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Large networks of cameras have been increasingly employed to capture dynamic events for tasks such as
surveillance and training. When using active cameras to capture events distributed throughout a large
area, human control becomes impractical and unreliable. This has led to the development of automated ap-
proaches for on-line camera control. We introduce a new automated camera control approach that consists
of a stochastic performance metric and a constrained optimization method. The metric quantifies the uncer-
tainty in the state of multiple points on each target. It uses state-space methods with stochastic models of
target dynamics and camera measurements. It can account for occlusions, accommodate requirements spe-
cific to the algorithms used to process the images, and incorporate other factors that can affect their results.
The optimization explores the space of camera configurations over time under constraints associated with
the cameras, the predicted target trajectories, and the image processing algorithms. The approach can be
applied to conventional surveillance tasks (e.g., tracking or face recognition), as well as tasks employing
more complex computer vision methods (e.g., markerless motion capture or 3D reconstruction).
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1. INTRODUCTION
Many computer vision applications, such as motion capture and 3D reconstruction of
shape and appearance, are currently limited to relatively small environments that
can be covered using fixed cameras with overlapping fields of view. There is demand
to extend these and other approaches to large environments, where events can hap-
pen in multiple dynamic locations, simultaneously. In practice, many such large en-
vironments are sporadic: events only take place in a few regions of interest (ROIs),
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separated by regions of space where nothing of interest happens. If the locations of
the ROIs are static, acceptable results can be obtained by straightforward replication
of static camera setups used for small environments. However, if the locations of the
ROIs are dynamic, coverage needs to be ensured throughout the entire volume. Using
an increasing number of fixed cameras is impractical due to concerns over increased
requirements in terms of computation and monetary cost, bandwidth and storage.

One practical solution to this problem is using active cameras to cover sporadic en-
vironments. Active cameras have been used in surveillance [Collins et al. 2000] and in
computer vision fields such as motion capture [Davis 2002] and robotics [Davison and
Murray 2002]. What makes them versatile is their capability to change their pan and
tilt settings to aim in the direction of dynamic ROIs, and zoom in or out to best en-
close the ROIs in their field of view. However, this versatility comes at a price: in order
to capture dynamic events, active cameras need to be controlled on-line, in real-time.
Control decisions need to be made as events are happening, and to take into account
factors such as target dynamics and camera capabilities, as well as requirements from
the computer vision algorithms the images are captured for, such as preferred camera
configurations, capture durations and image resolutions.

We present an approach that controls a network of active cameras on-line, in real-
time, such that they capture multiple events taking place simultaneously in a sporadic
environment and produce the best possible images for processing using computer vi-
sion algorithms. We approach camera control as an optimization problem over the
space of possible camera configurations (combinations of camera settings) and over
time, under constraints derived from knowledge about the cameras, the predicted ROI
trajectories and the computer vision algorithms the captured images are intended for.
Optimization methods rely on objective functions that quantify the “goodness” of a
candidate solution. For camera control, this objective function is a performance metric
that evaluates dynamic, evolving camera configurations over time.

The rest of the paper is organized as follows. In Section 2 we present a few perfor-
mance metrics and touch on their suitability for use with our method. We also list some
previous camera control methods encountered in surveillance applications. Section 3
details our performance metric, and Section 4 describes our control method. Section 5
briefly describes how we incorporate task requirements into our approach. In Section 6
we present experimental results. We discuss some future work and conclude the paper
in Section 7.

Note: This paper is an extended version of the results presented at ICDSC 2011 [Ilie
and Welch 2011], and builds upon research conducted for a doctoral thesis [Ilie 2010].
It presents the progress made in the meantime, with an emphasis on the practical
details needed to understand, duplicate and extend our results. Readers interested
in more details on the theoretical aspects of our approach are referred to the thesis
mentioned above.

2. PREVIOUS WORK
2.1. Performance Metrics
Many researchers have attempted to express the intricacies of factors such as place-
ment, resolution, field of view, focus, etc. into metrics that could measure and predict
camera performance in diverse domains such as camera placement [Tarabanis et al.
1995], camera selection and view planning. We list a few performance metrics from
these domains below.

Wu et al. [Wu et al. 1998] use the the 2D quantization error on the camera image
plane to estimate the uncertainty in the 3D position of a point when using multiple
cameras. They model the quantization error geometrically, using pyramids, and the
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uncertainty region as an ellipsoid around the polyhedral intersection of the pyramids.
The paper presents a computational technique for determining the uncertainty ellip-
soid for an arbitrary number of cameras. Finally, the volume of the ellipsoid is used as
a performance metric. Chen [Chen 2002] improves this metric by taking into account
probabilistic occlusion, and applies it to optimally place cameras for motion capture.
Davis [Davis 2002] uses the resulting fixed camera arrangement in combination with
steering four pan-tilt cameras for mixed-scale motion recovery. He uses gradient de-
scent to find nearby local minima and avoid large camera maneuvers, and prediction
to alleviate the latency in camera response time.

Olague and Mohr [Olague and Mohr 2002] present an approach for camera network
design to obtain minimal errors in 3D measurements. Error propagation is analyzed
to obtain an optimization criterion. The camera projection model is used to express the
relationship between 2D and 3D points, and the error is assumed to come only from
image measurements. The covariance matrix of the 3D points is approximated using a
Taylor expansion, and the maximum eigenvalue is used as the optimization criterion.
Optimization is performed using a genetic algorithm, incorporating geometric and op-
tical constraints such as occlusion.

Chowdhury and Chellappa [Chowdhury and Chellappa 2004] address the problem of
many algorithms selecting and processing more data than necessary in an attempt to
overcome unacceptable performance in their results. They introduce an information-
theoretic criterion for evaluating the performance of a 3D reconstruction by consider-
ing the change in mutual information between a scene and its reconstructions.

Ram et al. [Ram et al. 2006] propose a performance metric based on the probability
of accomplishing a given task for placing sensors in a system of cameras and motion
sensors. The task is capturing frontal information of a symmetric target moving inside
a convex region. Tasks are first decomposed into two subtasks: object localization and
image capture. Prior knowledge about the sensors is used to assess the suitability
of each sensor for each subtask, forming a performance matrix. Interaction among
sensors is decided using the matrix such that assigning sensors to subtasks leads to
maximum overall performance. Camera performance is evaluated as the probability of
capturing the frontal part of the symmetric object. Object orientation is modeled across
a plane as a uniformly-distributed random variable. Motion sensors are transmitter-
receiver pairs, placed on a grid. A trade-off between grid density and camera field of
view is presented. A performance metric is computed as the capture probability at each
grid point, averaged over the entire grid.

Bodor et al. [Bodor et al. 2005] compute the optimal camera poses for maximum task
observability given a distribution of possible target trajectories. They develop a general
analytical formulation of the observation problem, in terms of the statistics of the
motion in the scene and the total resolution of the observed actions. An optimization
approach is used to find the internal and external camera parameters that optimize the
observation criteria. The objective function being optimized is directly related to the
resolution of the targets in the camera images, and takes into account two factors that
influence it: the distance from the camera to each target’s trajectory and the angles
that lead to forshortening effects.

Mittal and Davis [Mittal and Davis 2004] compute the probability of visibility in
the presence of dynamic occluders, under constraints such as field of view, fixed oc-
cluders, resolution, and viewing angle. Optimization is performed using cost functions
such as the number of cameras, the occlusion probabilities, and the number of tar-
gets in a particular region of interest. In [Mittal and Davis 2008], they introduce a
framework for incorporating visibility in the presence of random occlusions into sen-
sor planning. The probability of visibility is computed for all objects from all cameras.
A deterministic analysis for the worst case of uncooperative targets is also presented.
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Field of view, prohibited areas, image resolution, algorithmic (such as stereo matching
and background appearance) and viewing angle constraints are incorporated into sen-
sor planning, then integrated with probabilistic visibility into a capture performance
metric. The metric is evaluated at each location, for each orientation and each given
sensor configuration, and aggregated across space. The aggregated metric value is then
optimized using simulated annealing and genetic algorithms.

Denzler et al. [Denzler and Brown 2001; Denzler et al. 2001] present an information
theoretic framework for camera data selection in 3D object tracking and derive a per-
formance metric based on the uncertainty in the state estimation process. In [Denzler
et al. 2002], the authors derive a performance metric based on conditional entropy to
select the camera parameters that result in sensor data containing the most informa-
tion for the next state estimation. In [Denzler et al. 2003], Denzler et al. present a
performance metric for selecting the optimal focal length in 3D object tracking. The
determinant of the a posteriori state covariance matrix is used to measure the uncer-
tainty derived from the expected conditional entropy given a particular action. Visibil-
ity is taken into account by considering whether observations can be made and using
the resulting probabilities as weights. Optimizing this metric over the space of possi-
ble camera actions yields the best actions to be taken by each camera. The authors of
Deutsch et al. [Deutsch et al. 2004; Deutsch et al. 2005] improve the process by using
sequential Kalman filters to deal with a variable number of cameras and occlusions,
predicting several steps into the future and speeding up the computation. Sommer-
lande and Reid add a Poisson process to model the potential of acquiring new targets
by exploring the scene [Sommerlade and Reid 2008b], examine the resulting camera
behaviors when zooming [Sommerlade and Reid 2008a], and evaluate the effect on the
performance of random and first-come, first-serve (FCFS) scheduling policies [Som-
merlade and Reid 2008c]. The performance metric presented in Section 3 is similar
to the metric by Denzler et al., but it uses a norm of the error covariance instead of
entropy as the metric value, and employs a different aggregation method.

Allen [Allen 2007] introduces steady-state uncertainty as a performance metric for
optimizing the design of multi-sensor systems. In previous work [Ilie et al. 2008] we
illustrate the integration of several performance factors into this metric and envision
applying it to 3D reconstruction using active cameras.

Application domains such as camera placement and selection make use of perfor-
mance metrics custom-tailored to their requirements. While many existing metrics
take into account several quality factors (such as image resolution, focus, depth of
field, field of view, visibility, object distance and incidence angle) that have been shown
to influence performance in a number of tasks, they are not easily generalized to ap-
ply to other tasks. Moreover, many previous approaches focus on just a few of these
factors, and none explicitly describe how to account for all the factors, as well as other
factors that are important in computer vision applications when using active cam-
eras, such as issues due to the dynamic nature of active cameras (such as mechanical
noise, repeatability and accuracy of camera settings), and specific requirements of each
computer vision algorithm (such as preferred camera configurations). Our metric ac-
counts for these factors, and is general enough to easily apply to both surveillance and
computer vision tasks. In Section 3 we briefly mention where and how each factor is
integrated into our metric. The interested reader can find a more detailed discussion
on quality factors in Chapter 5 of [Ilie 2010].

2.2. Camera Control Methods
Camera control methods are typically encountered in surveillance applications, and
many are based on the adaptation of scheduling policies, algorithms and heuristics
from other domains to camera control. We lists a few example methods below.
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Costello et al. [Costello et al. 2004] present and evaluate the performance of several
scheduling policies in a master-slave surveillance configuration (a fixed camera and a
PTZ camera). Their goal is to capture data for identifying as many people as possible,
and it can be broken into two objectives: capture high resolution images for as many
people as possible and view each person for as long as possible. The proposed solu-
tion is to observe each target for an empirically-determined period of time, then move
on to the next target, possibly returning to the first target if it is still in the scene.
The camera scheduling problem is considered similar to a packet routing problem: the
deadline and amount of time to serve become known once a target enters the scene.
However, the deadlines are only estimated, serving a target for a preset time does not
guarantee the task is accomplished, and a target can be served multiple times. This
can be treated as a multi-class scheduling problem, with class assignments done based
mainly on the number of times a target has been observed (other factors can be taken
into account). The paper evaluates several greedy scheduling policies. The static pri-
ority (always choose from the highest class) policies analyzed are: random, first come,
first serve (FCFS+), earliest deadline first (EDF+). Dynamic priority policies include
EDF, FCFS and current minloss throughput optimal (CMTO). CMTO assigns a weight
to each class, and tries to minimize the loss due to dropped packets. Scheduling is
done by looking ahead to a horizon (cut) specified by the earliest time a packet will be
dropped based on the packet deadlines. A list is formed with the highest weight pack-
ets with deadlines earlier than the cut, and the packet that results in the most weight
served by the cut is selected. EDF+ is shown to outperform FCFS+ and CMTO in per-
centage of targets captured, but is worst in terms of the number of targets captured
multiple times.

Qureshi and Terzopoulos [Qureshi and Terzopoulos 2005a; 2005b; 2007] present a
Virtual Vision paradigm for the design and evaluation of surveillance systems. They
use a virtual environment simulating a train station, populated with synthetic au-
tonomous pedestrians. The system employs several wide field-of-view calibrated static
cameras for tracking and several PTZ cameras for capturing high-resolution images of
the pedestrians. The PTZ cameras are not calibrated. A coarse mapping between 3D
locations and gaze direction is built by observing a single pedestrian in a preprocess-
ing step. To acquire images of a target, a camera would first choose an appropriate
gaze direction at the widest zoom, then fixate and zoom in after the target is positively
identified. Fixation and zooming are purely 2D and do not rely on 3D calibration. Lo-
cal Vision Routines (LVRs) are employed for pedestrian recognition, identification, and
tracking. The PTZ controller is built as an autonomous agent modeled as a finite state
machine, with free, tracking, searching and lost as possible states. When a camera is
free, it selects the next sensing request in the task pipeline. The authors note that,
while bearing similarities to the packet routing problem as described by Costello in
[Costello et al. 2004], scheduling cameras has two significant characteristics that set
it apart. First, there are multiple “routers” (in this case, PTZ cameras), an aspect the
authors claim is better modeled using scheduling policies for assigning jobs to differ-
ent processors. Second, camera scheduling must deal with additional sources of uncer-
tainty due to the difficulty estimating when a pedestrian might leave the scene and the
amount of time for which a PTZ camera should track and follow a pedestrian to record
video suitable for the desired task. Third, different cameras are not equally suitable for
a particular task, and suitability varies with time. A weighted round-robin scheduling
scheme with a FCFS+ priority policy is proposed in [Qureshi and Terzopoulos 2005a]
for balancing two goals: getting high resolution images and viewing each pedestrian
for as long or as many times as possible. Weights are modeled based on the adjustment
time and the camera-pedestrian distance. The danger of a majority of the jobs being
assigned to the processor with the highest weight is avoided by sorting the PTZ cam-
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eras according to their weights with respect to a given pedestrian and assigning the
free PTZ camera with the highest weight to that pedestrian. Ties are broken by select-
ing the pedestrian who entered the scene first. Other possible tie breaking options like
EDF+ were not considered because they require an estimate of the exit times of the
pedestrians from the scene, which are difficult to predict. The amount of time a PTZ
camera spends viewing a pedestrian depends upon the number of pedestrians in the
scene, with a minimum set based on the number of frames required to accomplish the
surveillance task. Weighted scheduling is shown to outperform non-weighted schedul-
ing.

A common surveillance problem is the acquisition of high resolution images of as
many targets as possible before they leave the scene. A possible solution is to trans-
late the problem into a real-time scheduling problem with deadlines and random new
target arrivals. The authors of [del Bimbo and Pernici 2005; Bagdanov et al. 2005] pro-
pose limiting the temporal extent of the schedules, due to the stochastic nature of the
target arrivals and the requirement that a schedule be computed in real-time. They
also propose taking into account the physical limitations of PTZ cameras, specifically
the fact that zooming is much slower than panning and tilting. The camera is modeled
as an interceptor with limited resources (adjustment speeds), and the target dynamics
are assumed known or predictable. The overall stochastic problem is decomposed into
smaller deterministic problems for which a sequence of saccades can be computed. The
problem of choosing the best subset of targets for a camera to intersect in a given time
is an instance of Time Dependent Orienteering (TDO): given a set of moving targets
and a deadline, find the subset with the maximum number of targets interceptable
before the deadline. TDO is a problem for which no polynomial-time algorithm exists.
The optimal camera tour for a set of targets is computed by solving a Kinetic Traveling
Salesperson Problem (KTSP): given a set of targets that move slower than the camera
and the camera’s starting position, compute the shortest time tour that intercepts all
targets. KTSP has been shown to be NP-hard. After limiting the schedule duration,
KTSP is reformulated as a sequence of TDO problems. Targets are placed in a queue
sorted on their predicted residual time to exit the scene, and an instance of TDO is
solved by exhaustive search for the first 7− 8 targets in the queue.

Naish et al. [Naish et al. 2001; 2003; Bakhtari et al. 2006] propose applying prin-
ciples from dispatching service vehicles to the problem of optimal sensing. They first
propose a method for determining the optimal initial sensor configuration, given in-
formation about expected target trajectories [Naish et al. 2001]. The proposed method
improves surveillance data performance by maneuvering some of the sensors into op-
timal initial positions, mitigating measurement uncertainty through data fusion, and
positioning the remaining sensors to best react to target movements. As a complement
of this work, the authors present a dynamic dispatching methodology that selects and
maneuvers subsets of available sensors for optimal data acquisition in real-time [Naish
et al. 2003]. The goal is to select the optimal sensor subset for data fusion by maneu-
vering some sensors in response to target motion while keeping other sensors available
for future demands. Demand instants are known a priori, and scheduling is done up
to a rolling horizon of demand instants. Sensor fitness is assessed using a visibility
measure that is inversely proportional to the measurement uncertainty when unoc-
cluded and zero otherwise. Aggregating the measurements for several sensors is done
using the inverse of the geometric mean of the visibility measures for all the sensors
involved. A greedy strategy is used to assign the best k sensors for the next demand
instant, then to assign remaining sensors to subsequent demand instants until no sen-
sors remain or the rolling horizon is reached. The sensor parameters are adjusted via
re-planning when the target state estimate is updated. In [Bakhtari et al. 2006] the
authors describe an updated implementation using vehicle dispatching principles for
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tracking and state estimation of a single target with four PTZ cameras and a static
overview camera.

Lim et al. [Lim et al. 2005; 2007] propose solving the camera scheduling problem
using dynamic programming and greedy heuristics. The goal of their approach is to
capture images that satisfy task-specific requirements such as: visibility, movement di-
rection, camera capabilities, and task-specific minimum resolution and duration. They
propose the concept of task visibility intervals (TVIs), intervals constructed from pre-
dicted target trajectories during which the task requirements are satisfied. TVIs for
a single camera are combined into MTVIs (multiple TVIs). Single camera scheduling
is solved using dynamic programming (DP). A directed acyclic graph (DAG) is con-
structed with a common source and a common sink, (M)TVIs as nodes, and edges con-
necting them if the slack start time of one precedes the other. DP starts from the DAG
sink, adjusts the weights of the edges and terminates when all nodes are covered by
a path. Multi-camera scheduling is NP-hard, and is solved using a greedy approach,
picking the (M)TVI that covers the maximum number of uncovered tasks. A second
proposed approach uses branch and bound algorithm that runs DP on a DAG with
source-sink subgraphs for each camera, connected by links from the sinks of some sub-
graphs to the sources of others. The greedy approach is shown to have significantly
decreasing performance when the number of cameras increase.

Yous et al. [Yous et al. 2007] propose a camera assignment scheme based on the
visibility analysis of a coarse 3D shape produced in a preprocessing step to control
multiple Pan/Tilt cameras for 3D video of a moving object. The optimization is then
extended into the temporal domain to ensure smooth camera movements. The inter-
esting aspect of this work is that it constructs its 3D results from close-up images of
parts of the object being model, instead of trying to fit the entire object within the field
of view of each camera.

Krahnstoever et al. [Krahnstoever et al. 2008] present a system for controlling four
PTZ cameras to accomplish a biometric task. Target positions are known from a track-
ing system with 4 fixed cameras. Scheduling is accomplished by computing plans for
all the cameras: lists of targets to cover at each time step. Plans are evaluated us-
ing a probabilistic performance objective function to optimize the success probability
of the biometric task. The objective function is the probability of success in captur-
ing all targets, which depends on a quantitative measure for the performance of each
target capture. The capture performance is evaluated as a function of the incidence an-
gle, target-camera distance, tracking performance (worse near scene boundaries), and
PTZ capabilities. A temporal decay factor is introduced to allow repeated capture of
a target. Optimization is performed asynchronously, via combinatorial search, up to a
time horizon. Plans are constructed by iteratively adding camera-target assignments,
defining a directed acyclic weighted graph, with partial plans as nodes and difference
in performance as edge weights. Plans that cannot be expanded further are terminal
nodes and candidate solutions. A best-first strategy is used to traverse the graph, fol-
lowed by coordinate ascent optimization through assignment changes. All plans are
continuously revised at each time instant. New targets are added upon detection from
monitoring a number of given entry zones.

Broaddus et al. [Broaddus et al. 2009] present ACTvision, a system consisting of a
network of PTZ cameras and GPS sensors covering a single connected area that aims
to maintain visibility of designated targets. They use a joint probabilistic data asso-
ciation algorithm to track the targets. Cameras are tasked to follow specific targets
based on a cost calculation that optimizes the task-camera assignment and performs
hand-offs from camera to camera. They compute a “cost matrix” C that aggregates
terms for target visibility, distance to maneuver, persistence in covering a target and
switching to an already covered target. Availability is computed as a “forbidden ma-
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trix” F . They develop two optimization strategies: one that uses the minimum number
of cameras needed, and another that encourages multiple views of a target for 3D re-
construction. The task to camera assignment is performed using an iterative greedy
k-best algorithm.

Natarajan et al. [Natarajan et al. 2012] propose a scalable decision-theoretic ap-
proach based on a Markov Decision Process framework that allows a surveillance task
to be formulated as a stochastic optimization problem. Their approach covers m tar-
gets using n cameras, where n� m, with the goal of maximizing the number of targets
observed. They discretize both the space of target locations, directions and velocities,
and the space of camera pan tilt and zoom settings. For each camera setting, they
precompute the target locations within the camera’s field of view and at the appro-
priate distance range to allow for biometric tasks to be performed on the captured
images. Cameras are assumed independent of each other, as are targets. Target tran-
sition probability distributions, as well as target visibilities given all possible camera
states are precomputed. These assumptions and precomputations result in an online
computation time linear in the number of targets. Simulated (up to 4 cameras and up
to 50 targets) and real (3 cameras and 6 targets) experiments are presented to validate
the approach, which is compared to the approach in [Krahnstoever et al. 2008].

Sommerlande and Reid [Sommerlade and Reid 2010] present a probabilistic ap-
proach to control multiple active cameras observing a scene. Similar to our approach,
they cast control as an optimization problem, but their goal is to maximize the ex-
pected mutual information gain as a measure for the utility of each parameter setting
and each goal. The approach allows balancing conflicting goals such as target detection
and obtaining high resolution images of each target. The authors employ a sequential
Kalman filter for tracking targets in a ground plane. Experiments demonstrate the
emergence of useful behaviors such as camera hand-off, acquisition of close-ups and
scene explorations, without the use of hand-crafted rules. A comparison is presented
with independent scanning, FCFS, and random policies, using three metrics: resolu-
tion increase, new target detection latency and trajectory fragmentation. Under the
assumption that no observation can be detrimental, they avoid the camera-target as-
signment problem by assigning all cameras to all targets. No attempt is made to reduce
the size of the search space.

Another related area for camera control is distributed surveillance, where decisions
are arrived at through contributions from collaborating or competing autonomous
agents. Proponents of distributed approaches argue that overall intelligent behavior
can be the result of the interaction between many simple behaviors, rather than the
result of some powerful but complicated centralized processing. Examples of the some
of the issues and reasoning behind distributed processing as implemented in 3rd gen-
eration surveillance systems can be found in [Marcenaro et al. 2001; Oberti et al. 2001;
Remagnino et al. 2003].

Matsuyama and Ukita [Matsuyama and Ukita 2002] describe a distributed system
for real-time multi-target tracking. The system is organized in three layers (inter-
agency, agency and agent). Agents dynamically interchange information with each
other. An agent can look for new targets or and can join an agency which is already
tracking a target. When multiple targets get too close to be distinguishable from each
other, the agencies tracking them are joined until the targets separate.

In [Qureshi and Terzopoulos 2005b; 2007] Qureshi and Terzopoulos apply their Vir-
tual Vision paradigm for the design and evaluation of a distributed surveillance sys-
tem. The Local Vision Routines (LVRs) and state model from the centralized system
described in [Qureshi and Terzopoulos 2005a] are still employed. However, cameras
can organize into groups to accomplish tasks using local processing and inter-camera
communication with neighbors in wireless range. The node that receives a task re-
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quest is designated as the supervisor and it broadcasts the request to its neighbors.
While camera network topology is assumed as known, no scene geometry knowledge is
assumed, only that a target can be identified by different cameras with reasonable ac-
curacy. Each camera computes its own relevance for a task, based on whether it is free
or not, how well it can accomplish the task, how close it is to the limits of its capabili-
ties, and reassignment avoidance. The supervisor forms a group and greedily assigns
cameras to tasks, giving preference to cameras that are free. Cameras are removed
from a group when they cease to be relevant to the group task. Inter-group conflicts
are solved at the supervisor of one of the conflicting groups as a constraint satisfac-
tion problem, and each camera is ultimately assigned to a single task. Communication
and camera failures are accounted for, but supervisor failure is solved by creating new
groups and merging old groups. No performance comparison is attempted between the
centralized and distributed scheduling approaches.

In order to ensure adequate coverage of multiple events taking place in a sporadic,
large environment, active cameras need to be controlled on-line, in real-time, automat-
ically. Many past surveillance approaches that deal with controlling active cameras
are master-slave camera setups, aimed at specific surveillance tasks such as tracking
or biometric tasks such as face recognition. These approaches work well in their do-
mains, but are unable to provide the best imagery for complex computer vision tasks
such as 3D reconstruction and motion capture, because they are not designed to take
into account their specific requirements and the factors that influence their results.
For example, typical surveillance applications usually coordinate cameras only to en-
sure proper hand-offs of targets between them or to prevent redundant assignments of
multiple cameras to the same target. In contrast, our approach is designed for collabo-
rative, simultaneous coverage of the same targets by multiple cameras to suit a specific
computer vision task, but is general enough to be easily adapted to surveillance tasks.
Also, while a few previous approaches take into account the time it takes cameras to
change configurations (the transition time), none take into account the fact that some
computer vision algorithms require precise camera calibrations, which require captur-
ing for at least a minimum dwell duration.

When designing our approach, we started with a list of desirable features we wanted
it to exhibit. The list below enumerates a few of the features of our approach, together
with the approaches referenced in this section that also exhibit these features:

— evaluate the performance of a camera configuration: [Naish et al. 2001; 2003;
Bakhtari et al. 2006], [Lim et al. 2005; 2007], [Qureshi and Terzopoulos 2005a; 2007],
[Krahnstoever et al. 2008], [Broaddus et al. 2009], [Matsuyama and Ukita 2002],
[Natarajan et al. 2012], [Sommerlade and Reid 2010];

— deal with static and dynamic occlusions: [Lim et al. 2005; 2007], [Broaddus et al.
2009], [Sommerlade and Reid 2010];

— attempt to minimize the time spent by cameras transitioning instead of capturing:
[Naish et al. 2001; 2003; Bakhtari et al. 2006], [del Bimbo and Pernici 2005; Bag-
danov et al. 2005], [Lim et al. 2005; 2007], [Qureshi and Terzopoulos 2005a; 2007],
[Krahnstoever et al. 2008];

— consider and compare present and future configurations: [Naish et al. 2001; 2003;
Bakhtari et al. 2006], [Lim et al. 2005; 2007], [Krahnstoever et al. 2008];

— react to to changes in the ROI trajectories: [Naish et al. 2001; 2003; Bakhtari et al.
2006], [Lim et al. 2005; 2007], [Costello et al. 2004], [Krahnstoever et al. 2008],
[Broaddus et al. 2009], [Matsuyama and Ukita 2002], [Natarajan et al. 2012], [Som-
merlade and Reid 2010];

— take into account the time it takes for camera settings to change: [Naish et al. 2001;
2003; Bakhtari et al. 2006], [del Bimbo and Pernici 2005; Bagdanov et al. 2005],
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[Lim et al. 2005; 2007], [Qureshi and Terzopoulos 2005a; 2007], [Costello et al. 2004],
[Krahnstoever et al. 2008], [Broaddus et al. 2009];

— deals with new targets entering the scene: [del Bimbo and Pernici 2005; Bagdanov
et al. 2005], [Lim et al. 2005; 2007], [Costello et al. 2004], [Krahnstoever et al. 2008],
[Broaddus et al. 2009], [Matsuyama and Ukita 2002], [Natarajan et al. 2012], [Som-
merlade and Reid 2010];

— can assign one camera to view multiple targets: [Costello et al. 2004], [Broaddus et al.
2009], [Matsuyama and Ukita 2002], [Sommerlade and Reid 2010];

— can assign multiple cameras to view a single target: [Naish et al. 2001; 2003;
Bakhtari et al. 2006], [Lim et al. 2005; 2007], [Qureshi and Terzopoulos 2005a; 2007],
[Krahnstoever et al. 2008], [Broaddus et al. 2009], [Matsuyama and Ukita 2002],
[Sommerlade and Reid 2010].

3. PERFORMANCE METRIC
For many computer vision applications, task performance of a camera configuration
depends on its ability to resolve 3D features in the working volume. We measure this
ability with our performance metric by using the uncertainty in the state estimation
process. The metric is inspired by the performance metric introduced by Allen in [Allen
and Welch 2005; Allen 2007] and the pioneering work of Denzler et al. [Denzler and
Zobel 2001; Denzler et al. 2001; Denzler and Brown 2001; 2002; Denzler et al. 2002].
In this section we provide short introductions to state-space models and the Kalman
filter, then briefly describe the process by which we compute the uncertainty and arrive
at a numeric value suitable for use in our optimization. The interested reader can find
more details in [Welch et al. 2007; Ilie et al. 2008; Ilie and Welch 2011], and Chapter 5
of [Ilie 2010].

3.1. State-Space Models
State-space models [Kailath et al. 2000] are used in applications such as Kalman filter-
based tracking to mathematically describe the expected target motion and the mea-
surement system. In state-space models, variables (states, inputs and outputs) are
represented using vectors, and equations are represented as matrices.

The internal state variables are defined as the smallest possible subset of system
variables that can represent the entire system state at a given time. Formally, at time
step t, the system state is described by the state vector x̄t ∈ Rn . For example in the
case of tracking, the user’s 3D position is represented by the vector x̄t = [ x y z ]T. If
orientation is also part of the state, the vector becomes x̄t = [ x y z φ θ ψ ]T , where
φ , θ and ψ are roll, pitch and yaw Euler angles (rotation around the x-, y- and z-axis
respectively). The state vector may also be augmented with hidden variables such as
target speed and acceleration, if appropriate, depending on the expected characteris-
tics of the target motion. Given a point in the state space, a mathematical motion model
can be used to predict how the target will move over a given time interval. Similarly, a
measurement model can be used to predict what will be measured by each sensor, such
as 3D GPS coordinates or 2D camera image coordinates.

3.1.1. Motion model. A motion model (also called process model) describes the expected
target motion. Traditionally, such models have been described in terms of a physical
parameter that stays constant over time, resulting in models for constant position
(CP), constant velocity (CV) and constant acceleration (CA) [Chang and Tabaczyinski
1984]. These traditional stochastic models are shown in Figure 1.
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Constant Position Constant Velocity Constant Acceleration

x0 x0 x0

x = x0 + v0tx = x0 x = x0 + vt +
a0t2

2

t t t

x x x

Fig. 1. Traditional motion models, from [Welch et al. 2007].

In the process of stochastic estimation, integrated normally-distributed random
noise is used to replace the constant component of each model. For example, the CV
model becomes x = x0 + vt, with velocity v =

´
a , and acceleration a is a normally-

distributed variable a ∼ N (0, q). Incorporating this random component into each
model results in the models known as Position (P), Position-Velocity (PV) and Position-
Velocity-Acceleration (PVA), respectively [Welch et al. 2007]. Figure 2 uses integrals to
illustrate the relation between position x with its temporal derivatives and the “driv-
ing” noise source N (0, q) for the P, PV and PVA models.

P Motion Model PV Motion Model PVA Motion Model

N(0, q)→
∫

ẋ→
∫

x−→N(0, q)→
∫

x−→ N(0, q)→
∫

ẍ→
∫

ẋ→
∫

x−→

Fig. 2. Stochastic motion models, from [Welch et al. 2007].

Choosing the right model for the expected motion plays a crucial role in obtaining
good state estimates. The P model is most appropriate for situations where there is
little to no motion. The PV model is used when the motion is fairly constant. The PVA
model is used for situations in which there are sudden, rapid changes in speed and
direction. In Section 3.3 of her thesis [Allen 2007], Allen presents a detailed discussion
of these models and gives some examples where they are applied.

For a particular state vector x̄ , the change in state over time can be modeled using
deterministic and random components as follows:

x̄t+1 = f (x̄t) + w̄ (1)

The state transition function f is the deterministic component that relates the state
at time step t to the state at time step t+ 1. The random variable w̄ ∼ N (0, Q) is called
process noise. In practice, f is linearized about the point of interest x̄ in the state space
by computing the corresponding Jacobian matrix A :

A =
∂

∂x̄
f (x̄)

∣∣∣
x̄

(2)

This results in the following discrete-time linear equation:

x̄t+1 = Ax̄t + w̄ (3)
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While such linearizations can lead to sub-optimal results, they provide a computa-
tionally efficient means for state estimation (see [Allen 2007], Section 6.1.1).

The continuous-time equivalent of Equation 3 is the following:

dx̄

dt
= Acx̄+ qc (4)

Here Ac is an n × n continuous-time state transition matrix, and q̄c =
[0, ..., 0,N (0, q)]T is an n × 1 continuous-time process noise vector with corresponding
n × n noise covariance matrix Qc = E

{
qc q

T
c

}
, where E {} indicates expected value

[Welch et al. 2007].
As the actual noise signal w̄ in Equation 3 is not known, designers typically esti-

mate the corresponding discrete-time covariance matrix Q instead, by integrating the
continuous-time process in Equation 4. The solution to this integration is given in
[Grewal and Andrews 1993] as:

Q =

ˆ δt

0

eActQce
AT

ctdt (5)

Using the corresponding parameters Ac and Qc, matrix Q can be computed for the P,
PV and PVA models [Welch et al. 2007]. Table I shows the continuous-time parameters
(the state x, the transition matrix Ac and the process noise covariance matrix Qc) and
the discrete-time covariance matrix Q for the P, PV and PVA models. Welch and Bishop
discuss the process of choosing q in [Welch and Bishop 2001].

Table I. Parameters for the P, PV and PVA models.

Model x̄ Ac Qc Q

P [x]
[

0
] [

q
]

[q δt]

PV
[
x
ẋ

] [
0 1
0 0

] [
0 0
0 q

] [
q δt

3

3
q δt

2

2

q δt
2

2
q δt

]

PVA

 xẋ
ẍ

  0 1 0
0 0 1
0 0 0

  0 0 0
0 0 0
0 0 q


 q

δt5

20
q δt

4

8
q δt

3

6

q δt
4

8
q δt

3

3
q δt

2

2

q δt
3

6
q δt

2

2
q δt



Source: [Welch et al. 2007].

3.1.2. Measurement Model. Similarly to the process model, the measurements obtained
from a sensor can be modeled using a deterministic and a random component. The
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observation at time step t is the measurement vector zt ∈ Rm . It is related to the state
via the following equation:

z̄t = h (x̄t, āt) + v̄ (6)

The non-linear measurement function h is the deterministic component that relates
the state x̄t to the measurement z̄t. The vector parameter āt is the action taken at time
step t, which comprises all parameters that affect the observation process. The action
is considered performed before the measurement is taken. The random variable v̄ ∼
N (0, R) represents the measurement noise. Just as with the state transition function
f , the measurement function h is linearized about the point of interest x̄ in the state
space by computing the corresponding Jacobian matrix H:

H =
∂

∂x̄
h (x̄)

∣∣∣
x̄

(7)

The measurement model becomes:

z̄t = Hx̄t + v̄ (8)

In practice, Jacobian matrix H and measurement noise covariance matrix R are
determined through sensor calibration.

The actual noise signal v̄ is not known or even estimated. Instead, designers typi-
cally estimate the corresponding noise covariance matrix R, and use it to weight the
measurements and to estimate the state uncertainty.

State-space models allow taking into account measurements from multiple, hetero-
geneous sensors. Allen describes such a system in her thesis ([Allen 2007], Section
5.2.3). In Section 6, we present experimental evaluations using a hybrid system that
takes measurements from multiple cameras and GPS sensors.

In the case of a GPS sensor, the measurement function h transforms a 3D point (lat-
itude, longitude, altitude) into a local 3D coordinate system (x, y, z) used for tracking
or 3D reconstruction. This transformation is a 3 × 3 linear transform H that can be
used directly in Equation 8.

In the case of cameras, the measurement function h is embodied by the camera’s
projection matrix Proj, which projects a homogeneous 3D point [ x y z 1 ]T to a homo-
geneous 2D image pixel [ u′ v′ 1 ]T as follows:

[
u
v
w

]
= Proj

 xyz
1

 (9)

u′ = u/w (10)
v′ = v/w (11)

The projection matrix Proj is typically determined through a geometric calibration
process like the one in [Zhang 1999]. One common way to define matrix Proj is as
follows:

Proj = K [Rot|Tr] (12)

The 3×3 rotation matrixRot and the 3×1 translation vector Tr represent the camera
extrinsic parameters, and specify the transform between the world coordinate system
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and the camera’s coordinate system. The 3 × 4 matrix [Rot|Tr] is the concatenation of
matrix Rot and vector Tr. The intrinsic parameters are represented by matrix K, a
3× 3 matrix of the form:

K =

[
fx s cx
0 fy cy
0 0 1

]
(13)

fxand fy are the camera focal lengths, measured in pixels, in the x and y directions. s
is the skew, typically zero for cameras with square pixels. cx and cy are the coordinates
of the image center in pixels.

Since the camera measurement process embodied by the computation of u′ and v′ is
not linear, the following Jacobian is used in Equation 8.

H =

[
∂u′

∂x
∂u′

∂y
∂u′

∂z
∂v′

∂x
∂v′

∂y
∂v′

∂z

]
(14)

The measurement model is where some performance factors are integrated into the
metric. The camera field of view and image resolution are integrated into the Jacobian
H via the camera projection model. Noise due to focus, mechanical camera components,
and target distance is added into the noise covariance matrix R. The interested reader
is referred to Section 5.4 of [Ilie 2010] for more details.

3.2. The Kalman Filter
The Kalman Filter [Welch and Bishop 2001] is a stochastic estimator for the instanta-
neous state of a dynamic system that has been used both for tracking and for motion
modeling [Krahnstoever et al. 2001]. It can also be used as a tool for performance
analysis [Grewal and Andrews 1993] when actual measurements (real or simulated)
are available. This section provides a brief introduction.

3.2.1. Equations. The Kalman filter consists of a set of mathematical equations that
implement a predictor-corrector type estimator. Its equations can be described using
matrices A, H, Q and R defined in the state-space models in Section 3.1, and the initial
state covariance P0. The equations for the predict and correct steps are as follows:

(1) Time Update (Predict Step).
— Project state ahead:

x̂−t = f (x̂t−1, t− 1) (15)

x̂−t ∈ Rn is the a priori state estimate at time step t, x̂t−1 ∈ Rn is the a posteri-
ori state estimate at time step t − 1, given measurement ¯zt−1, and f is the state
transition function.
— Project error covariance ahead:

P−t = AtPt−1A
T
t +Q (16)

At is the Jacobian matrix of partial derivatives of the state transition function f
with respect to x at time step t.

(2) Measurement Update (Correct Step) – can only be performed if a measurement is
available.
— Compute Kalman gain:
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Kt = P−t H
T
t

(
HtP

−
t H

T
t +R

)−1
(17)

Ht is the Jacobian matrix of partial derivatives of h with respect to x at time step
t. Since h is a function of the selected action āt, both Ht and Kt are functions of āt.
— Update state estimate with measurement z̄t:

x̂+
t = x̂−t +Kt

(
z̄t − h

(
x̂−t , at

))
(18)

The expression Kt

(
z̄t − h

(
x̂−t , āt

))
is called innovation, and quantifies the change

in state over a single time step.
— Update error covariance:

P+
t = (I −KtHt)P

−
t (19)

Note that the a posteriori state covariance P+
t does not depend on the measure-

ment z̄t. This allows evaluation of P+
t over time in absence of measurements.

3.2.2. Sequential Evaluation. The sequential Kalman filter is a sequential evaluation
method for the Kalman filter. The time update (predict) phase is identical to the one in
the standard Kalman filter. The sequential evaluation takes place in the measurement
update (correct) phase. Each sensor s = 1 . . . c is given its own subfilter. The estimate
x̂−t , P

−
t from the predict phase becomes the a priori state estimate for the first subfilter:

x̂
−(1)
t = x̂−t (20)

P
−(1)
t = P−t (21)

Each sensor s incorporates its measurement z̄t(s), as in Equation 18:

x̂
+(s)
t = x̂

−(s)
t +K

(s)
t

(
z̄t

(s) − h(s)
(
x̂
−(s)
t , āt

(s)
))

(22)

The output state x̂+(s)
t of each subfilter becomes the input state x̂−(s+1)

t for the next
subfilter:

x̂
−(s+1)
t = x̂

+(s)
t (23)

Equations 22 and 23 can be aggregated into a single expression for the entire set of
c subfilters:

x̂
+(c)
t = x̂

−(1)
t +

c∑
s=1

K
(s)
t

(
z̄t

(s) − h(s)
(
x̂
−(s)
t , āt

(s)
))

(24)

Let C(s)
t be the contribution to the error covariance of each sensor s at time step t,

computed as:

C
(s)
t = I −K(s)

t H
(s)
t (25)

The error covariance can be updated with the contribution C
(s)
t , as in Equation 19:
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P
+(s)
t = C

(s)
t P

−(s)
t (26)

The output covariance P+(s)
t of each subfilter becomes the input covariance P−(s+1)

t
for the next subfilter:

P
−(s+1)
t = P

+(s)
t (27)

Equations 26 and 27 can be aggregated into a single expression for the entire set of
c subfilters:

P
+(c)
t =

c∏
s=1

C
(s)
t P

−(1)
t (28)

If a sensor does not generate a measurement during a particular time step, the se-
quential Kalman filter allows simply skipping incorporating its contribution into equa-
tions 24 and 28. However, the contribution C(s)

t of each sensor s at time step t depends
on the a priori covariance of subfilter s, so the final a posteriori state x̂+

t = x̂
+(c)
t and

covariance P+
t = P

+(c)
t depend on the order in which the subfilters are evaluated. In

practice, the effects of ordering are usually ignored.

3.3. Estimating and Predicting Performance
We define the performance of a camera configuration as its ability to resolve features
in the working volume, and measure it using the uncertainty in the state estimation
process. Uncertainty in the state x̄ can be measured using the error covariance P+

t
computed in the Kalman filter Equation 19.

In [Ilie et al. 2008], we introduced the concept of surrogate models to allow evalua-
tion of the metric in state-space only where needed: at a set of 3D points associated
with each ROI. The metric values are aggregated over the state elements in the sur-
rogate model of each ROI, over each ROI group and over the entire environment. At
all aggregation levels, weights can be used to give more importance to a particular
element. The choice of surrogate model is paramount, as it allows incorporating task
requirements into the metric. Section 5 presents a few examples.

Due to the dynamic nature of the events being captured and the characteristics of
the active cameras used to capture images, time needs to be considered as a dimension
of the search space. Spatial aggregation of metric values over the environment for the
current camera configuration is not sufficient, and future camera configurations need
to be evaluated as well. This results in the performance metric evaluating a plan: a
temporal sequence of camera configurations up to a planning horizon. The difficulty is
that at each time instant a camera’s measurement can be successful or unsuccessful,
depending on whether the ROI whose position is being measured is visible or not.
Denzler et al. [Denzler et al. 2002] introduced a way to deal with visibility at each
step. Deutsch et al. [Deutsch et al. 2004] extended this approach to multiple steps into
the future using a visibility tree, and then sped up the evaluation by linearizing the
tree and extended the approach to multiple cameras using a sequential Kalman filter
in [Deutsch et al. 2006]. We employ a similar approach, but use a norm of the error
covariance P+

t instead of entropy as our performance metric, and a different method to
aggregate it over space and time. As the metric measures the uncertainty in the state,
when comparing camera configurations smaller values are better.

Our metric computation works in tandem with the Kalman filter that is used to
estimate the ROI trajectories. At each time instant, the filter incorporates the lat-
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est measurements from cameras and other sensors, and saves the current estimate(
x−0 , P

−
0

)
. This estimate is the starting point for all metric evaluations. To evaluate a

camera plan, we repeatedly perform sequential evaluations of the Kalman filter equa-
tions, stepping forward in time, while using process models to predict ROI trajectories
and updating the measurement models with the corresponding planned camera pa-
rameters. When looking into the future, no actual measurements z̄t are available at
time t, but estimated measurements ẑt = h

(
x̂−t , at

)
can be used instead. Substituting

ẑt for z̄t results in zero innovation. Equation 18 becomes simply:

x̂+
t = x̂−t (29)

At each time step, a camera measurement can be successful or not, depending on
a variety of factors such as visibility, surface orientation, etc. If the measurement is
assumed successful, the a posteriori state error covariance P+

t is computed as in Equa-
tion 19. If the measurement is assumed unsuccessful, the measurement update step
cannot be performed, and P+

t = P−t . The two outcomes can be characterized by two
distributions with the same mean x̂+

t and covariances P+
t and P−t . Given the proba-

bility that a measurement is successful ms, these distributions can be considered as
components of a Gaussian mixtureM [Deutsch et al. 2006]:

M = ms · N
(
x̂+
t , P

+
t

)
+ (1−ms) · N

(
x̂+
t , P

−
t

)
(30)

The covariance of the Gaussian mixtureM is:

P+′

t = ms · P+
t + (1−ms) · P−t = (I −ms ·KtHt)P

−
t (31)

Since the two distributions have the same mean x̂+
t , M is unimodal and can be

approximated by a new Gaussian distribution M′
(
x̂+
t , P

+′

t

)
, as shown in [Deutsch

et al. 2006]. It follows that in order to incorporate the outcome of an observation, one
simply has to compute the success probability and replace the computation of the a
posteriori error covariance in Equation 19 in the Kalman correct step with the one in
Equation 31. The measurement success probability ms is where performance factors
that affect visibility (such as occlusions and incidence angle) are integrated into the
metric. The interested reader is referred to Section 5.4 of [Ilie 2010] for more details.

To aggregate over time, Deutsch et al. [Deutsch et al. 2004; Deutsch et al. 2006]
propose simply using the entropy value at the horizon. However, this value is very
sensitive to the camera configurations and ROI positions during the last few time
steps before the horizon. For example, when an ROI is occluded in camera view, the
uncertainty increases to reflect the absence of measurements. Depending on the cir-
cumstances, such an increase during the last time steps before the horizon could end
up penalizing plans that perform well during previous time steps. Conversely, a plan
where the cameras become unoccluded during the last time steps before the horizon
can end up favored over a plan that has the cameras unoccluded up until just before
the horizon. To fully characterize the evolution of the metric value over time, our ap-
proach is to aggregate all the values up to the horizon instead. We use equal weights
for all time steps, but different weights can be employed, for example, to emphasize
the first few time steps, when trajectory predictions are more reliable.

In summary, our performance metric is computed by repeatedly stepping through
the sequential Kalman filter equations and changing relevant state-space model pa-
rameters at each time step. The state is initialized using the current Kalman filter
state estimate. Aggregation over space and time is performed using weighted sums,
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with weights being used to give more importance at various levels, such as to a point
in a ROI’s surrogate model, to a ROI, to a ROI group, or to a time instant. Equation 32
illustrates the general formula for the metric computation.

M =

nROIs∑
r=1

ur

(
H∑
t=1

vt

(
Nr∑
p=1

wp
(
SqrtMaxDiag

(
P+
t,p

))))
(32)

nROIs is the number of ROIs, Nr is the number of points in the surrogate model of
ROI r, H is the planning horizon. ur, vt and wp are relative weights for each ROI r,
time step t, and model point p, respectively. P+

t,p is the a posteriori covariance for model
point p at time t. Algorithm 1 presents the process in detail.

ALGORITHM 1: function m =Metric(R,S,H)

Input: set of ROIs R, set of sensors S, planning horizon H
Output: metric value m
m = 0;
for all ROIs r ∈ R do

x−0 = GetCurrentState (r);
P−0 = GetCurrentCovariance (r);
mr = 0;
for t = 1 . . . H do(

x−t , P
−
t

)
= KalmanPredict

(
x+t−1, P

+
t−1

)
;

for all sensors s ∈ S do
ApplySettings(splan, t);(
x+t , P

+
t

)
= KalmanCorrect

(
s, x−t , P

−
t

)
;

end
mt = 0;
for all points p in the model of r do

mt = mt + SqrtMaxDiag
(
P+
t,p

)
· wp;

end
mr = mr +mt · vt;

end
m = m+mr · ur;

end

To convert the error covariance into a single number, the function SqrtMaxDiag ()
returns the square root of the maximum value on the diagonal of the portion of the
error covariance matrix P+

t,p corresponding to the position part of the state. We chose
the diagonal maximum because it results in the smallest position uncertainty in all
three directions of the 3D space. One advantage of using the square root of the highest
covariance in the metric function is that the measurement unit for the metric is the
same as the measurement unit of the state space. For example, if the state consists of
3D point positions measured in meters, the metric value will also be in meters. This
makes it more intuitive for a system user to specify application requirements such as
the desired maximum error in a particular area where important events take place.
Entropy can also be used to convert the error covariance into a single number, but it is
more expensive to compute, and does not have the same real-world units as the square
root of the diagonal maximum.

The interested reader is referred to Chapter 5 of [Ilie 2010] for a detailed discussion
on how we arrived at our performance metric, how it differs from previous approaches,
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and how it incorporates quality factors known to influence the performance of camera
configurations.

4. CONTROL METHOD
We define optimization in active camera control as the exploration of the space of possi-
ble solutions in search for the best solution as evaluated by the performance metric: the
minimum state uncertainty. In [Ilie 2010], we showed that exhaustively exploring the
space of combinations of camera pan, tilt and zoom settings is intractable, even when
applying heuristics to reduce the search space size. Instead, we explore the space of
camera-ROI assignments, and compute the best settings corresponding to each assign-
ment using geometric reasoning: the best results are usually obtained when the ROI
trajectories are enclosed in the camera fields of view as tightly as possible (see Sec-
tion 4.4). Evaluating all possible combinations of plans for all cameras is intractable
as well, but this search space features better opportunities to reduce its size. We per-
formed a careful analysis of the search space complexity, revealing multiple heuristics
that reduce the search space size, and conducted experiments using our metric to eval-
uate them. While necessarily limited in scope, the experiments confirmed that the
heuristics were performing as expected. The interested reader is referred to Chapter 4
of [Ilie 2010] for details on how and why we chose the specific set of heuristics in this
section to reduce the size of the search space and ensure real-time performance.

During our analysis of the search space, we found that using proximity to decom-
pose the optimization problem into subproblems and solving each subproblem inde-
pendently was the heuristic most effective at reducing the search space size. As a
result, our camera control method consists of two components: centralized global as-
signment and distributed local planning. The global assignment component groups
ROIs into agencies based on proximity to each other and assigns the appropriate cam-
eras to each agency. The local planning component is run at the level of each agency,
and is responsible for finding the best plans for all the cameras assigned to that agency.
The main advantage this strategy offers is that the subproblems associated with each
agency can be solved independently, in parallel. Another advantage is the opportunity
to run the two components of our approach at different frequencies: for example, the
global assignment component can be run once every N cycles, while the local planning
component can be run once per cycle at the level of each agency.

We perform a complete optimization during a planning cycle. For simplicity, and
without loss of generality, we set the duration of a planning cycle to 1 second. Our
current implementation, although not parallelized, still runs on-line, in real-time (a
complete optimization per second). During each cycle, the optimization process first
predicts the ROI trajectories up to the planning horizon, then uses them to construct
and evaluate a number of candidate plans for each camera. A plan consists of a num-
ber of planning steps, which in turn consist of a transition (during which the camera
changes its settings) and a dwell (during which the camera captures, with constant
settings). Candidate plans differ in the number and duration of planning steps up to
the planing horizon. We set the planning horizon to the minimum between a prede-
fined number of seconds (set to ensure real-time performance) and the duration of the
longest possible camera capture, given the camera positions and capabilities and the
predicted ROI trajectories.

4.1. Notation
Before presenting the algorithms that comprise our method, we introduce a few no-
tation elements. We use standard sets notation: {. . .} is a set, ∅ is the empty set, ⊂
represents a subset, ∈ represents membership, ≡ represents equality, 6= represents
inequality, \ represents set difference, ∪ represents set union, and ∩ represents set
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intersection. Sets are denoted by capital letters like A,C, PS,R,R′ and set members
by small letters like a, c, p, r. A set member can be selected by its number. For example,
C [n] is the n-th camera in set C.

Additionally, we use several variables, including the following:

— a plan P is denoted as a set of configurations over time, to which standard set oper-
ations can be applied,

— P [start . . . stop] is plan P between times start and stop,
— Pa is the plan for all cameras in agency a, and Pa,c is the plan for camera c in agency
a,

— a.CurrentP lan is the current plan for agency a,
— r.T rajectory [t] represents the surrogate model of ROI r at time t, from which points

can be selected, the top and bottom points in particular,
—Ra is the set of ROIs in agency a,
—Ca is the set of cameras assigned to agency a,
—Cavail. is the set of available cameras,
— c.Useful is a Boolean variable that specifies whether a camera c has been designated

as useful or not,
— c.T ransitionDuration and c.UninterruptibleDwellDuration are the transition and

uninterruptible dwell durations for camera c,
— c.AspectRatio is the aspect ratio of camera c,
— c.Choices is the set of capture choices (start time and duration) for camera c.

4.2. Global Assignment
The global assignment component accomplishes two tasks: grouping ROIs into agen-
cies and assigning cameras to each agency. We create agencies by clustering together
ROIs that are close to each other and predicted to be heading in similar directions.
We use predicted trajectories to cluster the ROIs into a minimum number of non-
overlapping clusters of a given maximum diameter.

Standard clustering algorithms such as k-means ([Tan et al. 2005], Chapter 8) are
not immediately applicable, because the ROI trajectories are dynamic. Additionally,
the membership of all ROI clusters needs to exhibit hysteresis to help keep the assign-
ments stable. When an agency’s ROI membership changes, all cameras assigned to it
need to reevaluate their current plans. Since available cameras currently assigned to
other agencies might contribute more to the modified agency, their possible contribu-
tions need to be evaluated as well. If these evaluations result in changes in plans or
assignments, cameras may need to transition, and end up spending less time captur-
ing, which usually results in worse performance. To accommodate these requirements,
we use a proximity-based minimal change heuristic, consisting of three steps:

(1) assign each unassigned ROI to the agency closest to it if the agency would not
become too large; form new agencies for remaining isolated ROIs;

(2) if any agency has become too large spatially, iteratively remove the ROI furthest
from all other ROIs from it until the agency becomes small enough;

(3) if any two agencies are close enough to each other, merge them into a single agency.

Algorithm 2 presents the process in detail.
Once agencies are created, we use a greedy heuristic to assign cameras to each

agency, based on their potential contribution to it. Formal approaches such as lin-
ear programming are not easily applicable because they are not always guaranteed
to provide a solution if the overall problem is infeasible. Only available cameras are
taken into account. A camera is considered available if its state for the next planning
cycle is the start of a transition or an occlusion. Additionally, a camera’s dwell can be
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ALGORITHM 2: function A = ROIClustering(D,H,R,A)

Input: cluster diameter D, horizon H, ROI set R, agencies set A
Output: agencies set A
PredictROITrajectories (T,H);
for all unassigned ROIs r ∈ R do

dmin = D;
for all agencies a ∈ A do

d = Distance (r, a,H);
if d < dmin then

Ra = Ra ∪ {r};
dmin = d;
amin = a;

end
end
if dmin ≡ D then

a = CreateAgency ();
A = A ∪ {a};

end
else

a = amin
end
Ra = Ra ∪ {r}

end
for all agencies a ∈ A do

repeat
{r1, r2} =MostDistant2ROIs (Ra, H);
if Distance (r1, r2, H) > D then

R′ = Ra\ {r1, r2};
if Distance (r1, R′, H) > Distance (r2, R

′, H) then
r = r1

end
else

r = r2
end
Ra = Ra\ {r};
AddToClosestAgency (r,D,H,A);
if Ra ≡ ∅ then

A = A\ {a}
end

end
until Distance (r1, r2, H) ≤ D;

end
repeat
{a1,a2} = Closest2Agencies (A);
if Distance (a1, a2, H) ≤ D then

a =Merge (a1, a2);
A = A\ {a1, a2} ∪ {a};

end
until Distance (a1, a2, H) > D;
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interrupted if it has lasted longer than a specified minimum duration. The heuristic is
also proximity-based: a camera-agency assignment is evaluated only if the camera is
close enough to the ROIs in the agency. Proximity is evaluated in function IsClose ()
to only try assigning cameras to nearby agencies. The heuristic tries assigning each
available camera to all nearby agencies, searching for the camera-agency assignment
that best improves the metric value for the agency. Improvement is measured using
the ratio mafter/mbefore, and the best improvement bi corresponds to the smallest ratio.
The initial value for bi is 1 + ε, where ε is a very small number. If a camera does not
improve the metric for any agency, its settings are left unchanged for the duration of
the current cycle. The resulting plans are compared with plans obtained by prolong-
ing the current plans up to the planning horizon whenever possible, and the greedy
assignments are only applied if they perform better. Algorithm 3 presents the process
in detail.

ALGORITHM 3: function Pgreedy = GreedyAssignment(A,C,H)

Input: set of agencies A, set of cameras C, horizon H
Output: heuristic plan Pa
Cavail. = FindAvailableAgents (C);
Pcurrent = ∅;
for all agencies a ∈ A do

for all cameras c ∈ Ca do
Pa = BuildP lan (c, a, 1, H, true);
Pcurrent = Pcurrent ∪ Pa;

end
end
Pgreedy = Pcurrent;
for all cameras c ∈ Cavail. do

bi = 1 + ε;
mbefore =Metric (A,Pgreedy, H);
c.Useful = false;
for all cameras c ∈ Cavail. do

if ∼ IsClose (c, a,H) then
continue

end
Pa = BuildP lan (c, a, 1, H, c.agency ≡ a);
AddCameraToAgency (c, a, Pa);
mafter =Metric (A,Pgreedy ∪ {Pa} , H);
RemoveCameraFromAgency (c, a);
ic,a = mafter/mbefore;
if ic,a ≤ bi then

bi = ic,a;
abest = a;
Pbest = Pa;
c.Useful = true;

end
end
if c.Useful then

AddCameraToAgency (c, abest, Pbest);
Pgreedy = Pgreedy ∪ Pbest;

end
Cavail. = Cavail.\ {c};

end
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The plans corresponding to each camera-agency assignment are generated heuristi-
cally by assuming the worst-case scenario: the camera is repeatedly set to transition,
then capture for as long as possible, with a field of view as wide as possible. While other
scenarios, in which the camera captures for shorter intervals, may result in better per-
formance by using narrower fields of view, the goal of this heuristic is only to quickly
assess the potential contribution a camera can have to the capture of the ROIs in the
agency it is being assigned to. The heuristic also takes into account predicted static
and dynamic occlusions, and plans transitions during occlusions whenever possible, in
order to minimize the time when the camera is not capturing. Static occlusions are
precomputed off-line for each camera. Dynamic occlusions are computed on-line, using
the predicted ROI trajectories. Algorithm 4 presents the process in detail.

ALGORITHM 4: function Pa = BuildP lan(c, a, start, stop, prolong)

Input: camera c, agency a, planning start and stop times, bool prolong
Output: heuristic plan Pa
t = start;
Pa = a.CurrentP lan;
if prolong then

Pa = ProlongCurrentCapture (Pa);
t = EndOfFirstCaptureT ime (Pa);

end
Pa = Pa [1 . . . t];
while t < stop do

tFoV =WidestFoV CaptureT ime (c, a, t, stop);
toccl = NextOcclusionStart (c, a, t, stop);
e = min (tFoV , toccl);
Pa [t . . . e] = ComputeSettings (c, a, t, e);
if tFoV < toccl then

t = e;
else

t = NextOcclusionEnd (c, a, t, stop)− c.T ransitionDuration;
end

end

The number of assignments evaluated is nAgencies · nCamsavail.. Note that the re-
sults of the assignment process are dependent on the order in which cameras are con-
sidered. If all possibilities were evaluated instead, the complexity would increase to
nAgencies · nCamsavail. (nCamsavail. + 1) /2, and a formula quadratic in nCamsavail. is
often likely to result in slower than real-time performance.

It is worth noting that two small changes in our global assignment algorithm make it
general enough to apply to camera selection as well. A scenario likely to be encountered
in practice is that the camera infrastructure installed at a site might have both F fixed
cameras and A active cameras, as well as a number D of devices to record the video
streams coming from the cameras. If there are not enough devices to record all the
streams (D < A+ F ), a modified assignment approach can be used to decide which
streams to record. The changes would simply be to return after assigning D cameras
and to skip the planning of transitions and dwells for fixed cameras. Selecting a set of
cameras to record would not preclude other algorithms that can run in real-time (such
as tracking) from running using all camera streams, or from potentially contributing
their input to our method.
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4.3. Local Planning
Local planning at the level of each agency is concerned with the locally-optimal capture
of the ROIs in the agency. All cameras assigned to each agency capture all member
ROIs, and no further camera-ROI assignment decisions are made at this level. The
planning decisions made at this level are on when and for how long each camera should
dwell (capture), and when it should transition to a new configuration.

The current configuration of each camera, corresponding to the first step in a plan,
is arguably the most important: configurations corresponding to subsequent steps are
revised during subsequent optimization cycles, when the planning method can take
advantage of updated predictions of ROI trajectories. We take advantage of this and
call the resulting planning process myopic: exhaustive exploration of all possible dwell
durations is only done during the first planning step, and heuristic computations are
used for subsequent steps up to the time horizon.

During each evaluation cycle, a decision is made whether to keep the current cam-
era settings or to transition to a new configuration. We reduce the search complexity
by having the planning process be lazy: only making this decision for the first cycle
in a planning step. Subsequent cycles will simply leave in place the result of the de-
cision made during the first cycle. The reasoning behind this heuristic is, again, that
the predicted trajectories available during subsequent cycles are less precise, and the
planning process will get a chance to make a decision for each cycle when it becomes
the current cycle, and is provided with updated trajectory estimates.

The interested reader is referred to Chapter 4 of [Ilie 2010] for a discussion on the
impact of myopic, lazy, and other planning heuristics on the size of the search space.
While significantly reducing the search space, they can still sometimes result in too
many plans to evaluate for running in real-time. We further reduce the number of can-
didate plans by planning transitions during occlusions and limiting how many plan-
ning steps of minimum length can fit before the planning horizon. The heuristic em-
ployed for completing plans beyond the first step is the same one used during global
assignment: function BuildP lan (), described in Algorithm 4.

Static occlusions do not depend on the camera parameters, so they are precomputed
for each camera in the variable c.V isib. and used to further reduce the number of
possible plans in the ComputeStaticV isibilities () function. Other restrictions, such as
how many planning steps of minimum length can fit before the planning horizon, can
be taken into account as well in the FindChoices () function.

To achieve on-line, real-time control, the set of candidate plans can be sorted so
that the most promising plans are evaluated first. One can use prior experimental
observations to derive criteria for quickly judging a plan’s potential without a costly
metric evaluation.

While not a guarantee that the best plan would be chosen on time, we have found
this combination of heuristics to closely approximate an exhaustive search. The final
result of the planning heuristics is a set of candidate plans for each camera. All pos-
sible combinations of candidate plans for all cameras are explored exhaustively using
backtracking. Algorithm 5 presents the local planning procedure, Algorithm 6 details
the backtracking procedure, and Algorithm 7 shows a simple example of how the set
of choices for the first planning step’s end time can be computed.

4.4. Computing Camera Settings
Once the start cycle and capture duration are decided for a planning step in a camera’s
plan, we use geometric reasoning to compute the corresponding camera pan, tilt and
zoom values that ensure optimal coverage of all the ROIs in the agency the camera has
been assigned to. To speed up computation, we use a 2.5D approximation, illustrated
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ALGORITHM 5: function Pa = LocalP lanning (Ca, a, h)

Input: camera set Ca, agency a, planning horizon h
Output: local plan Pa
Cavail. = FindAvailableAgents (Ca);
for all cameras c ∈ Cavail. do

c.V isib. = ComputeStaticV isibilities (c, a, 1, h);
Pa,c [1 . . . h] = BuildP lan (c, a, 1, h, true);
c.Choices = FindChoices (c, a, 1, h);

end
mbest =Metric ({a} , Pa, h);
Pa = BackTrack (a,Cavail., 0, 0, Pa, h);

ALGORITHM 6: function Pbest = BackTrack (a,C, cn, n, Pbest, h)

Input: agency a, camera set C, current camera number cn, current choice number n, current
best plan Pbest, horizon h

Output: current local best plan Pbest
cn = cn+ 1;
if cn < size (C) then

c = C [cn];
for all choices i ∈ c.Choices do

Pbest = BackTrack (a,C, cn, i, Pbest, h);
end

else
Pa [1, c.Choices (n)] = ComputeSettings (c, a, 1, c.Choices (n));
Pa [c.Choices (n) + 1, h] = BuildP lan (c, a, c.Choices (n) + 1, h, true);
m =Metric ({a} , Pa);
if m < mbest then

mbest = m;
Pbest = Pa;

end
end

ALGORITHM 7: function S = FindChoices (c, a, start, stop)

Input: camera c, agency a, planning start and stop times
Output: set of choices for the first planning step’s end time S
t = start+ c.T ransitionDuration+ c.UninterruptibleDwellDuration;
tFoV =WidestFoV CaptureT ime (c, a, t, stop);
S = ∅;
while t ≤ tFoV do

if ∼ IsOccluded (c, t) then
S = S ∪ {t};

end
end
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in Figure 3. Algorithm 8 builds a 2D point set PS from the points at the bottom and
the projections of the points at the top of the surrogate model of each ROI onto the xy
plane as seen from the camera, and computes the camera parameters from 2D angles
and distances in the plane. We found that this approximation provides satisfactory
results in practice.
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Fig. 3. Computing camera settings.

ALGORITHM 8: function PTZ = ComputeSettings (c, a, start, stop)

Input: camera c, agency a, planning start and stop times
Output: PTZ settings for plan step P [start . . . stop]
PS = ∅;
t = start;
while t ≤ stop do

for all ROIs r ∈ Ra do
p1 = ProjectOntoP lane (r.T rajectory [t] .top);
p2 = r.T rajectory [t] .bottom;
PS = PS ∪ {p1, p2};

end
t = t+ 1

end
compute angles αmin and αmax;
compute distances dmin and dmax;
compute angles βmin and βmax;
HFoV = αmax − αmin;
V FoV = βmax − βmin;
if HFoV/V FoV > c.AspectRatio then

HFoV = c.AspectRatio ∗ V FoV ;
end
Pan = (αmax+αmin)/2;
T ilt = (βmax+βmin)/2;
Zoom = HFoV/MaxHFoV ;
PTZ = {Pan, T ilt, Zoom};
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5. INCORPORATING TASK REQUIREMENTS INTO OUR APPROACH
The computer vision algorithm that processes the captured images can be run in real-
time, and provide feedback to the camera control method. An example of such an algo-
rithm that can run in real-time is 3D tracking. Alternatively, constraints and require-
ments can be derived a priori, and more time-consuming computer vision algorithms
can be run on the captured images long after the events have taken place. For example,
3D reconstruction algorithms can be time-consuming, but rigorously specifying their
requirements allows the capture of images that can still guarantee good results even
without real-time feedback. Many task requirements become easy and intuitive to in-
corporate into our method due to the performance metric being in state-space. In this
section, we give a few examples of how common task requirements can be incorporated,
grouped by the application domain. The interested reader is referred to Chapters 5 and
6 of [Ilie 2010] for a more detailed presentation of our performance metric and camera
control method, including a discussion on applying them to a variety of tasks.

5.1. Tracking
The requirements of a tracking application are naturally expressed in state-space. For
example, the user of a tracking system may specify the desired tracking accuracy for
a particular region where events might be more important or more likely to happen,
or for a particular ROI enclosing a person deemed more important. This importance
appears as a weight in the aggregation part of the metric function, and affects the
optimization process.

The state can be modeled as a single 3D point if the user is only interested in the
ROI’s position, or multiple points placed for example at the skeleton joints if the user
desires motion capture. Models can be augmented with local surface orientation if the
user wants to take into account self-occlusion. The state can also be reduced to 2D if
the tracking system employs a ground plane assumption, in which case a single camera
measurement is sufficient to determine the ROI position at any time.

5.2. Surveillance
Surveillance tasks have very diverse goals. Here we give two examples of surveillance
tasks and how they can be accommodated by our approach.

(1) Following a person or object throughout the environment: enclose the person or
object inside a ROI and set its importance higher than the importance of other
ROIs. The camera control method will automatically follow the more important
ROI and exhibit complex behaviors such as coordination and hand-offs between
cameras.

(2) Capturing images of people’s faces for biometric tasks: augment the surrogate
model with points on the person’s face and the person’s movement and/or gaze
direction, and incorporate the incidence angle into the metric computation as a
factor in the probability of making a successful measurement ms in Equations 30
and 31. To ensure the capture of as many faces as possible, have a single success-
ful capture drastically decrease the importance of the captured target’s ROI. This
will result in cameras capturing other faces that are comparably more uncertain.
As time passes, repeated captures of the same person’s face if still present in the
environment can be ensured by having the importance of its ROI increase slowly
over time.
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5.3. 3D Reconstruction
When the application is a 3D reconstruction method, surrogate models can be adjusted
to better fit the requirements of the particular 3D reconstruction approach. We present
two examples below.

(1) Surrogate models for stereo reconstruction could be augmented with local surface
orientation, which can be included in an appropriate aggregation function that
uses the angle between the camera ray and the surface normal. The resulting
metric would give more weight to samples better suited for stereo matching. This
change results in the metric giving preference to camera configurations that have
been shown to work better in stereo reconstruction: cameras placed relatively close
to each other and aimed in a similar direction.

(2) The default approach of minimizing the uncertainty in the 3D position of a number
of points gives good results in 3D volumetric reconstruction. However, a different
kind of surrogate model for volumetric 3D reconstruction could instead consist of
a medial axis-like representation: a set of 3D centroids and rays to the surface.
The metric to be optimized could then be an aggregation of the uncertainties in
the length of the rays together with the ray lengths themselves, since volumetric
approaches typically seek a 3D model of minimum volume. Both approaches result
in the metric giving preference to camera configurations that have been shown to
work better in volumetric reconstruction: cameras placed uniformly around a ROI,
in an outside-looking-in arrangement.

5.4. New Targets
There are multiple ways of incorporating new persons or objects entering the environ-
ment:

(1) One approach is suggested by previous work in surveillance such as [Krahnstoever
et al. 2008], and applies to enclosed environments with a limited number of entry
points. In this case, previous approaches have scheduled cameras to periodically
survey the entry points for any potential new targets. A similar approach can be
straightforwardly applied to our method by having static ROIs enclose the entry
points, and automatically creating new dynamic ROIs enclosing any new targets
when they are detected entering the scene. Given appropriate surrogate models for
each ROI, the camera control method would automatically plan available cameras
to both survey the static ROIs enclosing the entry points and to track the newly
created dynamic ROIs.

(2) Another approach is introduced by Sommerlande and Reid in [Sommerlade and
Reid 2008a]. They model the probability of new targets entering the scene using
a background Poisson process, and integrate the noise injected by the process into
the performance metric from [Deutsch et al. 2006]. Since our performance metric is
in many respects similar to the one in [Deutsch et al. 2006], this approach is easily
applicable to it as well.

(3) A third approach is to have the state of new ROIs bootstrapped by input from
an external system, for example GPS or a tracking system that uses a few static
cameras with wide fields of view to cover the entire scene. This is another area
where state-space models demonstrate their usefulness: besides helping to acquire
new targets, measurements from these external devices can be incorporated into
the sequential evaluation process described in Section 3.2.2, and thus contribute
to reducing the uncertainty in the state.
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6. EXPERIMENTAL RESULTS
6.1. Simulation-based Experimental Results

6.1.1. Experiment Setup. A training exercise was performed by members of the United
States Marines Corp, and captured on-site at the Sarnoff Corporation in Princeton,
NJ. The exercise participants’ trajectories were used to test how an implementation of
our method can control six PTZ cameras to observe six exercise participants.

The exercise scenario was for a squad of four Marines to patrol, cross a danger zone
between two buildings, cordon and search a civilian, neutralize a sniper threat, and
move out to secure an area.

We used the game engine-based simulator from [Taylor et al. 2007] to run multiple
simulations using the same input data. The simulator provides means of controlling
a number of virtual cameras in a simulated environment and retrieving images from
them.

Figure 4 shows an overview of the exercise site modeled inside the simulator. To
keep the scenario as realistic as possible, we placed six virtual cameras on existing
infrastructure (shown as pillars outlined in blue): four cameras along the building
walls and two cameras on light poles in the parking lot. There were also two shipping
containers, outlined in red, which served as “buildings” during the exercise and helped
us test the impact of static occluders.

Fig. 4. Overview of the USMC training exercise site as modeled in the simulator.

The simulator does not provide means of programmatically controlling the virtual
characters, so we used a plug-in architecture from [Casper 2007] to extend its func-
tionality. We wrote a custom plug-in script to act as a server to which client applica-
tions can connect and send commands. We implemented commands to retrieve a list
of available participants, move a participant to a new position, change a participant’s
orientation and retrieve the current position and orientation of a participant.

For each simulated camera image, the simulator also provides ground truth (silhou-
ettes, bounding boxes, total and visible pixel counts) for the virtual characters in the
image. This feature is aimed at testing image processing algorithms, but we used it
to compute the visibility of a virtual character placed in a particular position as seen
from each of the six cameras used in this experiment. We sequentially placed a virtual
character at positions on a 2D regular grid spanning the area, aimed all cameras at
it, and queried the simulator for the ground truth pixel counts of the virtual character
as seen by each camera. Using this process, we precomputed the visibilities over the
area where the exercise took place and stored them as a per-camera visibility maps.
The visibility at a point (x, y) on the 2D grid for camera c was computed as:
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V (x,y)
c =

PCvisiblec

PCtotalc

(33)

where PCtotalc and PCvisiblec are the counts of total and visible pixels occupied by the
virtual character in camera c’s image.

Figure 5 shows a top-down view of the exercise site. Camera locations are shown
as blue circles, each accompanied by its visibility map shown as a gray-scale image.
Brighter map values denote higher visibility. The aggregated visibility is also shown
as a gray-scale image overlaid on the top-down satellite view of the site and aligned
to match the area where the exercise took place. The two shipping containers which
served as props during the exercise appear as dark spots of zero visibility that cast
“shadows” in the visibility maps.

Fig. 5. Top-down view of the exercise site, with aggregated visibility map overlaid on top. Marine tracks
are shown in blue, civilian and sniper tracks are shown in red. Camera positions are also highlighted, with
visibility maps attached.

During the exercise, participant trajectories were captured as GPS (long., lat., alt.)
measurements over time. The approach from [Broaddus et al. 2009] was used to cap-
ture images from two PTZ cameras and refine the trajectory estimates. We filtered
the trajectory data to reduce noise, sampled it at every second and used the samples
as input for our implementation, which performed a complete optimization every sec-
ond. During experiment runs, we used the 3D GPS points on these input trajectories
to generate simulated 2D measurements in each virtual camera and we also incorpo-
rated them directly into the metric computation as simulated 3D measurements. We

ACM Transactions on Sensor Networks, Vol. 1, No. 1, Article 1, Publication date: January 2012.



On-Line Control of Active Camera Networks for Computer Vision Tasks 1:31

added noise (precomputed for repeatability) to each measurement before incorporating
it into the performance metric computation.

The surrogate model for each exercise participant consisted of two cubic regions, 1m
on the side, stacked on the vertical axis. The coordinates of the center of each region
were included in the state, and a PV state model [Welch et al. 2007] was used in the
Kalman filter-based performance metric evaluation process. To compute the visibility
of each cubic region from each camera, we shot rays from the camera’s center of pro-
jection through seven points associated with the region, and sampled the precomputed
visibility map at the intersection point between the ray and the plane of the visibility
map. The seven sample points were the region center and the six points at ±0.5 meters
in the x, y and z axis directions. The point visibilities were aggregated as follows: the
center point had a weight of 1/2, and the six exterior points each had a weight of 1/12.
The default visibility threshold used to determine whether an object was occluded was
0.75.

6.1.2. Results. We ran multiple simulations using the same input data and tuning
the parameters of our control method. The results we obtained (the interested reader
is referred to Chapter 7 of [Ilie 2010] for more details) led to several observations, some
of which are summarized below:

(1) Using active cameras always performed better than using fixed cameras (simu-
lated by zooming out the active cameras and aiming them at the center of the
scene). The positive effect of higher resolution when controlling the cameras was
more than enough to compensate for the interruptions in capture due to transi-
tions.

(2) Decreasing the frequency at which GPS measurements were incorporated into the
metric (to once every 5 seconds) and eliminating them altogether made the control
method zoom out the cameras to compensate for the higher uncertainty, which
resulted in worse overall performance.

(3) We treated ROIs with visibility less than a threshold as occluded. We varied the
threshold from 0.1 to 1. Increasing the occlusion threshold led to more occlusions,
resulting in plans with captures that were more fragmented by transitions, but the
increased image resolution compensated for some of the performance loss.

(4) Decreasing the planning frequency (we varied it between once every 1 . . . 10 cycles)
to allow for more comprehensive searches resulted in fewer disruptions in camera
membership for each agency, but also in an increased number of times when wrong
trajectory predictions led to some ROIs not being captured for some time intervals.

(5) Increasing the planning horizon length (we varied it from 10 to 28 cycles) and the
clustering diameter (we varied it from 2.5 to 25 meters) led to the heuristic gener-
ating longer captures at larger fields of view and lower resolutions, which resulted
in worse performance.

The following figures show how our camera control method automatically achieves de-
sirable complex behaviors: reacting to predicted occlusions, adapting to changes in pre-
dicted ROI motion and coordinating transitions. Participants are grouped into agen-
cies, shown as circles with varying shades of gray. Cameras assigned to a particular
agency have their base represented as a square of the same shade of gray. Camera ori-
entation is shown as a triangle color-coded by the camera state: green when capturing,
blue when in transition. When capturing, camera fields of view are shown as white
lines.
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Time=17Time=15Time=11

6 6 6

Fig. 6. Reacting to predicted occlusions.

Top row: top-down views of cameras and exercise participants, overlaid on top of a
satellite image and aggregated visibility map.
Bottom row: simulated images for camera 6.

The four Marines are grouped into an agency, and the civilian and the sniper into a
second agency.
At Time = 11, Camera 6 is capturing the Marines, which are approaching the first
building.
At Time = 15, two of the Marines are already behind the first building, and the other
two Marines are predicted to follow them, so Camera 6 becomes increasingly less useful
and is set to transition to where it can provide better coverage.
At Time = 17, the transition has ended, Camera 6 is assigned to a different agency and
capturing the civilian and the sniper.
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3 3 3

Time=30Time=24Time=21

Fig. 7. Adapting to changes in predicted ROI motion.

Top row: top-down views of cameras and exercise participants, overlaid on top of a
satellite image and aggregated visibility map.
Bottom row: simulated images for Camera 3.

The four Marines are grouped into an agency, and the civilian and the sniper into a
second agency.
At Time = 21, the Marines are about to exit the field of view of Camera 3, and the first
Marine is moving fast to cross the danger zone between the two buildings.
To avoid losing track of the fast-moving Marine, at Time = 24, Camera 3 is set to zoom
out in order to cover the predicted trajectory of the Marine.
After crossing the danger zone, the Marine stops and turns around to cover the other
three Marines behind him. Since the new predicted trajectory of the Marine is shorter,
there is no need for Camera 3 to be zoomed out. At Time = 30, Camera 3 is zoomed
back in to cover the Marines at higher resolution.
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Time=42 Time=58 Time=65 Time=68

Fig. 8. Coordinating transitions.

Top-down views of cameras and exercise participants, overlaid on top of a satellite
image and aggregated visibility map.

At Time = 42, Cameras 5 and 6 cover the civilian and the sniper. As the civilian is
heading toward the Marines for the cordon search, he exits the field of view of the
cameras, but will soon be covered by the cameras covering the Marines. Cameras 5
and 6 can now zoom in to better cover the sniper. However, while either camera tran-
sitioned, it would leave the other camera covering the sniper by itself. Meanwhile, the
Marines are covered by four cameras, one of which can help cover the sniper.
At Time = 58, Camera 2 has been reassigned from covering the Marines to covering
the sniper, and Camera 6 can begin to zoom in.
At Time = 65, after Camera 6 has been zoomed in, Camera 5 can begin to zoom in as
well.
Finally, at Time = 68, once both Cameras 5 and 6 are zoomed in and covering the
sniper, Camera 2 is reassigned back to covering the Marines and the civilian.

One important result was that our planning heuristics can produce satisfactory re-
sults and serve as a fall-back when the search space is too large to be explored in real-
time. We varied the number of candidate plans explored by the local planning compo-
nent of our method between heuristic (simply using the worst-case, wide field of view
plan generated heuristically by the global assignment, Algorithm 4), selective (heuris-
tically generate and explore a small number of plans that break up long captures with
wide fields of view into shorter captures with narrower fields of view) and exhaustive
(explore all candidate plans). Selective planning was our default exploration method,
and it resulted in real-time performance. We designed heuristic planning as a fallback
when the time budget for running in real-time was close to exhausted, but we never
had to resort to it in our experiments. Exhaustive exploration was performed off-line
when tractable — 151 out of 170 planning cycles. Figure 9 shows the results, including
the metric values when using static cameras, shown for comparison.
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Fig. 9. Metric values over time for various local exploration methods.

As expected, the metric values in the case of static cameras are significantly higher,
but part of the price paid for the lower resolution is offset thanks to the fact that there
are no transitions. The three curves corresponding to varying the number of candidate
plans explored are very close to each other, to the point of being indistinguishable at
the scale in Figure 9. Figure 10 shows the differences between the three curves at a
larger scale. The fallback heuristic arrived at the same result as the exhaustive search
for 109 out of 151 cycles, or 72% of the time, and the default selective search did so for
143 cycles, or 94% of the time. For the remaining times when the results were different,
the average difference in the metric values was 0.01m for the fallback heuristic and
0.0087m for the default selective search.
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Fig. 10. Differences in metric values over time.

The structure of the performance metric for this experiment, in terms of compo-
nents such as the surrogate model and the aggregation function used, is suitable for
volumetric 3D reconstruction approaches such as the one by Guan [Guan 2010]. Figure
11 shows reconstruction results obtained using simulated images from four cameras
captured at Time = 56, during the cordon search. We generated perfect segmenta-
tions by providing the reconstruction approach with images taken with and without
the exercise participants.

4

3
2

1

4

3

2

1

Fig. 11. 3D reconstruction results using method from [Guan 2010].
Left: rendering of a single slice of the reconstructed volume showing occupancy proba-
bilities. Right: rendering of 3D reconstruction results obtained by thresholding.
Also shown are the poses and images of the cameras involved.
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6.2. Laboratory-based Experimental Results
6.2.1. Experiment Setup. We also applied our camera control method in a laboratory

setup at UNC, using eight Axis 233D PTZ cameras. The environment was a 7.5m ×
9m room, shown in Figure 12. It contained part of a street and an alley between two
buildings. Eight cameras were placed on the ceiling, 7m above the floor. Visibility maps
were constructed manually for each camera, under the assumption that the building
walls were tall enough to occlude everything behind them. The visibility threshold
used to compute occlusions was 0.75.

S
tr

e
e

t

Alley

Building 

1

Building 

2

Lab space7.5m

9
m

4
m

2.25m

Tracked space

Fig. 12. The layout of the lab where we tested our camera control method. Camera positions are also high-
lighted, with visibility maps attached.

The primary objective of this experiment was to verify our camera control method
using real cameras. Consequently, we did not perform image processing to track the
participants. An external tracker (NaturalPoint OptiTrack) was used to provide trajec-
tories in the area outlined in orange in Figure 12, and trajectories were extrapolated
using the last known orientation and speed when participants exited the tracked area.
During the exercise, participant positions were captured by the tracker using head-
worn tracker targets. Similarly to the experiments in Section 6.1, we used the result-
ing 3D points to generate simulated 2D measurements in each camera image and also
incorporated them directly into the metric computation as 3D “GPS” measurements.

We had four members of the United States Marines Corp perform a training exercise
similar to the one in Section 6.1. The exercise scenario was for the Marines to patrol
the street, crossing the danger zone between the two buildings, and to cordon and
search a civilian that was heading down the alley to join two other civilians who were
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waiting. Figure 13 shows all seven participants in an overview image taken during the
exercise when the civilian was being searched.

Fig. 13. An overview image taken during the training exercise. The tracked area is marked with white
tape. Building walls were simulated using cloth attached to waist-high posts.

6.2.2. Camera Calibration. In our simulated experiments, the virtual cameras did not
need to be calibrated: the pan, tilt and zoom setting values computed by our method
using Algorithm 8 could be directly applied to them using nothing more than geo-
metric transforms between the world and camera coordinate systems. In particular,
panning the virtual cameras meant simply a rotation around the world z axis, and
zooming only meant computing the zoom factor corresponding to a particular field of
view. When using real cameras, this is no longer the case. The Axis 233D cameras are
fairly sophisticated in that they accept pan and tilt values in degrees, and apply these
values with great precision (repeatability). Experiments confirmed that the camera-
reported pan and tilt setting values were accurate. Repeated geometric calibrations
performed using the method in [Zhang 1999] at various levels of zoom confirmed that
reported zoom values were precise as well. Camera-reported zoom values were not
simple ×1,×2, . . . ,×n multipliers, but a straightforward linear transform applied to
them yielded such values, and we found the transform to be repeatable across our six
cameras.

The remaining problem was that the cameras’ pan and tilt rotations were around
arbitrary axes which could not be manually aligned with the corresponding world axes.
We devised a procedure to calibrate the cameras by computing the rotation matrix
between the camera and world coordinate systems. We first performed a geometric
calibration to determine each camera’s extrinsics, in particular its center of projection
(COP) in world coordinates. We manually aimed each camera at a number of 3D points
with known world coordinates, and recorded the camera-reported pan and tilt values,
which we then mapped to a set of 3D points on an unit sphere centered at the camera’s
COP. We intersected the lines from each world 3D point to the COP with the same
unit sphere, obtaining a second set of 3D points. The rotation matrix we needed was
obtained by taking the two sets of 3D points on the unit sphere and computing the
rotation around the COP required to align them.
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This rotation matrix and the linear transform for the zoom values rendered the Axis
233D cameras as easy to control as the virtual cameras used in the experiments in
Section 6.1.

6.2.3. Results. While unable to run comparisons between results obtained using vary-
ing parameters like we did in Section 6.1, we performed multiple runs of the exercise
scenario. Figure 14 shows example camera images taken during the exercise at the
same time as the overview image in Figure 13, when the civilian was being searched.
The images are overlaid on top of a composite visibility map, and attached to the icons
representing the cameras that captured them. Participants are grouped into agencies,
shown as circles with varying colors. Cameras assigned to a particular agency have
their base represented as a square of the same color. Camera orientations are shown
as triangles, and camera fields of view are shown as white lines.

1 2

3

4

5

6

7

8

Fig. 14. Example camera images captured during the exercise, overlaid on top of a composite visibility map.

We consistently observed desirable camera behaviors, including the ones summa-
rized below:

(1) As soon as new participants entered the scene and were detected by the tracker,
they were added to agencies and cameras were reallocated to cover them.

(2) Continuous agency coverage was maintained by appropriately adjusting the cam-
eras’ pan, tilt and zoom settings. Adjustments were done in a staggered fashion
between cameras covering the same agency, such that the time intervals when the
group was not being captured by as many cameras as possible were minimized.
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(3) When an agency split, cameras were reallocated to ensure continuous coverage of
the resulting agencies.

(4) Cameras were switched between agencies when their contribution to the coverage
of an agency was better than their contribution to the agency they were currently
covering.

(5) Continuous ROI coverage was maintained even when ROIs moved quickly or over
relatively large distances by anticipating their trajectory and preemptively adjust-
ing the cameras’ pan, tilt and zoom settings.

7. CONCLUSIONS AND FUTURE WORK
We presented a new on-line camera control approach that treats camera control as an
optimization problem. For the objective function, we developed a versatile performance
metric that can incorporate both performance factors and application requirements.
To reduce the size of the search space and arrive at an implementation that runs in
real-time, our camera control method breaks down the optimization problem into sub-
problems. We first employ a proximity-based minimal change heuristic to decompose
the problem into subproblems and a greedy heuristic to assign cameras to subproblems
based on evaluating candidate plans. We then solve each subproblem independently,
generating and evaluating candidate plans as time allows.

We have discussed how our approach can be easily adapted to include requirements
from various computer vision tasks. We demonstrated our approach in simulated and
laboratory experiments, during which we have shown cameras exhibiting behaviors
that facilitate the application of computer vision algorithms to the images they cap-
tured.

We plan on working on replacing the simulated camera measurements obtained from
the external tracker with actual measurements from image tracking. We are especially
interested in the situation where image tracking is to be performed with the same
cameras that are controlled by our approach, which requires the camera control to
balance the requirements of the computer vision application with the requirements
of image tracking. We are also studying the impact of imprecise geometric calibration
and camera settings precision and accuracy on our control method.

We are working on using knowledge about the environment to correct erroneous
trajectory predictions. For example, if a Kalman filter-based trajectory prediction has
a target passing through a wall, the prediction could be corrected to have the target
stop in front of the wall or walk along it instead.

Our current implementation uses a proximity heuristic for grouping ROIs into agen-
cies, and a greedy heuristic for assigning camera agents to agencies. We chose our
heuristics after a careful analysis of the computational complexity of an exhaustive
search and using our metric to evaluate alternatives, with the overarching goal of re-
ducing search space size while still providing a reasonable solution. A thorough analy-
sis of the impact of these heuristics on the solution, as well as a comparison with other
approaches, are needed to fully gauge their effectiveness. It would be interesting to
explore other clustering algorithms and evaluate the performance of our method when
using them. A formal method such as linear programming could be used for assigning
cameras to agencies, when feasible, and our heuristic could be run only when such
methods fail. A promising direction to explore in clustering would be to allow overlaps,
i.e. to allow an ROI to be a member of multiple agencies. Additionally, the current
greedy assignment scheme exclusively assigns an agent to an agency. There may be
situations when, with a small change in its settings, a camera could cover the ROIs in
another agency nearby. In such situations, it may be beneficial to explore sharing an
agent among multiple agencies. Sharing agents would require a protocol for agencies
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to cooperate when computing the camera parameters for agents that are shared with
other agencies.

The main strategy our approach employs to reduce the search space size is decom-
posing the problem into subproblems and solving the subproblems at the level of each
agency. Our current implementation solves the subproblems sequentially, in a single
thread. We are working on a parallel implementation that would allow us to evaluate
more candidate plans, increasing the chance that the provided solution is the global op-
timum. Another possible research direction is decentralizing our approach further by
having “smart” cameras locally estimate their own contribution to each ROI or agency.
In the current implementation, the global assignment process is centralized. Distribut-
ing the assignment process by making it collaborative is likely to reduce computation
loads in large camera networks, possibly at the expense of increased bandwidth re-
quired for collaboration, as well as possible additional system latency and weaker op-
timal performance guarantees.
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