
Optical Character Recognition on Graphics Hardware 
 

Adrian Ilie 
Department of Computer Science 

University of North Carolina at Chapel Hill 
 
Abstract. 
The study of Artificial Neural Networks (ANNs) is a 
branch of Artificial Intelligence research that tries to 
emulate cognitive processes using computers. An 
example of such a process is optical character 
recognition (OCR). Using well-established models and 
algorithms, OCR can be reduced to simple matrix 
operations, which can be performed using today's 
computers.  
 
However, these algorithms and models usually have 
high computational and/or memory requirements. This 
has led to several implementations of matrix 
operations that take advantage of specific 
characteristic of various hardware configurations in 
order to speed up the algorithms. 
 
This paper presents a new algorithm that takes 
advantage of the features present in today's graphics 
cards in order to perform quickly and cheaply the 
computations required by OCR. We believe that our 
implementation is a viable alternative to classical 
hardware and software implementations because it 
comes at a lower price and provides higher overall 
efficiency by making use of the graphics card, a 
component that is usually idle during OCR. 
 
1. Introduction. 
OCR is the process by which characters are extracted 
from scanned images. The main benefits of this 
transformation are the possibility of searching for 
particular pieces of information and the reduced 
memory space text occupies while conveying 
essentially the same information. 
 
One of the prevalent methods for OCR is to use 
artificial neural networks (ANNs). Traditionally, due 
to their parallel nature, ANNs have been implemented 
either using specialized parallel hardware or 
completely in software. Recent approaches employ 
general-purpose hardware that exhibits some degree of 
parallelism, combined with fine-tuned algorithms that 
take advantage of the special features present in the 
hardware. This paper presents a new approach that 
uses a different type of hardware, a graphics 
processing unit (GPU). 
 
The paper organization is as follows: We first provide 
a short background on ANNs and describe some of the 
most widely-used architectures and algorithms in 
Section 2. In Section 3 we present some of the design 
considerations when using ANNs for OCR and 
describe how the algorithm can be reduced to matrix 

operations. Section 4 provides some basic graphics 
concepts necessary for understanding our 
implementation. Sections 5 and 6 describe the 
implementation of our algorithm: a fast matrix 
multiplication algorithm on GPUs combined with a 
GPU implementation of operations that are less 
efficient if implemented with matrices. Section 7 
analyzes the suitability of our approach for ANNs and 
OCR. The paper is concluded in Section 8. 
 
2. Artificial Neural Networks. 
The anatomy of the human brain has been known for 
more than a century [1]. However, the way 
information is processed is still largely unknown, 
despite the progress in neurophysiology. This section 
describes ANNs, the way computers are used to 
emulate some of the known features of human brains. 
 
2.1. The Formal Neuron Model. 
Of the known features of the human brain, ANNs only 
implement two: parallel processing and the formal 
neuron, a very simple neuron model.  The 
implementation is at a very basic level compared to 
the complexity of the anatomical system it tries to 
emulate. In spite of their limitations, relatively small 
ANNs (1000 neurons with 100 connections per 
neuron, compared to 1011 neurons with 10000 
connections per neuron in a human brain) exhibit 
useful properties found in real brains: learning from 
examples, generalization, associative memory, and 
tolerance to failures of neurons and connections. 
 
The formal neuron model used in most ANNs was 
proposed by McCulloch and Pitts [2]: 

 

 
Figure 1: Real neuron vs. formal neuron. 

axon 

potential synapse 

1 



In the brain, neurons are linked together by synapses 
through which they receive information. A synapse 
consists of one of a neuron's input fibers, its dendrites 
and another neuron's output fiber, or axon. Chemical 
transmitters received through synapses cause a 
neuron's membrane potential to change. If the 
potential exceeds a certain threshold, the neuron is 
activated and sends a nervous influx along its own 
axon. A synapse is characterized by its strength. A 
learning process, as described in [3], consists of 
modifications of a synapse's strength when the two 
neurons that it connects are activated simultaneously. 
 
To emulate this behavior, the formal neuron model has 
binary inputs and outputs. It computes its potential as 
the sum of its inputs xi weighted by the synaptic 
coefficients wi. If the potential exceeds a threshold T, 
the neuron output is +1; otherwise it is -1. Without 
loss of generality, the threshold T is usually modeled 
as a bias of the potential, using an extra input that is 
always equal to 1 and its corresponding weight that is 
equal to –T. This model is powerful enough that 
networks of such neurons can emulate any finite 
Boolean function, provided the synaptic coefficients 
are set properly. 
 
2.2. Network Architectures. 
In ANNs, the topology of the networks is just as 
important as the neurons themselves. There are many 
possible architectures, but in this paper we only 
describe networks such as the one shown in Figure 2, 
called feed-forward networks. 

 
Figure 2: A basic ANN architecture. 

 
The neurons are organized into layers. The input layer 
is formed of neurons that perform no computation, 
only distributing the inputs to the neurons in the next 
layers instead. The output layer is formed of neurons 
whose output is considered the network output. The 
neurons that are neither input nor output units are 
placed in several layers called hidden layers. Their 
role is ultimately to memorize features of the inputs 
through the learning process. 
 

The goal of the learning process is to modify the 
weights of a given architecture’s synapses such that 
the resulting network implements a given Boolean 
function. If the weights are modified iteratively, the 
learning process is called training. If training is done 
to minimize a cost function that measures the error 
between the actual and desired outputs, the process is 
called supervised training. 
 
2.3. The Backpropagation Algorithm. 
One example of supervised learning is the 
backpropagation algorithm [4], which uses gradient 
descent to minimize the cost function. The network 
architecture is similar to the one in Figure 2: one input 
layer at the bottom, one output layer at the top, and 
several hidden layers in between. Connections are 
only allowed from lower layers to higher layers and 
may skip intermediate layers. 
 
In its classic form, the algorithm consists of two steps: 
computing the outputs of all the neurons during the 
forward propagation pass, followed by computing the 
errors and modifying the synaptic weights in the 
backpropagation pass. 
 
The total input, xj, to neuron j is the weighted sum of 
the outputs, yi, of neurons connected to it and 
multiplied by the synaptic weights, wji, of each 
connection: 

∑=
i

jiij wyx     (1) 

The output of each neuron is computed as an 
increasing differentiable non-linear function of its 
input. An example of such a function is the sigmoid: 

( )jxj e
y −+

=
1

1    (2) 

Input vectors are presented to the input layer. The 
states of neurons on the other layers (the hidden layers 
and the output layer) are determined by applying 
equations (1) and (2) layer by layer using the weights 
of the connections from lower layers. 
 
The error is computed as a distance function between 
the outputs, yjc, and the desired outputs, djc: 

( )∑∑ −=
c j

jcjc dyE 2
2
1   (3) 

This function is minimized by gradient descent and its 
partial derivatives with respect to each synaptic weight 
are used to correct the weights. The process is 
repeated for a training set composed of inputs and 
their corresponding outputs. It is beyond the scope of 
this paper to describe the algorithm in detail. The 
interested reader is referred to [4]. The details of our 
implementation are presented in Section 6. 
 
Once a network has been trained, it can be used to 
recognize sets of inputs based on their similarity with 
the internal representations constructed in the training 
process. 
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The most obvious drawback of this method is that the 
error function may have local minima, and finding the 
global minimum is not guaranteed. However, 
experience shows that this situation can be avoided by 
using alternative ways to correct the weights. Also, the 
method requires careful design of the network 
architecture for each task and choosing the output 
functions; otherwise the convergence speed may vary 
by orders of magnitude. Although the model is not an 
anatomically accurate model of the learning process in 
brains, the results obtained in applications show that 
internal representations can be constructed by gradient 
descent in weight space. 
 
3. Optical Character Recognition 
Using Artificial Neural Networks. 
One of the tasks the backpropagation algorithm 
performs very well in is optical character recognition 
(OCR). Some details of implementing OCR using 
ANNs are described in this section. 
 
3.1. Design Considerations for Network 
Architectures Used in OCR. 
The OCR process consists of the following steps: 
• scan the images containing the text; 
• segment the scanned images into tiles containing 

just one character; 
• process each tile to enhance its contrast; 
• scale each processed tile to a predetermined size; 
• apply the recognition to each scaled tile. 
 
The size to which each tile is scaled is determined by 
the size of the input layer. For example, an input layer 
with 64 neurons may correspond to a scaled image tile 
of 8x8 pixels (picture elements), and each pixel's color 
can be converted to a binary input using a threshold 
value. 
 
The size of the output layer is determined by the 
number of symbols that need to be recognized and 
their encoding. For example, if a network has to 
recognize the 10 digits present in decimal numbers 
and the digits are binary encoded, then 4 binary digits 
are sufficient for encoding, and the output layer has 4 
neurons. Another possible encoding is to have 10 
neurons on the output layer, with only one being 
activated for each of the 10 different digits. 
 
Although there are several ANN architectures that can 
be applied to OCR, their design starts with the same 
steps that determine the number of neurons on the 
input and output layers. The main differences are in 
the design of the hidden layers. There are no universal 
rules for designing the hidden layers, just rules of 
thumb derived from experiments. It is beyond the 
scope of this paper to describe the ANN architectures 
used for OCR in more detail. The interested reader is 
referred to [5]. 
 

A possible network architecture for OCR is as follows: 
an input layer with one input for each pixel of the 
input image, two hidden layers for detection and 
recognition of horizontal and vertical features 
respectively, and an output layer. Since the input layer 
is organized as a rectangular grid, it is common 
practice that the hidden layers are also rectangular. 
 
To “encourage” recognition of local features in 
characters, neurons in an inferior layer distribute their 
output only to some part of the neurons in the layer 
above, forming “pyramids” with overlapping bases, as 
shown in 2D in the Figure 3 below. The neurons on 
the output layer are an exception, being connected to 
all the neurons on the hidden layer immediately 
below. This structure is “suggested” in the training 
phase by setting the starting weights accordingly: 
larger values inside the pyramids than outside them.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Pyramidal structure of a feed-forward ANN. 

The thicker connections are stronger. 
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Comparisons between the performances of different 
network architectures in OCR [5,6] have shown that 
more complex architectures can outperform classical 
networks in accuracy while also requiring less 
memory capacity. Due to their complexity, such 
networks have been traditionally implemented in 
specialized parallel hardware consisting of many 
interconnected programmable units. While in this 
paper we concentrate on simple architectures, our 
method is applicable to more complex architectures as 
well. 
 
3.2. Software Implementations. 
Neural networks have been traditionally implemented 
in software using matrices. For example, the weights 
of the connections between two consecutive layers of 
sizes N1 and N2 can be mapped to a N1xN2 matrix.  
 
Some of the operations involved in the 
backpropagation algorithm also map easily to matrix 
operations. Computing the input to a neuron as in 
equation (1) is in fact a dot product, the basic 
operation in matrix multiplication. Computing the 
input to a layer of neurons maps to a matrix product. 
Also, function calls can easily be converted to table 
lookups, which in turn are implemented as vector 
indexing. Other steps in the gradient descent 

3 



minimization similarly map to matrix operations and 
dot products, although the mapping is not 
straightforward. Other training algorithms have similar 
implementations using matrix operations. Most 
implementations available today make extensive use 
of matrix libraries. 
 
The existence of this mapping between ANNs and 
matrices brings about the conjecture that a 
matrix-based implementation would greatly benefit 
from speedups in matrix operations, especially matrix 
multiplications. Speeding up matrix operations would 
be a direct application of the well-known principle 
from computer architecture: making the common case 
fast [12]. This is the reason why, in Section 5, we 
describe a matrix multiplication algorithm 
implemented on graphics hardware that can replace 
other matrix libraries used traditionally in 
implementing ANN algorithms. 
 
Even though generalized matrix multiplication 
(GMM) is the most commonly used operation in 
implementing ANNs, the algorithms involve other 
operations that cannot be easily mapped to GMMs. 
The traditional approach is to take advantage of the 
inherent parallelism in matrix libraries and find a 
mapping from these operations to matrix operations, 
even if the mapping is counterintuitive or 
counterproductive. The other available option is to 
implement these operations separately, without using 
matrices. We think the latter approach is better for an 
implementation on graphics hardware. Section 6 
describes our vision of such an implementation. 
 
4. Some Helpful Graphics Concepts. 
Before we can present the details of the algorithms in 
this paper, we must provide a brief and high-level 
overview of some of the fundamental concepts in 
graphics and their role in our method. For an extensive 
description of these concepts, the interested reader is 
directed to [14,15]. In this section we concentrate on 
presenting the concepts and their implementation 
using OpenGL, a standard graphics API (Application 
Programming Interface). 
 
4.1. The Structure of a GPU. 
In this paper, we use the term GPU to refer to the 
graphics cards commonly present in personal 
computers. Examples of GPUs from different 
manufacturers include nVidia’s GeForce, ATI’s 
Radeon and Matrox’s Parhelia. This subsection 
presents the components of a GPU that we refer to in 
the rest of the paper. 
 
The most important component of a graphics card is 
the graphics processor, a highly-specialized processor 
that executes graphics operations on data sent from the 
CPU (the central processing unit, also known as the 
microprocessor) before sending it to the display. 
  

The other important component of a graphics card is 
the graphics memory. The components we are 
interested in are the frame buffer and the texture 
memory. The frame buffer is a buffer that usually 
contains the final image sent to the screen. It is the 
memory buffer objects are “drawn” into, a process 
called rendering. The contents of the frame buffer can 
also be read back for various purposes. We use the 
read back facility to retrieve the results. The texture 
memory is a part of graphics memory that holds 
images called textures. 
 
Graphics memory can usually be addressed as 
elements in a 2D or 3D coordinate system. For 
example, pixels in the frame buffer and texels (texture 
elements) in a 2D texture are organized into a 2D 
coordinate system upon which all the library calls are 
based. Each pixel has 4 components: three colors (red, 
green and blue) and alpha. While in graphics 
applications the alpha component is used for 
transparency effects, we choose to treat all the 4 
components consistently as a vector of 4 elements. 
 
4.2. The OpenGL Library. 
One of the most widely-used graphics APIs is 
OpenGL. In this subsection, we define the most 
important concepts our algorithms use and present 
some of the corresponding OpenGL calls that 
implement their functionality. 
 
In OpenGL, 3D objects are formed of surfaces 
represented by polygons. A 3D polygon received from 
the CPU is transformed into a 2D polygon suitable for 
display, using a mathematical computation called 
projection. The hardware draws 2D polygons on the 
screen by converting them to groups of pixels, a 
process called rasterization.  
 
A polygon description includes information about its 
vertices: their position, and sometimes their color and 
texture coordinates. The texture coordinates of a 
vertex are the position of the corresponding texel in a 
texture. A texture is usually a 2D image that can alter 
the appearance of polygons. 
 
The process of altering the appearance of polygons 
using textures is called texture mapping. It consists of 
computing the color of a pixel by linearly interpolating 
the coordinates of its corresponding texel. The 
interpolation is based upon the pixel's position with 
respect to the polygon's vertices and their texture 
coordinates. Reading the color information from a 
texture using texture coordinates is called texture 
lookup. If more than one texture is used to compute 
the final color for a polygon, the process is called 
multi-texturing. There are several modes to compute a 
final color from multiple textures. We are interested in 
multiplication, set by the library call glTexEnvf 
(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,
GL_MODULATE). 
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The basic operating mode of OpenGL is copying data 
from a source to a destination. Sources can be constant 
colors, rectangular regions of textures, etc. Instead of 
just overwriting the destination with the source, 
OpenGL provides the blending facility, which allows 
for color blending operations such as weighed 
summation and multiplication. The library call that 
controls blending is glBlendFunc, which takes two 
arguments: the two terms with which the source and 
the destination are multiplied with before being 
summed and stored at the destination. The default 
blending mode is the simple summation of colors, 
glBlendFunc(GL_ONE,GL_ONE), which results 
in the source and destination being multiplied by 1 and 
then added together. 
 
Blending only allows for combinations of the 4 pixel 
components separately. To combine information from 
the 4 color channels, OpenGL uses the color matrix, a 
matrix that is multiplied with the 4 values of a pixel 
before writing to the destination. This makes possible 
operations such as exchanging components and 
weighted summations between them. The color matrix 
is set by the PixelTransfer library function. The 
actual transfer of the resulting color to the frame 
buffer is done either by drawing graphics primitives, 
or by copying pixel regions using glDrawPixels. 
 
As mentioned in the previous subsection, we use the 
read back facility of the frame buffer to read back the 
final results of the computation to main memory. The 
corresponding library function is glReadPixels.  
 
Having described both the theoretical concepts used in 
our algorithms and their implementation counterparts, 
we can now describe the algorithms themselves. 
 
5. Matrix Multiplication on GPUs. 
This section describes the GPU matrix multiplication 
algorithm from [8]. This approach can be used as a 
library for a classic implementation of ANNs, 
backpropagation and ultimately OCR. 
 
5.1. Algorithm Description. 
The authors of [8] describe their work as somewhat 
forward-looking, because the hardware required to 
fully implement the algorithm with high enough 
precision to make it useful in general-purpose 
applications is not yet available. However, available 
graphics hardware is specialized in a manner that 
makes it suitable for certain applications, giving faster 
results than general-purpose CPUs. In particular, 
matrix multiplication is traditionally memory-limited, 
and the availability of a large and fast texture memory 
makes graphics hardware that much more useful. 
 
The algorithm shown in Figure 4 literally “draws” the 
multiplication process on the screen: k parallel 
rectangles (each m x n) are rendered using 
orthographic projection one behind the other, with 
elements of the matrices A and B texture-mapped onto 

each rectangle. Setting the multi-texturing mode to 
“modulate” with glTexEnvf(GL_TEXTURE_ENV, 
GL_TEXTURE_ENV_MODE, GL_MODULATE) 
computes the terms of the dot products of the lines of 
A and columns of B. Setting the blending mode to 
“sum” with glBlendFunc(GL_ONE,GL_ONE) 
results in adding up the terms to form the final result, 
which is then simply read back to main memory with 
glReadPixels.  
 
 

 
Figure 4: Matrix multiplication (from [8]). 

Numbers are mapped to different color intensities, 
shown as different shades of gray. 

 
The algorithm has the following steps: 
• k rectangles of size m x n are to be rendered using 

orthographic projection one behind the other; 
• each line of A and column of B are converted into 

rectangular textures of sizes 1 x m and n x 1, 
respectively (k+k=2k textures); 

• each rectangle is textured with one texture from A 
and one texture from B, using “modulate” as the 
multi-texturing mode; 

• the blending mode is set to “sum”; 
• all the k rectangles are rendered on the screen; 
• the result is read back into main memory. 
 
The computation shown in Figure 4 takes place on one 
of the 4 color channels available on a GPU. Grouping 
the elements of A, B and C into chunks of four 
elements speeds up the algorithm by fully utilizing the 
memory bus and the 4 color combiners of the GPU. 
 
5.2. Algorithm Performance and 
Applications. 
The memory system available to a GPU is 128 
(nVidia) or even 256 (ATI and Matrox) bits wide and 
runs at double data rate, allowing 256 (512) bits to be 
read or written per GPU clock cycle. This results in a 
memory bandwidth of more than 8 GB/sec. The 
memory bus is split into 4 independent 32 (64) bit 
buses that can read or write data concurrently. The 
bandwidth is almost 4 times the memory bandwidth of 
a CPU (2.1 GB/sec for an AMD processor and 1.5 
GB/sec for an Intel processor). Even though CPUs are 
almost 10 times faster than GPUs, in memory-limited 
applications such as matrix multiplication, it is 
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difficult to keep the CPU going at full speed. The 
performance of the algorithm is the same as the 
performance of a standard CPU-based matrix 
multiplication library (ATLAS [11]) in number of 
operations per second. However, it is important to note 
that the GPU operations have 8 bits of precision, while 
the CPU operations have 32 bits. 
 
Unfortunately, most graphics architectures implement 
the accumulation used in the final blending stage by 
doing a frame-buffer read, while CPUs can keep 
results in registers. The authors of [8] show that the 
time taken by an elementary operation is almost 
equivalent to the time it would take for two texture 
reads (for the current elements of A and B), one 
frame-buffer read (for the previous value of the 
current element of C), and one frame-buffer write (for 
the result). This means that, just as in the CPU case, 
the application is bandwidth-limited. An embedded 
frame-buffer that avoids reads and writes (the 
conceptual equivalent of a cache) would dramatically 
improve performance. 
 
The main drawback of the current implementation is 
its limited precision: most GPUs available today only 
have 8 bits of precision in the color buffers. Moreover, 
GPUs use saturation arithmetic, since it makes sense 
that adding intensity to an already saturated color 
(white) should not make it wrap around to black. The 
solution the authors of [8] propose is using 1/k as the 
polygon color. Since polygon color gets multiplied 
into each product, this effectively shifts off the least 
significant k bits of the result. This gives a 
non-saturated but potentially erroneous result because 
the truncated bits might have introduced carries that 
should have been taken into account. Other 
approaches [9,10] are more general and rigorous, 
using range scaling to guarantee that no clamping 
occurs at any point and that the computation takes 
advantage of the full precision available in hardware. 
Also, the graphics hardware market is driven by the 
game industry's demand. Game developers have 
expressed interest in high-precision, even 
floating-point arithmetic for graphics hardware. The 
latest graphics adapters already feature full IEEE 754 
floating-point arithmetic, which makes computational 
applications that much more feasible. 
 
The application the authors of [8] mention for their 
matrix multiply implementation is computing path 
lengths in a graph by raising the graph's adjacency 
matrix to some large power. Using a divide and 
conquer approach to perform fewer matrix multiplies 
and performing all the operations in the graphics 
card's memory makes this implementation one of the 
fastest available. 
 
Evaluating this implementation of GMM (generalized 
matrix multiplication) gave us more than the 
performance numbers. The authors of [8] present good 
ways to expand their research, but fail to mention 
other implications of the conclusion of their paper: 

graphics hardware has some limited programmability 
that can be exploited. One of these implications, 
mentioned in [13], is that programming the graphics 
hardware is very similar to programming in an 
assembly language. OpenGL commands are function 
calls that operate on graphics memory and a few 
internal stacks. While very limited, this capability can 
be used to perform other operations. 
 
6. Backpropagation on GPUs. 
This section presents some of the practical aspects of 
implementing OCR in graphics hardware using the 
backpropagation algorithm for feed-forward ANNs. 
The approach is similar to the one presented in [13] 
for Kohonen maps, but uses a different memory 
organization and implements a different algorithm 
using roughly the same fundamental operations. It also 
uses the matrix multiplication algorithm presented in 
the previous section. 
 
6.1. Mapping ANNs to GPU Memory. 
There are several ways the structure of a feed-forward 
ANN can be mapped onto pixels in the frame buffer. 
For this paper, we consider a particular case in which 
only connections between adjacent layers are allowed. 
This is a reasonable restriction for the OCR 
application, and more general cases are a 
straightforward generalization. The connections 
between two adjacent layers, Li-1 and Li, of sizes Ni-1 
and Ni can be represented as a matrix of size Ni-1 x Ni. 
As in [8], this matrix can then be represented as a 
rectangle of size (Ni-1 / 4) x (Ni / 4) pixels by using all 
4 color channels. The outputs can also 
straightforwardly be mapped to vectors of size Ni / 4 
pixels for layer Li. The inputs of layer Li coincide with   
the outputs of layer Li-1, and can be duplicated for 
convenience and ease of programming at the expense 
of memory. Summarizing, there is a (Ni-1 / 4) x (Ni / 4) 
“window” on the screen for each hidden layer and for 
the output layer. In such a window, a row of pixels 
represents the synaptic weights of the connections to a 
neuron from neurons on the layer immediately below, 
and successive rows belong to neurons on the same 
layer. 
 
Packing 4 weight values into a pixel provides a rather 
counter-intuitive mapping from 4 synaptic weights to 
1 pixel, but reduces memory constraints. 
Alternatively, the mapping can be 1 weight per pixel, 
allowing the remaining 3 memory locations to store 
intermediate results, or weights of connections from 
other layers below, relaxing the initial restriction that 
connections are only between adjacent layers. 
 
Memory allocation also has to take into account the 
total size of video memory and its partitioning into 
buffers and texture memory; otherwise 
time-consuming pixel transfer operations are 
necessary to swap contents of various parts of video 
memory in and out of main memory. 
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6.2. Implementing Backpropagation 
Using OpenGL Library Calls. 
Standard graphics operations have predictable effects 
on the screen, and we can program a sequence of 
operations that would have the desired effect on the 
ANN structure presented in the previous subsection. 
This subsection describes the implementation of the 
operations required by the backpropagation algorithm. 
 
The operations needed by the backpropagation 
algorithm are: summation, multiplication, subtraction, 
dot product and function evaluation. Applying an 
operation is implemented by drawing primitives or 
copying pixel regions after setting the appropriate 
blending mode. Depending on the memory 
organization, setting the color matrix may also be 
required. In the following equations, src is the source, 
dst is the destination, and ct is a constant. 
 
Summation is the default blending mode, implemented 
by glBlendFunc(GL_ONE, GL_ONE): 

1*1* dstsrcdst +=    (6) 
Multiplication by a constant is implemented by calling 
glBlendFunc(GL_ZERO, GL_SRC_COLOR): 

srcdstsrcdst *0* +=   (7) 
Subtraction of two values is implemented by enabling 
blending with glBlendFunc(GL_ZERO, 
GL_ONE_MINUS_SRC_COLOR): 

)1(*0* srcdstsrcdst −+=   (8) 
The dot product can be implemented either naïvely, 
with summations and products, or as in [8], using the 
summation blending mode combined with 
multi-texturing, then drawing primitives one by one, 
or copying pixel regions. 
 
OpenGL does not provide standard operations for 
function evaluation. Instead, we store precomputed 
tables of values in the frame buffer, and retrieve them 
by copying and blending; or we store them into 
textures, and retrieve them with texture lookups. 
 
The algorithm is literally “drawn” on screen, just as in 
[8] – processing is done entirely by the GPU in the 
frame buffer and the texture memory. Pixels are set 
with small random values for training or the values 
computed during training for pattern recognition. The 
library call for setting pixel values is 
glDrawPixels. The results are read back with 
glReadPixels. 
 
Using the above operations, the forward phase of the 
backpropagation algorithm consists of the following 
steps: 
• the net output of each neuron is computed using the 

dot product operation: 

∑=
i

piijpj ownet    (9) 

where net pj is the net output, wij are the weights of the 
connections to neurons on the lower layers and opi are 
the outputs of those neurons; 
• the output of the neuron is then computed using the 

function evaluation operation: 
( )pjjpj netfo =    (10) 

where opj is the final neuron output and fj is the 
non-linear activation function; 
• the process is repeated for all neurons and all layers 

in increasing order. 
 
The forward phase is used both as a step in one 
iteration of the training algorithm and in the pattern 
recognition algorithm. Precomputing all the outputs 
before the dot products allows us to rewrite the dot 
products as a matrix product and use the approach 
presented in the previous section. 
 
The implementation of the backward phase of the 
algorithm consists of the following steps: 
• the error signal is computed for all the output units 

using the subtraction (8), function evaluation and 
multiplication (7) operations: 

( )pjpjpjpj netfot ')( −=δ   (11) 

where δpj is the error signal, tpj is the threshold of the 
neuron, opj is the output, and f’(netpj) is the derivative 
of the activation function; 
• the weight change is computed using the 

multiplication operation (7), according to the 
generalized delta rule: 

pipjjip ow ηδ=∆    (12) 

where ∆pwji is the weight change, and η is a 
proportionality constant; 
• the weights of all the connections from neurons in 

lower layers to the current output neuron are 
updated using the summation operation (6): 

jipjiji www ∆+='    (13) 

where wji is the old weight, and wji’ is the new weight; 
• the process is similar for hidden neurons, but the 

error signal is computed recursively from the error 
signals of the neurons the current neuron is 
connected to, using the function evaluation, 
multiplication (7) and dot product operations: 

( )∑=
k

kjpkpjpj wnetf δδ '   (14) 

where δpj are the error signals of the neurons on the 
upper layers the current hidden neuron is connected to; 
• the process is repeated for all neurons on all layers 

in decreasing order. 
 
The backward phase is used as a step in one iteration 
of the training algorithm. While there are ways to 
rewrite it as a matrix operation, we believe this 
approach is more straightforward and faster. 
 
Summarizing, the training algorithm consists of 
several iterations of the forward phase followed by the 
backward phase until the error drops below a 
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threshold; and the pattern recognition algorithm 
consists of applying the forward phase in a trained 
network to a new set of inputs. The forward phase is 
implemented as several matrix multiplies because 
recognition needs to be as fast as possible. The 
backward phase is implemented using other graphics 
operations in order to move all the computation to the 
GPU and avoid costly memory transfers between the 
GPU and the CPU. 
 
7. Suitability of GPUs for OCR. 
The previous two sections presented our way of 
implementing ANNs, backpropagation and OCR on 
graphics hardware. We believe that the combined 
approach of using the fast matrix operations presented 
in Section 5 when possible, and reverting to the other 
operations presented in Section 6 when needed, 
ensures optimal performance of the GPU-based 
algorithm. This section evaluates its suitability for 
OCR when competing with CPU-based 
implementations. 
 
One such CPU-based approach for matrix 
multiplication is presented in [7]. It takes advantage of 
the hierarchy of caches of a Pentium III processor, and 
optimizes the code for each level of the hierarchy to 
minimize inter-level communication. At level L0, 
input data and intermediary results are kept in the 
registers for as long as possible to delay and ultimately 
hide the latency of memory reads and writes. At level 
L1, contiguous chunks of data are prefetched to ensure 
that the CPU is fully occupied most of the time, and 
that reads and writes to main memory and the L2 
cache are minimal. At level L2, the same strategy is 
applied to ensure accesses to main memory are 
minimal. Also, an important role in the speed of the 
algorithm is played by the use of SSE (Streaming 
SIMD – “Single Instruction Multiple Data” 
Extensions) instructions that perform the same 
operation on 4 different sets of data in parallel. This 
optimization at every level brings about optimal 
overall performance: the implementation is 2.9 times 
faster than the publicly-available GMM library, 
ALTAS [11]. 
 
Our GPU approach is simpler, and relies heavily on 
the availability of texture memory. The texture 
memory effectively acts as a very fast (effectively 
500-1000 MHz) and very large (128 MB) 4-way 
associative L1 cache. When performing matrix 
multiplications, our algorithm employs a brute-force 
method, using highly-optimized graphics operations 
that produce a result equivalent to the one of the 
multiply-accumulate used in matrix multiplications: 
multiplications of texture maps and accumulation in 
the frame buffer. Similarly to the CPU case, the 
parallelism comes from using all the 4 color channels 
simultaneously. The other operations needed in the 
training phase, even if implemented with graphics 
library calls, are also likely to be of comparable speed 
in a hypothetical CPU-based implementation. 

The majority of operations in OCR are the pattern 
recognition operations, which map to a few matrix 
multiplications. The training phase can be considered 
as preprocessing, and its cost can be amortized over 
many uses of the trained network for recognition. It 
follows that the vast majority of operations in OCR 
are matrix multiplications. This leads us to the 
conclusion that at this time a CPU implementation is 
preferable. Not only is it faster, but also it is more 
flexible, and offers more precision. We now provide 
some arguments why we think a refined future GPU 
implementation will be competitive. 
 
First, as seen in the previous sections, graphics 
hardware architectures are in fact a collection of 
primitive operations. Various computations can be 
implemented as the operations of the texture mapping 
unit and the frame buffer. Final results can be obtained 
in one or more rendering passes. This gives an 
arguably limited, but nonetheless important, 
applicability that has already been exploited and 
shown effective in computational applications. In 
conclusion, the advantage of CPUs is in fact negligible 
in terms of flexibility. 
 
Moreover, languages are developed for programmable 
procedural shading systems as well as compilers that 
automatically generate instructions corresponding to 
rendering operations on graphics hardware. These 
efforts match closely the ongoing trend in introducing 
graphics hardware programmability that was 
witnessed in the last few years. Although still 
graphics-oriented, these tools will also increase the 
flexibility and usability of GPUs for non-graphics 
applications. The availability of these tools makes the 
CPUs and GPUs comparable in terms of usability and 
accessibility. 
 
Being pushed by the game industry, the speed of 
graphics hardware doubles approximately every 6 
months. This rate is much faster than the improvement 
in the clock rates of CPUs. Also, texture memory has 
been traditionally faster than main memory, and this 
trend is likely to be maintained. In the long run, if 
technological limitations occur, GPUs may follow in 
the CPUs' footsteps, having texture memory organized 
as a hierarchy of caches. In conclusion, because the 
components of a GPU (graphics processor and 
graphics memory) are tightly integrated and perform 
better together than the CPU-main memory ensemble, 
we think the speed of the GPU-based approach will 
soon surpass the speed of the CPU-based approach. 
 
The above considerations are valid arguments that 
many computational applications can be implemented 
on graphics hardware. ANNs are a special category of 
applications that may have other potential benefits 
from being implemented on graphics hardware. 
Following the biological model, ANNs are formed of 
many interconnected neurons. The calculation inside 
each neuron is simple, but there are usually a large 
number of units. Therefore, a practical use of the 
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ANNs typically demands parallel supercomputers. 
Commodity graphics hardware can perform 
pixel-oriented operations very efficiently. Not only are 
the operations pipelined in dedicated hardware, but 
there are also usually up to 4 color channels and 
multiple pixel pipelines available that essentially 
provide parallel processing. The efforts for graphics 
hardware programmability are in a similar direction: 
each vertex in the incoming data and each pixel in the 
frame buffer can have a specified programmable 
behavior. Not only does this provide a better and more 
flexible way to implement current ANN algorithms, 
but also it offers the opportunity for new and more 
intuitive research models to be implemented quickly, 
easily, and cheaply. 
 
The precision problem is less relevant in ANNs and 
OCR, as the weights are always between 0 and 1. 
Usually, 8 bits of precision are enough for 
representing synaptic weights. The problem can be 
alleviated as shown in [9,10], and will soon be solved 
in hardware, since the manufacturers already started 
implementing full floating-point precision throughout 
the entire graphics pipeline. 
 
Perhaps the most important argument in favor of using 
GPUs is the price. CPU prices are slightly higher than 
the price of a high performance graphics card. 
Moreover, computationally-intensive applications 
require large memories that are not included in the 
price of a CPU. 
 
Besides the arguments provided above for 
general-purpose applications and ANN algorithms, 
there is one additional benefit to implementing OCR 
in graphics hardware: during the scanning process, the 
CPU is usually busy communicating with the scanner, 
while the GPU is mostly idle. Using it for OCR 
guarantees a better overall usage of system resources. 
Moreover, a GPU implementation does not even have 
to be of comparable speed to a CPU implementation: 
it only has to take an amount of time comparable to 
the time it takes the CPU to scan the image. The 
traditional sequential processing (first scan, then 
convert to text) becomes parallel. The CPU can send 
the scanned data to the GPU as soon as it receives it 
from the scanner, yielding a dramatically improved 
overall performance.  
 
8. Conclusion. 
In this paper we presented a new approach for 
implementing the ANN backpropagation algorithm. 
The approach combines a fast matrix multiplication 
algorithm with fast execution of other operations using 
graphics library calls. The advantages of using this 
approach include its price, its speed (already relatively 
fast and likely to improve in the near future), and its 
applicability in everyday situations where fast OCR is 
desired. Its main disadvantage is the limited precision: 
since we did not implement our approach, we have no 
sense on how the limited precision available in 

graphics hardware affects the OCR precision in 
correctly recognizing characters. Overall, considering 
the current trends in graphics hardware and CPUs, we 
think our approach is certainly worth further study. 
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