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Fig. 1. We introduce a head-worn ego-centric capture system capable of reconstructing the wearer and their surrounding environment
in 3D. Left: Hardware prototype. Center: An individual using the device. Right: Dynamic reconstruction of the user’s body pose and
static environment, obtained solely from the prototype’s headset-mounted cameras.

Abstract—We propose a new approach for 3D reconstruction of dynamic indoor and outdoor scenes in everyday environments,
leveraging only cameras worn by a user. This approach allows 3D reconstruction of experiences at any location and virtual tours
from anywhere. The key innovation of the proposed ego-centric reconstruction system is to capture the wearer’s body pose and facial
expression from near-body views, e.g. cameras on the user’s glasses, and to capture the surrounding environment using outward-facing
views. The main challenge of the ego-centric reconstruction, however, is the poor coverage of the near-body views – that is, the
user’s body and face are observed from vantage points that are convenient for wear but inconvenient for capture. To overcome these
challenges, we propose a parametric-model-based approach to user motion estimation. This approach utilizes convolutional neural
networks (CNNs) for near-view body pose estimation, and we introduce a CNN-based approach for facial expression estimation that
combines audio and video. For each time-point during capture, the intermediate model-based reconstructions from these systems
are used to re-target a high-fidelity pre-scanned model of the user. We demonstrate that the proposed self-sufficient, head-worn
capture system is capable of reconstructing the wearer’s movements and their surrounding environment in both indoor and outdoor
situations without any additional views. As a proof of concept, we show how the resulting 3D-plus-time reconstruction can be
immersively experienced within a virtual reality system (e.g., the HTC Vive). We expect that the size of the proposed egocentric
capture-and-reconstruction system will eventually be reduced to fit within future AR glasses, and will be widely useful for immersive 3D
telepresence, virtual tours, and general use-anywhere 3D content creation.

Index Terms—Telepresence, Ego-centric Vision, Motion Capture, Convolutional Neural Networks.

1 INTRODUCTION

• Young-Woon Cha is with UNC Chapel Hill. E-mail: youngcha@cs.unc.edu
• True Price is with UNC Chapel Hill. E-mail: jtprice@cs.unc.edu
• Zhen Wei is with UNC Chapel Hill. E-mail: zhenni@cs.unc.edu
• Xinran Lu is with UNC Chapel Hill. E-mail: connylu@cs.unc.edu
• Nicholas Rewkowski is with UNC Chapel Hill. E-mail:

nrewkows@cs.unc.edu
• Rohan Chabra is with UNC Chapel Hill. E-mail: rohanc@cs.unc.edu
• Zihe Qin is with UNC Chapel Hill. E-mail: zihe@cs.unc.edu
• Hyounghun Kim is with UNC Chapel Hill. E-mail: hyounghk@cs.unc.edu
• Zhaoqi Su is with Tsinghua University. E-mail: suzq13@tsinghua.org.cn
• Yebin Liu is with Tsinghua University. E-mail:

liuyebin@mail.tsinghua.edu.cn
• Adrian Ilie is with UNC Chapel Hill. E-mail: adyilie@cs.unc.edu
• Andrei State is with InnerOptic Technology Inc. and UNC Chapel Hill.

E-mail: andrei@cs.unc.edu
• Zhenlin Xu is with UNC Chapel Hill. E-mail: zhenlinx@cs.unc.edu
• Jan-Michael Frahm is with UNC Chapel Hill. E-mail: jmf@cs.unc.edu
• Henry Fuchs is with UNC Chapel Hill. E-mail: fuchs@cs.unc.edu

As our society grows ever more connected digitally, individuals are
increasingly interested in maintaining a connection with reality when
they communicate their experiences and ideas with others across the
globe. Indeed, modern video (e.g., YouTube) and televideo (e.g., Face-
Time or Cisco TelePresence) content-sharing systems are used daily
by hundreds of millions of people because they come the closest to
relaying a veridical human experience. However, while such systems
have grown in popularity as substitutes for witnessing events firsthand
or having face-to-face meetings, these technologies fall short of deliver-
ing an actual sense of shared physical presence. Recent products such
as Google JUMP [24] offer more immersive 360◦ video experiences
but limit the viewer to a fixed position of observation. Prototype 3D
capture and telepresence systems such as Microsoft Research’s Holo-
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portation [46] have likewise demonstrated promising steps towards
shared 3D presence, but require substantial, expensive, instrumented
areas. However, there are still no methods available that enable an
everyday user to capture 3D directly.

We envision a future in which passive 3D capture of user experi-
ences is a feature of commonplace head-worn devices. In this future,
augmented reality (AR) systems such as the Microsoft HoloLens [41]
have shrunk to the form factor of conventional eyeglasses, with fully
transparent see-through and wide-field-of-view capabilities, and so
can be worn all day just like ordinary eyeglasses. Our ambition is to
augment such eyeglasses with a multiplicity of inward- and outward-
looking miniature cameras. These cameras will form an ego-centric
reconstruction system that will (1) capture its wearer’s 3D pose, face,
body, and limbs, and (2) map the 3D structure of its surroundings.
The resulting dynamic scene can (3) be displayed to other users, using
AR or virtual reality (VR) systems to create a shared, immersive 3D
experience. Such self-contained, head-worn systems will enable shared
presence and virtual touring to occur in any indoor or outdoor location,
with no reliance on any instrumentation other than that in the user’s
headgear.

In this paper, we demonstrate a prototype system for ego-centric
capture and reconstruction. Example camera views on the device are
shown in Fig. 2. The main challenge of reconstruction from such head-
worn cameras is the sparse visibility of body parts, which leads to large
gaps in self-reconstruction. To address this problem, we propose to
use a deformable-model-based approach to complete the unobserved
parts of the wearer: as the generic parametric model still has gaps
in the user’s appearance, e.g., in clothing, texture, and other detailed
characteristics such as hair, we transfer such surface details from a
pre-scan of the full body of the user. In the future, when such systems
are miniaturized, personalized, and worn for long periods of time, we
envision that they will automatically and gradually acquire detailed
full-body information of their users and their wardrobes.

Our reconstruction approach is a user-oriented model-based self-
reconstruction pipeline that combines parametric body and face models.
The model-based incomplete reconstruction is re-targeted to a high-
quality pre-scan of the user in a coarse-to-fine manner. The deformable
models have two types of parameters: shape-related and pose-related.
The shape parameters of the body and face are estimated in the prepro-
cessing stage by fitting the models to the pre-scan. The pose-related
parameters, body pose and facial expression, are detected at run-time
with our CNN-based pose estimation and through audio- and video-
based facial expression estimation.

Our system demonstrates full scene reconstruction, including the
user’s moving body with audio and their surrounding environment.
The environment is reconstructed using structure-from-motion with
outward-looking cameras. The trajectory of the user’s head is deter-
mined using multiple calibrated cameras, which allows the system to
localize the reconstructed user within the environment over time. The
unified capture can be immersively experienced in a VR system.

The remainder of this paper is organized as follows: The related
work is discussed in Section 2. The overall self-reconstruction pipeline
is discussed in Section 3. Our ego-centric capture prototype is described
in Section 4. Section 5 describes the pre-scanning process. Sections 6
and 7 address CNN-based body pose estimation and CNN-based facial
expression estimation from both audio and video. The environment
and head pose estimation techniques are detailed in Section 8. After
integration considerations in Section 9, we show and discuss our results
in Section 10, followed by limitations and future work in Section 11.

2 RELATED WORK

Given its complexity and wide range of challenges, our work is related
to a variety of existing research in the areas of 3D reconstruction of
static scenes and dynamic objects, head tracking, and motion capture.
We will briefly review the most closely related approaches.

Static 3D Reconstruction of an environment from photos and
videos has been a long-standing research thrust in computer vision. 3D
reconstruction algorithms include structure from motion [1, 25, 52, 58]
combined with stereo vision [51], simultaneous localization and map-

Fig. 2. The eight views from a single time-point of capture on our device.
Outward-looking environment cameras (yellow) are placed on the side
and rear of the device. Face-oriented cameras (pink) are placed on
short arms on either side of the device. Downward-facing body cameras
(orange) are located on both sides of the user’s forehead. The top row
shows the left rear external, left side external, right face, and left face
views. The bottom row shows the right rear external, right side external,
right body, and left body views.

ping (SLAM) [21, 22, 42, 61, 64], multi-view vision [53, 54], and depth-
camera-based algorithms [28, 40, 43, 49] and can be used to reconstruct
only static scenes. We build on the progress made by the body of work
in these areas to obtain our environment reconstruction and to track the
user within the environment. Moreover, we extend the approaches to
leverage the constraints provided by our multi-camera setup.

Dynamic Object Reconstruction. Dynamic object reconstruction
has long been an active research area. Most approaches rely on moder-
ate surface deformations or known object shape for reconstructing a 3D
model using a video of the object [26, 34, 35, 62, 66, 70]. Alternatively,
motion capture systems [5, 15, 16, 23, 59, 63, 67, 69] deliver reliable
reconstructions of human bodies from a sequence of color and/or depth
videos. These approaches require a pre-scanned body model or tem-
plate, an instrumented environment, and complicated skinning and
rigging preprocessing. These factors prevent their application to re-
constructing general shapes in unconstrained environments, which is
mandatory for our system.

There has also been a keen interest in parametric body models for
reconstruction and tracking. Allen et al. [3] leveraged high-resolution
range scans to develop a parametric body shape model. The SCAPE
model [4] advanced this approach to not only parameterize body shape
but also encode pose deformation. Chen et al. [13] further extended the
SCAPE model by introducing parameters to explain the deformation
from clothing. Their model deformed the overall person model non-
rigidly, by applying the composite transformations of the poses, the
shapes, and the clothing for each triangle independently. Recently,
Loper et al. [37] proposed the SMPL model, which provides more
realistic deformations and achieves a more accurate representation of
the effects of joint motion.

Recent work for template-free dynamic surface fusion [18,19,44,46]
has shown promising results for object-level and human reconstruction
in outside-in capture scenarios for instrumented environments. How-
ever, these methods are not suited to work with passively captured data
from our mobile system, which requires reconstruction methods that
operate in arbitrary environments. without external instrumentation.

Dynamic Scene Reconstruction from Depth Sensors. There has
been significant interest in dynamic scene reconstruction from depth
sensors. For example, Maimone and Fuchs constructed a real-time 3D
capture system using a dozen Kinects [38, 39]. This method adapts the
volumetric fusion of Levoy et al. [14] to dynamic objects (i.e., people)
while incorporating depth and color information. More recent room-
size dynamic object reconstruction [17] combines pre-scanning of the
static scene parts, data accumulation for dynamic objects, and rigid and
nonrigid tracking. However, these approaches rely on successful depth
image capture using structured light, which typically fails outdoors.
Our system targets both outdoor and indoor use and hence cannot use
structured light sensors.

Ego-centric Motion Capture. Ego-centric, body-worn cameras
have been used for 3D pose estimation of certain parts of the body



Fig. 3. Functional overview of our system, with HoloLens-mounted capture components at left and off-line reconstruction processing pipeline at right.

such as facial expressions via helmet-mounted cameras [45] or finger
motions via wrist-worn sensors [33]. Shiratori et al. [56] determined
full-body motions based on 16 body-worn cameras with poses estimated
through structure-from-motion, assuming a static environment. Jiang
and Grauman [30] proposed a learning-based approach to predict full-
body poses from a chest-worn camera view to infer invisible poses
with very limited accuracy. Zhang et al. [71] used a single outside-
in depth camera combined with foot-worn sensors for full-body pose
estimation. All of the above approaches only perform skeleton-based
motion capture and do not reconstruct the 3D surface of the wearer
solely from the body-worn cameras. Rhodin et al. [50] employed two
head-mounted fisheye cameras to estimate the full-body skeleton pose.
The large field of view allowed the cameras to observe most of the body
and to integrate with approaches based on outside-in cameras. However,
their system required the head-mounted cameras to be placed on long
telescopic arms reaching significantly outward in front of the wearer.
This enabled them to perform a stereo-based body reconstruction at the
cost of usability. In contrast, our system leverages cameras close to the
body, trading a full-body stereo view for broad usability.

3 SYSTEM OVERVIEW

An overview of our mobile capture pipeline is shown in Fig. 3. From
a computational perspective, the inputs to our system are individual
views from synchronized head-worn cameras, and the output is a posed
3D model of the wearer placed into a reconstructed 3D model of the sur-
rounding environment. Body poses and facial expressions are captured
entirely from the on-device camera views, as is the 3D environment
model. For visualization, a pre-computed digital human representation
(“pre-scan”) of the user is posed according to estimated face and body
parameters.

Details about the head-worn camera configuration are provided in
Sect. 4, and we describe the pre-scan acquisition process in Sect. 5.
Our reconstruction approach consists of three processing pipelines,
each of which takes in separate camera imagery: body pose estimation,
consisting of skeleton joint detection and 3D triangulation (Sect. 6);
face reconstruction from video and audio data (Sect. 7); and environ-
ment reconstruction, which encompasses both reconstructing the 3D
scene and tracking the motion of the user as they move within their
surroundings (Sect. 8).

The individual reconstruction results are combined (see Sect. 9 for
results). The body pose and face expressions are applied as parametric
deformations of their associated pre-scan models; these adjusted face
and body pre-scans are then combined to create the momentary digital
human representation of the user. This representation is then placed
into the scene based on the tracked location of the user within their
environment, and the placed (animated) model can be rendered in the
context of the reconstructed static scene around the user. The resulting
dynamic 3D model can then be utilized for a variety of applications,
such as virtual tours (Sect. 10.4 and supplementary material).

4 MOBILE HEADSET PROTOTYPE

In our vision for ubiquitous AR/VR systems of the future, an individual
will be able to fully capture themselves and their 3D surroundings solely
from a lightweight pair of eyeglasses fitted with miniature cameras. We
anticipate that these devices, possibly combined with a small backpack
computer for processing, will have functionalities for both general

capture (e.g., self-created VR content analogous to current online video
services) and telepresence (i.e., real-time 3D ego-capture, coupled with
AR displays). In this work, we have developed a prototype headset
to demonstrate the various camera configurations and reconstruction
approaches that such a device would employ.

Our prototype 3D capture unit has been outfitted with 8 Pi V2 minia-
ture cameras (Fig. 2). We divide these cameras into three categories
based on their function: four outward-facing cameras capture the envi-
ronment and track the device’s motion, two downward-facing cameras
capture the user’s body, and two face-oriented cameras capture the
wearer’s facial expression. The cameras on our headset run individually
on Raspberry Pi Zero miniature computers powered by portable battery
banks worn in a backpack. The external views are captured using 70◦
diagonal FoV cameras and are located on the sides and back of the
headset. The face and body cameras have 160◦ diagonal FoV lenses;
the body cameras are placed slightly in front of the wearer’s forehead,
and the face cameras are placed on slightly extended mounts ∼9cm
from the user’s face. We anticipate that future systems will be able to
reduce the outside-in distance of the face cameras even further, to the
point where the cameras are mounted directly next to the lenses of the
eyeglass frame.

The cameras are synchronized off-line using LED blinking [6] and
capture at 25 f ps. (These were design decisions for our prototype; hard-
ware synchronization and faster frame rates are possible in principle.)
Anticipating future AR integration capabilities, we have mounted the
camera system on a Microsoft HoloLens headset; however, we currently
do not use the HoloLens’ on-board display or capture technologies.
Also note that our capture scenario involves on-line capture and off-line
3D reconstruction – in this work, our motivation is to demonstrate
the technologies involved in performing automated, hands-free, use-
anywhere 3D capture.

System Calibration. In addition to frame-level camera synchro-
nization, we assume that the intrinsic and relative extrinsic camera
parameters for the device are known before capture. This involves
estimating the relative rotations between the cameras, the absolute dis-
tances between the cameras’ centers of projection, and the position
of the rig in relation to the wearer’s head. Camera intrinsics were
computed using standard checkerboard-based camera calibration. To
capture the relative camera poses, we set up a small, well-textured
scene and moved/rotated the headset by hand (without anyone wearing
it) while capturing imagery from the cameras. We then reconstructed
this synchronized multi-camera sequence using structure-from-motion
(SfM) [52] with a bundle adjustment that estimates a global pose for
the device at each time instant while enforcing static relative poses for
the cameras in the cluster. Since SfM reconstructions are inherently
scale-independent, we recovered the absolute scale of the headset by
manually comparing the sizes of reconstructed objects with known
real-world measurements. The location of the rig with respect to the
wearer was then established by computing the midpoint of the two side
external cameras and aligning it with the approximate midpoint of the
wearer’s temples.

5 DIGITAL HUMAN PRE-SCAN

Our system integrates motion capture and environment reconstruction.
For visualization, however, it is impossible to create a complete model
of the wearer from the headset views, because we capture only partial



Fig. 4. Example images from the pair of downward-facing body cameras
on our device. Left: Training images captured in our green-screen room.
Middle: Training images augmented by shirt recoloring and background
replacement. Right: Images from our hallway demo. The top and bottom
rows show images from the left and right body cameras, respectively.
The colored skeleton visualizes the projection of the ground-truth 3D joint
positions into the individual views in the original captured and augmented
training images.

views of the user’s face and of parts of their body, resulting in an
incomplete digital human representation. Instead, we obtain an off-
device 3D scan (“pre-scan”) of the user that fully captures their body
shape and clothing. The system localizes body skeleton joints in the two
downward-facing views, and parameters for the user’s facial expression
are computed from the two (non-overlapping) face-oriented views. The
pre-scan is deformed to match the skeleton and face parameters and
then placed in the 3D environment based on the estimated device pose.
Details about the skeletal rigging and skinning of the pre-scan are
provided in Sect. 6.4.

To obtain the pre-scan, which is a textured mesh of the entire body,
we use itSeez3D [27], a 3D scanning software. The user stands still with
their arms extended while another individual moves a small RGB+D
camera unit around them to capture the body surface and texture.

In the future, we anticipate that pre-scan acquisitions could be com-
pleted entirely on-device, with the wearer capturing their appearance
by, e.g., placing the device on a table and walking in front of it, or
by wearing the device and standing or turning in front of a mirror.
Such on-device processing would not only increase the ease of use,
but would also enable on-the-fly representations of new individuals or
allow updates of the clothing or appearance of the same individual.

6 VIDEO-BASED BODY POSE RECONSTRUCTION

Body pose estimation solely from head-worn cameras is a challeng-
ing task. The most closely-related system, EgoCap [50], uses two
head-worn fisheye cameras on an extended ‘V’-shaped rig. However,
they extend 20-30 cm away from the user’s head, which is prohibitive
for convenient, portable use. Our system is unique in that we target
commodity cameras located directly on the compact headgear; this
generally results in very restricted viewpoints that provide less reli-
able measurements for body pose estimation, particularly for the legs,
which are far from the cameras and often occluded. To overcome the
difficulties in capturing body pose, we leverage deep convolutional neu-
ral networks (CNNs) to perform body part detection in the individual
downward-facing views, as well as an additional recurrent network
module to obtain a final skeleton-based human pose estimation.

6.1 2D Human Body Joint Detection

To solve the initial problem of detecting the device wearer in the
downward-facing views, we have extended the convolutional pose
machine (CPM) network [11, 65] to detect 2D joint positions in each
image independently. CPM incorporates a convolutional neural net-
work into the pose machine framework [48], which enhances image
feature extraction (in this case, 2D joint locations) by leveraging in-
ference on image-dependent spatial models. CPM is built upon an
end-to-end, multi-stage deep network that enables the learning of both
joint appearances and spatial relationships in input imagery. Beyond
traditional cascaded networks, CPM is also an interactive sequence

framework, with each stage considering the context of previous stages
in order to derive an overall set of joint positions for a given image.

A pose machine consists of a hierarchy of 2D joint predictors
gt(ft(x),ψt( j,bt−1)) that output joint-specific belief values for all po-
sitions x the image domain, for each stage t in the hierarchy. ft(x)
represents a stage-specific feature embedding for the input image, and
ψt(·) maps the existing volume of belief values bt−1 for all joints across
the image into a specific context mapping for joint j. Given the input
image, the first stage g0(·) is an image-space classifier that produces a

joint-probability volume b0 =
{

b j
t (X j = x)

}
j∈0...J

, where X j is a ran-

dom variable relating the position of joint j. Later stages gt(·) update
the belief for assigning a location to each part:

gt(ft(x),ψt( j,bt−1)) 7→ bt. (1)

The final 2D joint predictions are retrieved as the most probable loca-
tions for each X j after the final belief values are predicted.

The prediction and image feature computation modules of a pose ma-
chine can be replaced by a deep convolutional architecture, allowing for
both image and contextual feature representations to be learned directly
from data. The CPM contains multiple stages of a fully-convolutional
network cascaded to characterize both the local features of the input
image and the global features across larger receptive fields. By chain-
ing prediction stages, the receptive fields at the output layer of the
network are large enough to allow the learning of potentially complex
and long-range correlations between body parts.

The cost function at each stage of the CPM minimizes an l2 distance
between the predicted and ideal belief map for each joint:

`t =
J

∑
j=1

∑
x
‖b j

t (x)−b j
∗(x)‖2

2, (2)

where b j
∗(X j = x) represents the ideal belief map for joint j. The overall

objective for the full architecture is obtained by adding losses over all
T stages and is given by

F =
T−1

∑
t=0

`t . (3)

As seen in the views of the downward body cameras shown in Fig. 4,
we define our detectable joints as the shoulders, elbows, wrists, hips,
and knees. Ankles are generally not visible from our near-body views
– for instance, each foot is independently visible for only ∼33% of a
gait cycle. – so instead we model them in 3D using motion priors (see
Sect. 9). We predict these joint positions via a custom-trained CPM for
our input views (see Sect. 6.3). This 2D detection is trained separately
from our subsequent 3D pose estimation network. We pad the original
images to allow predicting the position of joints that are located outside
the images. This enables the fully convolutional network to learn
correlations between (and predict 2D locations for) all joints, whether
or not they are actually visible in the input views.

6.2 3D Human Pose Sequence Estimation
Given the 2D detection result, we employ a 3D pose sequence module
to predict the 3D skeleton joint positions over time. This module lever-
ages a recurrent neural network (RNN) to capture long-term motion
trajectories for all observable joints. Compared to general neural net-
works, RNNs are able to scale to much longer temporal sequences and
are practical for sequence-based specialization, such as video process-
ing. This is because in RNNs, each member of the output is a function
of the previous member of output, with all outputs being produced by
the same update rule. Thus, the temporal motion information between
frames can be effectively incorporated into the 3D pose prediction.

For our recurrent 3D human pose network, we take a sequence of
2D positions (x j

t ,y
j
t ) in the images of each of the two body-camera

views and their corresponding probabilities p j
t as our network input

X = [X1,X2, ...,Xt ]
T , where Xt = [(x1

t ,y
1
t , p1

t ), . . .] at time step t. (Note
that t here refers to the temporal domain of the capture sequence and j



Fig. 5. Images from the six external cameras and two top-down body
cameras on our device used for capturing our ground-truth body pose
dataset. The colored skeleton depicts the ground-truth 3D joint positions.

the joints over both views.) For training, points and probabilities are
generated by random Gaussian perturbations of the ground truth 2D
joint position. At run-time, they are generated using our trained CPM.

The network consists of three fully connected layers (512, 1024, and
1024 neurons, respectively), one recurrent layer (2048 hidden states),
and finally two fully connected output layers (1024 and 30 neurons)
that unilaterally predict all 3D joint positions for a given time step. For
each time step t, we have

ht = σ(Wh1 ht−1 +Wh2 fi(Xt)+bh) (4)

Yt = fo(ht) (5)

where fi is the function applied on the input before the recurrent part;
ht is the recurrent layer’s hidden state at step t; Wh1 , Wh2 , and bh are
the weights and bias; σ is a non-linear function; and fo is the function
applied after the recurrent layer to obtain the output 3D positions Yt at
time step t.

We minimize the sum of l2 distances between the ground truth 3D
positions and the predictions:

E = ∑
t
‖Yt −Y ∗t ‖2

2, (6)

where Y ∗t consists of the ground truth 3D body joint positions at frame
t. Incorporating the previous 3D pose prediction at each stage allows
our network to robustly compute the pose predictions.

6.3 CNN Training and Testing
Capturing the Training Dataset. The key challenge for training our
body pose estimation network lies in obtaining ground truth data for
the 2D and 3D joint positions. To solve this problem, we constructed
a data capture setup for outside-in marker-less motion capture and
calibrated headset tracking, and used background subtraction for data
augmentation.

The videos for the training dataset and the ground truth positions
of 3D human body joints are obtained using a calibrated set of syn-
chronized external cameras. Our training setup consists of a mid-size
room with the outside-looking-in cameras placed near the walls. The
user wearing our device is standing in the middle of the capture space.
Fig. 5 shows an example set of camera images captured at the same
time.

In each external view, we apply a pre-trained OpenPose CPM net-
work [11, 65] to detect 2D joint positions. Having pre-computed the
positions of the cameras in the room, we are able to triangulate each
joint in 3D over time. We also track the 6-DoF pose of the downward-
facing cameras using a checkerboard pattern mounted on the device.
The relationship between the checkerboard and the device cameras is
calculated using hand-eye calibration [55], and the pose of the device
within the capture space is determined by recovering the pose of the
checkerboard from the external views. Given the triangulated 3D joint
positions and the pose of the device, we obtain ground truth 3D joint
positions by simply applying the scene-to-device transformation, and
2D joint positions for each camera are then determined via projection
using the camera intrinsics.

Network Training. Using data from our capture environment, we
trained a new CPM network for our downward-facing views and an
RNN to predict the 3D human pose sequence. We used the Caffe
deep-learning framework [29] to train both networks. To enhance

Fig. 6. Body pose re-targeting. From left to right: 1) Detected joint
positions. 2) Bone length adjusted skeleton with hand/foot orientation
constraints. 3) Rotational skeleton of the model. 4) Deformed body
model in which joint angles are estimated by fitting the model skeleton
(3) to the canonical positions (2) using joint-limit-constrained inverse
kinematics. 5) Walking motion prior. 6) Final textured pre-scan model
with blended pose.

the generality of our CPM, the surrounding room was made into a
“green-screen” environment, and the capture subject was given a blue
sweater to wear during training. The training data was then augmented
by replacing the green surfaces with random floor/object textures and
the blue shirt with randomly adjusted hues. The input images were
further augmented using flips, rotations, and translations. In order to
obtain sufficient samples for training the 3D pose RNN, we simulated
fast-motion speeds by interpolating poses between the frames, and we
also subsampled the captured frame sequence into many shorter frame
sub-sequences.

Network Execution. At run-time, we use our CPM to hypothe-
size the most likely 2D joint positions for the input downward-facing
imagery. The 3D RNN then takes these points, along with their prob-
abilities, and outputs a hypothesis for the 3D position of each joint
relative to the left downward-facing camera. We post-process the 3D
joint result using a Kalman filter and basic exponential smoothing,
which allows us to robustly account for sporadic mis-predictions of the
3D joint position. The end result is a smooth skeletal motion capture
sequence of the user across time.

6.4 Body Motion Re-targeting
Rigged parametric body models [3,4,13,37] can be exploited to deform
the pre-scan model constrained by the 3D joint positions output by our
RNN. Our proposed approach employs the Simplified-SCAPE para-
metric body model [47] using linear blend skinning for computational
efficiency. During pre-processing, the parametric body model is fit to
the pre-scan model for automatic rigging. The predicted 3D posture at
each frame is applied to the rigged pre-scan at run-time.

The body model M(θ ,β ), which is represented in homogeneous
coordinates, is specified by the joint configuration θ and shape param-
eters β of PCA space S ∈ R4|V |×|β |, and is deformed from the mean
body shape M̂:

M(θ ,β ) = R(θ)M̂+R(θ)S(β ). (7)

R ∈ R4|V |×4|V | is the block diagonal matrix of per-vertex joint trans-
formations. M(θ ,β ) is fit to the pre-scan T to estimate the vertex
correspondences by minimizing the following energy w.r.t θ and β :

EM(θ ,β ) =
|V |

∑
i=1
||vi(M(θ ,β ))−NNi(T)||2F , (8)

where || · ||F is the Frobenius matrix norm. Each vertex vi(M(θ ,β ))
of the model is fit to its closest compatible nearest neighbor vertex
NNi(T). More details regarding the optimization are given in [47].
Using Eq. (8), the preprocessing shape parameters β0 with bone lengths
and pose parameters θ0 are determined for the association between the
model and the pre-scan. β0 and bone lengths are fixed for the entire
run-time sequence.

The skeletal joint placements ΘT of the pre-scan T are transfered
from the fit joints ΘM(θ0,β0) of M. Based on the vertex correspon-
dences from Eq. (8), the skin weights w(vi) = {w1(vi), ...,w|θ |(vi)} of



each model vertex are also transfered to NNi(T). The skin weights
of remaining pre-scan vertices are interpolated from nearby NNi(T).
From the transfered joint structure and skinning weights, the captured
skeletal animation can be accordingly applied to the pre-scan.

At run-time, the pose parameters θt at time t of the body model
M(θ0,β0) are estimated from the 3D joint positions output by our
RNN. Specifically, the joint positions form a positional skeleton using
a pre-defined structure. The joint angles θt are estimated from this
positional skeleton using joint-limit-constrained inverse kinematics
(IK) [20]. To fit the model skeleton to the positional skeleton, the bone
lengths of the the positional skeleton are adjusted to match the model
skeleton. Using the spine and hip joints, the rigid transform from the
model to the positional skeleton is estimated using point-to-point ICP.
The remaining joint angles are estimated using the constrained IK.

The joint correspondences between the model skeleton and the posi-
tional skeleton are pre-defined. The angular derivative θ̇ of joints are
estimated by solving the differential IK θ̇ = J#ẋ. ẋ is the change in
corresponding joint positions, and J# is the pseudo-inverse of Jacobian
matrix. The joint angle limit is constrained by transforming the angle
derivative θ̇ to the transformed space ż. When zt = zt−1 + żt converges
to the joint limit, it regains manipulability by enforcing zi to move in
the other direction [47]. This guarantees that θi = T (zi) is always a
valid joint angle. We use the elbow and knee joint limits to prevent
anatomically implausible poses.

The foot and hand orientations are not included in the positional
skeleton, however, which can result in an IK result that arbitrarily twists
the arms and legs. To prevent this, we added dummy joints at each end
effector (hands, feet, and head) to constrain them to valid orientations
in IK. The torso normal direction is set according to these dummy
joints. Fig. 6 shows the joint fitting result with the joint limits and the
orientation constraints.

From the estimated pre-pose θ0, and current pose θt , the pre-scan T
is deformed as:

T̂ = θt θ
−1
0 T, (9)

where θ
−1
0 is the inverse joint transformation of θ0, which moves the

pre-scan to the neutral pose of M, allowing the current pose θt to be
applied directly.

7 AUDIO/VIDEO-BASED FACE RECONSTRUCTION

To obtain a high-quality 3D model of the user’s face, we adopt a similar
pipeline to our body-modeling approach. In the prototype system, two
on-device cameras are used to capture each side of the user’s face. This
is in contrast to most work on face reconstruction that utilizes a single
frontal view for face capture. The goal of our setup is to have the
cameras capture adequate views of the face without being obtrusive.
Similar to state-of-the-art live face capture systems, we use landmarks
detected in the individual views to fit a 3D deformable face model
that incorporates both face shape and expression. We further enhance
reconstruction quality by transferring facial expressions [60] from the
deformable face model to a high-quality user model. To compensate
for the limited visibility of the face, we leverage an audio-driven deep
neural network to enhance the facial expression estimation.

7.1 Video-based Face Reconstruction
Our video-based face reconstruction pipeline takes as input two syn-
chronized images from the downward-facing cameras, as well as a
pre-scan model of the user’s face. For each captured time instant, we
detect 2D landmarks in the two images. We then compute a defor-
mation of the pre-scan that minimizes the reprojection error between
the face model’s fiducial 3D landmarks and their corresponding 2D
detections.

Pre-scan Fitting. As input to our capture process, we fit a mor-
phable model to the high-quality face pre-scan. In general, the face
model has three sets of parameters: the pose T (global rotation and
translation in relation to the left camera), shape parameters αs, and
expression parameters αe. First we manually labeled 68 3D landmarks
in both the pre-scan and the model, and then we computed the face pose
T through rescaling and fitting these correspondences. Following [9],

we assume that the pre-scan has a neutral expression αe0 and estimate
the shape coefficients αs by minimizing

E f Pre = ωlmElm +ωdEd +ωregEreg, (10)

where the first term Elm penalizes errors in the 3D landmark alignments,
the second term Ed relates to dense vertex matching between model
vertices and their nearest neightbor vertices in the pre-scan, and the
final term Ereg regularizes the PCA coefficients αs. The full method
and objectives used for shape parameter optimization are described
in [9]. In our formulation, we use ωlm = 1, ωd = 2, and ωreg = 1.

Detecting 2D Landmarks. To compute the face model parameters
for the user at a given time instant, we first detect 2D facial landmarks
in the side images. The problem of 2D facial landmark localization for
frontal face images has largely been solved [7, 8, 10, 68, 72]. However,
these methods fail for the profile and oblique views that we target. Re-
cent work [7] has shown good performance on significantly non-frontal
2D and 3D face alignment in difficult illumination conditions; however,
we found that this method could not detect landmarks in most of our
images. We fine-tuned this neural network with new data captured
from our ego-centric viewpoints and provided a rough bounding box
to the face detector, which greatly improved the accuracy of the detec-
tions. Because the face cameras are fixed in our headset, determining
a reliable bounding box for the face is straightforward. Ground-truth
landmark positions were obtained by applying the detector to a separate
front-facing external view, computing the 3D landmark positions using
the approach from [7], and projecting these points into the face-oriented
views using the checkerboard tracking method of Sect. 6.3.

3D Model Fitting. Once we obtain the detected 2D facial landmarks,
we deform the low-quality face mesh to fit the two side camera images
by minimizing the reprojection error of the model’s corresponding 3D
landmarks. Specifically, for a given time instant, we optimize the pose
T , shape αs, and expression αe of the morphable model. In practice,
the shape and pose of the face are nearly constant in relation to the
viewing cameras; however, we found that our facial capture results
improved slightly by optimizing these values on a per-frame basis.

For each frame, our optimization iterately minimizes a separate cost
function for each parameter type (pose, shape, and expression). The
pose cost function is the sum of errors for the left and right cameras
(indexed as 1 and 2):

Epose = ∑
i∈L1

||yi−Π1 (TVi) ||22 + ∑
j∈L2

||y j−Π2
(
MTV j

)
||22, (11)

where yi is the i-th detected 2D landmark, Vi is the corresponding
labeled vertex, Πc denotes the projection function of camera c, M is the
relative transformation matrix between the two face-oriented cameras,
and Lc denotes the set of visible landmarks in camera c. T is thus
optimized by minimizing the reprojection errors between each yi and
the projection of its 3D correspondence Vi.

With a fixed M, we found that the pose solution sometimes con-
verged to a local minimum, which lead to inaccurate shape and expres-
sion parameters. Thus, we relaxed the M constraint by computing a
face pose for each camera separately, and added a term to limit their
transformation matrix to be as close as Tr as possible:

E ′pose = ∑
i∈L1

||yi−Π1(T1Vi)||22 + ∑
j∈L2

||y j−Π2(T2V j)||22 + ||M′−M||22,

(12)
where T1 and T2 are camera-specific face pose estimates, and M′ =
T2T−1

1 . After optimization, we set T := T1.
Having computed the pose matrix T , we independently optimize

shape and then expression parameters. For the shape parameters, which
are initialized according to the pre-scan, the cost function is

Eshape = wlEl +wsparseEsparse +wsymEsym +wsmoothEsmooth. (13)

The first term is similar to the pose cost function, minimizing the
reprojection error of corresponding 2D and 3D landmarks:

El = ∑
i∈L1

||yi−ΠKT (V̄ +Asαs)i||22+ ∑
j∈L2

||y j−ΠKTrT (V̄ +Asαs) j||22,

(14)



Fig. 7. Two video/audio-based fitting results. The first column shows the
original image captured by the right side camera, and the second and
third columns respectively show reconstruction results using only video
or audio. The last column shows the final result of combining video and
audio. The top row shows a result where the face is unoccluded; in this
case, the combined result closely matches the video-only result. The
second row demonstrates the contribution of audio-based capture when
the face is partially occluded.

where V̄ is the base shape of the morphable model, and As is the model’s
shape basis matrix. The subscript i denotes the ith deformed vertex.
The second term is a regularizing term to constrain the number of active
shape parameters:

Esparse =
Ns

∑
i=1
|α i

s|, (15)

where Ns is the total number of shape parameters.
The third term enforces vertical symmetry for each left face landmark

i with a corresponding right landmark j:

Esym = ∑
(i, j)

∣∣∣(V̄ +Asαs)i− (V̄ +Asαs) j

∣∣∣2
y
, (16)

where | · |y is the distance measured only in the y direction.
The final term smooths the parameters for consecutive frames:

Esmooth =
Ns

∑
i=1
||αt

s−2 ·αt−1
s +α

t−2
s ||22 (17)

where αt
s denotes the frame index for the current frame.

Once the shape parameters have been estimated, we repeat the fitting
of expression parameters αe using the same terms as Eq. (13), and
incorporating the shape estimate for Eqs. (14) and (16). We selected
wl = 1,wsp = 4,wsy = 1,wsm = 1.5 for the shape cost function and
wl = 1,wsp = 6,wsy = 1,wsm = 0.8 for the expression cost function,
with αe initialized to zero each frame. Fig. 14 shows results of 3D face
fitting. For each frame, we transfer the fitted parametric model back to
the high-quality pre-scanned user model using the approach from [60].

7.2 Audio Enhancement for Face Reconstruction
Full-face reconstruction relying solely on ego-centric views is chal-
lenging due to the oblique viewing angles. For example, the model
expression parameters are highly influenced by small errors in the land-
mark detections for the mouth, yet the mouth is only partially visible
in each view. Moreover, video-based reconstruction is hindered if the
face is (partially) occluded (e.g., see the bottom example in Fig. 7). We
address these problems by augmenting the face reconstruction with
geometry derived from the captured audio. Recently, Liu et. al. [36]
presented a real-time facial tracking and animation approach that uses
audio data to augment reconstruction from a single RGB-D camera.
We investigated adapting this neural-network-based approach for our
ego-centric scenario.

Network Training. We first compute the video-based expression
parameters αe as ground truth from front-facing videos with audio.
Then, we extract the corresponding audio features following [31]. For
every video frame, we use a 520ms audio window consisting of 64 over-
lapping audio frames, each 16ms in length. Audio features consisting

Fig. 8. Face re-targeting result. The two left images show the input
deformed face model and the re-targeted face part of the pre-scan,
respectively. The face vertices of the body model are replaced by their
deformed counterparts, as shown in the right image.

of 32 Linear Predictive Coding (LPC) coefficients are calculated for
every audio frame. Thus, the input features for each audio window is a
64×32 image, which serves as the input to the neural network.

We used the modified VGG-16 network architecture from [57]. The
last 6 convolutional layers and 2 pooling layers are dropped for small-
sized input signals, and the output size of the last fully-connected layer
is set to 16, which corresponds to the first 16 expression coefficients.
We also infer a weight ωa

e for every time instant, representing the
confidence of the audio result, as follows. We first detect silent frames
in the data by checking the 600 ms window around each time instant. If
all converted wave values in the window are below a threshold, we call
it a silent frame. Non-silent frames are assigned a “full-audio” weight
ωa

e = 1, and for silent frames, ωa
e is determined by the length of time

to the nearest non-silent frame.

7.3 Combining Video and Audio
Similar to [36], we combine the audio-estimated expression parameters
αa

e with the video parameters αv
e to compute the final frame parameters

αe:
Aeαe =WAeα

a
e +(I−W )Aeα

v
e , (18)

where W ∈R3N×3N is a diagonal weighting matrix, and N is the number
of vertices in the morphable model. Differently from [36], we compute
a weight map around the mouth landmarks and multiply it with weights
inferred from the audio neural network ωa

e as the final weights of every
vertex. During the combination step, we also consider occlusion of the
mouth. If the landmarks detection result has a large difference between
two consecutive frames around the mouth, we negate the video-based
mouth weights and rely strictly on audio for that region. The result of
combining video and audio is shown in Fig. 7.

7.4 Facial Motion Re-targeting
During capture, we estimate pose, shape, and expression coefficients
that fit our 3D morphable face model to the observed 2D data. For
visualization, we require a way to deform the pre-scan face mesh
according to this transformation. Because the face part of the pre-
scan is not rigged, we employ a deformation transfer [60] from the face
model to the pre-scan. It minimizes the differences of the corresponding
triangle deformations between the face-model mesh and the pre-scan
mesh (first and second images in Fig. 8, respectively).

Let S be the face-model mesh after shape-based alignment to the
pre-scan; denote its 3D vertices as {s1 . . . ,sn} and its triangles as
{(a1,b1,c1), . . . ,(am,bm,cm)}, where the (a j,b j,c j) indexes three ver-
tices. Let S̃ denote the deformed face-model mesh using our estimated
coefficients for a given frame; it has vertices {s̃i} and the same triangles
as S.

As outlined in [60], the affine transformation for a triangle j in S to
its corresponding triangle in S̃ can be defined as Qj = ẼjEj

−1. Here,
Ej ∈ R3×3 is the edge matrix for triangle j, defined as

Ej = [(sb j − sa j ) (sc j − sa j ) n j], (19)

where n j is the unit normal for the triangle. Ẽj is similarly defined.
Now, we wish to deform the pre-scan mesh T into a new mesh T̃

in a manner similar to the transformation of S into S̃. Assume, for
the moment, that for each triangle j in S, we know the corresponding



Fig. 9. Integration result. The deformed pre-scan is localized to the
reconstructed environment using headset tracking. The entire path of
the tracked headset is shown in red.

triangle ` in T. (We explain how to obtain these correspondences
below.) Using deformation transfer, we optimize for the vertices {t̃k}
of T̃ by encouraging the affine transformations {Q′`} of the triangles of
T to match their counterparts {Qj} of S:

min
t̃

∑
( j,`)∈C

||Qj−Q′`||
2
F , (20)

where C is the set of triangle correspondences, and || · ||F denotes the
Frobenius matrix norm.

Computing triangle correspondences. The correspondences be-
tween the triangles of S and T are computed in a pre-processing step
that first aligns the 3D landmarks S with T while encouraging smooth-
ness of the triangle deformations of S. Once this alignment is achieved,
we obtain triangle correspondences based on nearest neighbors. The
landmark correspondences in this section are the same as those used
for our initial landmark-based model fitting.

Specifically, consider aligning the landmarks of S and T by deform-
ing the vertices of S. In a slight abuse of earlier notation, we now state
that we optimize the vertices of S̃ so that they match T:

Elm({s̃i}) = ∑
(i,k)∈L

||s̃i− tk||2, (21)

where L is the set of corresponding landmark-vertex-index pairs for the
two meshes.

We regularize Eq. (21) to ensure smooth triangle deformations of S
into S̃. To do this, we consider the neighborhoods of the triangles in S
and specify that their deformation be similar:

Ene({s̃i}) =
m

∑
j=1

∑
r∈adj( j)

||Qj−Qr||2F , (22)

where adj( j) denotes the set of triangles sharing an edge with triangle
j in S, and m is the total number of triangles in S.

Additionally, to avoid over-fitting, we penalize the presence of strong
deformations for each triangle:

Eid({s̃i}) =
m

∑
j=1
||Qj− I||2F , (23)

where I is the identity transformation.
The final cost function for the fit is the sum of Eqs. (21-23):

E({s̃i}) = Elm({s̃i})+Ene({s̃i})+Eid({s̃i}) (24)

Fig. 8 shows an example of our re-targeting result for the face.

8 DEVICE TRACKING AND ENVIRONMENT RECONSTRUCTION

Our device is fitted with four outward-facing cameras that serve to track
the motion of the wearer within their environment while simultaneously
reconstructing their surroundings. This reconstruction capability is an
important component for the overall capture scenario: the wearer’s envi-
ronment provides context for remote observers and greatly contributes
to their sense of “being there.” While device tracking is ultimately
necessary for the system as a motion capture unit, the external recon-
struction endows the device with the ability for content capture.

Fig. 10. Environment and body part visibility simulation. (a-d) Temporal
visibility heat maps for the static scene (top) and human user’s body
(bottom). (e) Color coding heat map for (a-d). Surfaces are colored
according to how recently they were visible to one of the head-worn
cameras. (f) Time plot of visibility percentages for several parts of the
simulated user’s body.

In our prototype system, we perform environment capture using four
synchronized views on the sides and back of the wearer’s head, and pro-
cess them off-line. From this multi-view imagery, we simultaneously
estimate the motion of the camera rig and reconstruct the environ-
ment using COLMAP, the current state-of-the-art tool for incremental
structure-from-motion (SfM) [52] and multi-view stereo (MVS) [53].
The process of SfM has three stages: feature extraction for individual
images, feature matching between image pairs, and reconstruction. Dur-
ing reconstruction, images are iteratively registered to each other based
on their feature correspondences; here, registration involves computing
the rotation and translation of the image relative to the environment, as
well as 3D scene points for the individual image features. Since our
camera rig is pre-calibrated for both intrinsics and local extrinsics, we
are able to obtain a to-scale registration of the cameras to the scene via
SfM in an unsupervised fashion. Given these camera registrations, we
use MVS to estimate a dense (pixel-wise) depth map for each image,
and we then run depth-map fusion and subsequent surface meshing [32]
to obtain the final environment model.

The outcome of this off-line processing is a textured 3D mesh depict-
ing the user’s environment, as well as information about where the user
was standing and where they were looking relative to the environment
at each time-point in the capture. When visualizing the capture in, e.g.,
virtual reality, this information is directly used to place the animated
reconstructed body model within the virtual environment.

9 INTEGRATION

The resulting face, body, and environment reconstructions are integrated
to compose the entire scene (Fig. 9). First, the face vertices in the body
pre-scan are replaced using Eq. (20). Then, the pre-scan is deformed
using Eq. (9). The deformed pre-scan T̂local in model space is localized
to the environment coordinates using the estimated headset pose Ct ∈
R4×4 at time t.

T̂global =Ct

[
R−1

M R−1
M Jhead

0 1

]
T̂local, (25)

where RM is the rotation of the body model estimated during the
skeleton alignment in Sect. 6.4 and Jhead is the head joint position.
[R−1

M |R
−1
M Jhead] reorients the pre-scan to its head joint at the origin in

local space.
Because the feet are often occluded in our downward-facing views,

the leg motions of the wearer are rarely detected. – the feet are modeled
in 3D as located on the ground, exactly below the knees in Sect. 6.2. To
compensate for this, we add a motion prior to the pre-scan deformation
based on the norm of average velocity Vt = ||d/∆t || of head-track
displacement d. Specifically, we capture a separate walking motion
pose sequence {θwalk,t} that captures two full strides of an individual.
This step sequence is looped continuously throughout our capture
sequence. For a given frame t, the refined pose θ̂t is estimated as



Fig. 11. Example 2D and 3D pose estimation results on our validation
dataset. Red points and lines show the ground-truth joints positions and
skeleton in the images, while those in green are our prediction results.
Left: Sitting pose. Right: Walking pose. In each image, the background
and shirt color have been synthetically augmented.

θ̂t = αt θwalk, t +(1−αt)θt ; αt = min(Vt ,1). (26)

The blended pose θ̂t is controlled by velocity Vt . When the user moves
quickly, the influence of the walking motion increases. When the user
stops walking, the motion becomes negligible. Fig. 6 shows a result of
the pose blending.

10 RESULTS

In this section, we present results for our body pose and facial expres-
sion estimation pipelines. We additionally showcase a possible use case
for our system: virtual tours of a remote place (indoors and outdoors),
with the wearer of our device acting as a tour guide.

10.1 Results for Body Visibility in Simulation
To explore our camera modeling approach, we simulated a room-sized
environment with static objects such a whiteboard, a desk, and chairs.
We then added a simulated user, animated over a 60-second sequence
to perform actions such as sitting on a chair, getting up, and writing on
the whiteboard. We modeled the cameras in a similar configuration as
our physical prototype, with each simulated camera’s horizontal field of
view set to 90◦. We used the method introduced by Chabra et al. [12]
to model temporal visibility of a surface in the simulation:

vt =


1 if s is visible from at least one camera at time t
1− ∆t

τ
if s is hidden for a time ∆t < τ

0 otherwise
(27)

In our analysis, we set the temporal visibility threshold interval τ to 5
seconds for dynamic objects and to 60 seconds for static objects. The
resulting temporal visibility vt is shown in Fig. 10 as heat maps at 4
different time instants, with the brightest color representing polygons
that were visible most recently. We also show the percentage of visible
polygons over time for the virtual person’s body. The noticeable drop
in visibility around time t = 30 corresponds to the interval during
which the person was writing on the whiteboard, remaining relatively
motionless.

Our simulation results indicate that with our proposed camera ar-
rangement, most of our dynamic scene is visible to at least one camera
within reasonable visibility threshold intervals, which gives us confi-
dence that our reconstruction approach can successfully reconstruct a
near-static environment. However this simulation’s results led us to use
larger FoV lenses for body and face capture in our physical prototype
(120 degrees horizontal) than in our simulation (90 degrees horizon-
tal), and smaller FoV lenses for environment capture (62 instead of 90
degrees).

Fig. 12. Example 2D and 3D pose estimation results for our outdoor
(left) and indoor (right) video tour scenes. Green points and lines show
the predicted skeleton. Note that the mis-predicted right arm in the right
image is corrected in 3D using our RNN.

Fig. 13. 2D and 3D pose estimation result where the left wrist cannot
be seen from the right-side camera, and the knees are barely visible in
either camera. Such a situation can result in large errors for our system:
the 3D error of left wrist is 10.13cm, while the error of the right wrist is
2.94cm.

10.2 Results for Body Pose Estimation
In addition to qualitatively evaluating our body pose estimation on demo
data, we provide qualitative and quantitative analysis on a validation
dataset that was captured in the same environment as the training
dataset, independently but using similar motions. Fig. 11 shows results
for the 2D joint detection and 3D pose estimation on two typical poses
from the validation dataset: walking and sitting while gesticulating.
Qualitatively, the results exhibit satisfactory alignment with the ground
truth. In Fig. 12, we show qualitative results for the 2D joint detection
and 3D pose estimation on our demo test dataset in both outdoor and
indoor scenes. The indoor result shows an example where we obtained
a reasonable 3D pose despite imperfect 2D detections (right arm in the
right image).

Table 1 provides a quantitative analysis for our validation dataset,
including 2D errors in joint detection and 3D errors in joint position
estimation. For 2D detections, we report mean and standard deviation
errors in pixels. The input images are 640×480 px. We generally
observe skewed error distributions (not shown due to space restrictions),
with the majority of detections closer to the ground truth than the mean.
Sporadic large detection errors arise from false-positive maxima in the
belief maps output by our CPM. These detection errors are typically
corrected during our subsequent 3D prediction and motion smoothing.
Regarding 3D skeleton errors, we evaluate the performance of two
methods: 1) simple two-view triangulation using the known relative
calibration of our downward-facing views, and 2) our proposed RNN
approach. Our RNN approach has lower positional error for all joints,
with average validation errors between 2cm and 4.7cm in Table 1.
The result compares favorably to EgoCap [50], the existing system
most similar to our own, for which average 3D joint position errors
of 7±1cm were reported. These averages roughly follow the general
visibility of the joints in each view, with the hips and elbows having
the lowest errors.

10.3 Results for Face Reconstruction
The top row of Fig. 14 shows our face landmark detection and model
fitting results for both indoor and outdoor illuminations. Our face model
has 66 total landmarks. Due to the limited visibility, in each view we
detect the 10 midline landmarks and the 28 additional landmarks for
each half of the face.

To quantitatively evaluate our face reconstruction result, we compute
the distance between all 66 2D and projected 3D landmarks for the
complete set of frames in our indoor (1760 frames) and outdoor (1250

Table 1. 2D and 3D joint estimation errors for our method. 2D: Mean and
std. dev. pixel errors for detected 2D joints. 3D: Mean 3D distance (in
cm) between the ground-truth and predicted joint positions for two-view
triangulation from our body cameras (Tri.) and our recurrent approach
(RNN). Notation: Shoulder (S), elbow (E), wrist (W), hip (H), and knee
(K). R/L: Right/left joint.

RS RE RW LS LE LW RH RK LH LK

2D
(p

x) Avg 11 5.9 7.1 11 7.9 8.5 4.5 7.1 4.5 5.9

Std 12 7.4 12 12 8.5 14 4.5 11 3.8 9.1

3D
(c

m
)

Tri. 5.9 3.4 4.0 6.2 3.7 6.2 3.7 6.1 3.6 5.9

RNN 3.7 2.9 3.3 4.3 3.0 4.7 2.1 4.0 2.0 3.9



Fig. 14. 2D face landmark detection and 3D facial fitting. White points in
the first (indoor) and third (outdoor) columns show the 66 2D landmarks.
The second and fourth columns show the mesh fitting visualization with
all mesh vertices (green) projected into the images.

frames) virtual tour capture data. We run our alternating pose, shape,
and expression optimization for 5 iterations. Over all frames for both
views, the RMS error decreases from an average initial value of 16.38
px to an average final value of 3.57 px. To visualize our 3D fitting, we
show the projection of the corresponding mesh onto the input imagery
in Fig. 14. We observe that our projection fits the entire face accurately,
including the neck and the ears.

Figure 7 provides two examples to demonstrate the final reconstruc-
tion result of combining video and audio. The first column shows the
original image captured by the side cameras; the second and third col-
umn show separately the reconstruction results from video and audio.
The final column shows the final result of combining video and audio.
The audio result in the first row is unreliable due to silence and is ig-
nored in the combined result. In the second row, the mouth is occluded,
causing an unreliable video result, but the audio provides a plausible
mouth shape in the combined result.

10.4 Application: Virtual Tour
To demonstrate the potential of our system for ego-capture scenarios,
we used our device to record a short VR tour of the UNC Department
of Computer Science. Acting as a tour guide, the wearer moves around
the capture space and describes her surroundings. Our system then
reconstructs the wearer’s motions and environment, creating a dynamic
3D representation that remote users can experience in VR, as if they
were getting an in-person tour. Fig. 15 shows example frames from the
indoor portion of our tour, and a view of our outdoor portion is shown
in Fig. 9. Videos from our virtual tour displayed in an HTC Vive are
available in the supplementary material.

For real-time visualization, the animated sequence of per-frame body
poses is built into an Alembic geometry cache [2] using Autodesk Maya
2018, which is then represented as an animated non-skeletal 3D mesh
in Unreal Engine 4. The viewer wearing the head-mounted display is
provided controller-based locomotion in addition to physical locomo-
tion to walk with the reconstructed tour guide in a reconstructed virtual
environment that is larger than the available physical environment.

11 SYSTEM LIMITATIONS AND FUTURE WORK

Our current system captures the raw data in real-time and processes it
off-line. With advances in computing power and GPU-enabled paral-
lelization, we can reasonably expect that our processing techniques will
be accelerated to real-time in the near future. We also aim to integrate
the capture and processing components of our system into a wearable
package, e.g., a backpack connected to the headset, in order to allow
telepresence-type interactions. To that aim, we plan to employ new and
existing techniques to cull, compress, and transmit the reconstructed
data. We also plan to explore reconstruction and meshing techniques to
obtain better 3D meshes for VR visualization.

A key limitation in our current evaluation is that our pose estimation
approach is user-specific. Training the CNN and RNN with data from
multiple users will make our approach more broadly applicable, and
we anticipate that increasing the amount of and variation in training
data will improve the modeling of unseen joints, such as the left arm
in Fig. 13 or the ankles. Increasing the user base will also allow us to
account for a variety of outfits, compared to the two shirts (long- and
short-sleeved, with color augmentation) used in our experiments.

With respect to device tracking and environment reconstruction, the
main direction for future work is to have the system run in real time
and reconstruct dynamic environments. Our plan is to use our rolling-
shutter high-frequency tracking approach [6] combined with SLAM

Fig. 15. Four frames from the indoor section of our virtual tour.

for long-term stabilization and reconstruction [21, 61]. One currently
unavoidable limitation is that we can only reconstruct the part of the
scene observed at some time by the headset-mounted cameras. Adding
more cameras will help: in particular, front-facing external cameras
would improve user comfort, since it is easier for the user to know what
parts of the environment have been captured when those views line up
with their line of sight.

The user reconstruction part of our system also offers directions
for future research. Our current body re-targeting technique uses a
body model with limited degrees of freedom. We plan to employ
a state-of-the-art model such as SMPL [37] to obtain more natural
body movements. Similarly, our current face re-targeting approach
uses deformation transfer, which results in limited facial expressions.
We expect a rigged face model to yield more-natural-looking facial
animations. Another research direction is to fully model hand and
finger motions, and enable capture and reconstruction of arbitrary
objects being carried or manipulated. Finally, we would like to explore
using mirrors to allow reconstruction of the user’s body model directly
from images captured using the headset-mounted cameras, rather than
requiring a separate body pre-scan process.

12 CONCLUSION

We proposed a new approach for the 3D capture of an individual and
their environment that relies not on any instrumented environment, but
only on cameras and sensors worn by the individual. This approach
allows for the reconstruction and communication of experiences from
any location, indoors or out. With a vision of the fully mobile capture
systems of tomorrow, we have outlined the key technological advances
necessary for capturing the wearer’s body pose, facial expression, and
limbs—entirely from near-body views—and we have shown how the
surrounding environment can be reconstructed using outward-facing
views, which enables completely ego-centric content capture. Our
results demonstrate workable methods that leverage state-of-the-art
machine learning approaches to overcome the profound problems of
poor visibility for body capture from head-worn cameras.

We envision our prototype device to one day shrink to the size of
everyday prescription eyeglasses and be worn as such. This all-in-one
form factor is key to enabling the ubiquitous use of user-centric 3D
content capture, virtual tours, and 3D telepresence for a large variety of
users and scenarios.
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