a perfect reconstruction of the sampled signal at a high resampling rate.

directly for each surface. Instead, the binary samples resulting from the shadow map depth

comparisons are used to reconstruct the visibility signal. In analogy to the 1D signal example

in Figure 2.1, the rendering of the shadow map can be thought of as the initial sampling and

the shadow map queries generated during image rendering can be thought of as a resampling.

Ultimately, shadow map errors result from using discrete values to represent continuous

ones. The following is a list of the different ways in which these errors are manifested:

Initial sampling aliasing: When rendering the shadow map, aliasing errors can occur if

geometric features have higher spatial frequency than can be captured by the finite

resolution of the shadow map, e.g. the needles of a pine tree in a shadow map covering
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several square miles. Aliasing leads to strange patterns in the shadows or missing

features. The silhouette edges that give rise to hard-edge shadows contain infinitely

high frequencies that can never be sampled sufficiently to permit perfect reconstruction.

Resampling errors: When rendering the image, different parts of the shadow map are

resampled at different frequencies. For instance, parts of the scene closer to the viewer

are resampled at a higher frequency than parts of the scene the are far away. When the

resampling frequency does not match the initial sampling frequency, two types of errors

can occur:

• Aliasing: High frequency features in the shadow map alias when the resampling

frequency is lower than the initial sampling frequency.

• Reconstruction errors: During resampling, the nearest sample in the shadow

map is used to estimate the visibility at each queried location. If the resampling

frequency is higher than the initial sampling frequency, a number of consecutive

queries will use the same shadow map sample resulting in the familiar stair-cased

edge artifacts at shadow boundaries (see Figure 1.6). These artifacts are commonly

referred to as aliasing, though strictly speaking they may be more accurately de-

scribed as reconstruction errors (Glassner, 1995, pg. 344). True aliasing occurs

when high frequency energy appears in lower frequencies due to undersampling.

These artifacts occur in areas where the resampling oversamples the shadow map

(see Figure 2.1). Nearest-neighbor resampling in effect convolves the shadow map

with a box function, introducing high frequency edges not originally represented

in the shadow map. A perfect reconstruction would produce a smoother, lower

frequency signal. This would still not give the correct result but is often preferred

to the jagged reconstruction errors because the smooth signal resembles a penum-

bra. The smoothing of the signal is actually an initial sampling error instead of a

reconstruction error. The sampled signal in the shadow map can be faithfully re-

sampled even with nearest-neighbor reconstruction if the initial sampling frequency

matches the resampling frequency.

26



Estimation errors: Because the shadow map is a discrete representation, the visibility for

points between samples must be estimated from neighboring samples. When this es-

timate is inaccurate, errors can occur. Estimation errors show up as self-shadowing

artifacts.

Depth quantization errors: Shadow maps store depth with some finite precision. Even

when the shadow map query coincides exactly with a sample, depth quantization can

lead to self-shadowing artifacts.

Temporal artifacts: If any of the preceding artifacts are present in an image, they can lead

to temporal artifacts when they are not consistent from frame to frame. For instance,

aliasing can cause shadows to flicker. The jagged shadow edges from reconstruction

errors can appear to “crawl” when the light or objects in the scene move slowly. For

quick movements, the effect is less noticeable.

Some of these errors are showed in Figures 2.2 and 2.3. The aim of most of the research in

shadow maps since the original algorithm was proposed has been to address these errors. We

will now discuss methods proposed to handle initial sampling, resampling, and estimation

errors.

2.2 Handling initial sampling errors

Initial sampling aliasing is a problem for all sampling techniques. Some initial sampling

aliasing artifacts can be mitigated by “prefiltering” the geometry through use of level-of-detail

techniques which simplify the geometry and remove some of the high-frequency content. For

example, if we have a plane with small holes casting shadows in the distance, some holes may

be sampled and some may not, leading to temporal artifacts. If the holes are small enough,

they would not be visible in the distance anyway, so the object may be simplified with a

solid plane to avoid the artifacts. In general, however, the only way to accurately capture

high-frequency geometric information is to increase the resolution of the shadow map.

Another approach to handling initial sampling aliasing is to use stochastic sampling (Cook,

1986). Stochastic sampling diffuses low-frequency aliasing patterns into high-frequency noise.
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1

Figure 2.3: “Crawling” artifacts. (Top) In this sequence of images the camera position
changes slightly. The jagged reconstruction errors at the shadow boundaries shift even though
the light and geometry is static. This is because the shadow map extents are fit to the camera.
(Bottom) With sufficiently high resolution, no crawling artifacts are visible.

To the human observer, noise is often less objectionable. Akenine-Möller et al. (2007) propose

a hardware architecture for rasterizing triangles stochastically in time. This can be used to

reduce temporal aliasing by rendering motion-blurred shadows.

2.3 Handling resampling errors

Standard texture mapping handles resampling errors with filtering techniques. Resampling

aliasing can be handled efficiently by prefiltering the texture map using a technique such as

mip-maps (Williams, 1983) or summed area tables (Crow, 1984). Reconstruction errors are

typically handled with bilinear or higher order interpolation between sample values. However,

these methods cannot be used directly with shadow maps. Shadow maps do not record

visibility directly because it is not the same for each surface. Instead, the depth comparison
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is used to compute the visibility signal independently on each surface. Because the depth

comparison is nonlinear, the standard methods do not work properly. For example, consider

an area of the image distant from the viewer which contains high frequency shadows. Over

the extents of the scene that fall within a single pixel there may be alternating shadowed

and unshadowed regions. Proper filtering over pixel’s extents would give a light visibility

somewhere between 0 and 1. If we stored the visibility signal on the surface, mip-mapping

would give us this result. Instead we store depth. Mip-mapping depth values and then

performing the depth comparison can only return 0 or 1. The same is true if we bilinearly

interpolate depth values and then perform the depth comparison.

Resampling errors can be handled by using better reconstruction methods and by using

a better initial sampling of the scene. In general, these techniques are orthogonal and can

often be used in combination.

2.3.1 Improved reconstruction methods

Percentage closer filtering (PCF) (Reeves et al., 1987) first computes the visibility of samples

in the neighborhood of a shadow map query and then filters the results. PCF can handle

both resampling aliasing and reconstruction errors by choosing the appropriate size for the

resampling neighborhood. To handle resampling aliasing, the neighborhood ideally should

correspond to the projection onto the scene of the pixel that generated the query. For aliased

regions, this neighborhood will cover a large number of shadow map samples. For regions

where reconstruction errors occur, however, the neighborhood will be smaller than that of a

single shadow map texel. Filtering with such a small neighborhood would offer no improve-

ment. Thus the size of the neighborhood should be clamped to some minimum extent larger

than 1 texel. Using a large neighborhood blurs the jagged shadow edges. This effect resembles

the penumbra of a soft shadow and can be visually pleasing. It is not a true penumbra, how-

ever, because its width does not change with distance from the occluder. The more samples

that are used for PCF, the smoother the edges become. Hardware implementations of PCF

on current GPUs use bilinear interpolation instead of stochastic sampling. This produces a

smooth transition from shadowed to unshadowed regions but preserves some blockiness along
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the shadow edge. Figure 2.2 shows both the native hardware PCF and stochastic PCF applied

using a fragment program.

Silhouette shadow maps (Sen et al., 2003) reconstruct a hard edge by augmenting the

shadow map with extra information about the location of the silhouette edges of shadow

casters. The silhouette edges are rendered into the shadow map storing at each texel the

coordinates of a single point along the edge that falls within the texel. The point coordinates

in the neighborhood of a shadow map query are used to reconstruct the silhouette edges.

Depth information is used to determine whether the query lies on the shadowed or unshadowed

side of the reconstructed edges. Only one point is stored per texel, so errors can occur when

multiple edges fall within the same texel.

Variance shadow maps (Donnelly & Lauritzen, 2006) store an approximation of the distri-

bution of depth values within a texel. These values can be filtered with standard techniques.

The technique computes the exact result of performing PCF for a planar occluder parallel

to a planar receiver. For other configurations, it gives only an upper bound on the fraction

of the filtered region that is unoccluded, but it often works well in practice. However, when

the variance in depth is high, the technique can cause light to leak into the shadows causing

strange artifacts.

Convolution shadow maps (Annen et al., 2007) store an approximation of the visibility

function instead of depth values. The visibility function generated by the depth comparison

can be represented as a Heaviside step function. This function is expanded in terms of the

Fourier basis functions. The advantage of this representation is that the nonlinear depth

comparison can be “linearized” so that the shadow map can be prefiltered. A convolution

shadow map is constructed by using a normal shadow map to generate a number of basis

images. Prefiltering can be applied to visibility function simply by prefiltering the basis

images. One disadvantage of this algorithm is that a large number of basis images may be

required to obtain hard edges.

Scherzer et al. (2007) reuse the shadowing information from previous frames to provide

both temporal smoothing and more accurate reconstruction of shadow edges. A history buffer

stores for each pixel in the image a weighted average of the shadow map query results for
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previous frames, as well as the eye space depth of the fragment of the last frame. The history

buffer is updated each frame using a weighted combination of the buffer’s previous value

and the query results computed from the shadow map for the current frame. The updated

history buffer is then used to render the shadows. The weights for query results are computed

independently for each pixel. Each fragment is transformed back into the eye space of the

previous frame and its depth is compared to that stored in the history buffer. If the depth is

not within a user specified tolerance, then the previous history is assigned a weight of 0 and

the query result for the current frame is assigned a weight of 1. This is necessary to properly

handle disocclusions. Otherwise, a weight is computed using the confidence of the current

query result. The confidence is based on the distance of the query location from the center of

the corresponding texel in the shadow map. Query locations far from the center are assigned

low confidence as the results of these queries is less likely to be accurate and should have

less influence on the history buffer. Jittering the shadow map every frame ensures that over

time, high confidence query results appear, which causes the history buffer to converge to the

exact shadow edge. However, the algorithm may not converge for moving shadows caused by

moving objects or a moving light source, leading to overly smoothed or smeared shadows.

2.3.2 Improved sampling methods

Another way to handle reconstruction errors without increasing the number of samples is to

use a better sample distribution in rendering the shadow map. The more closely the initial

sampling matches the shadow map query distribution, the lower the reconstruction errors. A

better sampling can be obtained by fitting the shadow map to relevant portions of the scene,

warping the shadow map, partitioning, and irregular sampling. We will now discuss these

approaches.

2.3.2.1 Shadow map fitting algorithms

Fitting a shadow map consists of choosing the orientation and spatial extents of the light

frustum used to render the shadow map so as to maximize the use of its spatial and depth

resolution. Brabec et al. (2002) observe that the depth range and spatial extent of the
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shadow map can be restricted to the visible portions of the scene. To make the best use of

depth resolution they set the near and far planes of the light frustum to tightly enclose the

visible objects. The depths of occluders between the light and near plane are clamped to 0,

thus ensuring that their occlusion is represented in the shadow map while maximizing the

available depth resolution for the visible regions. To obtain bounds on the visible portions

of the scene, they render the scene from the light’s point of view using projective texturing

to mark the regions that lie inside the view frustum. The results are read back and used to

compute the tightest fitting bounding box for the visible regions. Readbacks from the GPU

tend to be expensive. A cheaper, though less accurate way of obtaining tight bounds on the

visible region is to compute the intersection of view frustum, the scene bounding box, and for

lights like a spotlight that have restricted extents, the light bounds.

As Martin and Tan (2004) observe, the tightest bounding rectangle of the visible regions

does not always change continuously from one frame to the next. If the shadow map resolution

is sufficiently high to eliminate aliasing and reconstruction errors, then a discontinuous shift in

the orientation of the bounding rectangle may not produce noticeable changes in the shadows.

Due to limitations on shadow map resolution, however, there are usually some errors visible

that will “pop” when the change is not continuous. Martin and Tan propose that the shadow

map be oriented with respect to the view frustum by aligning one of the axes of the shadow

map with the view direction of the camera. This produces a consistent orientation for the

reconstruction error artifacts as the light and camera move. One problem with this approach

is that the jagged edges on shadows from static objects with a static light can still appear

to “crawl” when the camera moves slowly. The shadows should remain fixed. This problem

can be avoided by aligning the orientation of the shadow map with one of the world axes and

shifting the extents of the shadow map from frame to frame in increments corresponding to

world space width of a shadow map texel. Jagged edges will still crawl for moving objects

or when the light moves, however. For static scenes with a moving camera it may also be

desirable to render a shadow map that is larger than necessary so that it may be reused over

multiple frames.
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2.3.2.2 Warping algorithms

Brabec et al. (2002) used a nonlinear warping for omnidirectional light sources but not

for the purpose of correcting shadow map errors. The use of shadow map warping to reduce

reconstruction errors was first introduced with perspective shadow maps (PSMs) (Stamminger

& Drettakis, 2002). A PSM is rendered in the post-perspective space of the camera. In post-

perspective space, the view frustum is warped to a cube causing objects close the viewer to

become larger and distant objects to become smaller. Rendering the shadow map in this

space can increase the sample density near the viewer. The exact warping depends on the

way the shadow map projection matrix is setup, and this is not explicitly specified in the

original paper. The author’s webpage provides a “recipe” for PSMs that suggests using a

perspective projection centered on the center of the view frustum cube. Using a projection

with a different image plane angle will produce a different warping (see Appendix A). Working

in the post-perspective space of the camera is complicated by the fact that the perspective

transformation maps some finite points to the infinity plane and vice versa. This means

that directional lights can become point lights and vice versa, the depth order along a line

can become inverted, and occluders behind the camera wrap around the plane at infinity.

To avoid the latter problem, PSMs are rendered in the post-perspective space of a virtual

camera whose eye position is shifted back far enough that all objects that occlude the visible

portions of the scene lie in front of it. Kozlov (2004) proposes a formulation for the shadow

map’s projection matrix that can wrap around the plane at infinity so as to avoid the virtual

camera shift.

Light-space perspective shadow maps (LiSPSMs) (Wimmer et al., 2004) are a generaliza-

tion of PSMs that avoid the difficulties of post-perspective space. LiSPSMs warp the shadow

map using a perspective projection that is oriented perpendicular to the light direction and

aligned with the view direction. For point light sources, the light’s projection matrix is ap-

plied first such that the light position is moved to infinity and becomes a directional light.

Then the perspective warping is applied. The strength of the warping is controlled by the

near plane distance of perspective projection n′. For an overhead directional light, setting n′

equal to the near plane distance of the view frustum is equivalent to using a PSM. Setting
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n′ =∞ produces a standard shadow map. LiSPSMs use a warping parameter that minimizes

the maximum aliasing error along the shadow map dimension that is aligned with eye’s view

direction.

Trapezoidal shadow maps (TSMs) (Martin & Tan, 2004) are very similar to LiSPSMs

except that they use a use a different formulation for the warping parameter. They compute

the warping parameter using on a heuristic that maps a user-specified fraction of the view

frustum (e.g. 0.5) to a user-specified fraction of the shadow map (e.g. 0.8). In this way, more

shadow map samples can be devoted to regions near the viewer.

One drawback of all these methods is that the warping is not effective for all light posi-

tions. For directional light sources, the warping is generally most effective for light positions

perpendicular to the view direction. As the angle γ between the light direction and the view

direction approaches 0, a PSM reverts back to a standard shadow map. LiSPSMs also revert

back to a standard shadow map to avoid excessive error by ramping off the warping as a

function of γ.

Chong and Gortler (2004) use a general projective transform to establish a one-to-one

correspondence between pixels in the image and the texels in the shadow map, but only for

a single plane within the scene. They use a small number of shadow maps to cover a few

prominent, planar surfaces. This can be viewed as a type of partitioning.

Chong and Gortler (2006) also propose a framework for computing an optimal perspective

projection for rendering a scene. They note that the perspective warping of previous methods

is equivalent to rendering a standard shadow map with an image plane that is not orthogonal

to the light’s view direction. Their method optimizes the orientation of the image plane

according to an error metric computed for pixels near shadow boundaries. These pixels are

found by rendering a low resolution image of the scene with shadows, reading it back from

the GPU, and analyzing it on the CPU. (For more on the relationship between the warping

parameter and the orientation of the image plane see Appendix A.)
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2.3.2.3 Partitioning algorithms

Partitioning algorithms use multiple shadow maps to control the shadow map sample dis-

tribution. Several algorithms use an approach which we call z-partitioning, where the view

frustum is partitioned along its z-axis (view direction) into subfrusta and a separate shadow

map is rendered for each one. Plural sunlight buffers (Tadamura et al., 1999) use this ap-

proach for offline rendering of shadows from the sun with penumbrae. They partition the

view frustum at intervals that increase geometrically with distance from the eye. Cascaded

shadow maps (Engel, 2007) use a similar technique but are intended for use with real-time

applications. Parallel-split shadow maps (PSSMs) (Zhang et al., 2006a) partition the view

frustum using the average of the split locations generated by using geometric and uniform

intervals.

Kozlov (2004) uses a cube map in the post-perspective space of the camera as a way

to improve PSMs. A separate shadow map is fit to the back faces of the unit cube of the

post-perspective view frustum. In world space this is equivalent to fitting perspective-warped

shadow maps to side faces and standard shadow maps to end faces. We call this face par-

titioning. The benefit of this approach over single shadow map warping is that the warping

can be used for all light positions.

z-partitioning and face partition are based solely on the view frustum and do not take into

account the positions and orientations of surfaces in the scene. Adaptive partitioning schemes

can take these factors into account in order to refine the shadow map where the resolution is

needed most, and therefore tend to produce higher quality shadows.

Adaptive shadow maps (ASMs) (Fernando et al., 2001) represent the shadow map as a

quadtree of fixed resolution tiles. The quadtree is progressively refined near shadow edges.

Each iteration, the algorithm renders the scene, encoding polygon IDs in the color channels

using a special mipmap texture to encode the projected area of a shadow map texel in the

alpha channel. The resulting image is read back and analyzed using a cost metric to determine

where the shadow map should be refined.

Resolution matched shadow maps (RMSMs) (Lefohn et al., 2007) also use a quadtree

to store shadow map tiles. Unlike ASMs, however, the quadtree is not iteratively refined at
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shadow edges. Instead, an entire quadtree with sufficient resolution at every pixel is produced

every frame. The view from the eye is first rendered using a fragment program that encodes

for each pixel a request for a tile of sufficient resolution, referred to as a page. The page

requests for adjacent pixels on the same surface are likely to be the same. RMSMs leverage

this coherence to efficiently remove duplicate page requests before reading them back to the

CPU. Spatially adjacent pages are then grouped together by binning them into superpages.

The algorithm renders the superpages and copies out the relevant pages into the quadtree.

RMSMs have several advantages over adaptive shadow maps. RMSMs perform the scene

analysis on the GPU which greatly reduces the size of the readback. ASMs reduce this cost

by rendering a lower resolution image, but this can cause some shadow edges to be missed.

The RMSM algorithm is also more suitable for dynamic scenes. The quality of ASMs may be

quite low when the light moves because the quadtree is invalidated every frame and a large

number of frames are required before the quality converges. By not refining at shadow edges,

RMSMs trade-off faster generation of high quality shadows at the cost of increased memory

requirements.

Queried virtual shadow maps (QVSMs) (Giegl & Wimmer, 2007b) are another adaptive

partitioning scheme based on a quadtree refinement. QVSMs first render the shadows using a

single shadow map tile at the root of the quadtree. The shadow map is refined into 4 subtiles

and the shadows are updated each subtile. Occlusion queries are used to count the number

of pixels that change their value. Subtiles are further refined until the number of changed

pixels drops below a user specified threshold. QVSMs also use warping (LiSPSM) to achieve

better quality. To avoid the high cost of repeated scene renderings, QVSMs use a variation

of the deferred shading, using an eye-space depth buffer to compute the positions of shadow

map queries. While this approach can offer greater flexibility, it also means that tiles cannot

be cached and reused over multiple frames.

Fitted virtual shadow maps (FVSMs) (Giegl & Wimmer, 2007a) use a noniterative quadtree

partitioning similar to RMSMs, except that the quadtree is more coarse grained. RMSMs

use a tile size of 32 × 32. FVSM uses tiles up to the size of the largest allocatable texture

(4096× 4096). The scene analysis is carried out on the CPU using the information encoded
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in an image that is read back from the GPU. The benefit of doing the analysis on the CPU

is that more sophisticated algorithms can be used to determine where to refine the quadtree.

The encoded image is rendered at low resolution (256 × 256) to minimize the cost of the

readback, but this can cause important information to be missed, leading to errors. Like

QVSMs, FVSMs use deferred shading for the shadows.

Tiled shadow maps (Arvo, 2004) are an adaptive scheme that partition a single, fixed-

resolution shadow map into tiles of different sizes guided by an error measurement heuristic.

This results in simpler data structures, but can cause some tiles to be overly compressed or

elongated along one or both directions. Chong (2003) presents an algorithm for rendering 1D

shadow maps in a 2D scene that uses a greedy partitioning scheme combined with optimized

warping to minimize an error metric. Unfortunately, this approach is more difficult to gener-

alize to 3D. Forsyth (2006) proposes a partitioning technique that clusters objects requiring

similar sampling densities into multiple light frusta using a greedy algorithm. However, this

method is based only on distance from the light source and therefore does not handle aliasing

due to surface orientation.

2.3.2.4 Irregular sampling

The sample positions for the irregular z-buffer algorithm (Johnson et al., 2004; Aila & Laine,

2004b) can be specified explicitly. By choosing the positions of shadow map queries as the

sample locations for the shadow map, reconstruction errors can be completely eliminated.

The main drawback of this approach is that it uses irregular data structures that require

fundamental changes to graphics hardware in order to be implemented efficiently (Johnson

et al., 2005).

2.3.3 Object-space hybrids

Pure object-space shadow algorithms, such as shadow volumes, do not have resampling prob-

lems. Some hybrid algorithms combine object-space techniques with shadow maps to reduce

aliasing. McCool et al. (McCool, 2000) find edges in a shadow map and use these to construct

shadow volumes. The shadow map’s image-based representation implicitly performs occluder
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Figure 2.4: Self-shadowing artifacts. (Left) The shaded region represents the discretized
occlusion representation created by sampling the scene when rendering the shadow map. For
points within a band around the boundary of the occlusion representation (dashed-line) the
visibility of the light cannot be computed accurately. The width of this band depends on the
slope of the surface. (Right) Self-shadowing can also be caused by the quantization that in-
evitably results from representing depth values with finite precision. The dotted lines represent
discrete depth values.

fusion. This eliminates redundant shadow volumes from being created inside other shadow

volumes and reduces the fill-rate consumption. Chan and Durand (Chan & Durand, 2004)

use a shadow map to restrict shadow volume rendering to regions near shadow edges. Both

of these methods produce artifact-free edges, but may miss small features if the shadow map

resolution is inadequate. Govindaraju et al. (2003) use shadow polygons for the areas of the

image with the worst artifacts and a shadow map everywhere else.

2.4 Handling estimation errors (self-shadowing artifacts)

A standard shadow map stores a sampled representation of the occluding surfaces in the scene.

Within a certain distance of the occlusion representation, the results of shadow map queries

cannot be computed reliably due to discretization caused by sampling and quantization of
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depth values (see Figure 2.4). This leads false self-shadowing. Williams (1978) adds a constant

bias to depth values that in effect pushes the occlusion representation far enough away from

the actual occluder surfaces so as to avoid self-shadowing artifacts. Choosing a bias that is too

small fails to correct the problem, while choosing a bias that is too large causes a noticeable

shift in the position of the shadows and can cause light to “leak” around silhouette edges.

The amount of bias required is proportional to the depth slope of the polygon, so a single

constant bias may not be suitable for a general scene. Instead, the bias should be computed

taking the depth slope into account.

Woo (1992) stores the midpoint of the first and second depth layers to keep the occlusion

representation away from the surfaces in the scene. Near silhouette edges where the occlusion

representation approaches the surfaces, errors may occur. Wang and Molnar (1994) store the

depth of the second surface in the shadow map. This technique is based on the observation

that the second surface of closed objects is back facing. Even if the results are inaccurate

for queries on the second surface, the lighting equations will shade the surface as shadowed

anyway. This method also has problems near silhouette edges. Dual layer shadow maps

(Weiskopf & Ertl, 2003) generalize these approaches and compute a bias based on a function

of the first and second front-facing depth layers.

Gradient shadow maps (Schüler, 2006) bilinearly interpolate depth values adjacent to a

query location prior to performing the depth comparison. This can produce a more accurate

occlusion representation. Interpolation produces an occlusion surface across depth disconti-

nuities, but the errors that this causes are no worse than those incurred by discretization.

A fuzzy depth test that makes a transition from 0 to 1 over a range near the boundary of

the occlusion representation can make self-shadowing artifacts less noticeable when they do

occur. The algorithm uses the gradient to compute a bias. Grant (1992) computes a more

accurate occlusion representation by storing the plane equations of the occluder surface in-

stead of depth. This approach has problems for texels covered by multiple primitives because

only one plane equation is stored per pixel. Hourcade and Nicolas (1985) store polygon IDs

instead of depth. Polygon IDs are not subject to the same imprecisions as depth comparisons.

Errors can still occur when a texel is covered by more than one polygon because only one ID
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is stored per texel. Using a single ID for an entire object moves the self-shadowing problems

from polygon to object boundaries, but then care must be taken to decompose objects into

convex pieces with different IDs in order to get true self-shadowing.

Brabec et al. (2002) address the self-shadowing caused by quantization of depth values by

tightly fitting the available depth range to the visible portions of the scene. They also remap

the depth values to obtain a uniform distribution within the depth range. This is necessary

because the perspective projection used to render a shadow map for a point light distributes

depth values proportional to 1/z. This causes most of the depth values to be bunched up

close to the near plane and causes large quantization errors elsewhere. Remapping the depth

values ensures that the maximum quantization error is minimized and that the quantization

error is distributed uniformly over the entire depth range.

2.5 Summary

Though many methods have been proposed to address shadow map errors, no one technique

can currently provide high-quality hard-edge shadows in complex, dynamic scenes for real-

time applications. An effective shadow map algorithm will likely require a combination of

several of the techniques presented in this chapter. Fortunately, many of these techniques

are complimentary. For instance, the bias used to handle self-shadowing artifacts can be

smaller when using sample redistribution techniques like warping and partitioning because

the spacing between the samples tends to be smaller. However, combining filtering with these

techniques can be more complicated. With warping techniques, the size and even the shape

of the filter kernel needs to vary over the shadow map. For partitioning schemes, care must

be taken to overlap the partitions slightly so as to get the correct filtered results near the

partition boundaries.

Logarithmic perspective shadow maps are a step toward higher shadow map quality for

real-time applications. With proper hardware support they can have the same good perfor-

mance characteristics of existing warping algorithms, but provide higher quality.
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CHAPTER 3

Shadow map aliasing error

In this chapter we describe how to quantify the aliasing error that gives rise to jagged shadow

boundaries. We will use the equations we derive here in subsequent chapters to analyze

various shadow map parameterizations. We first derive the equations for aliasing error in

a 2D environment. To our knowledge, ours is the first analysis that quantifies perspective

aliasing error for point lights in general position. The analysis also extends to directional

lights. The analysis in previous work is typically performed for a directional light for a few

specific configurations (Stamminger & Drettakis, 2002; Wimmer et al., 2004; Lloyd et al.,

2006). A notable exception (Zhang et al., 2006b) computes perspective aliasing error for

directional lights over a range of angles, but only along a single line through the view frustum.

We also extend our 2D analysis to 3D.
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Figure 3.1: Computing aliasing error. (Left) Sample locations corresponding to shadow
texels and image pixels. Aliasing error can be quantified as the ratio of the spacing of these
shadow map and image sample locations. (Right) The sample spacing is related to the deriva-
tives of the function that maps a point t ∈ [0, 1] in the shadow map to pl on the light’s image
plane πl, projects pl through the light to p on a planar surface π, and then through the eye
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3.1 Quantifying aliasing error

Aliasing error is caused by a mismatch between the sample locations used to render the shadow

map from the viewpoint of the light and the image from the viewpoint of the eye. Ideally,

the eye samples would correspond exactly with the light samples, as with raytracing or the

irregular z-buffer. Shadow map warping methods instead seek to match sampling rates. For

our derivations we choose to work with the spacing between samples since it is geometrically

more intuitive. Figure 3.1 shows the sample spacing corresponding to eye and light samples

at various locations in a simple 2D scene. Aliasing error occurs when the light sample spacing

is greater than the eye sample spacing. We define j ∈ [0, 1] and t ∈ [0, 1] as normalized

image and shadow map coordinates, respectively. We choose j and t as coordinates due to

the fact that we are essentially looking at the side view of a 3D frustum. We will also use

the coordinates i and s later when we look at the equations for 3D. The size of a pixel in

the image is 1/rj where rj is the image resolution. The size of a texel in the shadow map is

likewise 1/rt. The aliasing error can be quantified as:

m =
rj
rt

dj
dt
. (3.1)

Aliasing occurs when m > 1.
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(i, j) normalized eye image plane coordinates
(s, t) normalized shadow map coordinates
(u, v) normalized light image plane coordinates
ri × rj image resolution
rs × rt shadow map resolution
θ frustum field of view
φ angle between beam and image plane normal
ψ angle between beam and surface normal
β angle between image plane and surface normals
F,G shadow map parameterization and its inverse
δ spacing distribution function
δ̃e perspective factor

dl, de distance from light and eye to a point in the scene
nl, ne distance from light and eye to respective image plane

n̂ surface normal
L,E lines through the light and eye

πl,πe light and eye image planes
π a planar surface in the scene
l, e light and eye positions

pl0,pe0 origins of coordinate systems on the light and eye image planes
pl,pe points on the light and eye image planes

(∆v)l, (∆v)e sample spacing in v on light image plane
wl, we widths of light and eye beams
w′l, w

′
e widths of light and eye beams projected on a surface

w⊥ẑe
e width of the eye beam measured perpendicular to ẑe

Wl,We widths of the light and eye image planes
x̂l, ŷl, ẑl light space coordinate vectors
x̂e, ŷe, ẑe eye space coordinate vectors

Table 3.1: Symbols used in this chapter.

3.2 Deriving the aliasing error equation

To derive dj/dt in Equation 3.1 we compute the function j(t) from Figure 3.1 by tracing

a sample from the shadow map to its corresponding location in the image. We begin by

introducing our notation. A point p and a vector ~v are expressed as column vectors in affine

coordinates with the last entry equal to 1 for a point and 0 for a vector. Simpler formulas

might be obtained by using full homogeneous coordinates, but we are interested in an intuitive

definition of aliasing in terms of distances and angles, which are easier to compute with affine

coordinates. v̂ is a normalized vector. A plane (or line in 2D) π is a row vector (n̂>,−D),
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where D is the distance to the plane (line) from the origin along the normal n̂. The dot

product πp gives the signed distance of p from the plane and πv̂ gives n̂ · v̂ = cos θ, where

θ is the angle between n̂ and v̂.

A function G, the inverse of the shadow map parameterization F , maps a point t in the

shadow map to the normalized light plane coordinate v ∈ [0, 1]. The point pl on the light

image plane πl corresponding to v is given by:

pl = pl0 + vWlŷl (3.2)

where Wl is the width of the portion of πl covered by the shadow map. Projecting pl onto a

planar surface π along the line L through the light position l yields:

p = pl −
πpl

π(pl − l)
(pl − l). (3.3)

This point is then projected onto the eye image plane πe along the line E through the eye

position e:

pe = p− πep
πe(e− p)

(e− p). (3.4)

The eye image plane is parameterized by j in the same way as the light image plane is

parameterized by v. The j coordinate can be computed from pe as:

j =
ŷe · (pe − pe0)

We
=

ŷ>e (pe − pe0)
We

(3.5)
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To compute dj/dt we use the chain rule:

dj
dt

=
∂j

∂pe

∂pe
∂p

∂p
∂pl

∂pl
∂v

dv
dt

(3.6)

∂j

∂pe
=

ŷ>e
We

(3.7)

∂pe
∂p

= I +
πep

πe(e− p)
I− πee

(πe(ce − p))2
((e− p)πe) (3.8)

∂p
∂pl

= I− πpl
π(pl − l)

I +
πl

(π(pl − l))2
((pl − l)π) (3.9)

∂pl
∂v

= Wlŷl (3.10)

dv
dt

=
dG
dt
. (3.11)

Equations 3.7 – 3.10 are expressions for Jacobian matrices. I is the identity matrix. The

derivative dj/dt can be reduced to a simpler form. We first multiply together Equations

3.9–3.11:

∂p
∂t

=
∂p
∂pl

∂pl
∂v

∂v

∂t

= Wl
dG
dt

πl
π(pl − l)

(
ŷl −

πŷl
π(pl − l)

(pl − l)
)
. (3.12)

The πl and π(pl − l) terms are proportional to dl and nl, respectively, so their ratio can

be replaced with dl/nl. The angle between ẑl and n̂ is βl. Therefore πŷl = − sinβl. We

substitute (pl − l) = ||pl − l||v̂l, where −v̂ is the light direction vector. The ||pl − l|| terms

cancel leaving only v̂. We then replace πv̂ with − cosψl:

∂p
∂t

= Wl
dG
dt

dl
nl

(
ŷl −

sinβl
cosψl

v̂l)
)
. (3.13)

We then expand ŷl an v̂l in terms of n̂ and b̂:

ŷl = cosβlb̂− sinβln̂ (3.14)

v̂l = − sinψlb̂− cosψln̂. (3.15)
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Substituting these equations into Equation 3.13 and utilizing the fact that ψl−βl = φl yields:

dp
dt

= Wl
dG
dt

dl
nl

(cosψl cosβl + sinψl sinβl)
cosψl

b̂

= Wl
dG
dt

dl
nl

cos(ψl − βl)
cosψl

b̂

= Wl
dG
dt

dl
nl

cosφl
cosψl

b̂. (3.16)

Now we multiply together Equations 3.7, 3.8, and 3.16 and substitute πee = ne, πe(e−p) =

de, and (e− p) = ||e− p||v̂e:

dj
dt

=
Wl

We

ne
nl

dl
de

(
ŷ>e b̂− (ŷ>e v̂e)(πeb̂)

πev̂e

)
. (3.17)

Substituting ŷ>e b̂ = cosβe, ŷ>e v̂e = sinφe, πeb̂ = − sinβe, and πev̂e = cosφe and utilizing

the fact that βe − φe = ψe yields the simplified version of dj/dt:

dj
dt

=
Wl

We

ne
nl

dl
de

(cosφe cosβe + sinφe sinβe)
cosφe

=
Wl

We

ne
nl

dl
de

cos(βe − φe)
cosφe

=
Wl

We

ne
nl

dl
de

cosψe
cosφe

. (3.18)

Plugging dj/dt into Equation 3.1 yields the final expression for aliasing error:

m =
rj
rt

dG
dt

Wl

We

ne
nl

dl
de

cosφl
cosφe

cosψe
cosψl

. (3.19)

3.2.1 Intuitive derivation.

Some basic intuition for the terms in Equation 3.19 can be obtained by considering an equiv-

alent but less rigorous derivation of m from the relative sample spacing on a surface in the

scene (see Figure 3.1). A beam from the light through a region on the light image plane

corresponding to a single shadow map texel projects onto the surface with width w′l. A beam

from the eye through a pixel also projects onto the surface with width w′e. The aliasing error
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on the surface is given by the ratio of the projected beam widths:

m =
w′l
w′e
. (3.20)

By similar triangles, the width of a pixel on πe at a distance of ne from the eye becomes w⊥ẑe
e

at a distance of de, where the beam intersects the surface:

w⊥ẑe
e =

We

rj

de
ne
. (3.21)

For a narrow beam, we can assume that the sides of the beam are essentially parallel. From

Figure 3.2 we see that multiplying w⊥ẑe
e by cosφe gives the actual width of the beam we and

dividing by cosψe gives the width of its projection w′e:

we = w⊥ẑe
e cosφe (3.22)

w′e =
we

cosψe
=
We

rj

de
ne

cosφe
cosψe

. (3.23)

Similarly, a shadow map texel maps to a segment of width (Wl/rt)(dG/dt) on the light image

plane producing a projected light beam width on the surface of:

w′l =
Wl

rt

dG
dt

dl
nl

cosφl
cosψl

. (3.24)

Plugging Equations 3.23 and 3.24 into Equation 3.20 yields Equation 3.19.

3.2.2 Directional lights.

As a point light at l moves away towards infinity along a direction l̂, it becomes a directional

light. Equation 3.3 converges to:

p = pl −
πpl
πl̂

l̂. (3.25)
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Equation 3.9 becomes:

∂p
∂pl

= I− 1

πl̂
l̂π. (3.26)

In Equation 3.19, the nl/dl term converges to 1 and the cosφl term becomes constant.

The formulation for m in Equation 3.19 is similar to those used for aliasing error in

previous work (Stamminger & Drettakis, 2002; Wimmer et al., 2004; Zhang et al., 2006b).

However, our formulation is more general because it is valid for both point and directional

lights and it takes into account the variation of eye and light beam widths as a function of φe

and φl, respectively.

3.3 Factoring aliasing error

Our goal is to compute tight bounds on the aliasing error m, which we can then use to

formulate a low-error shadow map parameterization F . For convenience we split m into two

main parts:

m =
(∆v)l
(∆v)e

(3.27)

(∆v)l =
1
rt

dv
dt

=
1
rt
δl

(∆v)e =
1
rj

dv
dj

=
1
rj
δe

δl =
dG
dt

=
(

dF
dv

)−1

(3.28)

δe = δ̃e
cosψl
cosψe

(3.29)

δ̃e =
We

Wl

nl
ne

de
dl

cosφe
cosφl

. (3.30)

Intuitively, (∆v)l and (∆v)e are the spacing in v between the corresponding light and eye

samples (see Figure 3.1). This factorization is convenient because (∆v)e encapsulates all of the

geometric terms fixed by the light, camera, and scene configuration, while (∆v)l encapsulates

the two factors that can be manipulated to control aliasing – the parameterization, which

determines the aliasing distribution, and the shadow map resolution that controls the overall
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scale. For a point light, the orientation of the light image plane also affects the distribution of

light samples and thus the aliasing error. We make a distinction between the light image plane

and the near plane of the light frustum used to render the shadow map. The near plane is

typically chosen based on other considerations, such as properly enclosing the scene geometry

in the light frustum. Because one light image plane is related to another by a projective

transformation that can be absorbed into the parameterization (see Appendix A), we can use

a “standard” light image plane that is convenient for calculation and another image plane

for actually rendering the shadow map. The spacing functions depend on a resolution factor

and the spacing distribution functions, δl and δe, which are simply the derivatives dv/dt and

dv/dj, respectively. In the next chapter we will derive the parameterization F that produces a

δl that approximates δe in order to minimize aliasing error. For this reason we have expressed

δl in terms of F instead of its inverse.

Following Stamminger and Drettakis (2002), δe can be factored into two components – a

perspective factor, δ̃e, and a projection factor, cosψe/ cosψl. The perspective factor depends

only on the position of the light and eye relative to a point. Over all points in the view frustum,

the perspective factor is bounded and varies relatively smoothly. The projection factor, on the

other hand, depends on the orientation of the surfaces in the scene, is potentially unbounded,

and depending on the particular scene, can vary dramatically in complex ways. In order to

obtain a simple parameterization amenable to real-time rendering without incurring the cost

of a complex, scene-dependent analysis, many algorithms ignore the projective factor and

address only perspective aliasing error m̃:

m̃ =
rj
rt

δl

δ̃e
=
we
wl
. (3.31)

m̃ can be thought of as measuring the ratio of the widths of the light and eye beam at a

point. Alternatively, m̃ can be thought of as the aliasing error on a surface with a normal

that is located half-way between the eye and light directions v̂e and −v̂l. For such a surface

the projection factor is 1. We can use this fact to visualize perspective aliasing error in the

image. Throughout this thesis we project the grid lines from the shadow map onto the scene

in order to better visualize aliasing error. What we see, though, is a combination of projection
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and perspective aliasing. By moving around a properly oriented planar “probe” surface in the

scene we can visualize perspective aliasing directly for different regions of the view frustum.

3.4 Aliasing error in 3D

So far we have only analyzed aliasing error in 2D. In 3D we parameterize the eye’s image plane,

the light’s image plane, and the shadow map by the 2D coordinates i = (i, j)>, u = (u, v)>,

and s = (s, t)>, respectively. Each coordinate is in the range [0, 1]. Equation 3.2 becomes:

pl = pl0 + uWlxx̂l + vWlyŷl. (3.32)

Equations 3.3 and 3.4 remain the same. We replace We in Equation 3.5 with the direction-

specific Wey and add the equation to compute i:

i =
x̂>e (pe − pe0)

Wex
. (3.33)

The light image plane parameterization is now a 2D function u = G(s). With these changes

the projection of a shadow map texel in the image is now described by a 2×2 aliasing matrix

Ma:

Ma =



ri 0

0 rj


 ∂i
∂s




1
rs

0

0 1
rt


 (3.34)

∂i
∂s

=



∂i
∂s

∂i
∂t

∂j
∂s

∂j
∂t


 =

∂i
∂pe

∂pe
∂p

∂p
∂pl

∂pl
∂u

∂u
∂s

(3.35)

∂i
∂pe

=




x̂>e
Wex

ŷ>e
Wey


 (3.36)

∂pl
∂u

=
[
Wlxx̂l Wlyŷl

]
(3.37)

∂u
∂s

=
∂G
∂s

. (3.38)
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To obtain a scalar measure of aliasing error it is necessary to define a metric h that is a

function of the elements of Ma. Some possibilities for h include a matrix norm, such as

a p-norm or the Frobenius norm, or the determinant, which approximates the area of the

projected shadow map texel in the image.

In 3D the spacing distribution functions δl and δe are 2× 2 Jacobian matrices:

δl =
∂G
∂s

=
(
∂F
∂u

)−1

(3.39)

δe =
(
∂i
∂u

)−1

. (3.40)

The factorization of δe into perspective and projective factors is not as straightforward as

in 2D. Several possibilities exist. Based on the intuition of the 2D perspective error, one

approach might be to compute the differential cross sections Xe and Xl of the light and eye

beam at a point and define perspective aliasing error as the ratio m̃ = h(Xl)/h(Xe). Another

possibility would be to take m̃ = h(Ma), where the normal of the planar surface used to

compute Ma is oriented half-way between v̂e and −v̂l. But unlike the 2D case, these two

approaches are not guaranteed to be equivalent.

3.5 Summary

In this chapter we have shown how to compute aliasing error in both 2D and 3D for both

point and directional light sources. In the next chapter we will use these equations to derive

tight bounds on aliasing error in order to produce a parameterization that minimizes the

error. In Chapter 5, these bounds are used to analyze various parameterizations.
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CHAPTER 4

Minimizing aliasing error

In Chapter 3 we discussed how to quantify aliasing error. In this chapter we derive tight

bounds on the aliasing error that can be used to derive a parameterization that minimizes

the error. We first discuss how to compute an ideal parameterization in 2D that completely

eliminates aliasing error. Unfortunately, this is only of theoretical interest due to its com-

plexity. Departing instead from tight bounds on perspective aliasing error, we compute a

spacing distribution δb that produces a near-optimal parameterization. This naturally leads

to a partitioning of the shadow map into regions corresponding to the view frustum faces.

We extend the analysis to 3D and analyze the parameterizations derived from δb. These

parameterizations are also too complicated for practical use, but they provide a good baseline

for evaluating simpler parameterizations in the next chapter.

4.1 The ideal parameterization

Aliasing error m can be controlled by choosing the appropriate sample spacing distribution δl

on the light image plane, and using sufficient shadow map resolution rt. Ideally, we would like

to choose δl and rt such that m = 1 for all visible points of a particular view. This condition

ensures that aliasing is eliminated while using minimal shadow map resolution (recall that

we are only handling resampling aliasing. More shadow map resolution may be needed to

handle intial sampling aliasing). From Equation 3.27 we can see that m = 1 implies that

δl/rt = δe/rj , which in turn implies:

1
rt

dF
dv

=
1
rj

dj
dv
. (4.1)



1

image

shadow maplight

light 
image
plane

Figure 4.1: Ideal parameterization. The partitions corresponding to continuously vis-
ible regions that face the light are color coded. The locations corresponding to eye samples
are nonuniform on the light image plane. The ideal shadow map parameterization for each
partition takes these samples back to their corresponding locations in the image.

This equation is satisfied when F (v) = j(v) and rt = rj . Thus the ideal parameterization

is the function j(v) that maps the location of a shadow map query on the light image plane

back to the pixel in the image from which it originated. The ideal shadow map resolution is

the same as that of image.

For a scene consisting of a single plane, j(v) consists of a single projective transformation.

The presence of multiple or non-convex surfaces requires partitioning to ensure that j(v) is

invertible. The partitions are defined by regions that are continuous, visible to the eye, and

face towards the light (see Figure 4.1). Visible regions not facing the light are guaranteed to

lie in shadow and need not be considered. The resolution of the shadow map needs be no

larger than that of the image since each texel is mapped to a pixel in the image. In fact, the

ideal parameterization gives us the same sample positions as used by the irregular z-buffer.

The ideal parameterization is a generalization of the algorithm of Chong and Gortler (2004).

They establish the one-to-one correspondence between shadow map texels and image pixels on

a few important planes in the scene. For a scene consisting entirely of polygonal surfaces, the

ideal parameterization would essentially be the result of applying this algorithm to the visible

54



portions of each polygon. The ideal parameterization is more general, however, because it

can also be applied to higher-order surfaces.

Unfortunately, the ideal parameterization is completely impractical. The number of par-

titions required for a complex scene can be very large. Computing the regions corresponding

to the partitions would be expensive. In addition, the warping functions for an arbitrary

surface could be quite complex or may not be expressible in closed form.

4.2 Minimizing perspective aliasing error

The potentially large number of partitions required by the ideal parameterization arises from

trying to match δl(v)/rt to δe/rj over all points that map to v on the light image. A simpler

approach might be to match δl to the lower bound on δe over these points:

δe,min(v) = min
p∈P(v)

(δe(p)). (4.2)

P(v) is defined as the set of intersection points of the surfaces inside the view frustum with

the line L(v) that passes through both the light and the point pl(v) on the light image plane.

Because δe,min depends on scene geometry it can be arbitrarily complex. A lower bound on

the perspective factor δ̃e yields a simpler, scene-independent function:

δb = min
p∈{L(v)∩V}

(δ̃e(p)). (4.3)

V is the set of all points inside the view frustum. Using δb we can define a tight upper bound

on the perspective aliasing error M̃ expressed as a function of v:

M̃ (v) = max
p∈{L(v)∩V}

(m̃(p)) =
rj
rt

δl(v)
δb(v)

. (4.4)

For a given δl(v), the lowest resolution required to guarantee that there is no perspective

aliasing in the view frustum, i.e. maxv(M̃ ) = 1, is rt = Rtrj , where Rt is given by:

Rt = max
v

(
δl(v)
δb(v)

)
. (4.5)
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We call Rt the critical resolution factor. Rt is smallest when δl is proportional to δb, in which

case Rt = ρb, where ρb is the constant of proportionality. In general, we cannot choose δl

to be exactly equal to δb because a constant scale factor is typically introduced when the

parameterization which generates δl is normalized to the range [0, 1].

Given an arbitrary spacing distribution function δ(v) the parameterization F that pro-

duces δl ∼ δ(v) can be computed as follows:

(
dF
dv

)−1

∼ δ(v)

dF
dv

=
1

ρδ(v)
(4.6)

F (v) =
1
ρ

∫ v

0

1
δ(ν)

dν. (4.7)

Normalizing F to the range [0, 1] gives the constant of proportionality.

ρ =
∫ 1

0

1
δ(v)

dv. (4.8)

This process will work with any valid δ(v) that is positive over the domain of integration.

4.2.1 Computing δb

The points inside the view frustum along a line L(v) can be parameterized as shown in Figure

4.2a:

p(µ) = l + µv̂l(v). (4.9)
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end faces

side
faces

(a) (b)

exit faces

entry
face

p(µ0)

p(µ1)

p(µ)

v̂l

L(v)

l

e

l

Figure 4.2: Face partitioning. (a) Along a line segment L through the view frustum, a
tight lower bound on the perspective factor δ̃e attains its minimum value at the faces where
L either enters or exits the frustum, depending on the position of the light. (b) Based on
this observation we partition the shadow map, using a separate shadow map for the region
corresponding to each face. For this light position, we partition using the exit faces. By using
parameterizations that minimize the error along these faces, we can minimize the error over
the whole frustum.

From Equation 3.30 we compute δ̃e(µ):

δ̃e(µ) = c
de(µ)
dl(µ)

cosφe(µ) (4.10)

de(µ) = −ẑe · (p(µ)− e) = −µ(ẑe · v̂l)− ẑe · (l− e) (4.11)

dl(µ) = −ẑl · (p(µ)− l) = −µ(ẑl · v̂l) (4.12)

cosφe(µ) =
de(µ)

||p(µ)− e||

c =
We

Wl

nl
ne

1
cosφl

.

The value of c is constant on L. Note that since δl is also constant along the line, max(m̃) for

any parameterization occurs at the same location as min(δ̃e). We want to find minµ(δ̃e(µ))

on the interval µ ∈ [µ0, µ1] inside the view frustum. To simplify the analysis we assume a

symmetric view frustum and bound δ̃e(µ) from below by replacing the cosφe term with its
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smallest possible value, cos θ:

B(µ) = c
de(µ)
dl(µ)

cos θ ≤ δ̃e(µ). (4.13)

δ̃e can be at most 1/ cos θ times larger than B, i.e. when cos θe = 1. For typical fields of view,

B is a fairly tight lower bound. For example, with θ = 30◦, 1/ cos θ is only about 1.15.

We take the derivative of B(µ) to determine where it reaches its minimum value:

dB
dµ

= (c cos θ)
ẑe · (l− e)(ẑl · v̂l)

(µ(ẑl · v̂l))2 . (4.14)

The first term and the denominator of the second term are strictly positive, and the (ẑl · v̂)

term in the numerator is strictly negative. Therefore, the sign of dB/dµ depends only on

ẑe · (l− e). Since ẑe · (l− e) is constant for all µ, the location of the minimum B value, µBmin,

must be at one of the boundaries of the interval:

µBmin = argmin
µ∈[µ0,µ1]

(B(µ)) =





µ0 ẑe · (l− e) > 0,

µ1 ẑe · (l− e) < 0.
(4.15)

When ẑe · (l− e) = 0, B is constant over the entire interval. For directional lights, the (l− e)

term is replaced by the light direction l̂. Equation 4.15 shows that min(B) occurs on the

faces where L(v) either enters or exits the view frustum, depending on the position of the

light relative to the eye. When µBmin is on a side face, B(µBmin) is the actual minimum for δ̃e.

This can be seen from the fact that along a side face cosφe = cos θ so δ̃e = B. Because B is

never greater than δ̃e, this means that the actual minimum of δ̃e over the interval cannot be

smaller than the minimum B and must therefore be the same. Based on this observation we

choose min(B) for δb:

δb = min(B) = B(µBmin)

=
We

Wl

nl
ne

de
dl

cos θ
cosφl

, (4.16)

where the de and dl values are for points along the appropriate faces. At light positions where

58



µBmin transitions from entry to exit faces or vice versa, min(B) is the same on both sets of

faces. Thus the abrupt transitions in µBmin as the light and camera move around do not cause

temporal discontinuities in δb.

Choosing δl(v)/rt = ρbδb(v)/rj we can guarantee that M̃ (v) = 1 for all v. Intuitively,

this can be thought of as choosing δl and rt such that no light beam is wider than the lower

bound on the width of any eye beam that it intersects.

4.3 Computing a parameterization in 3D

One approach to computing a parameterization in 3D is to simply follow the same integration

formulation that we used for 2D. We start from a δ(u, v) that is a 2×2 matrix that describes

the sample spacing distribution on the light image plane, invert δ , and integrate to get F(u, v).

However, this approach has several complications. First, it is not clear how to compute a

δ that is lower bound on δ̃e. The main problem is that δ now contains information about

orientation, whereas in 2D it was simply a scalar. δ must also be invertible. Second, even if

we come up with an invertible δ , there is no guarantee that we can integrate it to obtain F.

The rows of ∂F/∂u are the gradients of multivariable functions s(u, v) and t(u, v). Thus the

mixed partials of its row entries must be equivalent, i.e.:

∂2s

∂u∂v
=

∂2s

∂v∂u
and

∂2t

∂u∂v
=

∂2t

∂v∂u
. (4.17)

If this property does not hold for a particular δ −1(u, v) then it cannot be the gradient of a

function F(u, v). Finally, even if δ −1(u, v) is integrable, it is not guaranteed to be one-to-one

over the entire domain covered by the shadow map.

Our approach is to treat the parameterizations s and t as essentially two instances of

the simpler 2D problem. We choose scalar functions δb,s and δb,t derived from Equation 4.16

and integrate their multiplicative inverses w.r.t. u and v, respectively, to obtain s and t.

We choose our coordinate system on each face as shown in Figure 4.3. For the Wl term we

use the width of the parameterized region in the appropriate direction and for cosφl we use

cosφlx or cosφly, the angles between ẑl and the projection of v̂l in the XZ or Y Z planes,
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respectively. To obtain a scalar for We and cos θ, we assume that the fields of view are the

same in both directions. If they are not, we can always choose conservative bounds, i.e.

We = min(Wex,Wey) and θ = min(θx, θy). To simplify the parameterization we also choose

the light image plane to coincide with the face, thus eliminating the dl/nl term. We will now

discuss how we compute δb,s and δb,t for each type of face and then derive the corresponding

parameterizations. If we assume a symmetric view frustum we can use the following equation

to expand We when necessary:

We = 2ne tan θ. (4.18)

1

0
ŷ

1v : 0

y0 y(v) y1

ẑ

ne

fe

v

u
φly

φey

ẑ

ŷ

x̂

e

l

l z

ly

1

0

θ
ne

ŷ

ẑ

−ẑe

y0 y(v) y1

v

u

ẑ

ŷ

x̂

φly

l

lz

ly
e

Figure 4.3: Frustum face coordinate systems. For each row a side view appears on the
left and a view from above the face on the right. (Top row) End face. The far face is shown
here. The coordinate axes are aligned with the eye space coordinate axes. The origin is at the
center of the face. (Bottom row) Side face. The y axis is aligned with the center line of the
face with the z axis aligned with the face normal. The origin is at the eye.
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Figure 4.4: δb on an end face. This graph shows δend
b,t for the light at ly = 0 and lz =

σ(y1 − y0). From dark to light, σ = 0.1, 0.2, 0.5, 1,∞. The cos θ term has been factored out.

4.3.1 δb for end faces of the view frustum

We will first look at δend
b,t . On the near face de = ne, and on the far face de = fe. The

width of the v domain in y is the same as the width of the face Wly = (Wede)/ne so we can

parameterize positions on the face as:

y(v) = (y1 − y0)v + y0

y0 = −We

2
de
ne
, y1 =

We

2
de
ne
.

cosφly in terms of v is:

cosφly(v) =
lz√

(y(v)− ly)2 + l2z
. (4.19)

Plugging these equations into Equation 4.16 we get:

δend
b,t (v) =

cos θ
cosφly(v)

. (4.20)

δend
b,s is the same as δend

b,t except that quantities in y and v are exchanged for the corresponding

quantities in x and u.

Figure 4.4 shows how δend
b,t on the far face changes with the light position. The cosφly term

is responsible for the variation in the shape of the function. Close to the face, δend
b,t resembles

an absolute value function with a rounded tip. As lz → ∞, cosφly converges to a constant
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and the spacing becomes uniform. Moving the light in y simply translates the function along

the v-axis.

4.3.2 δb for side faces of the view frustum

The end points of the side face are related to ne and fe:

y0 =
ne

cos θ
, y1 =

fe
cos θ

.

On a side face, de is constant in x but increases with y. By similar triangles, the de/ne term

in δb can be expressed as:

de
ne

=
y

y0
. (4.21)

A side face does not cover the entire (u, v) domain. The extents of the face in x are:

x0(y) = −We

2
y

y0
, x1(y) =

We

2
y

y0
. (4.22)

The width of the domain in x is the width of the face at y1, Wlx = (x1(y1) − x0(y1)). The

width in y, Wly, is (y1 − y0). We parameterize positions on the face as:

x(u) = (x1(y1)− x0(y1))u+ x0(y1) (4.23)

y(v) = (y1 − y0)v + y0 (4.24)

Putting all these equations together yields:

δside
b,s (u, v) =

y(v)
y1

cos θ
cosφlx(u)

(4.25)

=
ne + (fe − ne)v

fe

cos θ
cosφlx(u)

(4.26)

δside
b,t (v) =

We

(y1 − y0)
y(v)
y0

cos θ
cosφly(v)

(4.27)

=
(
v +

ne
fe − ne

)
2 tan θ cos2 θ

cosφly(v)
. (4.28)
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Figure 4.5: δb for s on a side face. This graph shows δsideb,s with the light centered over
the face.
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Figure 4.6: δb for t on a side face. These graphs show δsideb,t for the light at ly =
κ(y1 − y0) and lz = σ(y1 − y0). From left to right, κ = −0.5, 0.5, 1. From dark to light,
σ = 0.1, 0.2, 0.5, 1,∞. The frustum parameters are θ = 45◦, ne = 1, and fe = 1000.

δside
b,s is a function of both u and v, so this is not strictly another instance of the 2D parameteri-

zation problem because the ∂s/∂v element of ∂F/∂u is nonzero. It is trivial to show, however,

that when s = δside
b,s (u, v), the mixed partials are equal. The parameterizations s(u, v) and

t(v) are invertible, and thus one-to-one, because we can always find v using t−1(v), plug this

into s(u, v), and invert to find u.

Figure 4.5 shows the shape of δside
b,s for a light centered over the face. Note that δside

b,s is

essentially a linear ramp in y modulated by δend
b,t in x.

Figure 4.6 shows δside
b,t for the light at varying heights above the face. When the light is

close to the face, the spacing function is an undulating curve with dense sampling near the

light and the viewer. Translating the light in y produces a shifted and scaled version of the

function. As the light moves away toward infinity, the spacing function converges to a linear

ramp. Once again, it is the cosφly term that accounts for the variation in the shape of the
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spacing function when the light is close to the face. When a directional light changes position,

only the overall scale is affected.

4.3.3 δb parameterizations

If we let ζb be the indefinite integral of 1/δb, the parameterizations Fb and normalizing con-

stants ρb for the three varieties of δb can be computed as follows:

F end
b,t (v) =

1
ρend
b,t

ζend
b,t

∣∣∣
v

0
ρend
b,t = ζend

b,t

∣∣∣
1

0
(4.29)

F side
b,s (u, v) =

1
ρside
b,t (v)

ζside
b,s

∣∣∣
u

u0(v)
ρside
b,t (v) = ζside

b,t

∣∣∣
u1(v)

u0(v)
(4.30)

F side
b,t (v) =

1
ρside
b,t

ζside
b,t

∣∣∣
v

0
ρside
b,t = ζside

b,t

∣∣∣
1

0
(4.31)

ζend
b,t (v) = Cend

b,t lz sinh−1

(
y(v)− ly

lz

)
+ C (4.32)

ζside
b,s (u, v) = Cside

b,s

lz
y(v)

sinh−1

(
x(u)− lx

lz

)
+ C (4.33)

ζside
b,t (v) = −Cside

b,t

lz√
l2y + l2z

log


 2
y(v)


 ly(ly − y(v)) + l2z

lz
√
l2y + l2z

+
1

cosφly(v)






+ C. (4.34)

Cend
b,t =

1
(y1 − y0) cos θ

=
1

2de tan θ cos θ

Cside
b,s =

1
(x1(y1)− x0(y1)) cos θ

=
1

2fe tan θ cos θ

Cside
b,t =

y0

Wecos θ
=

1
2 tan θ cos2θ

Note that for F side
b,s we integrate over u ∈ [u0(v), u1(v)] corresponding to the part of the

domain covered by the face. u0(v) and u1(v) can be found by solving x(u) = x0(y(v)) and
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Figure 4.7: Visualization of light beams generated by δb parameterizations. (Left)
Uniform light beams from a point light source. (Middle and Right) Light beams distributed
according to δb for a light inside and outside the view frustum. The width of the beams
(measured perpendicular to the beam direction) matches that of the eye beams along the exit
faces.

x(u) = x1(y(v)) for u:

u0(v) =
y1 − y(v)

2y1
, u1(v) =

y1 + y(v)
2y1

. (4.35)

Figure 4.7 shows what the light beams would look like using Fb to parameterize the faces.

When the light is close to the face, less resolution is needed to cover the face because of the

cosφl factor.

4.4 Global error measures in 3D

We can compare parameterizations in 2D using the critical resolution factor R (Equation 4.5)

as a error metric. R is the maximum perspective aliasing error over the view frustum that

would occur if the image and shadow map resolution were the same. In 3D we combine the

critical resolution factors for s and t:

S = Rs ×Rt. (4.36)

We call S the storage factor because it represents the overall size in texels of a critical

resolution shadow map relative to the size of the image in pixels. The definition of R side
s must
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be modified as follows:

R side
s = max

(u,v)∈F

(
δl(u, v)
δside
b,s (u, v)

)
, (4.37)

where F is the set of points covered by the face. This is necessary because δside
b,s is a function

of both u and v. It is also useful to define measures of maximum perspective error over the

set of all possible light positions Ω:

R = max
Ω

R (4.38)

S = max
Ω

S . (4.39)

R and S can be evaluated simply by computing R and S for a light at infinity directly above

the face. For this light position the cosφl factor of δb is 1 over the entire face and R and S

are maximized.

4.4.1 Balancing error between shadow map partitions and directions

In general, the position of the light relative to a face differs between faces. This causes S to

also differ between faces. In order to minimize the maximum error over the entire frustum,

the available shadow map resolution should be distributed between the faces in proportion to

their maximum error. The fraction of the total number of texels T that should be allocated

to each partition Pi is σiT :

σi =
Si

Σk
j=1Sj

, (4.40)

where k is the number of partitions and Si is the storage factor of partition Pi. The texels

allotted to a given partition can then be divided between the s and t directions of its shadow

map in proportion to Rs and Rt in order to minimize the maximum error in either direction:

rs =

√
Rs
Rt
σT , rt =

√
Rt
Rs
σT . (4.41)
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Figure 4.8: Critical resolution factor for δb parameterizations. From left to right,
Rend
b,t , Rside

b,s , and Rside
b,t for the light at varying positions. The plots show lz = σ(y1−y0), where

from dark to light, σ = 0.1, 0.2, 0.5, 1,∞. The grayed out region indicates light positions over
the face. The frustum parameters are θ = 45◦, ne = 1, and fe = 1000. The cos θ term has
been factored out of Rend

b,t and Rside
b,s .

4.5 Maximum error of δb parameterizations

We can now compute the maximum error of each form of the δb parameterizations in terms

of the critical resolution factor R and the storage factor S . As noted earlier, Rb = ρb. Figure

4.8 shows Rb for the three varieties of δb. In general, Rb is smaller when the light is close to

the plane containing the face. It also falls off as the light moves to either side of the face.

The maximum critical resolution factors Rb are:

Rend
b,t =

1
cos θ

(4.42)

Rside
b,s =

1
cos θ

(4.43)

Rside
b,t =

y0 log(y1/y0)
We cos θ

=
log(fe/ne)

2 tan θ cos2 θ
, (4.44)

Multiplying together R for both the s and t directions (recall that δend
b,s = δend

b,t , so Rend
b,s = Rend

b,t )

we see that S is largest for frusta with high far to near plane distance ratios and either very

wide or narrow fields of view. Since the typical field of view falls somewhere in between, the

(fe/ne) ratio is the dominating factor. The critical resolution factors are at most O(1) for

an end face and O(log(fe/ne)) for a side face. Because these parameterizations are based on

tight bounds of perspective aliasing, they are nearly optimal. These error bounds represent

a baseline for the minimal maximum error.
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In the next chapter we will show how the LogPSM parameterization has worst case error

bounds that are identical to those of the near optimal δb parameterizations.
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CHAPTER 5

Analysis of shadow map algorithms

In this chapter we analyze a number of shadow map algorithms using the error metrics

developed in Chapter 4. This chapter consists of three major parts. First, we analyze param-

eterizations of the view frustum faces. Second, we extend this analysis to parameterizations

of the entire view frustum. Third, we compare the various algorithms. We consider four

different parameterizations:

• Uniform. Used by standard shadow maps.

• Perspective. Used by existing warping methods.

• Logarithmic. A parameterization suggested by several researchers as an improvement

over a perspective parameterization.

• Logarithmic+perspective. The parameterization upon which LogPSMs are based.

We look at the overall behavior of these parameterizations as well as their maximum error. We

show that the logarithmic+perspective parameterization produces worst-case maximum error

that is on the same order as that produced by the near optimal parameterizations derived

from tight bounds on perspective aliasing (Equations 4.42–4.44). We also examine the effects

of applying z-partitioning to the faces, and attempt to address shearing artifacts that can

arise with face partitioning. We also propose a new z-partitioning scheme.

We extend the analysis of face parameterization to the more complex case of parameter-

izing the entire frustum. Frustum parameterizations must converge to a uniform parameteri-

zation as the light direction approaches the view direction. We analyze the error over a range

of light directions to formulate improved algorithms for choosing the warping parameters.



We conclude the chapter by comparing the various algorithms. We present experimental

results and additional analysis on how to obtain low error shadow maps when a logarithmic

perspective parameterization is not available.
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5.1 Face parameterization

In Chapter 4 we saw that δb has 3 different forms depending on the face and the direction

along the face we are considering (Equations 4.20, 4.26, and 4.28). The perspective aliasing

error bounds on the frustum faces for an arbitrary parameterization as a function of position

on the light image plane can be computed by plugging these equations into Equation 4.4:

M̃ end
t (v) =

rj
rt

δl(v)
δend
b,t (v)

= M̃end
t (v)

rj
rt

cosφly(v)
cos θ

M̃end
t (v) = δl(v) (5.1)

M̃ side
s (u, v) =

ri
rs

δl(u, v)
δside
b,s (u, v)

= M̃side
s (u, v)

ri
rs

cosφlx(u)
cos θ

M̃side
s (u, v) =

δl(u, v)fe
ne + (fe − ne)v

(5.2)

M̃ side
t (v) =

rj
rt

δl(v)
δside
b,t (v)

= M̃side
t (v)

rj
rt

cosφly(v)
2 tan θ cos2 θ

M̃side
t (v) =

δl(v)
v + ne

fe−ne

(5.3)

We call M̃ the base distribution of the perspective aliasing error. For the perspective, log-

arithmic, and logarithmic perspective parameterizations we will drop the superscripts since

these parameterizations are applied only to side faces. The resolution and θ terms affect

the overall scale of the perspective aliasing error. For a directional light, the cosφl term is

constant and thus affects only the overall scale, but for a point light cosφl modulates the base

error distribution. Figure 5.1 shows the cosφl term for the light at varying heights above a

face. Separating out the base error distribution will simplify some of our analysis. It also

makes it easier to see the dependence of the error on ne and fe because only M̃ contains these

terms. We also define a base critical resolution R and base storage factor S in terms of M̃ :

R = max
v

(
M̃ (v)

)
(5.4)

S = RsRt. (5.5)

A summary of the various error metrics used in this thesis are found in Table 5.1.

5.1.1 Uniform parameterization.

A shadow map parameterization consists of functions for the s and t coordinates in the

shadow map as a function of u and v on the light image plane. The simplest shadow map
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m aliasing error
m̃ perspective aliasing error
M̃ maximum m̃ along a light beam inside the view frustum
M̃ base distribution of perspective aliasing error (M̃ without φ, θ, and resolution terms)
R critical resolution factor (maximum M̃ over view frustum in one direction)
R base critical resolution (R without φ and θ terms)
R maximum R over all light positions
S storage factor (combined maximum error over view frustum in both directions)
S base storage factor (S without φ and θ terms)
S maximum S over all light positions

Table 5.1: Summary of various error metrics.

Fb near optimal, error bound parameterization
Fun uniform parameterization
Fp perspective parameterization
Flog logarithmic parameterization
Flp logarithmic perspective parameterization
n′, f ′ near and far plane distances of the warping frustum
n̄′ warping parameter (normalized near plane distance of warping frustum)
η reparameterized warping parameter
γ angle between light and view directions

Table 5.2: Important symbols used in this chapter.
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Figure 5.1: cosφl factor. The cosφl(v) factor modulates the base error distribution M̃ .
For these graphs ly = (y0 + y1)/2 and lz = σ(y1 − y0), where from dark to light, the plots are
for σ = 0.1, 0.2, 0.5, 1,∞.
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parameterization is the uniform parameterization:

Fun(u, v) =



s(u, v)

t(v)


 =



u

v


 (5.6)

δun = 1 (5.7)

The critical resolution factors for the uniform parameterization can be computed from Equa-

tion 4.5. For example, on a side face we have:

R side
un,s = max

(
M̃ side
un,s(u, v)

)
= max

(
M̃side
un,s(u, v)

cosφlx(u)
cos θ

)
(5.8)

M̃side
un,s =

fe
ne + (fe − ne)v

. (5.9)

Figure 5.2 shows Rend
un and R side

un for various light positions. Note that each Run reaches its

maximum when the light position is over the face. That is because the cosφly factor reaches

its maximum for points where y(v) = ly. Comparing Figure 5.2 to Figure 4.8, we see that

when the light is not directly over the face, the shapes of the graphs are nearly identical, but

on the side face, the magnitudes of the plots differ significantly because M̃side
un,s and M̃side

un,t have

a maximum value of fe/ne over the face.

5.1.1.1 Maximum error

In Section 4.4 we introduced the error metric R , which is the maximum perspective aliasing

error over all points in the view frustum and over all light directions using a shadow map with

the same resolution as the image. Run can be computed by setting cosφl = 1 in Run. This

makes Rend
un,t constant. For Rside

un,s and Rside
un,t, the M̃side

un,s and M̃side
un,t terms have their maximum
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Figure 5.2: Critical resolution factor for uniform parameterization. From left to
right, Rend

un,t, R
side
un,s, and Rside

un,t for various light positions. For all graphs lz = σ(y1−y0), where
from dark to light, the plots are for σ = 0.1, 0.2, 0.5, 1,∞. The grayed out region indicates
light positions over the face. The frustum parameters are θ = 45◦, ne = 1, and fe = 1000.
The cos θ terms have been factored out of Rend

un,t and Rside
un,s.

at v = 0. Thus for maximum error with a uniform parameterization we get:

Rend
un,t =

1
cos θ

(5.10)

Rside
un,s =

fe
ne cos θ

(5.11)

Rside
un,t =

fe − ne
2ne tan θ cos2 θ

(5.12)

Sside
un = Rside

un,sR
side
un,t = (fe/ne)

((fe/ne)− 1)
2 tan θ cos3 θ

. (5.13)

The maximum critical resolution for the uniform parameterization is identical to that of F end
b .

For a side face, the maximum error in each direction is O(fe/ne) while the error combining

both directions is O((fe/ne)2).

5.1.2 Perspective parameterization.

The perspective parameterization places a trapezoidal warping frustum around the side face

as shown in Figure 5.3. The parameterization maps the warping frustum to the square shadow

map. The strength of the warping is controlled by n′, the near plane distance of the warping

frustum.

Figure 5.3 shows three different sets of coordinates that can be used for analyzing the

perspective parameterization. The normalized light plane coordinates (v) are convenient

because they are independent of the overall scale of the view frustum. n̄′ is the normalized
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face
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y0

v

n0 f 0

We Wlx
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−n̄00−n̄0

−a

Figure 5.3: Perspective warping. The perspective parameterization uses a second frustum
placed around a side face to warp the shadow map. The near plane distance of warping frustum
n′, controls the strength of the warping. Also shown are quantities in several coordinate
systems: normalized light image plane coordinates (v), face coordinates (y), and warping
frustum coordinates (y′).

warping parameter. n̄′0 is the normalized position of the eye. The face coordinate system

(y) introduced in Chapter 4 is the most natural for specifying positions relative to the face.

The origin of the face coordinate system is at the eye. The warping frustum coordinates (y′)

are the same as face coordinates except that the origin is shifted back along y by a distance

a = n′ − y0. Warping frustum coordinates can be expressed by quantities in normalized

coordinates using the following simple relations:

y′ = Wly(v + n̄′) (5.14)

n′ = Wlyn̄
′ (5.15)

f ′ = Wly(n̄′ + 1). (5.16)

The dimensions of the rectangular region of the light image plane covered by the warping
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frustum can be computed as:

Wlx = We
y1

y0
= 2 tan θfe (5.17)

Wly = f ′ − n′ = (fe − ne) cos θ (5.18)

The perspective parameterization is most conveniently specified in warping frustum coor-

dinates using a 2D projective matrix:

Fp =



s

t


 =



x′p/w

′
p

y′p/w
′
p


 (5.19)




x′p

y′p

w′p




=




p0 p1 0

0 p2 p3

0 1 0







x′

y′

1




(5.20)

p0 =
f ′

Wlx

p1 =
1
2

p2 =
f ′

f ′ − n′

p3 = −p2n
′. (5.21)

To obtain the spacing distribution functions generated by Fp we take the reciprocals of the

derivatives of Fp,s and Fp,t w.r.t. x′ and y′ and scale by 1/Wlx and 1/Wly, respectively:

δp,s =
y′

f ′
=
v + n̄′

n̄′ + 1
(5.22)

δp,t =
(y′)2

n′f ′
=

(v + n̄′)2

n̄′(n̄′ + 1)
. (5.23)

δp,s is constant in u and increases linearly in v. δp,t is quadratic in v. Because the light sample

spacing increases quadratically and the eye sample spacing increases linearly, the perspective

parameterization cannot remove perspective aliasing error. Interestingly, however, it can

remove the combination of perspective and projection aliasing error for a single plane (Chong

& Gortler, 2004).
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Figure 5.4: Base error distribution for perspective parameterization. These plots
show M̃p,s (left) and M̃p,t (right) for various values of n̄′. For comparison, the base error
distribution of a logarithmic perspective parameterization, M̃lp,t, is shown in red on the right.
M̃lp,s is the same as M̃p,s with n̄′ = n̄′0. Even for the very low fe/ne ratio shown in this
graph, the difference in maximum error between the perspective and logarithmic perspective
parameterizations is noticeable. (ne = 1 and fe = 20).

The parts of δside
b (Equations 4.26 and 4.28) that depend on ne and fe can be rewritten

in terms of n̄′0:

ne + (fe − ne)v
fe

=
v + n̄′0
n̄′0 + 1

(5.24)

v +
ne

fe − ne
= v + n̄′0 (5.25)

n̄′0 =
ne

fe − ne
(5.26)

This allows us to write the base error distributions for the perspective parameterization as:

M̃p,s =
(v + n̄′)(n̄′0 + 1)
(v + n̄′0)(n̄′ + 1)

(5.27)

M̃p,t =
(v + n̄′)2

n̄′(n̄′ + 1)(v + n̄′0)
. (5.28)

Figure 5.4 shows M̃p,s and M̃p,t for several values of n̄′. At n̄′ = n̄′0 the error in s is uniform

and minimal, while the error in t increases linearly. This parameter value corresponds to that

used by PSMs for an overhead directional light. At n̄′ = n̄′LiSPSM, the maximum error in t is
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minimized, but the error in s goes up. n̄′LiSPSM is the normalized warping parameter used by

LiSPSMs (Wimmer et al., 2004):

n̄′LiSPSM =
ne +

√
nefe

fe − ne
. (5.29)

As n̄′ →∞, the perspective parameterization converges to a uniform parameterization. The

maximum error is high for both M̃p,s and M̃p,t.

5.1.2.1 Parameterizing the warping parameter

The warping parameter n̄′ is inconvenient to work with directly. The semi-infinite range of

n̄′ ∈ [n̄′0,∞) is difficult to graph. Also the correlation between a change in n̄′ and the change

in error is nonlinear and not very intuitive. We have found it useful to parameterize n̄′ directly

in terms of the maximum error R .

Our first parameterization is based on Rp,s = max(M̃p,s). As can be seen in Figure 5.4,

Rp,s = M̃p,s(0) for n̄′ ∈ [n̄′0,∞] because the maximum value of M̃p,s always occurs at v = 0

in this range. The value of Rp,s decreases from its maximum at n̄′ = ∞ (no warping) to its

minimum at n̄′ = 0 (maximum warping). Based on this observation we define a parameter

ω ∈ [0, 1] that can be thought of as the “amount of warping”:

ω(n̄′) =
Rp,s(n̄

′)− Rp,s(n̄
′
0)

Rp,s(∞)− Rp,s(n̄′0)

=
n̄′0 + 1

(n̄′ + 1)
(5.30)

n̄′(ω) = (n̄′0 + 1)
(

1
ω
− 1
)
, (5.31)

where the argument to Rp,s is the warping parameter. As ω varies linearly from 0 to 1, n̄′

varies (nonlinearly) from ∞ down to n̄′0, increasing the warping strength, and the value of

Rp,s varies linearly from its maximum to minimum value. The width of the near plane of the

warping frustum also varies linearly from Wlx down to We. Thus ω is also an intuitive control

for the shape of the warping frustum.

Our second parameterization is based on Rp,t. The behavior of Rp,t over the range of
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warping parameters is slightly more involved than that of Rp,s. The maximum error occurs at

the far plane (v = 1) for n̄′ ∈ [n̄′0, n̄
′
LiSPSM) and at the near plane (v = 0) for n̄′ ∈ [n̄′LiSPSM,∞).

In much the same way as we defined ω, we define a parameter η ∈ [−1, 1], where η = −1

corresponds to maximum error at the near plane, which decreases linearly to its minimum

over the range η ∈ [−1, 0], and then increases linearly again to the same maximum on the far

plane with η ∈ [0, 1]:

η(n̄′) =





Rp,t(n̄
′
LiSPSM)−Rp,t(n̄

′)

Rp,t(∞)−Rp,t(n̄
′
LiSPSM

n̄′ ≥ n̄′LiSPSM

Rp,t(n̄
′)−Rp,t(n̄

′
LiSPSM)

Rp,t(n̄
′
0)−Rp,t(n̄

′
LiSPSM)

n̄′ < n̄′LiSPSM

=





1+
√
α−n̄′(α−1)

(α−1)(n̄′+1) n̄′ ≥ n̄′LiSPSM

n̄′(1−
√
α)+1

n̄′(α−
√
α)

n̄′ < n̄′LiSPSM

(5.32)

n̄′(η) =





1+
√
α−η(α−1)

(α−1)(η+1) −1 ≤ η < 0

1
(
√
α−1)(η

√
α+1)

0 ≤ η ≤ 1
(5.33)

α =
fe
ne

(5.34)

For an overhead directional light, η = −1 corresponds to a standard shadow map, η = 0

corresponds to the warping parameter of a LiSPSM, and η = 1 corresponds to the warping

parameter of a PSM.

5.1.2.2 Behavior over the range of warping parameters

Figure 5.5 shows M̃p,s and M̃p,t over all valid values of v and n̄′, with n̄′ parameterized by η.

M̃p,s decreases monotonically over v for all η. M̃p,t(v) has an internal minimum at v = n̄′− n̄′0,

which is shown on the graph. M̃p,t(v) increases monotonically when n̄′ < n̄′0 and decreases

monotonically when n̄′ > n̄′0 + 1. The maxima of M̃p,s and M̃p,t always occur at one of the

boundaries. For a point light, the base error distributions are modulated by the cosφl term

(see Figure 5.1), which can introduce error maxima that do not occur at the boundaries.

Figure 5.6 abstracts some of the information in Figure 5.5 and makes it easier to see the

behavior of the maximum error over the range of warping parameter values. The figure shows
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Figure 5.5: Error distribution for all warping parameter values. These plots show
M̃ for both perspective and logarithmic parameterizations over the entire range of warping
parameter values. The white line in the plot for M̃p,t is the location of the minimum over v.
(ne = 1, fe = 16)

M̃p,s and M̃p,t for both v = 0 and v = 1. It also shows the minimum value of M̃p,t. We plot

the functions at these v values to capture the variation in error over all v. The maximum

value of these functions is the base critical resolution factor R .

Figure 5.6 also shows the base storage factor Sp. It is interesting to note that there

exists not just one warping parameter value for which Sp is minimal, but a range of values,

i.e. η ∈ [0, 1]. This means that on a face, the warping parameter values for LiSPSMs

and PSMs, which lie in this range, are equivalent in terms of storage factor, at least for a

directional light, for which the cosφl factor (not included in the graphs) is constant. Figure

5.7 shows that a range of optimal parameter values also exists for point lights. From Figure

5.6, however, we see that variation in error within the view frustum changes considerably

within the equivalent range. Choosing the largest n̄′ (smallest η) on the equivalent range

insures that the distribution of error between the s and t directions is most balanced. For

the smallest parameter in the range, n̄′ = n̄′0, almost all the error is concentrated in the t

direction. Choosing the maximum parameter in the equivalent range also helps reduce the

shearing artifacts described later in this section.
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Figure 5.6: Maximum error over all warping parameter values. These graphs plot
the error at v = 0 (heavy dotted line), v = 1 (thin solid line), and for M̃p,t the minimum
error over all v (thin dotted line). The maximum error of a uniform parameterization is also
shown (gray line). Sp is constant and minimal for η ∈ [0, 1]. (ne = 1 and fe = 1024).
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Figure 5.7: Optimal perspective warping parameter. (Left) When the errors in s and t
are combined, a range of warping parameter values (those below the curve) produce the same
storage factor S side

p for each light position (lz = 0.5(y1 − y0)). The warping parameter is
shown here in terms of a = (n̄′ − n̄′0) · (y1 − y0). (Right) The maximum parameter value in
optimal range aopt for lz = σ(y1 − y0), where from dark to light σ = 0.1, 0.2, 0.5, 1,∞. The
frustum parameters are θ = 45◦, ne = 1, and fe = 1000.

5.1.2.3 Maximum error

Figure 5.8 shows the optimal Rp,s, Rp,t, and Sp for varying light positions above the face.

The optimal Rp,s is computed as:

min
n̄′

Rp,s = min
n̄′

max
(u,v)∈F

(
δp,s(u, v)
δside
b,s (u, v)

)
. (5.35)

The value of Rp,s is that of M̃p,s at v = 0. Rp,s is minimized when n̄′ = n̄′0, which leaves only

the cosφlx/ cos θ term. Geometrically, setting n̄′ = n̄′0 causes the face to be stretched out to

81



fill the entire shadow map, maximizing the use of the available resolution. With n̄′ = n̄′0, the

M̃p,s term of Rp,s becomes constant. As we saw in Figure 5.7, the optimal n̄′ parameter for

Rp,t varies with the position of the light. For a directional light directly above the face, the

optimal parameter value is n̄′LiSPSM. The maximum occurs at either v = 0 or v = 1. Using

these optimal parameters for s and t for an overhead directional light gives the optimal Rp:

min
n̄′

Rp,s =
1

cos θ
(5.36)

min
n̄′

Rp,t =
(fe − ne)

2
√
nefe tan θ cos2 θ

(5.37)

≈ O(
√
fe/ne).

If Fp is implemented with a projective matrix, the n̄′ parameter can not be chosen indepen-

dently for s and t. Rather Rp,s and Rp,t should be optimized simultaneously by optimizing

the storage factor Sp. Using n̄′ = n̄′LiSPSM for an overhead directional light gives the optimal

Sp:

min
n̄′

Sp =
(fe − ne)

2ne tan θ cos3 θ

=
(fe/ne − 1)
2 tan θ cos3 θ

(5.38)

≈ O(fe/ne).

The effect of optimal perspective warping is to remove the leading (fe/ne) from Sun on a side

face (cf. Equation 5.13). Though the maximum error in s is the same as that of F side
b,s , when

we consider both directions at the same time the O(fe/ne) minimal maximum error of Fside
p

is still relatively high compared to the O(log(fe/ne)) maximum error of Fside
b .

5.1.3 Logarithmic parameterization.

We have now shown that the uniform parameterization gives error for end faces that is on

the same order as that of the near optimal δb parameterization. The perspective parame-

terization can do the same for the s direction on side faces. A logarithmic parameterization

can give the same maximum error as the parameterization based on δside
b,t . The logarithmic
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Figure 5.8: Optimal critical resolution factors for perspective parameterization.
From left to right Rside

p,s , Rside
p,t , and S side

p for various light positions. When parameterizing with
a perspective matrix, δsidep,s and δsidep,t are coupled. S side

p combines the errors in both directions so
that the optimal perspective parameter can be found considering both directions together. For
all graphs lz = σ(y1 − y0), where from dark to light, the plots are for σ = 0.1, 0.2, 0.5, 1,∞.
The grayed out region indicates light positions over the face. The frustum parameters are
θ = 45◦, ne = 1, and fe = 1000. A cos θ term have been factored out of Rside

p,s and S side
p .

parameterization is given by:

Flog,t =
log (y′/n′)
log (f ′/n′)

. (5.39)

This is a generalized version of a logarithmic parameterization with a free warping parameter

n′ similar to that of Fp. The spacing distribution generated by Flog,t is:

δlog,t = log
(
f ′/n′

) y′

f ′ − n′ = log
(
n̄′ + 1
n̄′

)
(v + n̄′) (5.40)

M̃log,t can be computed just as for M̃p,t:

M̃log,t = log
(
n̄′ + 1
n̄′

)
v + n̄′

v + n̄′0
. (5.41)

From Figure 5.5 we can see the maximum M̃log,t occurs at v = 0 for all parameter values. At

η = 1, maxv(M̃log,t(v)) reaches its minimum and is constant over v.

5.1.3.1 Maximum error

Figure 5.9 shows Rlog,t. Because δlog,t is not the best match for the cosφl term, Rlog,t is not

as low as R side
b,t when the light is close to the face, but the range of values is on the same order
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Figure 5.9: Critical resolution factor for logarithmic parameterization. For all
graphs lz = σ(y1 − y0), where from dark to light, the plots are for σ = 0.1, 0.2, 0.5, 1,∞. The
grayed out region indicates light positions over the face. The frustum parameters are θ = 45◦,
ne = 1, and fe = 1000.

Parameterization Rend
s Rside

s Rside
t Sside

Near optimal (Fb) O(1) O(1) O
(

log
(

fe

ne

))
O
(

log
(

fe

ne

))

Uniform O(1) O
(

fe

ne

)
O
(

fe

ne

)
O

((
fe

ne

)2
)

Perspective − O(1) O
(√

fe

ne

)
O
(

fe

ne

)

Logarithmic − − O
(

log
(

fe

ne

))
−

Table 5.3: Maximum error. This table shows R and S , measures of the maximum error
over all light directions, for several parameterizations, including the near optimal parameter-
ization Fb based on δb. The perspective and logarithmic parameterizations have error that is
on the same order as Fb,s and Fb,t for side faces, respectively. A uniform parameterization is
sufficient for end faces.

as that of R side
b,t . With an overhead directional light and the optimal warping parameter value

of n̄′ = n̄′0 we get:

min
n̄′

Rlog,t =
log(fe/ne)

2 tan θ cos2 θ
, (5.42)

which is the same as Rside
b,t .
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Figure 5.10: Storage factor for logarithmic perspective parameterization. Slp over
a range of warping parameter values and light positions. The warping parameter is specified
here in terms of a = (n̄′ − n̄′0) · (y1 − y0). The optimal warping parameter is a = 0. The
frustum parameters are ne = 1 and fe = 1000. The height of the light above the face is
lz = 0.5(y1 − y0).

5.1.4 Logarithmic + perspective parameterization

Table 5.3 summarizes the error for various parameterizations, including the Fb parameteriza-

tions derived in the last chapter. The table shows that error on the same order as that of Fb

can be obtained by using a uniform parameterization for the end faces, a perspective projec-

tion for the s direction on a side face, and a logarithmic parameterization for t. Our LogPSM

parameterization combines a logarithmic transformation with a perspective projection to get

good error bounds for both s and t on a side face.

We start with Fp. We multiply Fp,t by one constant and add another to transform it into

n′/y′. Taking the logarithm and scaling by a third constant yields Flog,t. Our logarithmic

perspective parameterization is given by:

Flp =



s

t


 =




Fp,s

c0 log(c1Fp,t + c2)


 (5.43)

c0 =
−1

log (f ′/n′)

c1 =
n′

p3
= −f

′ − n′
f ′

c2 = −n′ p2

p3
= 1.
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Figure 5.11: Critical resolution and storage factors for logarithmic+perspective
parameterizations. (Left) Storage factor for the linear form of δsidelp,t that we use for Log-
PSMs. (Middle) The logarithmic + perspective parameterization can also generate parabolic
spacing functions that can give a good fit to δsideb,t . (Right) Using two parabolas gives a critical
resolution that approaches that of δsideb,t (cf. Figure 4.8). For the plots on the left and the
right, lx = 0 and z = σy1, where from dark to light σ = 0.1, 0.2, 0.5, 1,∞. The grayed out
region indicates light positions over the face. The frustum parameters are θ = 45◦, ne = 1,
and fe = 1000.

With n̄′ = n̄′0 this parameterization provides the same good error bounds in the s and t

directions as the perspective and logarithmic parameterizations, respectively. As seen in

Figure 5.6, the optimal Slp for a directional light is much lower than the optimal Sp. Unlike the

perspective parameterization, the optimal parameter values are the same for both directions.

The spacing distribution for Flp,t is more general than for Flog,t:

δlp,t =
y′
(
y′(c1p2 + c2) + c1p3

)
(f ′ − n′)

c0c1p3
(5.44)

=
(v + n̄′)

(
(v + n̄′)(c1p2 + c2) + c1p3

)
Wly

c0c1p3
. (5.45)

δlp,t has two real roots:

λ0 = −n̄′, λ1 = −
(
n̄′ +

c1p3

Wly(c1p2 + c2)

)
. (5.46)

If we choose the constants c1 and c2 such that λ1 = −b, we can write δlp,t as:

δlp,t ∼ (v + n̄′)(v + b). (5.47)

To compute c1 and c2 we need an additional constraint, which comes from the requirement that
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Flp,t(0) = 0. This constraint is satisfied when the argument of the logarithm, c1Fp,t(v) + c2,

is 1. Solving for c1 and c2 we get:

c1 = −Wly
n̄′(b− n̄′)
n̄′p3

(5.48)

c2 = Wly
n̄′(p2(n̄′ − b) + p3)

bp3
. (5.49)

Plugging these values into Equation 5.45 gives us the normalized spacing distribution:

δlp,t =
(v + n̄′)(v + b)
c0(n̄′ − b) . (5.50)

The constant c0 can be computed from the constraint that Flp,t(1) = 1:

c0 =
1

log
(
n̄′(b+1)
b(n̄′+1)

) . (5.51)

When b→∞ the constants converge to those shown for Equation 5.43 and δlp,t converges

to a linear spacing distribution. Figure 5.11 shows the minimal Slp for varying light positions

and b = ∞. The n̄′ parameter also effects Rlp,s and thus must be optimized simultaneously

with Rlp,t by optimizing Slp. We find the optimal n̄′ parameter numerically. Testing a wide

range of frustum parameter values and light positions, it appears that the optimal parameter

value is always n̄′ = n̄′0 (see Figure 5.10 for Slp over a subset of light positions and n̄′ values).

Note that when the light is over the face, Rlp,t is higher with this parameter value than the

optimal Rlog,t. However Rlp,t and Rlog,t are still the same. Multiplying Rlp,s (which is the

same as Rp,s) with Rlp,t and using the optimal warping parameter n̄′ = n̄′0 we get:

min
n̄′

Slp =
log(fe/ne)

2 tan θ cos3 θ
. (5.52)

5.1.4.1 Parabolic spacing functions

Choosing n̄′ = n̄′0 and a finite b, such that b 6= n̄′0 and b > 0 or b < −1, δlp becomes

parabolic. With b > n̄′0, the resulting parabola is concave-up. With b < n̄′0 the parabola is

concave-down. Figure 5.12 shows the base error distribution M̃lpu,t and M̃lpd,t corresponding
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Figure 5.12: Error distribution over all warping parameter values for parabolic
version of δlp. Base error distributions M̃lpu,t and M̃lpd,t corresponding the concave-up and
concave-down versions of the parabolic δlp. The linear version M̃lp is included for comparison.
The frustum parameters are ne = 1 and fe = 16.

to the concave-up and concave-down cases, respectively. The warping parameter b for M̃lpu,t

is computed as b = n̄′(η) using Equation 5.33. The warping parameter for M̃lpd,t is computed

as b = −(1 + n̄′(η)).

Two parabolic spacing distribution functions can be used to better fit the curved portions

of δside
b,t (see Figure 5.11). Fitting two parabolas, however, is more expensive because it requires

that the face be split into two partitions with each partition parameterized separately. The

optimal split point ys is difficult to compute, but ys = ly produces good results that are close

to optimal. Figure 5.11 also shows the minimal Slp with ys = ly, n̄′ = n̄′0, and b free. The

curves for Rlp,t are very similar to those for R side
b,t . One disadvantage of this parameterization

is that a closed-form solution for the optimal parameter bopt for each parabola does not exist.

Therefore bopt must be computed numerically, which is somewhat involved. We would like to

implement a shadow map algorithm using this parameterization to explore its visual impact.

5.1.5 Handling shear

Due to either limitations on shadow map resolution or the effects of surface orientation, it

is not always possible to completely remove aliasing artifacts. When aliasing is present, it

is possible to make out the projection of individual shadow map texels onto the scene at

shadow boundaries. The shape of the texel projections in the image depends on three factors:

the shape of the cross-section of the light beams, the relative orientation of the surface onto

88



Figure 5.13: Shearing artifacts from a standard shadow map. (Left) With the ground
plane oriented nearly perpendicular to the light direction the texel projections visible at shadow
edges are rectangular. (Middle) With the ground plane oriented nearly parallel to the light, the
texel projections become extremely sheared. These tend to be more disturbing than rectangular
texel projections. (Right) From a different point of view, however, the texel projections appear
less sheared.

which the beams project, and the angle from which the projection is viewed. Figure 5.13

shows a standard shadow map with low enough resolution that aliasing is visible. The cross-

sections of the light beams are square. When the light is directly over the ground plane

the texel projections are mostly rectangular, but when the light strikes the ground plane at

a glancing angle, the texels projections become extremely sheared. They look like jagged

teeth, an unnatural appearance that is less pleasing than a more rectangular shape. Diffuse

shading helps somewhat because as the surface orientation approaches parallel to the light,

the contrast between shadowed and unshadowed regions is reduced to zero. From a different

viewing angle, the texel projections can appear less sheared, because as the camera moves,

the texel projections remain fixed w.r.t the scene.

When we parameterize the faces of the view frustum and fix the texture resolution of the

shadow map used for each face, the texel projections on the faces remain fixed regardless

of the light or camera position or orientation. Thus for some light positions the light beam

cross-sections (measured perpendicular to the beam direction) can become sheared. Warping

itself can also cause the cross-sections to become somewhat sheared. The shearing with face

partitioning can be more noticeable than that of a standard shadow map because on the same

surface the shearing can vary dramatically from one face partition to the next (see Figure

5.14). Because our error metrics do not take this shearing into account, redistributing the
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1

Figure 5.14: Handling shear artifacts. (Top-left) Shear artifacts resulting from face
partitioning. We use a low-resolution shadow map to make them easier to see. Regions
are colored according to the face partition to which they belong. (Top-right) Shear artifacts
removed by coordinate frame adjustment. (Bottom) View frustum as seen from the light in
cases in which shearing occurs. To handle the first case, we adjust the coordinate frame by
realigning the projection axis with the bisector of the side edges of the face make the other
axis orthogonal in the light view. For the second case, we first split the face along the bisector
into two sub-faces and apply the coordinate frame adjustment to each of the sub-faces. The
corrected faces are shown below.

resolution according to error may also make this shearing more noticeable.

5.1.5.1 Coordinate frame adjustment

One way to reduce shearing is to compute the parameterization relative to the light instead of

the face. Consider the view of a side face from a directional light shown in Figure 5.15. The

shearing of the light beam cross-sections can be minimized by fitting a symmetric warping

frustum to the face in the light’s view. We align the midline of the trapezoid with the bisector
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1

Wlx

Wly

warping
frustum

side face

Figure 5.15: Coordinate frame adjustment. In the view from a directional light, the
symmetric warping frustum is aligned with the bisector of the side face edges in order to
minimize shearing. Numerical problems with side faces nearly parallel to the light can be
avoided by restricting the warping frustum to the extents of the side edge that touches its far
plane. The excluded region (left of the dotted line) can be covered by expanding the partition
corresponding to the near plane of the view frustum.

1

τ0

τ

Figure 5.16: τ-Limiting. (Left) a face partition with excessive shearing near the edges
caused by a large angle τ between the edges of the trapezoidal region to which to parameteri-
zation is applied (black). (Right) Limiting τ to some constant τ0 reduces the shearing at the
expensive of higher error at the narrow end of the face partition.

of the two side edges of the face. The resulting projection is no longer a tight fit, but the

shearing is reduced.

As the light direction moves parallel to a side face, the area covered by the warping frustum

goes to zero, as does the storage factor. However, for a small subset of light directions, the

far to near plane distance ratio of the warping frustum can be become very large, leading to

numerical robustness problems and high errors for side faces that occupy almost no area in

the light view. One way to handle these is to only include part of a side face in the warping

frustum as shown in Figure 5.15 and expand near plane face to cover the excluded portion.

This only slightly increases the overall storage factor. We have used this approach only for

the numerical results presented in this chapter.
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5.1.5.2 τ-limiting

When the angle between the two edges of a side face is high, coordinate frame adjustment

may provide little improvement (see the red face in Figure 5.17c). One possibility for handling

this situation is to simply place a limit the angle τ between the edges of the warping frustum

(see Figure 5.16). This approach can lead to large errors on the parts of the face close to the

near plane. Naive resolution redistribution allocates most of the resolution to the problem

face. The maximum error on the face is equalized with the other faces, but the error over

the entire view frustum goes up (Figure 5.17e). We could also use the resolution that would

have been allocated to the face had we not changed the parameterization. For surfaces near

the viewer, the error may be extremely high at the narrow end of the face partition, but

acceptable for surfaces farther away (Figure 5.17f). Depending on the application, this may

not be a problem, especially since the high error situations occur for face partitions that cover

a very small part of the view frustum. A compromise might be to use a resolution for the

face that is some blend of the two extremes.

5.1.5.3 Face splitting

Another possibility of handling large τ is to first split the face along its bisector and then

apply the coordinate frame adjustment to each half. We split a face when the angle between

the side edges τ exceeds a specified threshold τ0. To avoid a sudden pop when a face is split,

we specify another threshold τ1 > τ0 and “ease in” to the new coordinate frame over the

interval [τ0, τ1]. Choosing τ0 > 90◦ ensures that no face will be split more than once and that

no more than two faces will be split at the same time. This is an awkward solution because it

requires additional partitions to handle problem faces which occupy little area in the light’s

view. However, it does help in many cases.

Neither τ -limiting nor face splitting is completely satisfactory. We have achieved the best

results, however, using the coordinate frame adjustment in combination with face splitting.

As we shall see later in Section 5.3, this scheme has only a minor affect on the average number

of shadow maps required over all light positions.
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Figure 5.18: Total error distribution for face partitioning over varying light di-
rections. These graphs show the storage factor produced when using Flp on side faces with
no shear handling (left), coordinate frame adjustment (middle), and coordinate frame adjust-
ment with splitting (right). γ is the angle between the light direction and the view direction.
The azimuthal angle is measured from the x-axis in eye space. The minimum error value
is normalized to 1 to highlight the variation in error. The shape of the error distributions
produced by using Fp on side faces are nearly identical to these shown here. The frustum
parameters are ne = 1, fe = 1000, and θ = 30◦. The face splitting parameters are τ0 = 100◦

and τ1 = 110◦.

5.1.6 Total error over all light directions

So far we have considered the error for only one face at a time. The total error of a face

partitioning algorithm can be computed by simply summing the storage factors computed for

each face.

Figure 5.18 shows the error distribution in terms of the storage factor over a quarter

hemisphere (the error distribution over the whole hemisphere can be obtained by symmetry).

Flp gives the smoothest error distribution. However, the storage factor does not take shearing

into account. Adding coordinate frame adjustment and face splitting to handle shearing

introduces some sharper features in the error distribution. The change in storage factor using

face splitting is continuous with change in light position, but changes very rapidly when a

face changes from an entrance face to an exit face, causing a ridge in the error distribution.

The magnitude of this ridge is small enough however that its effects are not noticeable as the

light moves around. Section 5.3 contains some additional analysis of the error distributions

over all light directions for face partitioning and other algorithms.
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Figure 5.19: z-partitioning applied to a face. Choosing self-similar partitions makes
the error the same in each partition and minimal over all possible partitionings.

5.1.7 Applying z-partitioning to faces

z-partitioning could be applied to side faces to reduce the error for uniform and perspective

parameterizations. (A more apt name might be y-partitioning for the case of faces, but we

will stick with our previous terminology since the y-axis on the faces corresponds roughly

with the eye space z-axis). The main difference between various z-partitioning algorithms

is where partitions are made. The choice of partition locations affects the errors in each

partition. We can see from Table 5.3 that the storage factor (and thus the error) grows with

fe/ne. To minimize the maximum error over all partitions, we should therefore minimize the

far to near plane distance ratio for each partition and ensure that the maximum error of each

partition is the same. This can be accomplished by choosing the partition points y0,i and y1,i
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for i ∈ 1, 2, ..., k such that the partitions are self-similar (as shown in Figure 5.19):

y0,i = y0

(
fe
ne

)(i−1)/k

(5.53)

y1,i = y0,i+1 = y0

(
fe
ne

)i/k

y1,i

y0,i
=
(
fe
ne

)1/k

.

This z-partitioning scheme can be viewed as a discrete approximation of the logarithmic

parameterization with n′ = ne. With this warping parameter, the inverse of F side
log , Gside

log , is

given by:

Gside
log (t) = y0

(
fe
ne

)t
. (5.54)

Partitioning the t domain of the shadow map into k equal pieces creates the corresponding

partitions on the face computed by Equation 5.53. We will denote this partitioning scheme

ZPlog. The optimal maximum storage factors for the uniform and perspective parameteri-

zations with these partition locations can be computed from Equations 5.13 and 5.38 using

y1,i/y0,i in place of fe/ne:

Sside
un,k =

k∑

i=1

(y1,i/y0,i)
((y1,i/y0,i)− 1)

2 tan θ cos3 θ

= k(fe/ne)1/k

(
(fe/ne)1/k − 1

)

2 tan θ cos3 θ
(5.55)

Sside
p,k =

k∑

i=1

((y1,i/y0,i)− 1)
2 tan θ cos3 θ

= k
(fe/ne)1/k − 1
2 tan θ cos3 θ

(5.56)
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The logarithmic perspective parameterization is actually insensitive to the partitioning scheme

used, so long as the partitions are adjacent, i.e. y0,i+1 = y1,i. From Equation 5.52 we get:

Sside
lp,k =

1
2 tan θ cos3 θ

k∑

i=1

log(y1,i/y0,i)

=
1

2 tan θ cos3 θ

k∑

i=1

log(y0,i+1)− log(y0,i)

=
1

2 tan θ cos3 θ
(log(y0,k+1)− log(y0,1))

=
log(fe/ne)

2 tan θ cos3 θ
= Sside

lp . (5.57)

As we increase the number of partitions, both Sside
un,k and Sside

p,k converge to Sside
lp . The limit

limk→∞ Sside
p,k yields the indefinite form ∞ · 0. Rewriting Sside

p,k as a quotient and applying

L’Hospital’s rule we get:

lim
k→∞

k
(fe/ne)1/k − 1
2 tan θ cos3 θ

= lim
k→∞

(fe/ne)1/k − 1
2/k tan θ cos3 θ

= lim
k→∞

−(fe/ne)1/k log(fe/ne)
k2

−2/k2 tan θ cos3 θ

=
log(fe/ne)

2 tan θ cos3 θ
.

The limit limk→∞ Sside
un,k can be computed similarly.

Zhang et al. (2006) use a combination of ZPlog with a linear partitioning scheme for their

parallel split shadow maps (PSSMs). The linear partitioning scheme ZPlin creates uniform

width partitions:

ylin
0,i = y0 + (y1 − y0)

i− 1
k

(5.58)

ylin
1,i = y0,i+1 = y0 + (y1 − y0)

i

k
. (5.59)
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Figure 5.20: Maximum error for different z-partitioning schemes. These graphs
show the maximum error over each partition in terms of Sside

un,k for various z-partitioning
schemes. 8 partitions were used for these graphs. The graph on the right shows the locations
of the partitions in the post-perspective space of the camera. The 1/(2 tan θ cos3 θ) term has
been factored out. fe/ne = 512.

The PSSM scheme, ZPPSSM, takes the average of the partition locations for ZPlog and ZPlin:

yPSSM
0,i =

ylin
0,i + ylog

0,i

2
(5.60)

yPSSM
1,i =

ylin
1,i + ylog

1,i

2
. (5.61)

Figure 5.20 shows the error for these z-partitioning schemes. ZPPSSM trades off high error

near the viewer in favor of areas farther away. Though the areas near the viewer occupy just

a small part of the view frustum in world space, these areas occupy most of the view frustum

in the post-perspective space of the camera, and therefore they occupy most of the image as

well.

5.1.7.1 Continuity

As the light position changes, the error on the faces also changes. It may be tempting to

apply z-partitioning adaptively, i.e. to use it only for faces with high error. However, if the

resolution of the shadow map is not sufficiently high, changing the number of z-partitions

from frame to frame can cause temporal artifacts because it causes an abrupt shift in the

distribution of aliasing error. In general, it is best to use the same number of z-partitions
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for all faces and light directions to avoid popping. It might be possible in some situations

to add z-partitions without popping by introducing a zero-width partition and morphing

the partition locations to their new locations over multiple frames. We have not tried this

however.

5.1.8 A z-partitioning scheme using a pseudo-near plane

The rationale for ZPPSSM is that the regions near the viewer are often empty. If this is the

case, the best thing to do is to increase the near plane distance of the view frustum. Even

small increases in ne can dramatically reduce the error. Computing a tight upper bound on ne

can be expensive, though, because it can involve clipping geometry against the view frustum.

Therefore, it is common practice to set ne to a conservatively low value to avoid near plane

clipping of geometry. An approach like ZPPSSM allows small values of ne while keeping the

error low for the middle range of the view frustum. It still provides shadow map coverage for

regions close to the viewer just in case some surface actually does happen to enter the region,

but here the error might be high.

We propose an alternative approach that uses a pseudo-near plane to provide information

about the part of the frustum that the scene is likely to occupy. This allows us to still use

a conservative ne while keeping the aliasing error low. The price to be paid is that between

ne and the pseudo-near plane distance np the error can be high. For a side face, the point

corresponding to np is ynp = np/ cos θ. We compute the partition locations as follows:

y0,i =





y0 i = 1

ynp(fe/np)(i−1)/k i > 1
(5.62)

y1,i = ynp(fe/np)(i−1)/k. (5.63)

We denote this scheme as ZPnp. If we set np = yPSSM
1,1 cos θ then we get the same maximum er-

ror in the first partition as ZPPSSM, but the maximum error over for the subsequent partitions

is lower than that of the corresponding partitions of ZPPSSM (see Figure 5.20).

Because no single partitioning scheme can meet the needs of all applications we would
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Figure 5.22: Comparison of maximum error for varying pseudo-near plane po-
sitions. This graph shows the minimal storage factor S over both the range [vnp, 1] (heavy
lines) and the entire [0, 1] range (dashed lines).

like to develop a tool that would allow users to manipulate partition points interactively on

graphs similar to those in Figure 5.20 to achieve the desired error distribution. We would also

like to explore the possibility of creating partitions automatically to match a user specified

error profile as closely as possible.

5.1.9 Warping algorithm using a pseudo-near plane

In the same spirit as ZPnp, we can formulate a warping algorithm that uses a pseudo-near

plane. For this algorithm we minimize the maximum error over the part of the face with
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v > vnp, where vnp ∈ [0, 1] is the location of the pseudo-near plane. Figure 5.21 shows S over

just the range [vnp, 1] for varying vnp as well as the curves for the warping parameter value

that produces the minimal S for a given vnp. Initially, as vnp increases from 0, the optimal n̄′

of a perspective parameterization results in the same error at the pseudo-near and far planes.

n̄′ can thus be found in the same way as n̄′LiSPSM, by solving for the n̄′ that makes the values

of M̃p,t equal to each other at v = vnp and v = 1:

n̄′opt = n̄′0 +
√

(n̄′0 + vnp)(n̄′0 + 1). (5.64)

As vnp continues to increase, so does n̄′. At a certain point the optimal maximum error is

found only at vnp and not at the far plane. At this point Equation 5.64 produces a value

that is too small. The optimal n̄′ can then be found by solving dSp(vnp)/dn̄
′ = 0 for n̄′. We

find three solutions, a double root at −vnp, which is invalid because of the constraint that

n̄′ > n̄′0, and a third root which provides the correct solution:

n̄′opt =
vnp

2− 3vnp
. (5.65)

As vnp continues to increase to 2/3, n̄′opt approaches infinity. Beyond vnp = 2/3, n̄′opt remains

at infinity. For vnp < 2/3 we choose n̄′opt simply by taking the maximum of Equations 5.64

and 5.65.

A similar algorithm can be formulated using the LogPSM parameterization by finding the

n̄′opt that minimizes Slp computed over the range [vnp, 1]. However dSlp(vnp)/dn̄
′ = 0 has no

analytic solution and must be solved numerically. One possible way to do this is to parame-

terize Slp with η and use a bracketed minimization method (e.g. golden section search (Press

et al., 1992)) to find the optimal η. Figure 5.22 compares the maximum error when using

both the perspective and LogPSM parameterizations. Overall, the graphs are quite similar.

Figure 5.23 shows a comparison between the LiSPSM algorithm and a perspective warping

algorithm that uses the pseudo-near plane to compute the warping parameter. Because the

scene occupies only a portion of the view frustum, lower error can be obtained by setting the

pseudo-near plane farther away from the viewer.
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Figure 5.23: Comparison of LiSPSM and pseudo-near plane algorithms. (Left)
LiSPSM algorithm. (Middle) Algorithm that uses a pseudo-near plane to compute the optimal
perspective warping parameter. The pseudo-near plane is shown in transparent yellow. (Right)
A third person view showing the position of the view frustum and pseudo-near plane.
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Figure 5.24: Parameterizing the frustum. (Left) A side view of the view frustum.
The back faces of the view frustum are projected onto the light image plane, which is oriented
perpendicular to the light direction. (Right) The light’s view of the view frustum. The warping
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5.2 Frustum parameterization

In this section we analyze the error for parameterizations covering the entire view frustum.

From an overhead directional light, the view frustum looks just like a side face and the analysis

is very similar. This is the configuration that has been analyzed in previous work (Stamminger

& Drettakis, 2002; Wimmer et al., 2004). For lights in general position, especially point

lights, the analysis becomes more tedious. The aliasing error equations have several forms

depending on the position of the light. The main reason for this is that the subset of the view

frustum vertices that constrain a tight-fitting warping frustum changes as the light position
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changes. We make several simplifications to keep the equations as simple as possible. We

restrict our attention to light positions in the plane formed by the view frustum y and z

axes. Furthermore, we consider only directional lights here. The analysis can be extended

to point lights, but the equations become more involved. Frustum parameterization methods

are typically used for directional lights anyway, or for spot lights with a fairly narrow field of

view which behave much like directional lights.

Frustum parameterizations typically have the lowest error for a light direction perpendic-

ular to the view direction. However, as the light direction approaches parallel or anti-parallel

with the view direction, the parameterization must revert to uniform to avoid high error. One

of the main purposes of the analysis in this section is to determine how to smoothly transition

from optimal warping to no warping while still keeping the error low.

Figure 5.24 shows the light image plane and warping frustum surrounding the view frus-

tum. We parameterize the light direction by the angle γ between the light and view directions.

We will consider only γ ∈ [0◦, 90◦]. For this range, the maximum perspective error occurs on

the back faces of the view frustum. The near face is back-facing for all γ < 90◦. Both side

faces are back-facing when γ < θ, while only one of them is for γ > θ. We orient the light

image plane perpendicular to the light direction. To compute bounds on perspective aliasing

error we need to be able to compute δb (Equation 4.16) for points along the appropriate faces.

The various terms of δb can be computed from Figure 5.24 using simple geometry:

Wly = W ′n +W ′s2 +





W ′s1 γ ∈ [0, θ]

0 γ ∈ [θ, 90◦]
(5.66)

Wlx = (n′ +Wly)





Wf

n′ γ ∈ [0, θ]

Wf

n′+W ′s1
γ ∈ [θ, 90◦]

(5.67)

de(v) = ne + (fe − ne) max
(
Wly(vs1 − v)

W ′s1
, 0,

Wly(1− v)
W ′s2

)
(5.68)

vs1 =





W ′s1
Wly

γ ∈ [0, θ]

0 γ ∈ [θ, 90◦]
vs2 = vs1 +

W ′n
Wly

(5.69)

104



W ′n = Wn cos γ, (5.70)

W ′s1 = Ws (1− cos(θ − γ)) (5.71)

W ′s2 = Ws sin(θ − γ) (5.72)

Wn = We, Wf = Wn
fe
ne
, Ws =

fe − ne
cos θ

. (5.73)

Because we are using a directional light source and the light image plane is perpendicular

to the light direction, both the nl/dl and cosφl terms of δb are 1. With these values, the

equations for our bounds on perspective aliasing error can be written as:

M̃s(u, v) =
ri
rs

δl(u, v)
δb,s(u, v)

= M̃s(u, v)
ri
rs

1
cos θ

M̃s(u, v) = δl(u, v)
Wlx

We

ne
de(v)

(5.74)

M̃t(v) =
rj
rt

δl(v)
δb,t(v)

= M̃t(v)
rj
rt

1
cos θ

M̃t(v) = δl(v)
Wly

We

ne
de(v)

. (5.75)

The equations for M̃s and M̃t are slightly different than those that we defined at the beginning

of Section 5.1. Because it is not possible to define a M̃ that is completely independent of

θ for frustum parameterizations, we have decide to include the We/ne = 2 tan θ term in M̃s

and M̃t. The spacing distribution functions for the various parameterizations considered in

the last section can be used directly with these modified base error distribution equations.

We note that M̃p,s and M̃p,t are similar to the equations used in the analysis of perspective

warping by Zhang et al. (2006). The main difference is that they analyze error along the

view direction while we evaluate the error along the faces.

Figure 5.25 shows M̃ of perspective and logarithmic parameterizations for different γ.

For all γ ∈ [0◦, 90◦], the maximum error occurs on the edge of the near plane and the side

face furthest from the v = 0 at v = vs2. For γ ∈ [θ, 90◦], M̃ does not change very much,

especially if the fe/ne ratio is high. When γ = 0◦, the maximum error is minimized for all

parameterizations at η = −1, which is why the single shadow map warping algorithms all

degenerate to a uniform parameterization for this light direction.
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Figure 5.25: Error distribution for varying warping parameter values. (Top) γ =
40◦. These graphs are very similar to those shown in Figure 5.5 for a side face, except for
the portion between v = 0 and v = vs2 (indicated by the dashed white line) which corresponds
to the near face of the view frustum. The white line on the graph for M̃p,t is the location of
the minimum error over v as a function of η. (Bottom) γ = 0◦. The frustum parameters are
ne = 1, fe = 16, and θ = 30◦.

5.2.1 Warping parameter shaping functions

In order to compute a function that gives us a smooth degeneration to a uniform parameter-

ization as γ → 0◦ while keeping the error low, we examine the behavior of M̃ over varying

γ in Figure 5.26. Based on the analysis of Figure 5.25, we plot the error at v = vs2, v = 1,

and for M̃p,t, at the location of the minimum v = vmin. For an overhead light, both R and

the variation in M̃ for Fp,s and Flp,t are minimal at η = 1. As γ decreases, the variation in

error increases slightly at η = 1, but Rp,s rises significantly, while Rlp,t remains practically

the same. At γ = θ, there is a rapid shift in R for η ∈ [0, 1]. M̃p,s also sees a rapid change at

v = vs2 for η in this range, but the shift in Rp,t is more gradual because the maximum error

is already high. As γ continues to decrease, the maximum error for all the functions grows

steadily until it is higher than that of a uniform parameterization for all η 6= 0. From this

we can see that as γ decreases, it is important that η be close to 0 by the time γ = θ. As γ

continues to decrease, η should eventually decrease to −1.
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Figure 5.27: Various shaping functions for the warping parameter. M̃ plots are for
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row) Our shaping function keeps the error low for γ > θ while avoiding excessive error for
γ < θ. In addition, it provides a smoother transition. Note that the uniform parameterization
actually does not have a warping parameter. The other two parameterizations converge to
uniform as η → −1. The frustum parameters are ne = 1, fe = 1024, and θ = 30◦.
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Figure 5.27 shows the error over γ ∈ [0◦, 90◦] using various shaping functions for the

warping parameter. When each parameterization uses its optimal parameter without any

shaping, the error for γ < θ is high. The LiSPSM algorithm uses a 1/ sin γ factor to modulate

the optimal parameter. The figure shows that the effect of this shaping function is relatively

minor for γ ∈ [θ, 90◦], which is desirable for keeping the error low. But for γ ∈ [θ, 90◦], the

falloff is not fast enough to escape the increase in error in M̃p,s for η 6= −1. M̃log,s has even

higher error because ηlog is further from −1 than ηp and thus takes even longer to transition.

If we compute the optimal parameter that minimizes S , we see that for γ ∈ [θ, 90◦], η is the

same as with no shaping at all. At γ = θ, η suddenly jumps to 0 and then decreases almost

linearly to −1 as γ approaches a point somewhere between 0 and θ. The optimal Sp and

Slp never rise above Sun. One problem with the S -optimal warping parameter is that S can

change very rapidly near γ = θ.

Computing the equations for the parameter than minimizes Sp and Slp is somewhat in-

volved. Instead we propose the following simple shaping function:

η =





0 γ < γa

−1 + (ηb + 1)
(

1 + cos
(

90 γ−γa

γb−γa

))
γa < γ < γb

ηb + (ηc − ηb) sin
(

90 γ−γb
γc−γb

)
γb < γ < γc

ηc γ < γc

(5.76)

Equation 5.76 can nearly replicate the curve for the S -optimal warping parameter, but also

gives the user better control over the shape of the error. This function provides a linear

transition from −1 to ηb on the interval γ ∈ [γa, γb]. From there it provides a smooth

transition to ηc over γ ∈ [γb, γc]. Based on observations of the optimal S curves over the

typical range of θ and fe/ne and some experimentation, we choose the following values for

perspective and logarithmic perspective parameterizations:

γa γb γc ηb ηc

Fp
θ
3 θ θ + 0.3(90− θ) −0.2 0

Flp
θ
2 θ θ + 0.3(90− θ) −0.2 1
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We choose γb = θ because this gives us precise control over η at the point where the error

functions begin to change rapidly. We choose a value for γc that ensures that the error is kept

low for γ > θ while extending the transition to the high error near γ = θ so that it is not too

abrupt. ηb should be 0 to replicate the behavior of the S -optimal curve. However, this causes

the value of M̃p,s at v = 1 to rise to the same value as at v = vs2. By decreasing ηb a small

amount, it is possible to mitigate this effect without affecting S too much. The behavior of S

using this warping parameter shaping function is fairly consistent over varying θ and fe/ne.

Our shaping function is based on the optimal warping parameter value using S as the

error metric. S is only one possible error metric and may not be suited for all applications.

Our shaping function may not be able to provide a good fit for other metrics. For this reason

we would like to create a more flexible system that would allow a user to build a shaping

function interactively using something like splines. By presenting users with graphs similar

to those used in this chapter, they could interactively generate a shaping function that meets

their particular needs.

5.2.2 Error over all light directions

Figure 5.28 shows the error distribution over varying light directions for frustum parameter-

izations. A standard shadow map using a uniform parameterization shows little variation.

The variation using Fp is less than that of Flp. The graph of the error for Fp relative to Flp

shows that while the error is roughly the same for γ < 30◦, the error of Fp is much higher for

γ > 30◦. The variation in error is greatly reduced for low fe/ne ratios.

5.2.2.1 Using pseudo-γ for Flp

The error distribution for Flp shows small islands of higher error near γ = 30◦. The error is

mostly concentrated in Rs. When the light direction crosses through these regions, the abrupt

change in shadow quality can be quite noticeable (see Figure 5.29). Figure 5.30 shows how

the problem occurs. Because of the way the view frustum is rotated for this light direction,

vertices from the far face have dipped below the eye location. This situation is similar to

the γ < θ case illustrated in Figure 5.24. According to our analysis, the warping should be
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Figure 5.28: Error distribution for frustum parameterizations over varying light
directions. These graphs show the error in terms of the storage factor for a frustum pa-
rameterized with Fun (top-left), Fp (top-middle and bottom-middle) and Flp (top-right and
bottom-right). γz is the angle between the light direction and the view direction and γx is
the azimuthal angle measured from the x-axis in eye space. The minimum error value is
normalized to 1 to highlight the variation in error. We have used our shaping function for
the warping parameter for Fp and Flp. The frustum parameters are ne = 1, fe = 1000, and
θ = 30◦, except for (bottom-middle) where fe = 10. (Bottom-left) shows the error of Fp rel-
ative to Flp using a log2 scale. (Top-right) Arrows highlight small islands of relatively higher
error. (Bottom-right) Using the pseudo-γ, γp, in place of γz removes these islands but causes
higher error around γz = 30◦.

relatively weak for this case, resulting in a nearly uniform parameterization. However, γ is

actually greater than θ, so the warping is still fairly strong, leading to high error. One way

to avoid this problem is to define a pseudo-γ, γp, that behaves like γ for light directions in

the yz plane, but is defined in terms of the position of the eye relative to the extents of the

far face. From Figure 5.30 we can see that d0 = fe tan γ and d1 = fe tan θ. By the properties

of similar triangles, d′0/d
′
1 = d0/d1. From this we can conclude that:

γ = tan−1

(
d′0
d′1

tan θ
)
. (5.77)
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Figure 5.29: Problem case for Flp. (Top row) A small change in γ causes a large change
in error. Grid lines for every 10 shadow map texels are shown. On the left, the error is
fairly evenly distributed across the view frustum, as can be seen on the ledge in the foreground
and the building in the background. In the middle, the error becomes very large in the s
direction for γ ≈ θ. This is because the warping is too strong. Resolution redistribution
has been disabled in these images to highlight this effect. On the right, the warping quickly
falls off with a few more degrees of rotation, restoring the high quality in the background and
causing higher error in the foreground. (Bottom row) Using pseudo-γ instead of γ with our
warping parameter shaping function removes this problem at the expense of higher error in
the foreground for γ ≈ θ caused by a faster falloff in the warping.

If we define d′0 = ve− vf0 and d′1 = (vf1− vf0)/2, where vf0 and vf1 define the extents of the

far face projected onto the light image plane, we can compute our pseudo-γ as:

γp = tan−1

( |ve − vf0|
vf1 − vf0

tan θ
)
. (5.78)

The absolute value is needed to make γp valid over all light directions. If the light direction

lies in the yz plane, then γp = γ. Otherwise γp > γ and using γp in place of γ in the warping

parameter shaping function causes the transition to the uniform parameterization to occur

slightly sooner, thus eliminating the islands of higher error (see Figure 5.28 and Figure 5.29).
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Figure 5.30: Frustum in problem case for Flp. (Left) The view frustum as seen from a
directional light. The warping is too strong in the top image leading to high error. The bottom
image uses a pseudo-γ to compute the warping parameter value. (Right) The view frustum
for a directional light in the yz plane. These quantities are used to compute the pseudo-γ in
terms of the position on the light image plane of the eye point ve relative to the extents of the
far face vf0 and vf1 rather than the actual angle between the light and view directions γ.

5.2.3 z-partitioning

All global warping methods have high error for γ ∈ [0, θ]. z-partitioning can be used to

dramatically reduce this error. z-partitioning also provides substantial error reductions for

γ ∈ [θ, 90◦]. In the next section we present a more detailed analysis of the effects of z-

partitioning when we compare it to face partitioning.
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5.3 Comparisons

In this section, we present empirical results for LogPSMs obtained using a simulator for

logarithmic rasterization (see Chapter 6 for details). We also perform several comparisons

between several different shadow map algorithms. We use the following abbreviations to

classify the different algorithms:

• P: Perspective warping. Unless otherwise indicated, we use the LiSPSM parameter and

our new warping parameter shaping function.

• Po: Perspective warping with the original 1/ sin γ falloff used by LiSPSMs.

• LogP: Logarithmic + perspective warping.

• ZPk : z-partitioning using k partitions. We use only the ZPlog partitioning scheme in

this section.

• FP: Face partitioning.

• FPc: Face partitioning with coordinate frame adjustment to handle shearing.

• FPcs: Face partitioning with coordinate frame adjustment and face splitting.

Partitioning schemes can be combined with warping, e.g. ZP5 + P stands for z-partitioning

with 5 partitions and perspective warping, and FPc + LogP is face partitioning with coordi-

nate frame adjustment and the logarithmic+perspective warping. FPc + ZP2 + P means face

partition using perspective warping with z-partitioning applied to the side faces. When ZPk

appears alone without a warping algorithm, a uniform parameterization is used.

5.3.1 Experimental results

Showing the quality of one shadow map algorithm relative to another from images alone is

often difficult. The regions of maximum error can differ between algorithms. To see the

maximum error, surfaces containing shadow edges must lie in these regions. In order to more

easily visualize the aliasing error, we project texel grid lines from the shadow map onto the

scene. In addition, we generate color coded images of aliasing error. We use the area of
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Figure 5.31: Color mapping for error comparison images.

the projected texels in the image (measured in pixels) as the aliasing metric. The area is a

measure that combines the error in both shadow map directions, while the projected texel

grid helps convey the shape of the projections. The color mapping used for the color coded

images is shown in Figure 5.31 with red representing high error, green representing no error,

and blue representing over sampling.

Figure 5.32 shows a comparison between various shadow map algorithms. The aliasing

is extremely high near the viewer for the standard shadow map, but much less in the dis-

tance. The FPc + P algorithm is comparable to the perspective-warped cubemap algorithm

of Kozlov (2004), except that the LiSPSM parameter is used for warping instead of the PSM

parameter. The LiSPSM parameter gives a more uniform distribution of error between the s

and t shadow map directions. FPcs + LogP has lower error than FPcs + P due to the better

parameterization. ZP5 + P is similar to cascaded shadow maps (Engel, 2007), but adds warp-

ing for further error reductions. ZP5 + P always renders 5 shadow maps while FPcs + LogP

can render anywhere from 1 to 7. For this view, FPcs + LogP renders only 3. FPcs + LogP

has the most even distribution of error.

Figure 5.33 shows a dueling frustum situation which is especially difficult for single shadow

map algorithms to handle. Here FPc + LogP produces less error than ZP5 + P. The portion

of the image around the light direction is over sampled for surfaces far from the viewer.

Figure 5.34 is a comparison using a single shadow map. The light is nearly in the optimal

position for both P and LogP. When the light is behind or in front of the viewer, both of

these algorithms degenerate to a standard shadow map.

Figure 5.35 shows FP + LogP used with point lights. We compare the algorithm against

Kozlov’s perspective-warped cube map (Kozlov, 2004). The LogP parameterization also pro-

vides lower error for point lights.
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1

ZP5+P

FPcs+LogPZP5+P

FPcs+LogP

Figure 5.33: Comparison in a power plant model. The light is placed almost directly
in front of the viewer. This is the dueling frustum case that is difficult for single shadow
map algorithms to handle. Both FP and ZP algorithms can handle this situation well, though
FPcs + LogP produces less error than ZP5 + P. Both the image and total shadow map resolu-
tion are 512× 512. (f/n = 1000, θ = 30◦)
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P

LogPP

LogP

f=500, res =1024, grid every 10

Figure 5.34: Comparison with single shadow map in a power plant model. Here we
compare the P and LogP parameterizations using a single shadow map. The image resolution
is 512 × 512 and the shadow map resolution is 1024 × 1024. Grid lines are shown for every
10 texels. (f/n = 500, θ = 30◦)
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Algorithm Min Max Max/Min Mean Std.Dev. 
Standard 8.65×105 2.00×106 2.31 1.32×106 2.23×105 
W 865 1.38×108 1.59×105 1.47×106 6.28×106 
FP+W 865 2.00×103 2.31 1.49×103 233 
FP+W* 865 3.57×103 4.12 1.91×103 616 
ZP5 51.4 158 3.08 94.1 21.7 
ZP5W 12.9 219 17.0 55.2 36.2 
ZP16 10.1 66.3 6.58 32.5 13.0 
ZP16W 6.55 81.8 12.5 33.6 17.1 
LogPSM 5.98 14.8 2.48 10.9 1.88 
LogPSM* 5.98 30.1 5.03 14.4 5.12 
 
 
 
Algorithm Min Max Max/Min Mean Rel. mean 
Standard 8.65×105 2.00×106 2.31 1.32×106 1.21×105 
P* 865 3.65×106 4.22×103 2.53×105 2.32×104 
P 865 1.99×106 2.30×103 1.80×105 1.64×104 
Log 5.98 1.99×106 3.33×105 1.88×105 1.71×104 
FP*+P 865 2000 2.31 1490 136 
FP+P 865 3170 3.66 1860 170 
FP+P+S 865 3630 4.19 1900 174 
ZP5 51.4 158 3.07 94.1 8.60 
ZP5+P 12.9 159 26.4 46.7 4.93 
ZP5+Log 5.98 158 26.4 46.7 4.26 
ZP7 27.4 100 3.67 56.6 5.17 
ZP7+P 10.2 100 9.84 42.1 3.85 
ZP7+Log 5.98 100 16.8 38.5 3.51 
FP*+Log 5.98 14.8 2.47 10.9 1 
FP+Log 5.98 26.3 4.4 14 1.28 
FP+Log+S 5.98 31.7 5.3 14.3 1.31 
 
 
Algorithm Min S Max S Max S/Min S Mean Rel. mean Mean # SMs 
Standard 8.65×105 2.00×106 2.31 1.32×106 1.21×105 1 
P 865 3.65×106 4.22×103 2.53×105 2.32×104 1 
Po 865 2.00×106 2.30×103 1.59×105 1.45×104 1 
Log 5.98 2.00×106 3.33×105 1.85×105 1.69×104 1 
FP+P 865 2000 2.31 1490 136 3.6 
FPc+P 865 2980 3.45 1840 168 3.6 
FPcs+P 865 3170 3.66 1880 171 3.8 
ZP5 51.4 158 3.08 94.1 8.60 5 
ZP5+P 12.9 159 12.3 53.7 4.91 5 
ZP5+Log 5.98 158 26.5 46.3 4.23 5 
ZP7 27.4 101 3.68 56.6 5.17 7 
ZP7+P 10.2 101 9.87 42.2 3.85 7 
ZP7+Log 5.98 101 16.8 38.4 3.51 7 
FP+Log 5.98 14.8 2.48 10.9 1 3.6 
FPc+Log 5.98 25.4 4.24 15.4 1.40 3.6 
FPcs+Log 5.98 27.7 4.62 15.6 1.43 3.8 
 

Table 5.4: Storage factor over all light directions. Since the storage factor is greatest
as the light moves toward infinity, we used a directional light in order to obtain an upper
bound on the storage factor. This table summarizes statistics for various combinations of
perspective warping (P), logarithmic+perspective warping (LogP), face partitioning (FP), and
z-partitioning (ZP). The second to last column shows the mean storage factor relative to
FP + LogP. The last column shows the mean number of shadow maps used. Over all light
directions LogPSMs have the lowest minimum storage factor. FP + Log and its variations
also have the lowest maximum, and mean storage factor. (f/n = 1000, θ = 30◦). The
1/ cos3 θ = 1.5 term has been factored out of the values reported here.

5.3.2 Analysis

Table 5.4 shows the variation in perspective aliasing error measured by the storage factor

over all light directions for various algorithms. Standard shadow maps have the highest error,

but over all light directions the variation in the error is fairly small. The single shadow

map warping algorithms P, Po, and LogP provide lower error for overhead views, but must

degenerate to standard shadow maps when the light moves behind or in front of the viewer.

This leads to a huge variation in error that makes these algorithms more difficult to use. The

table shows that in contrast to Po, our improved shaping function for the warping parameter

keeps the maximum error of P below that of a standard shadow map. Even though LogP

has a much lower minimum error than P, it ramps off to a uniform parameterization slightly

faster than P and the extremely high error of the uniform parameterization dominates the

mean. However, it can be seen from Figure 5.36 that LogP provides significant improvement
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Figure 5.36: z-partitioning using various parameterizations. z-partitioning leads to
significant error reductions but requires many partitions to converge to the same error as a
face partitioning scheme that uses a logarithmic+perspective parameterization. (fe/ne = 1024,
θ = 30◦)

over P for almost the entire range of γ ∈ [θ, 90◦].

Face partitioning leads to much lower variation in error over all light directions. Coor-

dinate frame adjustment and face splitting reduces shearing error not accounted for by the

storage factor, which causes a slight increase in the storage factor but an overall decrease in

actual error. The FP ∗+LogP algorithms have much lower error than the FP ∗+P algorithms

due to the better parameterization.

As with a single shadow map, z-partitioning with a uniform parameterization has the least

variation in error over all light directions. Adding warping reduces the error for γ ∈ [θ, 90◦].

The minimum error for ZPk + LogP, which occurs for an overhead directional light, is the

same for any k. With this light position, increasing the number z-partitions has no effect

on the parameterization. This is not the case for uniform and perspective parameterizations.
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Figure 5.36 shows that for other light positions, increasing k produces drastic reductions in

error that then trail off. The benefit of warping is also reduced. For comparison, the error for

FP + Log and FPcs + LogP are also shown in Figure 5.36. A small rise in FPcs + LogP can

be seen at γ = θ where a new face partition appears and is split. We have shown the error

for the ZPk algorithms with k = 5 and k = 7 because these are the maximum number of

shadow maps required for the FP and FPc algorithms and the FPcs algorithm, respectively.

As the number of z-partitions increases, the error begins to approach that of FP + LogP. On

average, however, the number of shadow maps used by FP, and FPc is only 3.6, and for FPcs

the average number is only 3.8.

The statistics reported in Table 5.4 show scene-independent maximum perspective aliasing

error over all light directions. To get an idea of how well this correlates with the actual aliasing

error in the image for a real scene we uniformly sampled the hemisphere of light directions

above the scene and created a histogram of the error in the image. Figure 5.37 shows the

cumulative distribution of the error. The value at a point x on the curve is the fraction

of pixels with error less than x. The distribution of error depends on the positions of the

surfaces within the view frustum. We see that the single shadow map algorithms tend to have

higher error spread out over a wider range. When the surfaces are far from the eye, as in

the first view shown in Figure 5.37, warping and partitioning of any kind may produce little

benefit over standard shadow maps. In fact, the warping algorithm P produces error that is

significantly worse than a standard shadow map for this view. When the surfaces are closer

to the eye, as in the second view, FPc + LogP can produce significantly less error than other

parameterizations.

5.3.3 Benefits of LogPSMs

In this analysis we have examined three types of LogPSMs: LogP, ZP + LogP, and FP + LogP.

We will now discuss the advantages of each algorithm relative to existing algorithms in terms

of error reduction and the number of shadow maps. Ideally, we want an algorithm that gives

the most error reduction with the fewest number of shadow maps.
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Figure 5.37: Cumulative aliasing error distribution for several algorithms over
randomly sampled light directions. The graphs on the left were generated for the views on
the right. The area of the projected texel was used for the error metric. The actual benefit of
warping and partitioning methods depends on the location and orientation of surfaces within
the view frustum.

LogP. The LogP algorithm provides the greatest error reductions of any technique with the

fewest shadow maps (only 1), but only for a limited range of light positions. For high fe/ne

ratios, the maximum error of LogP is significantly lower than any other single shadow map

warping scheme. For light directions nearly perpendicular to the view direction, a ZP scheme

requires a large number partitions to approach the same levels of error. The LogP algorithm

is most useful applications where the light direction does not approach the view direction (e.g.

shadows from the sun around mid-day in a driving simulator). But over all light positions,

LogP shares the same high maximum error as other single shadow map algorithms.
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ZP + LogP. The high error of LogP for γ < θ can be reduced dramatically with a few

z-partitions. As the number of z-partitions is increased, however, the relative benefit of

ZP + LogP versus ZP or ZP + P decreases. Thus ZP + LogP is best for applications that can

only afford to render 2–4 shadow maps. Though FP + LogP can deliver lower error using an

average number of shadow maps in the same range, ZP + LogP is much simpler to implement.

FP + LogP. Compared to other algorithms using the same number of shadow maps, FP + LogP

produces the least error over all light directions. FP + LogP has lower error than a ZP scheme

using the same maximum number of shadow of maps (5 or 7 depending on whether face split-

ting is used), but the error is not dramatically lower. The advantage of LogP is somewhat

more significant if we compare to a ZP scheme with the same average number of shadow maps

(3.6–3.8). The real advantage of FP + LogP over the ZP algorithms is with omnidirectional

point lights. Omnidirectional lights require multiple shadow maps to cover all light direc-

tions, e.g. a cube map. Adding z-partitioning to each cube map face leads to an explosion

in the number of shadow maps. However, FP + LogP requires no more shadow maps for

omnidirectional point lights than it does for directional lights.

5.3.4 Limitations of LogPSMs

LogPSMs inherit some of the limitations of other sample redistribution techniques. Warping

creates a non-uniform distribution of depth values, which can make it more difficult to select

a suitable constant bias. This is less of an issue for slope scaled bias. Warping also tends to

increase the instability of texture coordinate derivative calculations on surfaces nearly par-

allel to the light (some noise can be seen in Figure 5.32). Filtering can also become more

complicated due to warping because the filter kernel must take into account the distortion in-

troduced by warping. Handling the shearing artifacts created by face partitioning requires up

to 2 extra shadow maps and added complexity. Face partitioning also uses a variable number

of shadow maps, which can require more implementation overhead. Most importantly, loga-

rithmic rasterization is not available on current GPUs. It can be simulated with a fragment

program, but it is considerably slower than linear rasterization because the required depth

writes disable important GPU optimizations.
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Figure 5.38: Light angle relative to side face. For the light overhead φl = θ. For the
light behind φl = 90◦ − θ.

5.3.5 Lowest error for perspective warping: z-partitioning for faces or frus-

tum?

We now consider how to obtain the lowest error on current hardware without logarithmic

rasterization. We consider combinations of perspective warping, face partitioning, and z-

partitioning. Face partitioning extends the benefits of warping to all light directions. To

get further error reductions, z-partitioning must be applied to the faces. z-partitioning can

also be applied directly to the view frustum without using face partitioning. Which approach

gives the greatest error reduction for the least number of shadow maps? To analyze the effects

of each type of partitioning on aliasing error we consider two light directions relative to the

viewer: light overhead (γ = 90◦), and light behind (has the same error as γ = 0◦).

Because z-partitioning splits the view frustum into subfrusta, we will use the same equa-

tions for base error distribution that we used in Section 5.2 where we used a light image plane

oriented perpendicular to the light direction. We also we moved the cosφl and We = 2 tan θ

terms into M̃side
t . To convert from error quantities in t on side faces to the error into terms

of the t direction for frusta we multiply by cosφl/(2 tan θ). The base storage factor S can

be converted by multiplying by the same factor. After multiplying S by cosφl/(2 tan θ), the

result differs from S on faces by a factor of cosφl cos2 θ. Because we have explicitly computed

S for all the parameterizations, we will perform the conversion using this factor. From Figure
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5.38 we can see that the cosφl term relative to the face becomes cos θ and cos(90◦−θ) = sin(θ)

for the light overhead and behind, respectively.

Light overhead. With the light overhead, only one face is visible to the light. Converting

from face error values we get:

Sover = Sside cos3 θ. (5.79)

Applying this equation to Sside
un,k (Equation 5.55) we obtain the base storage factor for ZP with

k partitions and no warping:

Sover
ZP = k(fe/ne)1/k

(
(fe/ne)1/k − 1

)

2 tan θ
. (5.80)

Likewise, from Sside
p,k (Equation 5.56) we can compute the base storage factor for z-partitioning

with perspective warping:

Sover
ZP+P = k

(
(fe/ne)1/k − 1

)

2 tan θ
. (5.81)

For this light position, FP + ZP + P gives the exact same results as ZP + P:

Sover
FP+ZP+P = Sover

ZP+P. (5.82)

For a logarithmic perspective parameterization, the storage factor can be computed from Sside
lp

(Equation 5.57):

Sover
LogP = Sover

FP+LogP =
log(fe/ne)

2 tan θ
.

This provides a baseline for the comparisons.

Light behind. Figure 5.39 shows the view frustum as seen from a light behind the viewer.

A ZP scheme cannot use warping because the view frustum is square. A critical resolution

shadow map will have the same texel spacing as the image. Therefore the storage factor is
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Figure 5.39: View frustum as seen by the light behind the viewer. The width of the
near and far planes are proportional to ne and fe, respectively. (c = tan θ).

simply the ratio of the area covered by the shadow map to the area covered by the image:

Sbehind
ZP+P = Sbehind

ZP =
(2 tan θfe)2

(2 tan θne)2
= (fe/ne)2 with k = 1

= k(fe/ne)2/k with k ≥ 1. (5.83)

If we add face partitioning, we can use warping. We use a shadow map for each of the four

side faces and the near face. The base storage factor for end faces is 1. The conversion from

face error values for the light behind is given by:

Sbehind = 4Sside sin θ cos2 θ + 1. (5.84)

Applying this equation to Sside
p,k we get:

Sbehind
FP+ZP+P = 2k((fe/ne)1/k − 1) + 1. (5.85)

The storage factor for FP + LogP is similar:

Sbehind
FP+LogP = 2 log(fe/ne) + 1. (5.86)

Figure 5.40 shows ZP, ZP + P, and FP + ZP + P for a varying number of shadow maps.

Even ZP without warping does better than FP + ZP + P in the overhead case. Since we

must use a fixed number of z-partitions over all light directions in order to avoid popping,

the FP + ZP + P scheme gets only one z-partitioning for every four shadow maps. For large
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Figure 5.40: Storage factor for varying number of shadow maps. The storage
factor is shown for the light overhead and behind the viewer for various combinations of z-
partitioning (ZP), face partitioning (FP), and perspective warping (P). The storage factor
for a single shadow map with a logarithmic perspective parameterization LogP is shown as a
baseline. (View frustum parameters: fe/ne = 1000 and θ = 30◦)

values of (fe/ne) we have:

Sover
ZP ∼ k(fe/ne)2/k (5.87)

Sover
FP+ZP+P ∼ k(fe/ne)4/k, (5.88)

where k is the number of shadow maps. The storage factor decreases more rapidly for ZP

than for FP + ZP + P as the number of shadow maps increases.

With the light behind, the error for ZP schemes decreases rapidly and then begins to grow

slowly. This growth is caused by the significant amount of overlap of the shadow maps that

occurs with this light direction. In fact, as k →∞, Sbehind
ZP diverges to ∞. The FP + ZP + P

scheme has very little overlap and as the number of shadow maps increases, it eventually has

lower error than the ZP schemes and converges to the same error as Sbehind
FP+LogP. Figure 5.41

shows where the cross over occurs between the two schemes.

Based on our analysis, z-partitioning with warping (ZP + P) is the best scheme to use for

rendering shadows with a low number of shadow maps in scenes with a high depth range. Most

of the benefit comes from the z-partitioning. Over all light directions, the maximum error is
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Figure 5.41: Lowest error for light behind. This graph shows the parameter values for
which the z-partitioning (ZP, ZP + P) schemes and face partitioning (FP + ZP + P) yield the
lowest error. z-partitioning is the best scheme for high depth range with few shadow maps
(blue region).

not affected much by the warping because it cannot be used in the high error configurations

where the light direction is aligned with the view vector. However, warping does reduce the

average maximum error. The effect of warping is diminished with an increased number of

partitions because the depth ratio of each partition decreases.

We have analyzed only two light directions. Closed form expressions for the error in the

general case are difficult to formulate because of the complex operation of fitting a warping

frustum with varying parameters to an arbitrarily oriented view frustum. Figure 5.42 shows

the maximum storage factor over all light directions computed by a dense sampling of light

directions on the hemisphere. For all combinations of warping, partitioning, and number of

partitions, we see that the worst case S is within a factor of 2–3 times of that which we

computed analytically for the light behind case.

5.3.6 Approximating logarithmic warping with z-partitioning

The analysis in this chapter can be used to determine how many partitions are needed in order

to reduce the maximum error of z-partitioning relative to a LogPSM to within a specified

amount. Suppose we want the error of ZPk to be within a factor of ε of the error of FP + LogP.

The ratio of the errors will change with varying light position. To be conservative we will

compare the maximum errors over all light directions from both algorithms . Closed forms
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Figure 5.42: Storage factor over all light directions. The maximum storage factor
over all light directions is compared to storage factor for the light behind the viewer. (View
frustum parameters: fe/ne = 1000 and θ = 30◦)

for the maximum error are tedious to derive. However, we can use the equations we derived

earlier for a light behind the view frustum because the maximum error over all light directions

is a constant multiple of the error for the light behind (numerical experiments show that over

the range of fe/ne ∈ [101, 105] the difference between the error over all directions and error

for the light behind is a factor of 2 for ZPk, 1 for FP + LogP, 1.5 for FPc + LogP, and 1.7 for

FPcs + LogP). Combining Equations 5.83 and 5.86 we get:

ε =
Sbehind

ZP

Sbehind
FP+LogP

=
k(fe/ne)2/k

2 log(fe/ne) + 1
. (5.89)

Sbehind
FPc+LogP and Sbehind

FPcs+LogP are equivalent to Sbehind
FP+LogP.

Figure 5.43 shows the relative error ε for several values of fe/ne and k. As we saw before,

the error curves do not converge, but rather they reach a local minimum and then grow slowly.

Figure 5.44 shows the minimum k and ε for the typical range of fe/ne values. We note that

over this range with a light behind, z-partitioning alone gets no closer than about a factor

of 2 from the error of a LogPSM. To determine the number of partitions needed to obtain

an ε greater than this minimum value we solve Equation 5.89 for k and obtain the following
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analytic solution:

k = − 2 log(fe/ne)

W−1

(
2 log(fe/ne)
ε+2 log(fe/ne)

) (5.90)

where W is the Lambert-W function (also called product log) (Corless et al., 1996). W−1 is

the branch of W that produces real values that are less than −1. The W−1 function is not

typically included in standard libraries. It can be computed using a series expansion and/or an

iterative algorithm. However, a routine to accurately compute W−1 is not necessary. Because

we are only interested in integer values of k and the possible range of k values for typical

fe/ne ratios is not especially large, it is feasible to just iterate over successive values of k,

stopping when ε falls below a specified threshold or starts to increase.

5.4 Summary

In this chapter we have analyzed various combinations of warping and partitioning. We have

shown that LogPSMs provide error bounds over all light directions which are the same a

near optimal parameterization. We have proposed several ways to improve shadow maps,

including the use of a pseudo-near plane, an improved warping parameter shaping function,

and a pseudo-γ parameter for single shadow map LogPSMs. We have performed extensive

comparisons between the various algorithms to highlight the benefits of LogPSMs and have

provided guidelines for obtaining low error shadow maps when a logarithmic perspective

parameterization is not available. In the next chapter, we will look at several issues and

tradeoffs that arise when implementing these kinds of shadow map algorithms.
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CHAPTER 6

Implementation notes

This chapter discusses a number of issues related to the implementation of shadow maps on

graphics hardware. We start with an overview of shadow mapping using projective texture

mapping. We briefly discuss various alternatives for implementing shadow map algorithms

that use multiple partitions. We describe issues related to fitting a light frustum to a par-

tition, dynamic texture allocation for the shadow maps, accelerating shadow map rendering

with partition culling, and selecting the appropriate shadow map to query while rendering the

image. We also describe the fragment program that we used to simulate logarithmic rasteri-

zation. The experimental results and images in this thesis were obtained with this simulator.

We also provide code for the grid shader used throughout this thesis, since we have found

this to be a useful debugging/visualization tool.

6.1 Shadow mapping using projective texture mapping

Shadow mapping was first implemented using projective texture mapping on graphics hard-

ware by Segal et al. (1992). The main idea is to use a projective matrix to compute texture

coordinates from object vertices, which are then used to perform the shadow map query. The

texture coordinates can be computed in a vertex program by multiplying the world space

vertex coordinate by the matrix Ml, which is the concatenation of the light’s view matrix Vl

and projection matrix Pl used to render the shadow map. The homogeneous 3D texture co-

ordinates computed at the vertices are linearly interpolated over the primitives. The texture

coordinates are then used to query the shadow map. The texture look-up into the shadow

map typically performs the division by the homogeneous coordinate to convert to Euclidean

3D coordinates automatically. Some GPUs also have a texturing mode that automatically



performs the comparison between the resulting texture z coordinate and the depth stored in

the shadow map, returning either 0 or 1 to indicate the result of the comparison. GPUs with

hardware PCF filtering can return a result in the range [0, 1]. The result of the shadow map

lookup can then be used to modulate the lighting on the surface.

6.1.1 Modifications for LogPSMs

LogPSMs are built on top of projective texture mapping. The perspective part of the logarith-

mic perspective parameterization is handled as just described. The logarithmic part requires

two modifications. First, the shadow map is rendered using logarithmic rasterization. Later

in this chapter we discuss how we simulate logarithmic rasterization with a fragment program.

The next chapter describes how to extend existing hardware to handle logarithmic rasteriza-

tion. Second, when rendering the image we perform the homogeneous divide on the texture

coordinates manually and then apply the logarithmic transformation in Equation 5.43 to the

y coordinate to get the final texture coordinates for the shadow map query.

6.2 Handling multiple shadow maps

Partitioning techniques result in multiple shadow maps that cover the scene. There exist

many possibilities for rendering an image using multiple shadow maps. The image can be

rendered with multiple passes using one shadow map at a time, with a single pass using all

shadow maps at once, or with a combination of multiple passes each using multiple shadow

maps. Each method has its own advantages and disadvantages. The best approach depends

on the application and the graphics hardware used.

Multipass rendering. The most straightforward multipass approach is to accumulate the

shadows in the final image by alternating between rendering a shadow map and rendering to

the image from the eye’s view using the shadow map. The first image pass can be rendered

as normal. Subsequent passes, however, must be careful to modify only the regions covered

by the current shadow map. Possibilities for restricting rendering to these regions include

user clip planes, the stencil buffer, or the fragment kill instruction. Rendering the scene
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multiple times can incur significant overhead, especially for complex scenes where the vertex

transformation load is high. This cost can be reduced by culling objects that do not lie in

the partition of the current shadow map as discussed later in Section 6.5, but this comes at

the cost of increased implementation complexity.

Another possibility is to used deferred shadowing. In this approach, the first pass is

generated as before, except that the eye-space depth of each pixel is stored in a texture.

Subsequent passes render a single screen-sized quad instead of the scene. The eye-space

depth texture is used to compute the fragment location in world space and perform the

shadow map query. The main disadvantage of this approach is that texture coordinates and

other interpolated quantities, as well as screen space derivatives (useful for filtering), have

to either be computed manually, which can be significantly more expensive, or precomputed

and stored in additional textures, which requires additional memory and bandwidth. Thus

deferred shadowing trades vertex transformation load for higher storage, bandwidth, and

fragment shader costs. For more details on deferred shadowing see (Giegl & Wimmer, 2007a;

Giegl & Wimmer, 2007b).

Single pass rendering. Single pass rendering has several advantages over multipass ren-

dering. It avoids the redundant computation of multipass rendering, and it also has access to

hardware interpolators and derivatives that are not available to deferred shadowing. Single

pass rendering also has several disadvantages. First, all the shadow maps have to be stored

in memory. Shadow maps tend to be large and can quickly exhaust memory resources. Sec-

ond, the fragment shader incurs extra cost in determining which shadow map to query. The

texture coordinates for each shadow map can be interpolated in hardware, but the number of

available interpolators is generally quite limited. When there are not enough interpolators,

the texture coordinates must be computed in the fragment program, which also incurs greater

cost.

Our current implementation of LogPSMs uses a single pass approach. The basic algorithm

proceeds as follows:

1. Compute partitions. The partitions may consist of the entire view frustum (for a single
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shadow map algorithm), z-partitioned subfrusta, or face partitions.

2. Compute the parameterizations for the shadow maps corresponding to each partition.

This step involves fitting a light frustum to the partition and computing its correspond-

ing matrix Ml.

3. Allocate texture resolution for each shadow map based on the maximum error of each

partition.

4. Render the shadow maps.

5. Render the image.

Multiple passes with multiple shadow maps. Rendering multiple passes with several

shadow maps at a time can help alleviate the problem of too few interpolators without incur-

ring as much of the overhead of multipass rendering. However, this approach also incurs the

implementation complexities of both single pass and multipass approaches.

6.3 Fitting a light frustum to a partition.

The light frustum is determined by the light matrix Ml. To maximize the use of the shadow

map’s spatial and depth resolution, the light frustum should be fit as tightly as possible to

its corresponding partition. The shadow map need only include the visible portions of the

scene. Therefore we compute a bounding polyhedron for each shadow map representing the

intersection of its partition with the view frustum. For a single shadow map, the polyhedron

is the view frustum itself. For z-partitioning schemes the polyhedron is a subfrustum of

the view frustum. For face partitioning the polyhedron can be formed by clipping the view

frustum polyhedron with planes passing through the light and each edge of the face. Tighter

polyhedra may be obtained by intersecting with the scene bounds and performing further

analysis to determine which parts of the scene are visible (Brabec et al., 2002b).

The shadow map only needs to store the depth of occluders within the view frustum.

For occluders outside the view frustum, any depth value will work so long as it is less than

the depths of the occluded surfaces. Therefore the far and near planes of the light frustum
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Figure 6.1: Post-perspective parameterization of frustum faces. (Top) With the
light pl behind the eye pe we parameterize the front face. The red points along the line contain
potential occluders and must be included in the shadow map. (Middle) In post-perspective
space the frustum becomes a unit cube, the eye goes to −∞ and the light wraps around ∞.
The front face is now a back face. (Bottom) After applying the light’s perspective transform,
p′′l is at −∞ and the projection becomes orthographic. The inverted depth ordering can be
corrected by leaving the light at −∞ and scaling by −1 along the view direction.

can be fit tightly to the polyhedron bounding the visible geometry. Occlusion information for

occluders lying between the light and the near plane of the light frustum can be captured using

depth clamping. If depth clamping is not available, the near plane of the light frustum must

be set to include all potential occluders. When the light itself lies inside the view frustum,

surfaces between the light and the near plane of the light frustum will not be shadowed.

Therefore, the near plane should be chosen close enough to minimize the unshadowed region,

but far enough away to preserve depth resolution. Unclamped floating point depth buffers,

such as those supported by the recent NV depth buffer float extension, can eliminate the

unshadowed region, but the near plane must still be chosen carefully in order obtain sufficient

depth resolution.

6.3.1 Fitting face partitions in post-perspective space

For face partitioning we can use a perspective warped cube map algorithm (Kozlov, 2004) to

handle the uniform parameterization on end faces and the perspective portion of a logarithmic

parameterization on side faces. The main idea is to parameterize the faces of the view frustum

in the post-perspective space of the camera. First, the light l is transformed to l′ by the camera

matrix Mc. Under this transformation, the view frustum is mapped to the unit cube. Second,
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a projection matrix for the light Pl is fit to each back face of the unit cube with the light

frustum’s near plane oriented parallel to the face. Pl is a simple orthographic projection

if l′ is a directional light (homogeneous coordinate l′w is 0) or an off-centered perspective

projection if l′ is a point light. If l′w is negative, the depth order relative to the light becomes

inverted. To restore the proper depth order, the row of Pl corresponding to the z-axis should

be scaled by −1 (see Figure 6.1). The inversion occurs whenever the face selection criterion

in Equation 4.15 selects the front faces, i.e. ẑe · (l− e) > 0. Thus parameterizing back faces

in post-perspective space always selects the appropriate faces. The partition polyhedra can

be computed by taking the convex hull of the back faces of the unit cube and the light and

intersecting them with the unit cube. The final matrix used to render each shadow map

includes the camera matrix, Ml = PlMc.

When using face splitting or coordinate frame adjustment to handle shearing, we have

found it easier to work in light space rather than the post-perspective space of the camera.

6.4 Dynamic allocation of texture resolution.

The available texture resolution can be distributed so as to balance the maximum error

between partitions and shadow map directions as described in Section 4.4.1. To do so we

need we need to compute Rs and Rt (Equation 4.5). For a directional light, the only term

in δb that varies is de, because nl/dl → 1 and cosφl is constant. Because δl is nondecreasing

for uniform, perspective, and logarithmic perspective parameterizations and de is monotonic,

the error distribution is monotonic over each face of the view frustum. This means that we

can compute Rs and Rt by evaluating δl/δb only at the vertices of the view frustum faces and

taking the maximum.

For a point light, computing the maximum of δl/δb over a face can be more involved.

Evaluating the error at the point on each face that is closest to the light is an inexpensive

approximation that is still fairly accurate. As a point light approaches a face, the resolution

allocated to the face should drop to zero. However, the uniform, perspective, and logarithmic

perspective parameterizations are not able to concentrate resolution locally near the light.

Thus high error near the light leads to high resolution allocated across the whole face, which
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takes resolution from the shadow maps for other partitions. The parabolic spacing functions

discussed in Section 5.1.4.1 should be able to handle this situation better. When the point

light stays within the view frustum, more pleasing results are obtained by leaving out the

cosφl term in the error calculations.

Current GPUs drivers are not necessarily optimized to handle the scenario of a texture

changing resolution with each frame. For the experimental results presented in this paper we

layout the shadow maps in a single fixed-sized texture atlas large enough to accommodate

the changing shadow map dimensions.

It can sometimes be useful to favor the allocation of texture resolution in one direction

more than another. This can be done by modifying Equation 4.41:

rs =

√
(1− α)
α

Rs
Rt
σT , rt =

√
α

(1− α)
Rt
Rs
σT , (6.1)

where α ∈ [0, 1] controls how much the resolution allocation is biased towards the t direction.

A value of 0.5 balances equally between both directions.

6.5 Partition culling

Partitioning techniques can require multiple render passes, both for the shadow maps and the

image, depending on the implementation. Each render pass typically involves only a single

partition. In order to maximize the rendering performance for each pass, objects should

only be rendered if they actually lie within the active partition. We call this partition culling.

Partition culling can be accomplished by testing an object against the planes that contain the

light and the partition silhouette edges using straightforward extensions of the existing view

frustum culling techniques typically employed in graphics applications. As with view frustum

culling, large objects can be decomposed into small sub-objects, and the entire scene can

be arranged into a bounding volume hierarchy. With sufficiently fine culling granularity, the

number of objects that overlap multiple partitions will be relatively low compared to the total

number of objects, and most objects will only be rendered once. Thus with partition culling,

the extra vertex transformation load can be significantly reduced. For simple scenes, partition
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culling is of only small benefit and may not be worth the overhead, but for geometrically

complex scenes this can be an important optimization.

Testing an object against each partition individually can involve redundant computations

because the partition planes are often shared between adjacent partitions. Therefore, it can

be more efficient to perform partition culling for all partitions at once. This can be done, for

example, by arranging the partition planes into a balanced BSP tree.

GPUs that support DirectX 10 features can render to multiple render targets in a single

pass. The main advantage of this is that vertex data need be transferred to the GPU only

once. However, if the vertex data already resides on the GPU, this does little to reduce the

overhead of multipass rendering because the vertex transformation load remains the same.

So partition culling can still be an important optimization here as well.

6.6 Shadow map selection during image rendering

When rendering with multiple shadow maps in a single pass, we must determine which shadow

map to query for each fragment and compute an appropriate set of texture coordinates. We

will first discuss generally the issues surrounding shadow map and texture coordinate selection

and then look at approaches for specific partitioning schemes.

On current GPUs the shadow maps are typically accessed in a fragment program using

a texture lookup function that takes as arguments a texture sampler and a set of texture

coordinates. The texture sampler is usually associated with an opaque pseudo-register which

can be neither read nor written. The texture coordinate can be stored in a general register.

Ideally, the texture coordinates for each shadow map should be interpolated. The number

of interpolators, however, is usually quite limited. If there are not enough interpolators,

texture coordinates have to be computed in the fragment program. One way to do this is

by multiplying the world space coordinate of the fragment by the appropriate transformation

matrix.

The most general straightforward way to store the data for multiple shadow maps would

be in an array accessed by partition index. The programming model for fragment programs,

however, has limitations on dynamic indexing of arrays. Samplers and interpolators cannot
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be indexed dynamically. Older GPUs do not support any dynamic array indexing at all.

Alternatives to dynamic array indexing include masked sums, conditionals, and dependent

texture fetches. The masked sum approach uses a weighted sum of all the input data, where

the weights are 0 for all partitions except for the desired partition, which is 1. The weights

can be stored as a mask in the multiple channels of a vector data type. Suppose that we use

hardware interpolation for the texture coordinates (denoted TEX0-3) of a shadow map with

4 partitions. We can select the proper set of coordinates using a 4 channel mask as follows:

float4 partitionMask = computePartitionMask();

float4 texCoord = partitionMask.x * TEX0 +

partitionMask.y * TEX1 +

partitionMask.z * TEX2 +

partitionMask.w * TEX3;

Masks for more than 4 partitions can be split across multiple variables, i.e. mask0 3, mask4 7,

etc. The masking approach usually cannot be used for selecting a texture sampler because

mathematical operations are not allowed on these objects. Instead, we can use conditionals:

sampler2D sampler;

if( partitionIndex < 2 )

{

if( partitionIndex < 1 )

sampler = partitionSamplers[0];

else

sampler = partitionSamplers[1];

}

else

{

if( partitionIndex < 3 )

sampler = partitionSamplers[2];

else

sampler = partitionSamplers[3];
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}

The conditionals are arranged in a tree so that with dynamic branching only log(k) tests

have to be performed, where k is the number of partitions. For a small k, masked sums may

actually be faster because there is typically a performance penalty associated with a dynamic

branch. On older GPUs conditionals are implemented with predicated instructions. Both

sides of the conditional are executed so all k tests are performed. True dynamic indexing

on older GPUs can be implemented with a texture fetch. Partition data can be placed in

a texture and accessed as an array using the partition index as a texture coordinate. This

approach has several limitations as well. Again, because of semantic restrictions, textures

can not be used to store texture samplers. Textures can be used for matrices for computing

texture coordinates, but the multiple texture fetches that can be required to retrieve all the

entries have an associated performance penalty.

6.6.1 z-partitioning

The partition index for z-partitioning can be computed efficiently with a comparison and a

dot product (Engel, 2007):

float4 zGreaterThanN = float4(n1_4 < eyePos.z);

float partitionIndex = dot(zGreaterThanN, 1.0f);

The constant n1 4 contains the near plane distances of the first four z-partitions (n1, n2, n3, n4).

This method is easily extended to handle more partitions. A partition mask can be computed

similarly:

float4 partitionMask = float4((n1_4 < eyePos.z) & (eyePos.z <= f1_4));

where f1 4 contains the far plane distances of the first four z-partitions.

6.6.2 Face partitioning

For face partitioning we compute a partition index or mask using a cube map with a single

texel in each face. In the texel of each face we store the index or mask of the partition

corresponding to that face. We perform the cube map lookup in the camera’s post-perspective
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space using the method described by Kozlov (2004). We do not store the shadow maps directly

in a cube map because cube maps do not currently support non-square textures of differing

resolution or the necessary logarithmic transformation. We also store a flag in each face of

the cube map indicating whether the face corresponds to a side face or an end face. This flag

is needed in order to determine whether or not to apply the logarithmic transformation.

If side face splitting is used to handle shearing, we store the partition indices for both

halves of the face in the cube map. The second index remains unused for unsplit faces. To

choose the proper index we test the world space position of the fragment against the splitting

plane for the face. We adopt the convention that the first index corresponds to the negative

side of the plane. For faces without a split we use the plane equation (0, 0, 0,−1) which is

guaranteed to always give a negative result. To save computation in the fragment program

we compute the distance of vertex positions from the split planes in a vertex program and

interpolate. A code fragment using this technique is shown in Figure 6.2.

6.7 Logarithmic rasterization.

The LogPSM parameterization requires logarithmic rasterization. Logarithmic rasterization

causes planar primitives to become curved. The logarithmic transformation could be com-

puted on vertices in a vertex program, but because current GPUs only support projective

transformations, the primitives would still be decomposed into planar triangles when ren-

dered. When the fe/ne ratio is large, a very fine tessellation of the scene would be required

in order to avoid error with this approach. We currently simulate logarithmic rasterization

by performing brute-force rasterization in a fragment program. We first render the scene

using Ml with the viewport set to the range [0, 0]× [1, 1] and readback clipped triangles using

the OpenGL feedback mechanism. This gives us the triangles transformed by Fp(u, v). We

compute the edge equations and depth interpolation equation for each triangle. We then

transform the vertices of each triangle by the logarithmic part of Flp and render a bounding

quad. We use the fragment program in Figure 6.3 to invert the logarithmic portion of Flp,t

on each fragment position. We then compare this position against the linear triangle edge

equations and discard fragments that fall outside the triangle. The equation for the inverse
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float computeFacePartition(
uniform float4 lPosPP, // location of light (post-perspective)
uniform float3 invD0, // 1/(d0,d1,d2) dn is distance from lPos to
uniform float3 invD1, // 1/(d3,d4,d5) cube face n
varying float4 posPP, // location of fragment (post-perspective)
varying float4 splitDist,// distance to split planes for side faces
samplerCUBE faceTex;

{
// Compute texture coordinate for cube map lookup.
// From "PSM Care and Feeding" [Kozlov04]
float3 cubeTexCoord;
float3 v = posPP.xyz / posPP.w;
float3 p = lPosPP;
float3 dir = v - p;
float3 maxTmp = max(dir * invD0, dir * invD1);
float a = max( max(maxTmp.x, maxTmp.y), maxTmp.z);
cubeTexCoord = p + dir/a;

// compute partition from data stored in cube map face
float4 faceData = texCUBE( faceTex, cubeTexCoord );
float4 mask0_3 = unpack_4ubyte(faceData.r);
float4 faceIndex = faceData.g;
return faceIndex.g

+ dot( float4(splitDist > 0), mask0_3 ) * 4;
}

Figure 6.2: CG code used for face partitioning. The side faces are assigned indices
0–3. If a face n is split, its other half is assigned index n + 4. The end faces are assigned
indices 6 and 7. The cube texture stores the index of each face and a mask corresponding to
the face. All channels of the mask are 0 for end faces. Note that light positions at infinity
in post-perspective space must be approximated as a distant point light for Kozlov’s cube map
texture lookup code (Kozlov, 2004) to work properly.

of the logarithmic portion Flp,t(v) is given by:

v = d0e
d1t + d2 (6.2)

d0 =
1

c1(y1 − y0)

d1 =
1
c0

d2 = − c1y0 + c2

c1(y1 − y0)
.
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void logRasterize(
varying float3 stzPos, // 2D shadow map position (s,t) + depth (z)
varying float3 edgeEq0,
varying float3 edgeEq1,
varying float3 edgeEq2,
varying float3 depthEq,
uniform float d[3],
out float depth : DEPTH )

{
// invert transform
float3 p = stzPos;
p.y = d[0]*exp( d[1]*p.y )+d[2];

// test against edges
if( dot( p, edgeEq0 ) < 0 ||

dot( p, edgeEq1 ) < 0 ||
dot( p, edgeEq2 ) < 0 )

discard;

// compute depth
depth = dot(p, depthEq);

}

Figure 6.3: CG code used to simulate logarithmic rasterization in a fragment
program.

With our unoptimized simulator we observe frame rates of 2–3 frames per second on a PC

with a GeForce 6800GT graphics card and a 2.8 GHz processor. Most of that time is spent in

computing the bounding quads. GPUs that support geometry shaders can probably be used

to create the bounding quads for the warped triangles much more efficiently, but we have not

yet implemented this. Even with a geometry shader, however, logarithmic rasterization would

likely be considerably slower than linear shadow map rasterization. GPUs have a number of

optimizations which are disabled when a fragment program outputs depth information, such

as z-culling and higher rasterization rates for depth-only rendering.

In the following chapter we show how logarithmic rasterization can be implemented on

graphics hardware in order to render LogPSMs at rates comparable to other algorithms based

on linear rasterization.
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Figure 6.4: Procedural grid shader. The heavy lines represent texel boundaries in texture
space. A point m lies on a grid line if the fractional components of its s and t coordinates are
less than the grid line width w.

6.8 Procedural grid shader

Throughout this thesis we have used a grid to better visualize the projection of the shadow

map texels onto the scene. We compute this grid procedurally in a fragment shader. The

shader works by determining if a given point lies on a grid line in texture space. This is done

by comparing the fractional components of the texture coordinate to the width of the grid

line, as shown in Figure 6.4. When the texture is projected onto the scene, however, the width

of the grid lines can become stretched or compressed. Therefore we scale the grid line width

by the length in screen space of a unit step in s or t (calculated using derivatives). Code for

the shader is provided in Figure 6.5.
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float3 gridShader (
varying float3 baseColor,
varying float2 texCoord,
uniform float gridLineWidth,
uniform float3 gridColor)

{
float2 scaledTC = texCoord/spacing;
float2 dS(ddx(scaledTC.s),ddy(scaledTC.s));
float2 dT(ddx(scaledTC.t),ddy(scaledTC.t));
float2 m = frac( scaledTC );
if( m.s < gridLineWidth*length(dS) ||

m.t < gridLineWidth*length(dT) )
{
return gridColor;

}
else
return baseColor;

}

Figure 6.5: CG code for procedural grid shader.
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CHAPTER 7

Logarithmic rasterization hardware

The importance of shadows has led vendors to introduce hardware features and optimizations

targeted specifically at reducing the cost of shadow rendering (NVIDIA Corp., 2004). In

this chapter we present additional hardware enhancements to support high-quality rendering

of shadow maps. Shadow maps capitalize on the enormous fill rates of current GPUs. For

example, the GeForce 8800 generates 192 samples per clock for z-only rendering (NVIDIA

Corp., 2006). At the GPU’s clock rate of 575 MHz, this amounts to an astounding fill

rate of 110 billion pixels per second. These fill rates are obtained by using rasterization in

conjunction with depth buffer compression. Rasterization makes heavy use of parallelism and

exploits a high degree of coherence both in computation and memory access. Compression

provides more efficient use of available memory bandwidth. Current GPUs also have high-

speed memory interfaces. Nevertheless, memory bandwidth can still be a bottleneck for high

resolution shadow maps. High resolution shadow maps also have high storage costs and

increase contention for limited GPU memory.

LogPSMs can help alleviate these problems. For the same error as competing shadow

map algorithms, LogPSMs require less resolution. Unfortunately, the logarithmic rasteriza-

tion required by LogPSMs is not supported on current GPUs. In this chapter, we discuss

how to implement logarithmic rasterization through incremental modifications to graphics

hardware. The primary advantage of our proposed enhancements is that they capitalize on

existing hardware designs. Our low-cost enhancements enable significant improvement over

existing shadow map algorithms without compromising previous capabilities. Logarithmic

rasterization requires a modest amount of additional computational power and can produce

significant bandwidth and storage savings. Therefore these enhancements align well with
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Figure 7.1: Graphics pipeline. We propose modifications to the rasterizer and depth
compression units. Note that both compression units perform decompression as well.

current hardware trends of decreasing cost for on-chip computation and a relatively high cost

for off-chip bandwidth.

We adopt a somewhat simpler notation in this chapter. We will use (x, y) ∈ [0, 1]2 to

denote coordinates after applying the perspective transformation. y′ denotes the y coordinate

after applying the logarithmic transformation F :

y′ = F (y) = c0 log(c1y + 1) (7.1)

c0 =
−1

log(f/n)
, c1 =

1− (f/n)
(f/n)

,

where n and f are the near and far plane distances used for the perspective transformation.

The perspective part of the LogPSM parameterization can be handled using the standard

graphics pipeline. The logarithmic part, however, requires logarithmic rasterization, which

causes planar primitives to become curved. To rasterize these curved primitives at the same

rate as planar primitives we modify just two fixed-function hardware components – the raster-

izer and the depth compression. After briefly reviewing rasterization based on edge equations,

we describe our modifications.
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7.1 Rasterizing with edge equations

The rasterizer performs two main functions. First, it determines which pixels are covered

by a primitive. Second, it linearly interpolates attributes from the vertices to the covered

pixels. Coverage determination on modern, high-performance graphics hardware is typically

performed using implicit edge equations of the general form:

E(x, y) = Ax+By + C. (7.2)

The sign of E at a point (x, y) indicates on which side of the edge the point lies. Points

inside a convex primitive lie on the positive side of all its edges. One of the main advantages

of rasterizing with edge equations is that the evaluation of E over many pixels is easy to

parallelize. Current GPUs evaluate edge equations for a tile of samples (e.g. a 4× 4 block) in

parallel. To make the most efficient use of hardware, GPUs perform a hierarchical traversal

of the image. A coarse stage identifies tiles that are at least partially covered by a primitive.

The tiles are traversed in a manner that is favorable for paged memories and maximizes cache

coherence (Pineda, 1988; McCormack & McNamara, 2000; McCool et al., 2001). A fine stage

then computes coverage for individual samples within a tile. Attributes for the pixels, such

as color, depth, and texture coordinates, can be linearly interpolated from the vertices using

an equation of the same form as Equation 7.2. Olano and Greer (1997) show how to compute

the coefficients for these equations. The coefficients are computed in the setup phase of the

rasterizer.

The edge equations are typically computed with fixed point precision. The conversion of

vertex positions from floating point to fixed point can be thought of as “snapping” the vertices

to discrete coordinates on a uniform grid. With discrete coordinates the edge equations can

be evaluated at grid locations exactly by using a sufficient number of bits to avoid truncation.

This provides a water-tight rasterization without the double-hit or missing pixels that can

result from numerical robustness problems.
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Figure 7.2: Transformation pipeline for LogPSMs. (Left) A world space view of a line
(blue) and a side face of the view frustum (black). (Middle) After the perspective transforma-
tion the side face has been become a square. (Right) The logarithmic transformation causes
the line to become curved. The uniform sample grid (red) in the log warped space corresponds
to a nonuniform rectilinear grid in the linear post-perspective space.

7.2 Logarithmic rasterization

Logarithmic rasterization can be thought of as rasterizing curved primitives on a uniform grid,

or as rasterizing linear primitives on a grid that is nonuniform in only one dimension (see

Figure 7.2). We adopt the latter view to facilitate the explanation of how linear rasterization

can be extended to support logarithmic rasterization. Our approach is to snap the nonuniform

grid samples to positions on an underlying uniform grid that is fine enough to distinctly

represent the samples. The edge equations can then be evaluated exactly using fixed-point

arithmetic to provide water-tight rasterization.

We will now describe our modified edge equations, how to compute coverage with them, the

amount of precision required to evaluate them, and a generalized polygon offset for handling

self-shadowing artifacts.

7.2.1 Modified edge and interpolation equations

The edge equations for logarithmic rasterization can be computed by transforming y′ in the

warped space back to y in the linear space using the inverse of Equation 7.1 and composing
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the result with Equation 7.2:

E′(x, y′) = E(x,G(y′)) = Ax+BG(y′) + C (7.3)

G(y′) = F−1(y′) =
e(y′/c0) − 1

c1
=

(f/n)(1− (f/n)−y
′
)

(f/n)− 1
. (7.4)

The interpolation equations are handled similarly. Note that the coefficients of these equations

are based on the vertex positions in linear space resulting from the perspective part of the

LogPSM parameterization. Rasterization algorithms that initialize tile traversal using vertex

positions can apply Equation 7.1 to the y coordinate of the vertices during triangle setup to

get a starting point.

Several algorithms used during rasterization rely on the fact that quantities computed

at tile corners provide conservative bounds for those quantities over the whole tile. For

example, the values of the edge equations at the tile corners are used to steer tile traversal.

Conservative depth bounds obtained from tile corners are used for culling optimizations such

as the hierarchical z-buffer or z-min and z-max culling. The warped edge and interpolation

equations remain monotonic so values at tile corners still provide conservative bounds. This

means that algorithms that rely on this property can be used for logarithmic rasterization

without modification.

7.2.2 Coverage determination

Coverage for a tile of samples could be computed brute-force by an array of edge equation

evaluators for each sample in the tile. We conserve die area, however, by exploiting the

linearity of E′ in the x dimension to compute the edge equations incrementally:

E′(x0 + ∆x, y′) = E′(x0, y
′) +A∆x. (7.5)

We first perform a full evaluation of the edge equations in parallel for the samples in the

first column of the tile. We then compute the values for the remaining columns in parallel

by simply adding a constant to the first column. These calculations can be pipelined, so

that a sustained rate of one 4 × 4 tile of samples can be computed per clock. A few cycles
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of downstream buffering allow the coverage bits for each tile to be aggregated together and

presented broadside to downstream units. The extra latency incurred by this approach is

small compared to the depth of current GPU pipelines. Because the logarithmic rasterization

mode is expected to be used only for shadow maps, issues regarding sample placement for

multisample antialiasing are not a concern.

Several other possibilities exist for evaluating the edge equations. One possibility is to

also compute the G(y′) term incrementally along the first column. After a full evaluation of

G(y′) for the first row, y′ = y′0, the values on subsequent rows k could be computed in parallel

with a multiply-add operation:

G(y′0 + k∆y′) = G(y′0)Pk +Qk (7.6)

Pk = (f/n)−k∆y′ , Qk = (f/n)
(1− (f/n)−k∆y′)

(f/n)− 1
. (7.7)

The constants Pk and Qk depend only on the parameterization and can be used for all prim-

itives in the shadow map. Computing G(y′) for the first column incrementally is somewhat

more involved because it requires an extra step and creates extra latency. Another possi-

bility is to precompute the values of G(y′) at each scanline and store them in a table. The

table could possibly be constructed using floating point hardware already available for ver-

tex/fragment processors. The evaluation of the edge equations for the first column in a tile

would then involve only a table look-up and a dot product. Because tiles are traversed in a

predefined order, table entries used by a tile could be prefetched. The table would have to be

quite large for a high resolution buffer. The size could be reduced somewhat by precomputing

G(y′) only for the first row of a tile and computing the other rows incrementally.

7.2.3 Precision requirements

To evaluate the edge equations exactly we require fixed-point G(y′) values. We must use at

least enough fixed-point precision that any two subsequent values of G(y′) and G(y′ + ∆y′)

can be represented distinctly. In other words, the least significant bit should represent a

quantity no larger than ∆Gmin = miny′ |G(y′) − G(y′ + ∆y′)|. Given that the range of G is
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[0, 1], the minimum number of bits required is:

bmin = dlog2(1/∆Gmin)e. (7.8)

Because ∆Gmin depends on the far to near plane depth ratio (f/n), using a fixed number

of bits will place constraints on the range of depth ratios that can be rendered accurately.

Suppose we desire to rasterize a 2bx × 2by buffer. The distance between uniform samples in

y′ ∈ [0, 1] is ∆y′ = 1/2by = 2−by . From Figure 7.2b we can see that the resulting nonuniform

spacing in y = G(y′) is minimal at y′ = 1. Thus ∆Gmin = G(1)−G(1− 2−by). Plugging this

value into Equation 7.8 yields an expression that can be bounded fairly tightly for (f/n) ∈

[1, 105] as:

bmin < by + 0.8 log2(f/n). (7.9)

The vertices used to setup the edge equations are limited to the 24 bit precision of a 32-bit

floating point mantissa. Therefore we choose to represent fixed-point y coordinates and G(y′)

values with 24 bits. Plugging bmin = 24 in Equation 7.9 we get an expression for the largest

(f/n) that can be handled accurately:

(f/n)max = 2
(24−by)

0.8 . (7.10)

For a 4K × 4K buffer by = 12 and (f/n)max ≈ 3.3 × 104. This depth ratio is quite large.

For view frusta with even higher depth ratios, z-partitioning can be used to reduce the depth

ratios of the individual pieces. Unlike existing shadow map methods, this z-partitioning is not

for controlling aliasing error, but to deal with precision limitations. Fortunately, few splits if

any are required. For example, a single LogPSM can accurately render shadows on receivers

from 1m to 33, 000m away. A single split squares this range to nearly 1, 000, 000m.

Standard rasterization typically renders to a sub-pixel grid for increased accuracy. Adding

sub-pixel resolution in y effectively increases by, which would impose further limitations on

(f/n)max. However, this may not be necessary because our approach already provides sub-
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pixel resolution in y. ∆G increases linearly from ∆Gmin at y = 1 to (f/n)∆Gmin at y = 0.

When the depth ratio is equal to (f/n)max, the regions near the viewer enjoy an ample amount

of sub-pixel resolution. While less sub-pixel resolution is available for the distant regions, this

may not be a problem because the distant regions tend to be less important. For low depth

ratios, sub-pixel resolution is available for both the near and distant regions.

7.2.4 Attribute interpolation

Attribute interpolation uses equations of the same form as E′. The interpolation equations

can be evaluated in the same way as the edge equations. The only difference is that they need

not be evaluated exactly, so floating point or lower precision fixed-point representations may

be used. We modify the depth interpolation slightly to handle polygon offset as described in

the following section.

7.2.5 Generalized polygon offset

Polygon offset is often used to generate a depth bias used to prevent false self-shadowing. The

standard offset is s ·mz+u, where s is a scale factor, mz is the depth slope of the polygon, and

u is a constant. The OpenGL Specification (Segal & Akeley, 2006) defines an approximation

of the depth slope mz as:

mz = max
(∣∣∣∣
∂z

∂x

∣∣∣∣ ,
∣∣∣∣
∂z

∂y

∣∣∣∣
)
. (7.11)

The polygon offset for linear rasterization can be computed in setup and folded into the

depth interpolation equation. For logarithmic rasterization we compute the value of the

warped space |∂z∂y′| in linear space using the chain rule:

∣∣∣∣
∂z

∂y′

∣∣∣∣ =
∣∣∣∣
∂z

∂y

∣∣∣∣
∣∣∣∣
∂y

∂y′

∣∣∣∣ =
∣∣∣∣
∂z

∂y

∣∣∣∣
∣∣∣∣
c1y + 1
c0c1

∣∣∣∣ . (7.12)

The |(c1y + 1)/(c0c1)| term decreases with y. Unlike linear rasterization where mz is either

|∂z/∂x| or |∂z/∂y| over the entire polygon, mz with logarithmic rasterization may switch from

|∂z/∂y′| to |∂z/∂x|. One way to handle this is to use two depth interpolation equations, each

combined with the polygon offset for |∂z/∂x| and |∂z/∂y′|, respectively. The max operator
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Figure 7.3: Depth buffer compression algorithm for logarithmic rasterization. (a)
First-order differentials are computed in y and x by subtracting the depth value of the neighbor
immediately above or to the left, respectively. (b) This is followed by a variation of anchor
encoding. For the pink region, the value at the anchor position a0 and its ∆y offset form a
line used as a predictor with d as a correction term. In the green region a1, ∆x, and ∆y values
form a predicting plane. A different ∆y is used for encoding each row. (c) Bit allocation for
each quantity.

could then be performed per pixel. Another possibility is to split the polygon along the scan

line where the switch occurs. Each polygon half is then rasterized with the appropriate depth

interpolation equation. The simplest approach, however, is to compute mz0, the value of mz

at the lower y-bound of the polygon y0, and mz1, the value of mz at the upper bound y1, and

use a single equation mz(y) that varies linearly between them:

mz(y) =
mz0(y1− y) +mz1(y − y0)

(y1 − y0)
(7.13)

The offset computed using this equation can be folded into a single depth interpolation equa-

tion. When no switch in the maximum depth slope direction occurs on the polygon, Equation

7.13 gives the correct result. When there is a switch, it provides a conservative approxima-

tion. The maximum relative difference in the approximation is largest when y1− y0 = 1 with

a value of about 1, but for shorter extents the difference is far less (see Appendix B for an

analysis of the error of this approximation). Note that for paths through our test scenes a

switch actually occurs for less than 1% of the polygons. For those polygons with a switch,

the mean of the maximum relative difference between our approximation the actual value is

less than .001.
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7.3 Depth buffer compression

Depth buffer compression is an important optimization for reducing the memory bandwidth

requirements of rasterization. We refer the reader to Hasselgren and Möller (2006) for an

excellent survey and detailed explanations of existing depth compression schemes. Many of

the current algorithms exploit the planarity of a tile’s depth values to achieve fast, lossless

compression. Because logarithmic rasterization causes planar primitives to become curved,

many of the existing algorithms fail to achieve good compression ratios.

We compose two existing first-order schemes to produce a second order compression

scheme that is better able to capture the curvature in the y direction. The algorithm is

summarized in Figure 7.3. First, we store the base value in the upper-left corner of the tile

at full 24-bit precision. We compute first order differentials for the remaining values (DeRoo

et al., 2002). For the green 4 × 3 block on the right, the differentials should be fairly small

since the edge equations are linear in x. We then use a variation of an anchor encoding

scheme (Van Dyke & Margeson, 2005). Offsets are computed with respect to anchor values.

Together the offsets and anchor values form a line or plane that is used to predict values for

the rest of the locations. Correction terms for the predicted values are also computed. If the

values of the anchors, offsets, and correction terms all fit within their allotted bit budget, the

tile can be compressed. Otherwise, it is stored uncompressed. Decompression simply reverses

the process. Our scheme uses a 128-bit allocation to achieve lossless compression with a 3 : 1

compression ratio.

7.3.1 Results

We evaluated our depth compression scheme in a way similar to that of Hasselgren and

Akenine-Möller (2006). We captured data for camera paths through three models of varying

complexity using 4 different resolutions. We also used some of the same compression algo-

rithms (Van Dyke & Margeson, 2005; DeRoo et al., 2002; Ornstein et al., 2005; Hasselgren

& Akenine-Möller, 2006). We could not test the depth offset algorithm because this requires

the z-min and z-max values, which are not supplied by our simulator. For each frame we split

the completely rendered depth buffer into 4× 4 tiles (excluding tiles untouched during scene
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Figure 7.4: Depth compression results. (Top row) Benchmark scenes: Town (58K tri-
angles), Robots (95K triangles), and Power Plant (1.7M triangles) The full Power Plant has
13M triangles, but we left out internal pipes. (Bottom row) The two graphs show the aver-
age depth compression for several algorithms for shadow maps rendered with both linear and
logarithmic rasterization. Our depth compression algorithm provides reasonable compression
for both.

rasterization) and ran them through the compression algorithms. A more detailed simulation

would capture the bandwidth of partially completed tiles. The results shown in Figure 7.4

are intended to indicate the relative performance of the algorithms. A visual comparison of

our algorithm with a linear depth compression scheme is shown in Figure 7.5.

On depth buffers rendered with linear rasterization, our compression scheme is on par with

some of the other algorithms. For logarithmic rasterization the other algorithms fare poorly.

Our compression scheme is still able to achieve fairly good compression ratios, especially at

higher resolutions, although the compression ratios are somewhat lower than those for linear

rasterization.

7.4 Feasibility

The following list is a summary of the modifications required to support logarithmic rasteri-

zation:
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Figure 7.5: Depth compression visualization. The depth buffers on the top row are
compressed using the linear depth compression algorithm of Hasselgren and Akenine-Möller
(2006). Our algorithm was used on the bottom row. The images are tinted red for compressed
tiles and blue for tiles where the sample depths are either all 1 because they were untouched
during rasterization or all 0 due to depth clamping. (Left) Both algorithms perform well on
a standard shadow map using linear rasterization. (Middle) The linear depth compression
fails completely for a logarithmic warped shadow map at lower resolutions (512 × 512) due
to the curvature of the primitives induced by the warping. (Right) At higher resolutions
(1024× 1024), the linear depth compression starts to work on tiles far from the viewer where
there is less curvature.

• An increase in bit width in the rasterizer to support the 24-bit fixed-point y coordinates.

Details about the bit widths in current GPUs are not generally available. A GPU

supporting 4K × 4K buffers with 4 bits of subpixel precision would have to support at

least 16 bit fixed-point coordinates.

• Evaluators to compute the exponentials in the edge and interpolation equations.

• Application of the logarithmic parameterization to y coordinates in setup.

• Computation of generalized polygon offset in setup.
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• A new depth compression unit.

The rest of the graphics pipeline remains the same.

We believe that these enhancements are feasible because they are incremental and leverage

existing hardware designs. The modifications are isolated to only two fixed-function elements

of the GPU pipeline. The changes to the rasterizer are incremental. The new depth com-

pression unit using our algorithm would have complexity comparable to other algorithms.

If desired, the depth compression unit could sit alongside the existing one used for linear

rasterization. Because our algorithm also provides comparable compression ratios for linear

rasterization, our depth compression unit could feasibly replace the existing unit, thereby

enabling a single unit to handle both linear and logarithmic rasterization.

Our enhancements require only a modest increase in on-chip calculations but deliver sig-

nificant reductions in bandwidth and storage requirements. Using increased computation to

save bandwidth aligns well with current hardware trends because for the same cost, com-

putational power continues to increase rapidly while bandwidth lags considerably behind.

Therefore, these enhancements provide a good balance between bandwidth reduction and

implementation cost.
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CHAPTER 8

Conclusion

The goal of this thesis has been to generate high-quality, hard-edged shadows for real-time

applications. Shadow maps are one of the most attractive algorithms for achieving this goal

because of their flexibility and good performance characteristics, but they suffer from aliasing

artifacts. Our focus has been on reducing aliasing error by using a better sampling distribu-

tion to render the shadow map. Ideally, we would like to sample exactly where the shadow

map queries are generated. But this is difficult to do with real-time performance because the

irregular data structures that such an approach requires are difficult to implement efficiently

on current hardware. Instead we have proposed a new warping technique, logarithmic per-

spective shadow maps (LogPSMs), which is more suitable for current hardware designs. The

logarithmic rasterization required to support this technique can be implemented through rel-

atively minor enhancements to existing hardware, and can achieve performance comparable

to the real-time shadow map algorithms used today, but with less error.

Like existing warping methods, LogPSMs use a perspective projection to tightly fit the

extents of a shadow map to the view frustum or its side faces. This causes the spacing

between shadow map samples to increase quadratically along the view direction. In general,

however, the spacing should increase linearly to match the spacing between shadow map

queries, thus avoiding high error. LogPSMs correct the quadratic spacing by applying a

logarithmic transformation.

We have conducted an in-depth analysis of aliasing error to determine just how much

improvement LogPSMs can give over existing methods. The focus of our analysis has been to

minimize the maximum error at any point in the view frustum without requiring information

about the scene. Since the perspective factor of aliasing error does not depend on the orien-



tation of the surfaces in the scene, we minimize this factor. We have introduced the storage

factor as a metric for perspective aliasing error which takes into account the maximum error

along both shadow map dimensions. Minimizing the storage factor yields a parameterization

that is near optimal. Unfortunately, this parameterization is quite complex and therefore

impractical. We have shown however, that LogPSMs have the same maximum error as this

parameterization. This is not the case with existing warping algorithms. This means that

the error of LogPSMs is closer to the lower bound.

8.1 Benefits of logarithmic perspective shadow maps

One of the primary benefits of LogPSMs is that they give a more uniform error distribution

throughout the view frustum. Other methods may actually have lower error than a LogPSM

for different parts of the scene. For instance, a standard shadow map will typically have less

error than a LogPSM for regions at the far plane, but this comes at the expense of much

higher error at the near plane.

In general, a LogPSM algorithm has lower maximum error than the corresponding algo-

rithm based on perspective warping. We have shown that the storage factor for perspective

warping is O(f/n), where f and n are the near and far plane distances. In contrast, the

LogPSM parameterization has a storage factor of O(log(f/n)). Therefore, LogPSMs give the

greatest improvement over other methods in scenes with high f/n.

The LogPSM parameterization can be used to warp a single shadow map or it can be

can be combined with a partitioning technique such as face partitioning or z-partitioning. A

single shadow map LogPSM can provide the greatest error reduction of any existing scene-

independent warping technique, but only for a subset of all light directions. The lowest error

is achieved when the light direction is perpendicular to the view direction. The highest error

occurs when the light is behind or in front of the viewer, in which case warping cannot be

used. To obtain low error for these light directions, a partitioning scheme must be used. z-

partitioning reduces the error for the light behind case, but does not affect the error when the

light direction is perpendicular to the view direction. As the number of z-partitions increases

the relative difference between LogPSM warping and perspective warping decreases. For a
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large number of partitions, warping provides little benefit over a uniform parameterization.

Therefore, the LogPSM parameterization gives the greatest relative advantage over a uniform

or perspective parameterization when only a few z-partitions are used.

To get the benefit of warping over all light directions, a face partitioning scheme must

be used. This increases the number of shadow maps that need to be rendered. We show

that for the same number of shadow maps, z-partitioning actually gives lower error than face

partitioning combined with perspective warping (unless z-partitioning is also used on the

faces, but then face partitioning is better only with a large number of shadow maps, and the

relative difference is quite small.) This is not the case with LogPSMs. With face partitioning,

LogPSMs always have a lower maximum error over all light directions than z-partitioning.

But with a sufficient number of partitions, a z-partitioning scheme can get quite close to the

same error as a LogPSM. Section 5.3.6 describes how a LogPSM can be approximated with z-

partitioning. For a directional light, 8–16 z-partitions begins to be competitive with LogPSMs,

even for the worst case light directions. For an omnidirectional point light, LogPSMs have

more of an advantage over z-partitioning because z-partitioning would have to be applied to

multiple faces. In the end, the benefit of LogPSMs comes down to the relative difference in

cost between rendering a few shadow maps with logarithmic rasterization and rendering a

larger number of shadow maps with z-partitioning.

8.2 Limitations

LogPSMs share the same limitations of other scene-independent methods. Because these

methods have no knowledge of surface orientation, they cannot handle the projection factor.

Therefore they cannot guarantee that aliasing is completely removed from an image. The

shadow map must already be several times larger than the image in order to eliminate per-

spective aliasing. To reduce projection aliasing to acceptable levels on most surfaces, the

shadow map must typically be several times larger still, but this may still not be enough

for all surfaces. Many of these samples are wasted on parts of the scene that are not even

visible to the light. Compared to an irregular z-buffer that requires no more shadow samples

than the number of pixels in the image, scene-independent methods can be quite inefficient
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in terms of sample usage.

The LogPSM algorithm that gives the most benefit over all light directions uses face

partitioning. While not overly-complex, face partitioning is not as simple as z-partitioning.

The number of face partitions varies with the light position, but the number of z-partitions

remains constant. Computing the face partitions themselves can require convex polyhedron

intersection and clipping routines. Robust implementations of these routines are nontrivial.

In addition, face partitioning can exhibit bad shearing artifacts. We have presented some

techniques to work around this, but they are not always completely satisfactory, and they

burden the algorithm with additional complexity.

Perhaps the biggest limitation of LogPSMs is that logarithmic rasterization is not avail-

able on current GPUs. It can be simulated either using an adaptive tessellation of the scene

or with brute force rasterization in the fragment program, but both of these approaches add

implementation complexity and can degrade performance significantly. We have shown how

logarithmic rasterization can be implemented with modifications to graphics hardware. Better

algorithms, like the irregular z-buffer, can also be implemented with hardware modifications,

but the changes required for logarithmic rasterization are more incremental. However, loga-

rithmic rasterization is less general than the irregular z-buffer. In fact, we have been unable

to come up with another application for logarithmic rasterization besides shadow render-

ing. Because die area is precious, vendors will prefer more general features over specialized

ones. Shadows are a very important part of real-time applications but whether the savings

in bandwidth and storage that logarithmic rasterization can deliver through LogPSMs will

be sufficient to merit a hardware implementation will depend on economic factors and the

continued popularity of shadow maps.

8.3 Future Work

In this thesis we have investigated combinations of warping with z-partitioning and face par-

titioning. Because of our focus on simpler algorithms with few render passes, we have not

looked extensively at the combination of warping with adaptive partitioning. Some existing

algorithms apply quadtree refinement to a warped shadow map. Giegl and Wimmer (2007a,
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2007b) report improvements by creating a quadtree refinement of an LiSPSM. We have per-

formed some preliminary experiments with combining warping with RMSMs (Lefohn et al.,

2007). We expected to see a drop in the number of partitions required. Surprisingly, the

number of partitions actually went up. The warping shifts samples away from the far end of

the view frustum towards the viewer. This means that the distant areas need to be refined

to a higher level in the quadtree than before, while areas near the viewer do not need to be

refined as much. It seems that because the distant areas cover a larger spatial extent, more

new partitions are required than are saved by warping. But this seems to conflict with the

results of Giegl and Wimmer. It might be that we observe these results because RMSMs

use a much finer granularity (32× 32 resolution shadow maps vs. 2K × 2K resolution). We

would like to conduct a more thorough investigation and provide more theoretical analysis

in order to understand exactly what is happening. Combinations of warping and adaptive

partitioning are of particular interest because these algorithms can handle both perspective

and projective aliasing.

LogPSMs and existing warping algorithms are scene independent. These algorithms as-

sume that the scene geometry can appear anywhere inside the view frustum. However, it

is often the case that large regions of the view frustum are empty. We have shown that a

pseudo-near plane can be used to provide rough information about the expected location of

objects in the scene, which can be used to further optimize the shadow map warping. Cur-

rently we set the pseudo-near plane manually. We would like to investigate algorithms that

set the pseudo-near plane adaptively by computing an approximation of the closest visible

surface in the scene.

In this thesis we have analyzed the various algorithms in terms of maximum error. But

other error metrics are possible. No single algorithm for choosing the warping parameter

will be sufficient for all applications. As mentioned in Chapter 5, we would like to create

a tool that could be used to interactively manipulate z-partition locations and/or warping

parameter shaping curves to select error profiles across the view frustum that are best suited

for a user’s particular needs.

More analysis needs to be done on the hardware modifications we propose for logarithmic
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rasterization. We would like to build a prototype of the system in order to obtain more

detailed performance data.

Log rasterization is part of a larger context of greater generalization for the rasterizer.

A number of important lighting and rendering effects can be implemented with nonlinear

rasterization, such as reflections, refraction, caustics, multi-perspective rendering (Hou et al.,

2006), and omnidirectional shadows (Brabec et al., 2002b). Since we have seen increased

programmability in just about every other part of the GPU in recent years, it would be

interesting to look at the possibility of a programmable rasterizer that could handle these

effects in a more general way.

LogPSMs can provide significant improvements over existing warping algorithms, but more

work remains to be done to provide shadows that are artifact-free. Because the constraints of

real-time graphics remain the same (30-60 frames per second) and display resolutions seem to

increase fairly slowly, we can hope that the ever increasing computational power of graphics

hardware will eventually enable the use of more sophisticated shadowing algorithms with

real-time performance. Until then, high quality shadow generation for real-time applications

remains a challenge and continues to be an area of open research.
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APPENDIX A

Light image plane orientation

Figure A.1 shows a 1D shadow map in simple 2D scene. The domain of the shadow map is

defined over a range [vn, vf ] on the light image plane (line) πl. The points zc, zn, and zf on

a line π correspond to vc, vn, and vf on πl. The mapping of an arbitrary point z on π to a

point v on πl is a 1D projective transformation. In general, a 1D projective mapping from

one line to another can be computed by utilizing the fact that under a projective mapping

the cross ratio of any four corresponding points on the lines is preserved. The cross ratio can

be defined as:

[x1, x2, x3, x4] =
(x1 − x2)(x3 − x4)
(x1 − x4)(x3 − x2)

. (A.1)

Therefore the mapping from z to v can be computed by solving [v, vn, vf , vc] = [z, zn, zf , zc]

for v in terms of z. The point v is mapped to a point t ∈ [0, 1] in the shadow map by a

function F (v). Suppose F (v) is also a projective function. To compute F (v) we can solve the

following equation for t in terms of v:

[t, tn, tf , tc] = [v, vn, vf , vc], (A.2)
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Figure A.1: Varying the orientation of the light image plane. (Left) Point light.
(Right) Directional light (point light at infinity).

167



with tn = 0 and tf = 1. But what should tc be? We observe that the cross ratio [t, 0, 1,±∞]

is the identity function. If we choose tc = ±∞, the left hand side of Equation A.2 becomes t.

Thus F (v) is simply the cross ratio [v, vn, vf , vc]:

F (v) = [v, vn, vf , vc]

=
(v − vn)(vf − vc)
(v − vc)(vf − vn)

. (A.3)

Choosing tc = −∞ preserves the relative orientation of vc, vn, and vf under F . From this we

can also see that if vc < vn < vf , then the cross ratio [v, vn, vf , vc] can be thought of as the

function that maps vn to 0, vf to 1 and vc to −∞.

The composite mapping from z to v and v to t is also a projective transformation given

by t = [z, zn, zf , zc]. Now consider a light image plane π′l with a different orientation than

πl. So long as v′c, v
′
n, and v′f are chosen to lie on the lines plvc, plvn, and plvf respectively,

then zc, zn, and zf remain unchanged and the overall mapping from z to t in the shadow map

does not change. This allows us to pick a convenient light plane orientation and location for

analyzing aliasing error and another orientation when fitting the light frustum to the scene

without changing the overall warping of the shadow map. The same is true of 2D shadow

maps in 3D.

When pl lies on the line at infinity, the lines plvc, plvn, and plvf become parallel.

The relative distance between corresponding points on πl and π′l differ by a constant and

[v, vn, vf , vc] = [v′, v′n, v
′
f , v
′
c]. In other words, F and F ′ are the same. This means that for

a light at ∞, changing the orientation of the light image plane effects neither the overall

warping nor the mapping from the light image plane to the shadow map.

In Equation A.3, vn and vf are fixed by the extents of the scene to be included in the

shadow map. The projective warping is determined by the location of vc alone. vc is the

center of projection of the 1D projective transformation that controls the warping. When
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Figure A.2: Affine mapping to shadow map. With vc = −∞, the mapping F from the
light image plane to the shadow map becomes affine. (Left) For a point light, the overall warp-
ing function can be non-affine. (Right) For a directional light, the overall warping function
must also be affine.

vc = ±∞, F (v) becomes:

F (v) = [v, vn, vf ,±∞]

=
v − vn
vf − vn

. (A.4)

This affine transformation is the same as the uniform parameterization used by a standard

shadow map. Chong (2003) formulates shadow map warping in terms of the angle of the light

image plane of a standard shadow map with respect to the light’s view direction. As shown

in Figure A.2, an infinite vc can produce a finite zc when the light is not at infinity, and thus

a nonuniform projective mapping from z to t. However, when the light is at infinity, zc is

also infinite. In this case the overall transformation from z to t becomes affine and does not

induce a nonuniform warping. Therefore, it is more general to use vc to control the warping

rather than image plane angle.
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APPENDIX B

Analysis of generalized polygon offset

approximation

We analyze the maximum error of our generalized polygon offset approximation using Figure

B.1. The functions f1 and f2 are the depth slopes |∂z/∂x| and |∂z/∂y|, respectively. f1 has

a constant value c and f2 varies linearly from a to b. f3 is our approximation from Equation

7.13 with mz0 = a and mz1 = c:

f1(y) = c (B.1)

f2(y) =
a(y1 − y) + b(y − y0)

(y1 − y0)
(B.2)

f3(y) =
a(y1 − y) + c(y − y0)

(y1 − y0)
. (B.3)

The maximum difference d between the standard polygon offset, max(f1, f2), and our approx-

imation, f3, occurs at yi where f1 = f2:

d = f3(yi)− c =
(a− c)(c− b)

a− b (B.4)

yi =
y0(c− b) + y1(a− c)

a− b . (B.5)
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Figure B.1: Polygon offset approximation.
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The maximum relative difference maxc(d/c) occurs when c =
√
ab. Plugging this value we

get:

max
c

(
d

c

)
=
√
a−
√
b

√
a+
√
b
. (B.6)

The maximum relative difference is largest when the difference between a and b is largest,

which occurs when y0 = 0 and y1 = 1. Plugging these values into Equation 7.12 we get:

a =
∣∣∣∣
∂z

∂y

∣∣∣∣
∣∣∣∣

1
c0c1

∣∣∣∣ =
∣∣∣∣
∂z

∂y

∣∣∣∣
f/n log(f/n)
f/n− 1

(B.7)

b =
∣∣∣∣
∂z

∂y

∣∣∣∣
∣∣∣∣
c1 + 1
c0c1

∣∣∣∣ =
∣∣∣∣
∂z

∂y

∣∣∣∣
log(f/n)
f/n− 1

(B.8)

max
c

(
d

c

)
=

√
f/n− 1√
f/n+ 1

. (B.9)

Large values of f/n give the maximum possible relative difference, which approaches 1.
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Hasselgren, J. & Akenine-Möller, T. (2006). Efficient depth buffer compression. In Proceedings
of Graphics Hardware 2006 (pp. 103–110).: Eurographics Association.

Hou, X., Wei, L.-Y., Shum, H.-Y., & Guo, B. (2006). Real-time multi-perspective rendering
on graphics hardware. In Proceedings of the Eurographics Symposium on Rendering
2006 (pp. 93–102).: Eurographics Association.

Hourcade, J. C. & Nicolas, A. (1985). Algorithms for antialiased cast shadows. Computers
and Graphics, 9(3), 259–265.

Hu, H. H., Gooch, A. A., Thompson, W. B., Smits, B. E., Rieser, J. J., & Shirley, P. (2000).
Visual cues for imminent object contact in realistic virtual environment. In Proceedings
of the Conference on Visualization ’00 (pp. 179–185). Los Alamitos, CA, USA: IEEE
Computer Society Press.

173



Hubona, G. S., Wheeler, P. N., Shirah, G. W., & Brandt, M. (1999). The relative contributions
of stereo, lighting, and background scenes in promoting 3d depth visualization. ACM
Transactions on Computer-Human Interaction, 6(3), 214–242.

Johnson, D. E. & Cohen, E. (2004). Unified distance queries in a heterogeneous model
environment. In ASME DETC.

Johnson, G., Mark, W., & Burns, C. (2004). The irregular z-buffer and its application
to shadow mapping. In The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-04-09.

Johnson, G. S., Lee, J., Burns, C. A., & Mark, W. R. (2005). The irregular z-buffer: Hardware
acceleration for irregular data structures. ACM Trans. Graph., 24(4), 1462–1482.

Kersten, D., Knill, D., Mamassian, P., & Bülthoff, I. (1996). Illusory motion from shadows.
Nature, 379, 31.

Kersten, D., Mamassian, P., & Knill, D. (1997). Moving cast shadows induce apparent motion
in depth. Perception, 26, 171–192.

Kozlov, S. (2004). Perspective shadow maps: Care and feeding. In R. Fernando (Ed.), GPU
Gems (pp. 214–244). Addison-Wesley.

Lefohn, A. E., Sengupta, S., & Owens, J. D. (2007). Resolution matched shadow maps. ACM
Transactions on Graphics, 26(4), 20:1–20:17.

Lloyd, B., Tuft, D., Yoon, S., & Manocha, D. (2006). Warping and partitioning for low error
shadow maps. In Proceedings of the Eurographics Symposium on Rendering 2006 (pp.
215–226).: Eurographics Association.

Martin, T. & Tan, T.-S. (2004). Anti-aliasing and continuity with trapezoidal shadow maps. In
Proceedings of the Eurographics Symposium on Rendering (pp. 153–160).: Eurographics
Association.

McCool, M. (2000). Shadow volume reconstruction from depth maps. ACM Trans. on Graph-
ics, 19(1), 1–26.

McCool, M., Wales, C., & Moule, K. (2001). Incremental and hierarchical hilbert order edge
equation using polygon rasteization. Eurographics Workshop on Graphics Hardware,
(pp. 65–72).

McCormack, J. & McNamara, R. (2000). Tiled polygon traversal using half-plane edge func-
tions. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graph-
ics hardware (pp. 15–21).

NVIDIA Corp. (2004). UltraShadowII: Accelerated shadow calculations. Technical Brief.

NVIDIA Corp. (2006). NVIDIA GeForce 8800 GPU architecture overview. Technical Brief.

Olano, M. & Greer, T. (1997). Triangle scan conversion using 2d homogeneous coordinates.
Eurographics Workshop on Graphics Hardware, (pp. 89–95).

174



Ornstein, D., Peled, G., Sperber, Z., Cohen, E., & Malka, G. (2005). Z-compression mecha-
nism. US Patent 6,580,427.

Pineda, J. (1988). A parallel algorithm for polygon rasterization. In J. Dill (Ed.), Computer
Graphics (SIGGRAPH ’88 Proceedings), volume 22 (pp. 17–20).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical Recipes
in C: The Art of Scientific Computing. New York, NY, USA: Cambridge University
Press.

Reeves, W., Salesin, D., & Cook, R. (1987). Rendering antialiased shadows with depth maps.
In Computer Graphics (ACM SIGGRAPH ’87 Proceedings), volume 21 (pp. 283–291).

Scherzer, D., Jeschke, S., & Wimmer, M. (2007). Pixel-correct shadow maps with temporal
reprojection and shadow test confidence. In J. Kautz & S. Pattanaik (Eds.), Render-
ing Techniques 2007 (Proceedings Eurographics Symposium on Rendering) (pp. 45–50).:
Eurographics.
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