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Figure 1: Mobile, egocentric real-time body motion capture system using only eyeglasses-mounted cameras and a few body-worn
inertial sensors. 2x2 image groups at left and center: fast body motion reconstructions of indoor and outdoor user (top), shown
in VR (bottom). Right: current mobile user (color), and future vision (monochrome) depicting casual everyday use of streamlined
system with miniaturized cameras embedded in the frames of wide-field-of-view AR eyeglasses, and IMUs on wrists and in shoes.

ABSTRACT

We envision a convenient telepresence system available to users
anywhere, anytime. Such a system requires displays and sensors em-
bedded in commonly worn items such as eyeglasses, wristwatches,
and shoes. To that end, we present a standalone real-time system
for the dynamic 3D capture of a person, relying only on cameras
embedded into a head-worn device, and on Inertial Measurement
Units (IMUs) worn on the wrists and ankles. Our prototype system
egocentrically reconstructs the wearer’s motion via learning-based
pose estimation, which fuses inputs from visual and inertial sen-
sors that complement each other, overcoming challenges such as
inconsistent limb visibility in head-worn views, as well as pose
ambiguity from sparse IMUs. The estimated pose is continuously
re-targeted to a prescanned surface model, resulting in a high-fidelity
3D reconstruction. We demonstrate our system by reconstructing
various human body movements and show that our visual-inertial
learning-based method, which runs in real time, outperforms both
visual-only and inertial-only approaches. We captured an ego-
centric visual-inertial 3D human pose dataset publicly available
at https://sites.google.com/site/youngwooncha/egovip
for training and evaluating similar methods.
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1 INTRODUCTION

Telepresence enables remote social interaction without physical
presence. 3D display greatly enhances the sense of presence, but
requires the ability to fully capture and reconstruct human subjects
as well as their environment.

We expect 3D capture of user experiences to become a feature of
common head-worn devices in the near future. Today’s ubiquitous
mobile phones and augmented reality (AR) systems such as the
Microsoft HoloLens [23] may eventually evolve into the form factor
of conventional eyeglasses, with transparent see-through and wide-
field-of-view (FoV) capabilities, to be worn all day like ordinary
eyeglasses. With widely available wearable technology embedded
in commonly worn accessories (cameras in eyeglasses, IMUs in
wristwatches and shoes), a mobile 3D acquisition and display system
such as the one in Fig. 1 (right) will enable 3D telepresence.

One of the challenges of targeting an eyeglass-frame form factor
is that the user’s limb motions are frequently unobservable by the
cameras due to occlusion, or to being outside of the camera views,
as illustrated in Fig. 2 and Fig. 3. This problem makes many prior
pose estimation methods inapplicable to situations like ours. For
example, per-frame visual 3D pose estimation methods can produce
unreliable estimates for occluded joints [9] due to incomplete visi-



bility. Similarly, while human performance capture approaches that
use external cameras have achieved high accuracy and real-time per-
formance [12, 13, 16, 43], they require all joints to be visible. Joint
heatmap estimation methods [6, 24, 47] are also unable to handle
the joints that are outside the image because they cannot be labeled
within the 2D heatmap. Extending the heatmap size by padding the
boundary is likely to generate high 3D joint errors due to the high
distortion of wide-FoV or fisheye lenses. Finally, prior egocentric
capture headgear [7, 28, 33, 45] featured cameras mounted farther
away from the face; while they offer better body and limb visibility,
they are obtrusive and thus unacceptable for daily use.

Another challenge is reducing the number of IMU sensors for
widespread acceptability. Prior visual-inertial fusion approaches for
3D pose estimation [18, 39, 40] require more than 10 body-worn
sensors, a number unlikely to be accepted for general use, even with
miniaturization. Reducing that number results in pose ambiguities
and lower accuracy for non-instrumented body parts [14, 32, 41].
For example, a knee raise cannot be reliably distinguished from a
standing pose, as the IMU data is insufficient for inferring thigh
orientation if no sensor is worn on it.

In this paper, we present a wearable 3D acquisition system for
real-time 3D mobile telepresence relying only on eyeglass-frame-
mounted cameras and IMUs on wrists and ankles. This approach
allows for convenient, unobtrusive reconstruction and communica-
tion of experiences at any indoor or outdoor location. To support the
vision of such a fully mobile capture system, we capture the wearer’s
3D body pose using learning-based visual-inertial sensor fusion. Un-
like methods that rely on instrumented environments [12, 46], this
enables completely self-contained egocentric content capture and
overcomes inconsistent limb visibility, as well as IMU pose ambigu-
ity caused by sparse IMUs.

Our approach consists of three components which allow visual
and inertial measurements to complement each other when tracking
joints. First, a visibility-aware visual 3D pose network estimates
visible 3D joints while suppressing unreliably detected occluded
joints. Second, an online IMU offset calibration method improves
the inertial measurements by aligning the visual and inertial bone
orientations, over time, for forearms and lower legs with attached
IMUs. Third, a visual-inertial 3D pose network estimates the poses
of upper arms and thighs without IMUs by using a sequence of
inertial measurements of the corresponding lower bones, as well
as visual detection of the upper bones in previous frames. At each
instant, the estimated body pose is re-targeted to a human surface
model, resulting in a high-fidelity reconstruction of the user. The
full body pose, including 3D joint locations as well as 3D bone
orientations, is estimated continuously and kept temporally coherent,
even when some joints are out of image or occluded.

We demonstrate our system on reconstructions of various human
body movements in a remotely assisted physical therapy scenario
and show the mobile capability in an outdoor scenario. For training
and evaluation, we collected a new large-scale egocentric visual-
inertial 3D human pose dataset. We know of no existing dataset
that includes occlusion, out-of-image labels in egocentric views, and
densely worn inertial sensors. We plan to make our dataset publicly
available. In experiments, our visual-inertial learning-based method
runs in real-time, at 30 Hz, on a standard PC, and outperforms
both visual-only and inertial-only approaches, showing significant
improvements in out-of-image and self-occlusion situations.

Our main contributions are:
• The first egocentric 3D human pose estimation approach that

can handle both sparse visibility and sparse inertial sensors.
• A working, standalone, proof-of-concept prototype in an eye-

glasses form factor for mobile capture and real-time body
motion estimation.

• The first egocentric human motion dataset that includes multi-
ple views with joint visibility information as well as inertial
measurements.

2 RELATED WORK

2.1 Body Reconstruction
Deformable body model-based surface estimation has been a focus in
computer vision [17]. Estimation of model parameters approximates
the human surface in conjunction with visual pose estimation [4],
by estimating dense correspondences between the body model and
imagery [2], or by direct volumetric inference [36]. Recent work
shows advances in real-time performance by using temporal poses
[16], as well as face and hand poses [43]. High-fidelity geometry
can also be estimated by fitting image silhouettes [12], or by cloth
simulation [46]. These approaches require external camera views
to be able to fit full body shapes and poses, and assume full body
visibility in the images. In egocentric views, however, body parts
are often invisible.

2.2 Visual Pose Estimation
Recent advances in learning-based approaches for deep neural net-
works have shown significant improvements in accuracy when used
for pose estimation. 2D joint heatmap-based estimation has been
successful using Convolutional Neural Network (CNN) architec-
tures [6, 24, 47]. CNN-based 3D joint estimations also have shown
significant accuracy in real time for a single outside-in looking view
[21, 22]. Human pose constraints [10, 31] and occlusion infor-
mation [9] have been incorporated during training. In the case of
continuous human motions over time, Recurrent Neural Network
(RNN)-based pose estimations have shown promising results for
a sequence of motion predictions [5, 19, 38]. These approaches
estimate joint locations, but 3D bone orientation estimation is still
an open problem when using only visual information to estimate a
full body pose.

2.3 Visual Egocentric Pose Estimation
High-quality reconstruction from egocentric data captured by body-
worn cameras remains a challenge, requiring reconstruction methods
that operate in arbitrary, uninstrumented environments. Outside-
looking-in camera-based human pose estimation methods are not
directly applicable to egocentric views of the body.

Body motion can be inferred from egocentric body-worn cameras
using structure-from-motion [29] or learning-based approaches [8,
15]. However, without direct observation of the body, pose estima-
tion accuracy is limited. Significant improvements have been made
using head-worn, downward-looking wide-FoV cameras, which
enable views of most of the wearer’s body [7, 28, 33, 45]. Learning-
based approaches have been proposed to deal with the unusual
viewpoints. Recent methods based on a single head-worn camera
view [33,45] have used less-obtrusively mounted cameras to arrive at
pose estimation improvements. However, the form factors employed
are still too obtrusive for wide acceptability.

Approaches using downward near-body views have yet to fully ad-
dress the challenges of self-occlusion and out-of-view joints, which
need to be resolved in order to estimate a full body pose of the
wearer solely from body-worn cameras.

2.4 Inertial Pose Estimation
Human pose estimation can also be performed using body-worn iner-
tial measurement units (IMUs). IMUs can capture fast motions [18]
and track body parts that might be occluded in camera views, but
they suffer from measurement noise and drift over time, and require
careful calibration for the initial pose.

Even with miniaturization of sensors, using a relatively large
number of worn sensors is unlikely to be widely accepted. To in-
crease acceptability, recent approaches have attempted to reduce
the number of IMUs to a sparse set by employing temporal orien-
tations and accelerations [14, 32, 41]. The IMUs are worn only on
forearm and lower leg; the missing upper arm and thigh orientations
are estimated by assuming that the temporal motions of lower and



upper bones are highly correlated. Inference results are promising,
but suffer from pose ambiguity, as multiple poses can be possible
with similar measurements. This issue is addressed only partially
by using more temporal measurements such as future frames or
an entire sequence. To overcome this problem, visual and inertial
sensor fusion [18, 34, 39, 40] leverages outside-looking-in cameras
jointly with IMUs to calculate a 3D body pose. Visual pose estimates
from the outside-looking-in cameras help constrain the possible 3D
poses of the inertial sensors, and alleviate the IMU measurement
noise [39]. However, so far these approaches require complete body
visibility, which is seldom achievable from egocentric views.

3 WEARABLE CAPTURE AND EGOCENTRIC DATASET

3.1 Eyeglasses and IMUs Prototype
Our goal is to develop a fully mobile telepresence system whose
sensors are embedded in commonly worn items such as eyeglasses,
wristbands, and shoes. Toward that end, our current prototype uses
cameras in eyeglasses frames and only 4 IMUs (Xsens MTw Awinda
on wrists and ankles). Adding more IMUs (e.g., on the torso, el-
bows and knees) improves the results, but the added inconvenience
would considerably reduce acceptability. As shown in Sect. 5, the
combination of multiple cameras, 4 IMUs and deep learning-based
techniques is sufficient to fill in the “missing” sensor data from
elbows and knees.

We envision a headset design (shown in Fig. 2d) with 4 miniature
cameras: 2 downward-looking cameras placed at the bottom outside
corners of the frame to observe the user’s body, and 2 forward-
looking cameras placed at the top outside corners of the frame to
observe the environment. Compared to previous egocentric head-
sets [7, 28, 33, 45], our design is more user-friendly, but makes the
2 downward-looking viewpoints significantly more challenging as
body parts are frequently out of view or occluded.

Working towards this design, we have built a preliminary pro-
totype with available larger cameras (Toshiba Teli BU505MCF),
mounted on a 3D-printed eyeglasses frame as shown in Fig. 2a.
We currently use only 3 cameras (two 160°FoV downward-looking
cameras; one 121°FoV forward-looking camera).

Figure 2: (a) Current headset capture prototype. (b) T-pose in
downward camera, viewpoint is worse than in prior egocentric se-
tups [33,45]. (c) T-pose from external viewpoint. (d) Future eyeglass-
form factor design.

3.2 Egocentric Visual+Inertial Human Pose Dataset
Following recent work in egocentric video and IMU-based pose
estimation, we decided on a learning-based approach to use with
our prototype. However, none of the available egocentric datasets
were suitable for training, because their viewpoints are farther away
from the user’s face, they contain no visibility information, and
they are monocular. We could not use existing IMU datasets either,
as they were lacking accompanying egocentric video data. Conse-
quently, we collected a new human pose dataset with users wearing
our prototype headset and 8 IMUs. The ground truth full-body 3D
joints are acquired using multiple wall-mounted cameras in a cap-
ture studio [7]. We recorded various types of motions for multiple
users, including normal-speed as well as high-speed actions such
as walking, sitting, gesturing, running, and physical therapy. A few
examples are shown in Fig. 3.

We collected 22 sequences for training and 9 sequences for
evaluation with 6 human subjects, for a total of 38k frames of vi-
sual+inertial data. The summary of the dataset is shown in Table 1.

Figure 3: Incomplete body visibility in eyeglass form factor views. Top
row: Selected head-worn views from our Egocentric Visual Inertial
Pose Dataset (Ego-VIP) with labeled visibility information. Bottom
row: Corresponding external views in reference data.

For the visual training data, 11k real images were uniformly sam-
pled and manually filtered from the full recording. 38k synthetic
images were generated using the body pose from the real data with
the following random augmentations [33, 45]: clothing and back-
ground texture, head rotation, and headgear translation. Each joint
visibility was estimated using the z-buffer of the projected body
model onto the egocentric image and labeled as visible, occluded, or
outside the FoV. Torso joints (neck, shoulders, and hips) were labeled
as visible regardless of occlusion because they play an essential role
as root joints for bone pose estimation.

The inertial data from the 8 sensors was synchronized with the
visual data and calibrated using the method in Sec. 4.4. 38k frames
of real IMU data were augmented by mirroring the pose front-to-
back and side-to-side, temporally smoothing pose orientations, and
introducing random acceleration noise.

Table 1: Egocentric Visual-Inertial Pose Dataset (Ego-VIP), in number
of frames.

Real Size Synthetic Size Training Size Test Size
Visual 11,822 38,588 50,410 13,213
Inertial 38,971 350,739 389,710 13,213

To the best of our knowledge, this is the first dataset that includes
stereo egocentric views with joint visibility and calibrated inertial
data. The joint visibility information is crucial for training occlusion-
aware joint detectors.

4 EGOCENTRIC RECONSTRUCTION METHOD

Working toward our goal of fully mobile telepresence, we devised a
real-time full body shape and pose reconstruction method using only
egocentric devices we deem convenient and acceptable for daily
wear: eyeglasses-mounted cameras and a few body-worn IMUs.
The available information from the visual-inertial sensors is too
sparse for each sensing modality to estimate the full body pose by
itself. First, limb motions are frequently occluded by the body or
are invisible due to being outside the camera views. Second, IMUs
are worn only on forearms and lower legs, so upper arm and thigh
orientations are missing. To solve this ill-constrained problem, we
employed a visibility-aware visual pose network and a temporally-
integrated visual and inertial pose network. The 3D reconstruction
pipeline is illustrated in Fig. 4. It consists of three main stages.

In the first stage, a visibility-aware 3D joint detector network
(Sect. 4.2) estimates the 3D positions of joints observable in the two
egocentric downward views. The detected 3D joints are transformed
to world space (Sect. 4.3) using the headset pose estimated via
V SLAM [30].

In the second stage, the 3D orientations of lower bones (forearms,
lower legs) and upper bones (upper arms, thighs) are estimated using
a visual-inertial IMU offset calibrator (Sect. 4.4) and a temporal
visual-inertial orientation network (Sect. 4.5), respectively.



Figure 4: 3D reconstruction pipeline.

In the third stage (Sect. 4.6), the shape and pose of the parametric
body model are estimated using the estimated full-body 3D joint
locations and orientations from the second stage.

4.1 3D Body Representation
We use the SMPL parametric body model [17] to represent the body
shape and pose. It consists of 10 shape parameters β and 24 ·3 = 72
pose parameters θ , which deform a triangular mesh M(θ ,β ) with
6480 vertices using linear blend skinning.

Instead of representing θ as a set of local bone rotations, we
use the equivalent bone representation defined as a set of global
transforms T M ∈ R4×4. We use M to denote the body Mesh space
and S to denote the Skeleton space. In this representation, a bone i is
defined by two connected joints and a transform (Fig. 5).

Figure 5: Bone representation. A bone (forearm) consists of a base
joint (elbow) Jp, a tip joint (wrist) J, and an orientation RS = [sx,sy,sz].
They form a bone transformation T S in the skeleton. The pose param-
eter T M in the 3D mesh can be converted into skeleton space using
the bind pose matrix T S

0 from the rest pose.

We define the skeletal bone transformation T S
i ∈ R4×4 in global

space as a convenient way to represent the pose in the skeleton as:

T S
i =

[
RS

i Jp(i)
0 1

]
(1)

RS = [sx,sy,sz] ∈ R3×3 is the bone rotation and Jp is the base joint
position. The column vectors of RS form the 3D axes of the bone
and the axis sy = R[:,2] represents the bone direction di from the
base (parent) to tip (child) joint: di = (Ji−Jp(i))/(||Ji−Jp(i)||). We
denote the bone direction computed from a rotation as:

di = d(Ri) = R[:,2]
i (2)

The pose parameter T M
i can be directly computed from T S

i as:

T M
i = T S

i (T
S

i,0)
−1 (3)

The bind pose matrix T S
i,0 maps the coordinate frames FM 7→ FS,

is calculated using the joint positions in the rest pose of the body
model, and updated only when the shape parameters β are changed.
In the rest pose, T M

i is the identity matrix.
The joint positions in rest pose J0 are described by the joint

regressor J from the shaped vertices. We estimate the body shape β

using the unposed joints J0 = (T M)−1(J) by minimizing Eshape:

Eshape =
K

∑
i=1
||(T M

i )−1(Ji)−Ji(M0 +Bs(β ))||22 +ws||β ||22 (4)

ws = 0.001 is a weight for the regularization term, and K = 13 is
the number of joints. The vertices are reshaped by the mean shape
M0 and the linear blend shapes Bs(β ).

4.2 Visibility-Aware 3D Joint Detection Network
In visual human pose estimation, occluded joints often lead to erro-
neous results [9]. When using egocentric images, legs are frequently
occluded by the body, and arms can be out of camera FoV [7, 45].
Our visibility-aware 3D joint detection network takes a m×m ego-
centric image as input (m = 320) and estimates only the observable
joints while rejecting unreliable joints by incorporating joint vis-
ibility information. The egocentric dataset described in Sect. 3.2
is labeled with visibility information, enabling visibility awareness
training. The ground truth (gt) binary visibility vgt is set to 1 for
visible joints and 0 for invisible (occluded or outside of FoV) joints.

We extend the Stacked Hourglass architecture [24] used in 2D
human pose estimation to a 3D joint estimation network (Fig. 6).
In a head-worn wide-FoV camera image, lower body joints appear
significantly smaller than upper body joints. Instead of using multi-
scale images [45], we take advantage of the fact that the Hourglass
module inherently collects information across all image scales. We
also use a DSNT regression module [25] to estimate 2D coordinates
from heatmaps. This increases computational efficiency, as heatmaps
no longer need to be transferred to the CPU for parsing at runtime.

Figure 6: Network Structure for the 3D Joint Detector. The Hourglass
module outputs joint heatmaps H and depthmaps D as concatenated
channels. H and D are propagated into the next stage. The regression
module outputs 2D coordinates p from confidence maps V normalized
by H. Given a single input image, the 4 stage-network outputs p, D,
V , from which 3D joint coordinates are computed.

The Hourglass module infers heatmaps H ∈ R(m/4)×(m/4)×K in
the first K channels and inverse depthmaps D ∈ R(m/4)×(m/4)×K

in the last K channels. H are normalized into confidence maps
V by a Softmax layer. V are transformed into 2D coordinates p
by the dot product of the X- and Y -coordinate matrices [25]. The
inverse depthmap D is a heatmap containing normalized inverse
depth values for joints. The normalized inverse depth value is defined
as (dmax−d)/dmax, where d is a depth in meters and dmax = 2 is the
maximum depth. Distances close to the camera are assigned higher
values, and farther distances are assigned near-zero values [42].



Confidence ṽ and depth d are read out at the estimated p = (x,y)
coordinate in V and D, respectively. When confidence ṽ is large
enough (ṽ > tv, with tv = 0.05), coordinate p is considered valid and
visibility v is set to 1, otherwise it is set to 0. The raw inverse depth
read-out is transformed back into depth d in meters. The 3D joint
position is computed by back-projecting (x,y,d) using the camera
calibration matrix. The concatenated H and D, as the output of the
stage, are propagated into the next stage as input. We use 4 stacked
stages, taking into account both accuracy and speed.

The network is trained to minimize the loss function L joint net =
LDSNT +LV +LD. Given binary visibility vgt for each joint, re-
gression loss LDSNT and depth loss LD are applied for vgt = 1, and
invisibility loss LV is applied for vgt = 0.

The regression loss LDSNT is applied for the confidence maps
V and coordinates p with the ground truth positions pgt and binary
visibility vgt as:

LDSNT =
K

∑
i=1

vgt
i · [||p

gt
i −pi||22 +D(Vi||N(pgt

i ,σ I2))] (5)

N(µ,σ) is a 2D Gaussian map drawn at µ with standard deviation
σ (σ = 1 for training). D(·||·) is the Jensen-Shannon divergence to
encourage H to resemble the 2D Gaussian map [25].

The invisibility loss LV suppresses H to a zero heatmap for
invisible joints:

LV =
K

∑
i=1

(1− vgt
i ) · ||Hi||22 (6)

The invisibility loss forces the uniform distribution in V , which
encourages the confidence value to be smaller for invisible joints.

The depth loss LD is applied for depthmaps D with ground truth
depthmaps Dgt and joint masks M(pgt) as:

LD =
K

∑
i=1

vgt
i · ||M(pgt

i ,σ I2)� (Di−Dgt
i )||22 (7)

M(µ,σ) is a 2D binary maskmap drawn at µ with radius σ (set
to 1.8 during training), and � is the Hadamard product. Note that
the depth map is trained only for the interest joint area so that the
outside area is left unchanged to prevent over-fitting which results
in zero depthmap output when not using the maskmap [22].

The network is trained in multiple stages. First, the 2D layers
are trained on the MPII Human Pose dataset [3] to learn low-level
texture features. Only the regression loss LDSNT is used in the
training, while visibility is ignored. Then, the network is trained
on our dataset in Sect. 3.2 with the full loss function L joint net .
Intermediate supervision is applied during training.

We take advantage of the symmetry between the two downward-
looking camera views to flip the right-sided image and use the same
network as the left image. The output joint coordinates from the
right image are then flipped back. This strategy allows a single
network to be used at training and runtime for both views.

4.3 Temporally, Multi-view Consistent Joint Estimation
3D joints are detected in the left and right downward camera views
independently and are reprojected into a single 3D space using the
camera calibration matrices. Joints that are not consistent with their
counterparts due to erroneous detection are filtered out such that the
results are both multi-view-consistent and temporally coherent.

First, the raw detection of a joint is filtered out if its bone direction
di is temporally inconsistent, which we define as a change of more
than 30° between frames.

Next, the filtered measurements are used to estimate the multi-
view-consistent and temporally-coherent joint position X ∈ R3, by
minimizing the weighted sum Epro j +wdEdep +wlElen +wtEtemp,
where wd , wl , and wt are non-negative weights. For torso joints
including neck, hips, and shoulders, wd = 1,wl = 0,wt = 10. wd =
2,wl = 2,wt = 1 for arm joints, and wd = 1,wl = 5,wt = 2 for leg
joints.

The projection cost Epro j is defined as ∑
C
c=1 ||pc−Pc ·X ||2, where

C is the number of views, pc is the 2D location measurement in
camera image c, and Pc is camera c’s projection matrix.

The depth cost Edep is defined as ∑
C
c=1 ||dc−T [3,:]

c ·X ||2, where

dc is the depth measurement in camera c, and T [3,:]
c is the third row

of the extrinsic matrix of camera c.
Bone lengths are maintained over time, starting with the initial-

ization and averaging with new detection measurements. The initial
bone lengths are taken from the body model in its rest pose and
scaled by the ratio between the model and detected spine lengths.
The bone length consistency Elen is measured as ||Xl−||Xp−X ||2||2,
where Xp is the parent joint’s position and Xl is the bone length of
joint X .

The temporal smoothness cost Etemp is defined as ||Xt−1−X ||2,
where Xt−1 is the joint position in the previous frame.

The estimated 3D joint positions X in headset space are trans-
formed into joint positions J in 3D world space using the current
estimated headset pose acquired via V SLAM [30] running in a sepa-
rate thread at 35 fps.

The entire process, shown in Fig. 7, results in better accuracy than
when using direct triangulation, even when joints are not detected in
both views.

Figure 7: Consistent 3D joints. (a) Reference 3D joints. (b) Joint
detections from left camera (top), and right camera (bottom). (c) 3D
joints from left camera (blue), and right camera (green). (d) Joints
reconstructed by our method. (e) Joints reconstructed using direct
triangulation, for comparison.

4.4 Visual-Inertial Alignment
Human pose can be estimated with body-worn inertial sensors by
using the sensor measurements to track the orientations of the cor-
responding bones. IMUs are typically calibrated using a specific
initial pose [14, 39–41]. Prior methods assume that the sensors are
placed accurately at designated poses (positions and orientations),
and that the user assumes the correct body pose in the beginning.
Even slightly misaligned body-worn IMUs can interfere with visual-
inertial consistent pose estimation, yielding inaccurate results.

Figure 8: Coordinate frame transformations. (a) Rotation of inertial
sensor to skeleton space RSI , indicating the predefined wear pose. (b)
IMU rotation offset RW , used to compensate for misaligned IMUs.

We correct these inaccuracies by estimating an IMU rotation
offset RW ∈R3×3 using collected samples of visual and inertial pairs
lower bone directions over time. It represents how much a sensor is
offset from the assumed initial orientation of the bone (Fig. 8b).

The bone rotation RS
t at time step t from Equation 1 can be

computed for the lower bones from the IMUs mounted on them as:



RS
t = RW ·RI

t · (RSI)−1 ·RS
0 (8)

RI
t is the orientation read from the Inertial sensor at time t, RS

0 is
the rotation from T S

0 in Equation 3, and (RSI)−1 maps the coordinate
frame FS 7→ FI (Fig. 8a).

We define the Inertial lower bone direction dI
t as:

dI
t = RI

t · (RSI)−1 ·d(RS
0) (9)

d(RS
0) indicates the bone direction in the rest pose from Equation 2.

The IMU rotation offset RW is updated whenever measurements
from the visual detector of the same bone are available, so that all
prior bone directions d(RS

1), ...,d(R
S
t ) agrees with the corresponding

visual bone directions dV
1 , ...,d

V
t from Equation 2. Note that RW = I3

when the sensor is worn in exactly the designated position and
orientation. RW can be estimated from a sequence of Visual dV and
Inertial dI directions by solving the least square problem:

min
RW ∑

t
||dV

t −RW ·dI
t ||22 (10)

Solving Equation 10 for all available (dI , dV ) pairs is computa-
tionally intensive. Instead, we group the visual-inertial pairs and
update RW using the online k-means algorithm described in algo-
rithm 1 with a online k-d tree structure.

Algorithm 1: Online IMU Rotation Offset Calibration

Input: Inertial direction dI , Visual direction dV

Data: k clusters c in k-d Tree T , cluster cmin ∈ c with
minimum nearest neighbor distance (nndist)

Output: IMU rotation offset RW

x← next sample (dI , dV );
c← nearest(x) in T ;
if dist(x,c)< nndist(cmin) then

c′← average(x,c);
replace c with c′ in T ;

else
remove cmin from T ;
push x to T ;
find the new cmin in T ;

end
Update RW from c pairs using Equation 10

At runtime, we maintain a fixed k = 200 number of cluster pairs
in the k-d tree. Our sampling strategy maximizes between-cluster
distances, which favors uniform distribution of the clusters and
minimizes the number of colinear samples.

The lower bone orientations RS can always be estimated from
RW , regardless of their visibility, using Equation 8.

4.5 Temporal Visual-Inertial Orientation Network
Upper arm and thigh orientations can be estimated at every step
using a sequence of forearm and lower leg motions, respectively,
under the assumption that the movements of the lower and upper
bones of the same limb are highly correlated [14, 41]. However,
multiple upper arm or thigh orientations are possible for a single
forearm or lower leg pose. To overcome this difficulty, our approach
uses visual observations of the upper bones when available. In
this section, we use the subscripts i and u to distinguish between
the sensor-instrumented lower bones and the uninstrumented upper
bones.

The calibrated forearm and lower leg orientations RS
i are com-

puted using the IMU offset matrix RW
i in Equation 8. Similarly, the

raw accelerations aI
i can be used to compute aS

i = RH
i ·a

I
i using the

IMU acceleration offset matrix RH , indicating the Heading reset, a
rotation along the up direction computed from RW .

We estimate the un-instrumented upper arm and thigh orienta-
tions RS

u from a sequence of previous RS
i , aS

i for the forearms and
lower legs, as well as the availability of visual upper arm and thigh
directions dV

u from the visual detector in Sect. 4.3, while enforcing
the constraint d(RS

u) = dV
u from Equation 2. To be invariant to the

body direction, RS
i , aS

i , and dV
u are normalized with respect to the

root joint (hip center) orientation RS
root at time step t [14]:

RN(t) = (RS
root(t))

−1 ·RS
i (t) (11)

aS
i → aN , and dV

u → dN are similarly normalized. We use N to
indicate the Normalized torso space.

The input feature vector at time t is defined as:

xt = [rt ,ωt ,at ,vt ·dt ]
T (12)

rt denotes [rN
1 (t), ...,r

N
4 (t)]

T for 4 input bones. ωt , at , and vt · dt
are similarly defined. rN

i is the vectorized RN
i , and ωN

i (t) is the
angular velocity between RN

i (t) and RN
i (t− 1). The input feature

vector incorporates the lower bone motions represented by rotation,
velocity, and acceleration. If the joints of the upper bone i are
provided by the visual detector, its direction dN

i is added and its
visibility vi is set to 1. Otherwise, experiments showed that using
vi = 0.1−3 and dN

i = (1,1,1) yields better performance than setting
both to 0. The dimension of xt is (9+3+3+3) ·4 = 72 for the 4
IMU-instrumented bones (rt ,ωt ,at ) and for the 4 uninstrumented
bones (vt ·dt ).

The output vector contains the vectorized uninstrumented bone
orientations yt = [ro

1(t), ...,r
o
4(t)]

T . ro
i are reshaped to the output

orientations Ro
i (t). The dimension of yt is (9) · 4 = 36 for the 4

upper arm and thigh bones.
Our network’s task is to learn a function f : x→ yt that predicts

the uninstrumented bone orientations from a sequence of input fea-
tures x = [xt−n+1, ...,xt ]. We employ a Transformer network, which
has been shown to outperform LSTM in many applications [37]. The
input sequence is composed of measurements from the last n = 20
frames [14]. The network architecture is shown in Fig. 9.

Figure 9: Temporal Visual-Inertial Orientation Network architecture.
Using a sequence of visual-inertial input feature vectors x, the unin-
strumented orientations y are estimated. All layers use dropout 0.2 in
training. The numbers in brackets indicate the output dimensions of
each layer.

The network is trained with the following loss function:

Lbone net = ||y− ygt ||22 +
4

∑
i=1

vgt
i ·acos(d(Ro

i ),d
gt
i ) (13)

The orientation loss is measured using the ground truth ygt . d(Ro)
represents the output bone direction computed using Equation 2. It is
penalized by the ground truth dgt bone direction, which encourages
the output bone direction to be consistent with the visual input bone
direction if provided.This term is only computed if vgt = 1.

At run-time, the estimated Ro in normalized torso space are trans-
formed to RS

u in world space using Equation 11.

4.6 Deformable Body Model Fitting
Our pipeline estimates the full body shape and pose: joint positions J
and bone rotations RS. Unobserved joint positions are recovered us-
ing forward kinematics from RS and the corresponding bone lengths.
The body shape is updated by solving Equation 4 using the full body
joint positions J.



The bone rotations RS are further corrected by using the detected
visual direction outputs dV when available. The estimated RS are
temporally coherent but the motion may be over-smoothed when
sudden changes in motion or visibility occur along the edges of
the camera images. This issue can be avoided by fitting bone ori-
entations RS closer to visual directions dV , which encourages a
quicker reaction to changes. The corrected bone rotations R̄S can be
estimated if dV are available:

R̄S = Rv2v(d(RS),α ·dV +(1−α) ·d(RS)) ·RS (14)

Rv2v(v1,v2) is the rotation from v1 to v2 vectors, and α = 0.8
at run-time. The joint positions J̄ are also updated by the forward
kinematics using R̄S. The pose parameters T M are estimated by
using R̄S and J̄ in Equation 1 and Equation 3. The estimated joints J̄
are transferred to the next frame for the temporally consistent joint
estimation in Sect. 4.3.

5 RESULTS AND EVALUATION

Our 3D pose estimation method is not directly comparable to any
prior methods we are aware of. Outside-looking-in camera-based
methods [13, 16, 21, 43] require all joints to be visible. Prior vi-
sual+inertial fusion approaches [18,34,39] additionally require more
than 10 densely-worn IMUs. Our method uses as input stereo head-
worn views that almost never capture the entire body, and only 4
inertial sensors worn on wrists and ankles. We compared our results
with the following three baseline approaches:

HG3D (stereo stacked hourglass 3D) is a visual-only method that
uses the 3D joint detector in Sect. 4.2 without the visibility awareness
term in Equation 6 [22, 24, 25]. It detects both visible and invisible
joints, and merges the joints from the two downward camera views
as shown in Sect. 4.3 to produce full-body 3D joint positions. The
3D bone rotations are estimated from the detected joints using the
inverse kinematics (IK) algorithm in [7]. We also separately eval-
uated a monocular stacked hourglass 3D on the publicly-available
egocentric dataset in [45] and show competitive results in Table 3.

DIP is our implementation of Deep Inertial Poser [14], an IMU-
based method which uses 6 sensors placed on wrists, ankles, torso
and head. We used the ground truth values for head and torso
orientations and accelerations, thus including only limb motions
in the comparison. We also used ground truth body shapes and
pre-calibrated inertial measurements. We included 20 past frames
and 5 future frames, along with the best configuration of the LSTM
architecture. In contrast, our own method estimates the body shapes
and sensor calibrations at run-time, and does not use future frames.

Ours8 is a version of our method that uses 8 IMUs worn on
wrists, ankles, upper arms and thighs. Since actual measurements
are available, we skipped the temporal orientation network for upper
arm and thigh bone estimation in Sect. 4.5. Instead, we applied the
visual-inertial alignment in Sect. 4.4 to all 8 IMUs over time.

To assess the accuracy of our reconstruction results, we evaluated
our system by comparing 3D joint position and orientation errors
between our estimates and the ground truth. The results for the Ego-
VIP dataset are shown in Table 2, broken down into three categories
of joints: visible, occluded, and outside FoV. In all categories, our
method significantly outperforms HG3D and DIP.

HG3D’s accuracy is comparable with ours for visible joints, but its
position errors are significantly higher for both occluded and outside-
FoV joints. The orientations computed using IK are significantly less
accurate than when acquired from inertial sensors. This comparison
shows that even a few inertial sensors significantly improve pose
accuracy in joint positions and orientations.

DIP shows significantly lower accuracy and higher variance than
our method in both position and orientation. This comparison shows
that incorporating even sparse visual information into an IMU-based
method significantly stabilizes the temporal accuracy. For invisi-
ble joints, our method’s accuracy drops significantly due to relying

entirely on inertial sensors, while still outperforming DIP. Our Trans-
former network-based orientation estimation shows less variance
than DIP’s LSTM-based network.

Table 4 shows the position accuracy for each joint. Leg joints
show significantly lower position accuracy due to decreased visibility
and increased depths. Table 5 shows the orientation accuracy for
each bone. Upper bones have lower orientation accuracy than lower
bones because they are not instrumented with IMUs.

Fig. 10 shows a qualitative comparison. HG3D failed to detect
correctly the occluding right knee and ankle in (a), and was unable
to detect outside joints in (b). DIP underestimated the left knee lift
in (a) and hand raise in (b), respectively. In (c), DIP outputs the
wrong lower body pose due to the pose ambiguity from sparse IMU
input. Our method shows significantly better pose estimates than
HG3D and DIP in all cases.

Figure 10: Qualitative evaluation. Selected frames, Ego-VIP dataset.

The Ours8 (dense-IMUs) variant of our method shows the best
performance in all three categories because all bones are instru-
mented with IMUs. However, the accuracy of our proposed method,
with only 4 IMUs, is comparable to that of Ours8, and both perform
significantly better than either HG3D or DIP.

6 APPLICATIONS

To showcase the real-time capability of our system, we demonstrate
a remote Physical Therapy (PT) scenario in Virtual Reality (VR).
The user wearing our prototype system and a trainer wearing an
Oculus Quest VR headset are in different physical locations. Our
learning-based pipeline estimates the current body configuration
(10 body shape parameters and 24×3 pose parameters), which is
sent to the trainer’s VR headset over a wireless network via UDP.
The VR headset uses the Unity Game Engine [35] to render the
user’s pre-scanned environment and body model from the trainer’s
viewpoint in real time. The trainer evaluates the user’s PT motions
and gives real time audio feedback on how to improve them. The
trainer is provided with controller-based and physical locomotion to
move around the user’s environment. This demonstration shows that
our system is able to reconstruct challenging and fast PT motions
in real time and could be a viable tool for remote PT in the future.
Fig. 11 shows an overview of this (unidirectional) PT demo system,
and Fig. 1 (left 2×2 image group) shows sample results.

We also demonstrate our system outdoors, as shown in Fig. 1
(center 2×2 image group), using a backpack PC. The motion data
was recorded and processed in real-time. Wearing the backpack, the



Table 2: Quantitative evaluation on the Ego-VIP dataset showing average joint position errors (cm) and orientation errors (degrees). The joint
poses were evaluated for visible, occluded, and outside-camera-FoV cases. Methods: HG3D = Stereo Hourglass 3D (2 views); DIP (6 IMUs);
Ours (2 views, 4 IMUs); Ours8 (2 views, 8 IMUs). The worst results are shown bolded.

µ tot
cm σ tot

cm µvis
cm σ vis

cm µocc
cm σocc

cm µout
cm σout

cm µ tot
deg σ tot

deg µvis
deg σ vis

deg µocc
deg σocc

deg µout
deg σout

deg
HG3D 3.69 4.44 2.67 2.81 6.18 5.58 18.34 11.51 19.65 16.36 21.86 16.47 16.04 12.38 83.94 19.54

DIP [14] 6.06 5.32 4.33 4.31 10.52 6.91 13.66 4.95 18.14 11.70 20.05 12.57 15.60 9.93 30.93 11.79
Ours 3.33 2.49 2.46 1.78 5.60 3.47 5.50 2.96 11.28 6.87 10.88 7.00 11.71 6.28 15.42 7.01

Ours8 3.17 1.68 2.44 1.31 5.08 2.16 4.50 1.63 8.76 4.72 7.74 4.33 9.99 4.99 11.78 4.29

Table 3: Performance of monocular HG3D on the Mo2Cap2 dataset
[45] showing mean joint position errors (cm).

Indoor (cm) Outdoor (cm)
3DV’17 [20] 7.628 9.446
VNect [22] 9.785 11.375

Mo2Cap2 [45] 6.140 8.064
xR-EgoPose [33] 4.816 6.019

HG3D 8.680 8.823

Table 4: Per-joint average position errors (cm) for our method on
Ego-VIP dataset. The joint poses were evaluated in visible, occluded,
and outside-camera-FoV cases. The worst results are shown bolded.

µ tot
cm σ tot

cm µvis
cm σ vis

cm µocc
cm σocc

cm µout
cm σout

cm
Neck 1.29 0.69 1.29 0.69 N/A N/A N/A N/A

Shoulder 1.53 0.84 1.53 0.84 N/A N/A N/A N/A
Hip 2.40 1.37 2.40 1.37 N/A N/A N/A N/A

Elbow 2.34 1.76 2.15 1.28 3.55 2.60 7.08 3.63
Wrist 3.02 2.37 2.74 1.53 4.49 4.30 4.95 2.68
Knee 5.40 3.84 5.56 4.42 5.32 3.25 N/A N/A
Ankle 6.32 3.73 6.53 3.78 6.28 3.60 N/A N/A

Table 5: Per-bone average orientation errors (degrees) for our method
on the Ego-VIP dataset, using only forearm- and lower-leg IMUs;
upper bones estimated. The worst results are shown bolded.

µ tot
deg σ tot

deg µvis
deg σ vis

deg µocc
deg σocc

deg µout
deg σout

deg
Up Arm 12.7 8.5 12.5 8.2 13.1 8.2 25.9 9.7
Thigh 12.4 7.1 15.0 7.9 11.1 6.2 N/A N/A

Forearm 7.4 5.0 7.2 4.7 7.8 5.6 11.7 5.7
Lo Leg 12.5 6.3 12.2 7.3 12.5 6.0 N/A N/A

user performed a number of standard soccer exercises. Our method
successfully reconstructed the movements in a grassy area of about
50 square meters. This showcases the mobility of our system.

In both demos, the user’s environments were pre-reconstructed
using Agisoft’s Metashape software [1]. The body texture was
derived from two full-body images of the user (front and back). We
used SMPLify-X [27] to fit the SMPL body model to the body and
facial keypoints [6] acquired from the images. The colors from the
images were then rasterized to a canonical UV map based on the
established correspondence between the fitted meshes and the body
part segmentations [11].

Our prototype system runs at 37 fps on a desktop PC (Intel Xeon
Gold 6242, 2.8GHz, 128 GB RAM, with NVIDIA Quadro RTX
6000) and at 30 fps on a backpack PC (Intel i7-8850H, 2.6GHz,
32GB RAM with NVIDIA GeForce RTX 2080).

7 FUTURE WORK

Our current system’s limitations offer opportunities for future work.
Since our system only tracks the user’s limbs, it does not model inter-
actions with the the environment, nor is it able to detect topological
or texture changes in the surface of the body model. We plan to add
support for interactions with objects such as moving a chair, topo-
logical changes such as putting on a tie, and texture changes such as
wearing a different shirt. We also plan to extend our approach to be
physically plausible by estimating 3D environment contacts, as well
as to more realistic shapes with other body models [26, 27].

The joint position accuracy is highly dependent on the VSLAM

Figure 11: Interactive Physical Therapy application in VR. The real-
time body reconstruction is only transmitted from trainee to trainer.
The trainer’s VR display shows the trainee’s full-body performance
using the pre-scanned environment and body texture. The trainer
provides real-time feedback via audio.

result, which is used to transform the estimated joints into world
space. If VSLAM is unstable or inaccurate over time, the body pose
accuracy drops as well. In the next iteration of our system, we
plan to use multiple forward cameras and integrate an IMU into the
headset for more robustness in the head pose estimation.

In our current pipeline, the results of the 3D joint detection net-
work are fed into the temporal orientation network. If the 3D joints
are detected erroneously, such errors are propagated throughout.
We plan to investigate a combined network, as well as improving
robustness against erroneous detections.

Finally, unlike our current PT prototype (Fig. 11), future applica-
tion prototypes will demonstrate bi-directional telepresence.

8 CONCLUSION

We presented a real-time egocentric 3D capture system as a step
toward a fully mobile telepresence system. Our system makes use of
visual and inertial sensors that are either easy to embed into or are
already present in commonly worn personal accessories: eyeglasses,
wristwatches, and shoes.

The eyeglasses form factor makes visibility challenging, while the
small number of inertial sensors makes the full body pose difficult
to estimate. To address these challenges, our system combines
visual and inertial information and shows improved full-body pose
estimation compared to visual-only or inertial-only information.

In the future, as cameras and IMUs become smaller and more
ubiquitous, we anticipate non-encumbering and easy-to-use real-
time successors to our mobile telepresence prototype to become
commonplace and useful for many everyday communication tasks.
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